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Outline

o Stefan Heinrich's MLMC for parametric integration

@ MLFA for SDEs — extension of Heinrich's approach

» numerical analysis for integrable SDEs
» MIMC decomposition for SDE approximations
» numerical analysis for smooth and non-smooth “payoffs”

» strong convergence for pathwise sensitivities

@ conclusions and references
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MLMC for parametric integration

Stefan Heinrich’s original MLMC research (2001) concerned the
approximation of

F(0) = Elg(6; @),
given exact sampling of g(f;w) at unit cost, with 6 € [0,1]9.

In his formulation, the MLMC telescoping sum is

L

fa[f] = blf]+ > llf] — l—1[f]
(=1

where Iy[f] represents a level ¢ interpolation, e.g. piecewise linear
interpolation in 1D with spacing 27, and tensor product multilinear
interpolation in higher dimensions.
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MLMC for parametric integration
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Here we see 3 levels of approximation, with the difference Iy[f] — l,_1[f]
getting progressively smaller as £ increases.
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MLMC for parametric integration

Heinrich then approximates (Ig—lg_l)[f] through Monte Carlo sampling
at required values of 6:

(le—=le-1)[f] = Z(/e le-1)lg (-5 w"™)

As ¢ — oo, (lp—I;—1)[g] — 0, and therefore
VI(—l-1lgl] = E[] (t—t1)le] - Ele—L gl ;] — 0

so fewer MC samples needed on finer levels.

Analysis assumes the number of 8 points increases exponentially with
dimension so the resulting complexity for linear interpolation is of order

e2 d < 2r
e 2|logel?, d=2r
g=d/r, d>2r

where r € {1,2} is the degree of smoothness of f and g with respect to 6.
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MLMC for parametric integration
Heinrich's work is the key starting point for our current work which
extends it in several directions:

e PDEs with appropriate numerical approximation (Filippo)

sparse grid interpolation to address curse of dimensionality (Filippo)

replace g(0;w) by P(0; w) = g(S7(0; w)) where St is the solution
of an SDE

@ weaker assumptions on smoothness of g and hence P

@ numerical approximation of f(#) = E[P(0;w)] in cases without
a finite variance, finite expected cost unbiased estimator

numerical analysis for PDEs (Filippo) and SDEs
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MLFA for parametric integration
If Y(0;w) is an unbiased estimator for f(0) = E[P(0;w)], with

(e =N < a2
V[l = l—1)[Y]] < 27

L
and the total expected cost is bounded by c3 22“/\4@, for My samples

per level, then € r.m.s. accuracy can be achieveod with cost of order
£72, d<s
e 2|logel?, d=s
g2 (d=9)/r d>s

This is a slight generalisation of Heinrich's original result which
corresponds to s = 2r.

Mike Giles (Oxford) Multilevel Function Approximation August 19-23, 2024 7/22



Numerical analysis

In 1D, using piecewise linear interpolation, the maximum value
of (I — lp—1) [Y] is at a midpoint of a coarse 6 interval, so the
numerical analysis involves bounding

E {(52 Y (0, w))z]
where 62Y (0p; w) = Y (0o+A0; w) — 2 Y (6o; w) + Y (0o—A0; w)
We are concerned with applications in mathematical finance for which
P(0;w) = g(57(0;w))

with St being the final value for an SDE solution with w representing
the driving Brownian motion.
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Numerical analysis for integrable SDEs

For an integrable SDE, we use Y (0;w) = P(0;w) = g(S7(0; w)).

We assume the SDE satisfies the usual conditions and therefore for each
p > 0 there exists c(P) such that

E[[STP] < c(P)
Furthermore, we assume the drift and diffusion coefficients are smooth

w.r.t. #, S and therefore for integer ¢ > 0, and any p > 0, there exists
c(P-9) such that
dl

This can be proved given bounded derivatives for the drift and diffusion
coefficients, but | haven't yet found a reference for it.

095t
0649

p
] < ()
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Numerical analysis for integrable SDEs

For twice-differentiable payoff functions,

Y(0,w) = g'(57(6,w)) ST(0,w),
Y(0.0) = g"(57(0,w)) (ST(0.w))* +g'(S(0.w)) ST(0,w).
where Y = Y /80, and g’ = dg/dS. We then have
fo+A0 )
62Y:/ (A0 — |6 — o)) Y(0,w)de,
0o—A0

and hence §2Y = O(AH?) and E[(62Y)?] = O(A6*), giving s=4
as well as r=2 in the meta-theorem.

This corresponds to the smooth case analysed by Stefan Heinrich.
However, in mathematical finance the payoff function is rarely
twice-differentiable.
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Numerical analysis for non-smooth payoffs

At the other extreme, consider a digital option for which the payoff
is an indicator function g(S7) = ls, ek

For this, we follow previous research in assuming that there exists a
constant ¢ such that for all 4, and all § > 0,

Pld(ST,0K) < d] < cd

Heuristically, this corresponds to St having a bounded density, but it
also requires the set K to not be pathological.

G., Haji-Ali (2024/5) give conditions under which this assumption is
satisfied, and also examples of pathological K for which it is not.
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Numerical analysis for non-smooth payoffs

Heuristic analysis:
e O(A®) probability of St(6p; w) being within O(A#) of OK

e = O(A0) probability of S7(0;w) for g—A0 < § < Gp+Ab
crossing 0K, giving 62Y = O(1)

@ otherwise, 62Y =0

e hence, E[(0?Y)?] = O(A9)

The rigorous version of this gives
E[(62Y)?] = o(A6' %)

forany § > 0,sos~ 1, but r =2.

Mike Giles (Oxford) Multilevel Function Approximation August 19-23, 2024 12 /22



Numerical analysis for non-smooth payoffs

Similarly, for Lipschitz functions with a bounded second derivative except
on 0K (e.g. European put/call functions), the heuristic analysis is:

e O(A0) probability of St(0p;w) being within O(A#) of 0K

o = O(A0) probability of S7(0;w) for g—A0 < § < Gp+Ab
crossing 0K, giving 62Y = O(A0)

o otherwise, 6°Y = O(A6?)
e hence, E[(62Y)?] = O(A#?)

The rigorous version of this gives
E[(6%Y)?] = o(A637?)

for any 6 > 0, so s~ 3, but r = 2.
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MIMC for SDE approximations

Almost all SDEs in mathematical finance need to be approximated, so we
use MIMC approach of Haji-Ali, Nobile & Tempone (2016), starting from

L
Frd (= 1-1)lfl, 1alfl=0,

=0

where I, uses a tensor product interpolation with spacing proportional to
2=% in each direction.

We then replace f with a timestep approximation (e.g. Euler-Maruyama)
expansion

L L
f Z Z AL[AF],  ALAR] = (li—l—1)[fr — fo_1]
(=0 £'=0
in which L} is a decreasing function of ¢, since Al,[f] becomes smaller as ¢
increases and so less relative accuracy is required in its approximation.
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MIMC for SDE approximations

The final step is to replace Al[Afy] by a Monte Carlo estimate,
giving the MIMC estimator

L LZ MZ,Z’
~ 1 ’
F=> Y > AL[APy (T
om0 \Mee 1= APt

We now need to choose L, L, My, to achieve the desired accuracy
at the minimum cost.

L
E[f-f] = (’L—’)[f]+Z(/e—/e71)[fu(z)—f]
=0

L
[BF=a] < no=nial+ X 10—l 1
=0

Vi - zz(v NINIEm)

=0 ¢'=

and
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MIMC for SDE approximations

If we have
[ALIAR] ]| < 27
VI[AL[APY]] < 275
and the total cost is bounded by

L L
dir~e
sy D 2 My,

=0 ¢'=0
then € RMS accuracy can be achieved at a computational cost of order
72, n <0
72 |logelP, n>0
for some p (see MIMC analysis by Haji-Ali et al (2016)), where
—B8 d—
7 = max (7 ﬁ, S) .

(&% r
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Numerical analysis

The challenge now is to bound V [Al;[APy]]

On a level ¢ with spacing Af, and level ¢’ with timestep h, this involves
bounding

v[ (g(§(90—A9, hw)) — 2g(S5(0, hw)) + g(S(Bo+A0, h,w)))

~ (&(5(00-00,2h,w)) — 2(S(60, 2h,)) + g(S(0o+40,2h,w)) ) |

In the smooth case, this variance is O(A94h) for the E-M discretisation,
and O(A#*h?) for Milstein.
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Numerical analysis

In the non-smooth case, there are a number of scenarios to consider for

the E-M discretisation regarding the position of 0K:

Scenario 1: h'/2 < A6

T

a

Scenario 2: h/2 > A6
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Numerical analysis

Eventually, the conclusion is that the variance for the Euler-Maruyama
discretisation is approximately

O(min(h'/2, AB)) for the digital case, and
O(min(A8 h, AG3)) for the Lipschitz case.

Modifying the meta-theorem, we obtain complexity which is approximately

O(e=2-max((d+1)/4), (d=1)/2) for the digital case, and

O(e—2-max((d=1)/4, (d=3)/2)) for the Lipschitz case.

When d=1, we get the usual MLMC complexity; as d increases we hit
the curse of dimensionality
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Strong convergence for pathwise sensitivities

The numerical analysis requires the following strong convergence result
for the Euler-Maruyama discretisation.

For any p > 0 there exists c(P) such that

B| s 8- $d7] < O

0<t<T

E[sup HEf—étup] < Py
o<t T

This can also be proved given bounded derivatives for the drift and
diffusion coefficients, but | haven't yet found a reference for it.
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Conclusions and future work

Conclusions:

@ excellent asymptotic efficiency in approximating parametric functions
arising from SDEs — nearly optimal in some cases

@ initial numerical results support numerical analysis

Future work:

@ numerical results
@ extension to sparse interpolation, giving complexity < 0(5_5/2)

@ investigate use of path-branching and conditional expectation for
improved variance for non-smooth cases
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