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Outline

Stefan Heinrich’s MLMC for parametric integration

MLFA for SDEs – extension of Heinrich’s approach

▶ numerical analysis for integrable SDEs

▶ MIMC decomposition for SDE approximations

▶ numerical analysis for smooth and non-smooth “payoffs”

▶ strong convergence for pathwise sensitivities

conclusions and references
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MLMC for parametric integration

Stefan Heinrich’s original MLMC research (2001) concerned the
approximation of

f (θ) = E[g(θ;ω)],

given exact sampling of g(θ;ω) at unit cost, with θ ∈ [0, 1]d .

In his formulation, the MLMC telescoping sum is

f ≈ IL[f ] = I0[f ] +
L∑

ℓ=1

Iℓ[f ]− Iℓ−1[f ]

where Iℓ[f ] represents a level ℓ interpolation, e.g. piecewise linear
interpolation in 1D with spacing 2−ℓ, and tensor product multilinear
interpolation in higher dimensions.
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MLMC for parametric integration
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Here we see 3 levels of approximation, with the difference Iℓ[f ]− Iℓ−1[f ]
getting progressively smaller as ℓ increases.
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MLMC for parametric integration

Heinrich then approximates (Iℓ−Iℓ−1)[f ] through Monte Carlo sampling
at required values of θ:

(Iℓ−Iℓ−1)[f ] ≈
1

Mℓ

Mℓ∑
m=1

(Iℓ−Iℓ−1)[g( · ;ωℓ,m)]

As ℓ → ∞, (Iℓ−Iℓ−1)[g ] → 0, and therefore

V [ (Iℓ−Iℓ−1)[g ] ] ≡ E
[ ∥∥ (Iℓ−Iℓ−1)[g ]− E[(Iℓ−Iℓ−1)[g ]]

∥∥2
2

]
→ 0

so fewer MC samples needed on finer levels.

Analysis assumes the number of θ points increases exponentially with
dimension so the resulting complexity for linear interpolation is of order

ε−2, d < 2r
ε−2 | log ε|2, d = 2r

ε−d/r , d > 2r

where r ∈ {1, 2} is the degree of smoothness of f and g with respect to θ.

Mike Giles (Oxford) Multilevel Function Approximation August 19-23, 2024 5 / 22



MLMC for parametric integration

Heinrich’s work is the key starting point for our current work which
extends it in several directions:

PDEs with appropriate numerical approximation (Filippo)

sparse grid interpolation to address curse of dimensionality (Filippo)

replace g(θ;ω) by P(θ;ω) = g(ST (θ;ω)) where ST is the solution
of an SDE

weaker assumptions on smoothness of g and hence P

numerical approximation of f (θ) ≡ E[P(θ;ω)] in cases without
a finite variance, finite expected cost unbiased estimator

numerical analysis for PDEs (Filippo) and SDEs
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MLFA for parametric integration

If Y (θ;ω) is an unbiased estimator for f (θ) ≡ E[P(θ;ω)], with

∥(Iℓ − I ) [f ] ∥ < c1 2
−rℓ

V [(Iℓ − Iℓ−1) [Y ] ] < c2 2
−sℓ

and the total expected cost is bounded by c3

L∑
0

2dℓMℓ, for Mℓ samples

per level, then ε r.m.s. accuracy can be achieved with cost of order

ε−2, d < s

ε−2| log ε|2, d = s

ε−2−(d−s)/r , d > s

This is a slight generalisation of Heinrich’s original result which
corresponds to s = 2r .
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Numerical analysis

In 1D, using piecewise linear interpolation, the maximum value
of (Iℓ − Iℓ−1) [Y ] is at a midpoint of a coarse θ interval, so the
numerical analysis involves bounding

E
[(
δ2Y (θ;ω)

)2]
where δ2Y (θ0;ω) = Y (θ0+∆θ;ω)− 2Y (θ0;ω) + Y (θ0−∆θ;ω)

We are concerned with applications in mathematical finance for which

P(θ;ω) = g(ST (θ;ω))

with ST being the final value for an SDE solution with ω representing
the driving Brownian motion.
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Numerical analysis for integrable SDEs

For an integrable SDE, we use Y (θ;ω) = P(θ;ω) = g(ST (θ;ω)).

We assume the SDE satisfies the usual conditions and therefore for each
p > 0 there exists c(p) such that

E [∥ST∥p] ≤ c(p)

Furthermore, we assume the drift and diffusion coefficients are smooth
w.r.t. θ, S and therefore for integer q > 0, and any p > 0, there exists
c(p,q) such that

E
[ ∥∥∥∥∂qST

∂θq

∥∥∥∥p] ≤ c(p,q)

This can be proved given bounded derivatives for the drift and diffusion
coefficients, but I haven’t yet found a reference for it.
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Numerical analysis for integrable SDEs

For twice-differentiable payoff functions,

Ẏ (θ, ω) = g ′(ST (θ, ω)) ṠT (θ, ω),

Ÿ (θ, ω) = g ′′(ST (θ, ω)) (ṠT (θ, ω))
2 + g ′(ST (θ, ω)) S̈T (θ, ω).

where Ẏ ≡ ∂Y /∂θ, and g ′ ≡ dg/dS . We then have

δ2Y =

∫ θ0+∆θ

θ0−∆θ
(∆θ − |θ − θ0|) Ÿ (θ, ω) dθ,

and hence δ2Y = O(∆θ2) and E[(δ2Y )2] = O(∆θ4), giving s=4
as well as r=2 in the meta-theorem.

This corresponds to the smooth case analysed by Stefan Heinrich.
However, in mathematical finance the payoff function is rarely
twice-differentiable.
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Numerical analysis for non-smooth payoffs

At the other extreme, consider a digital option for which the payoff
is an indicator function g(ST ) = 1ST∈K

For this, we follow previous research in assuming that there exists a
constant c such that for all θ, and all δ > 0,

P[d(ST , ∂K ) < δ] < c δ

Heuristically, this corresponds to ST having a bounded density, but it
also requires the set K to not be pathological.

G., Haji-Ali (2024/5) give conditions under which this assumption is
satisfied, and also examples of pathological K for which it is not.
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Numerical analysis for non-smooth payoffs

Heuristic analysis:

O(∆θ) probability of ST (θ0;ω) being within O(∆θ) of ∂K

=⇒ O(∆θ) probability of ST (θ;ω) for θ0−∆θ < θ < θ0+∆θ
crossing ∂K , giving δ2Y = O(1)

otherwise, δ2Y = 0

hence, E[(δ2Y )2] = O(∆θ)

The rigorous version of this gives

E[(δ2Y )2] = o(∆θ1−δ)

for any δ > 0, so s ≈ 1, but r = 2.
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Numerical analysis for non-smooth payoffs

Similarly, for Lipschitz functions with a bounded second derivative except
on ∂K (e.g. European put/call functions), the heuristic analysis is:

O(∆θ) probability of ST (θ0;ω) being within O(∆θ) of ∂K

=⇒ O(∆θ) probability of ST (θ;ω) for θ0−∆θ < θ < θ0+∆θ
crossing ∂K , giving δ2Y = O(∆θ)

otherwise, δ2Y = O(∆θ2)

hence, E[(δ2Y )2] = O(∆θ3)

The rigorous version of this gives

E[(δ2Y )2] = o(∆θ3−δ)

for any δ > 0, so s ≈ 3, but r = 2.
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MIMC for SDE approximations
Almost all SDEs in mathematical finance need to be approximated, so we
use MIMC approach of Haji-Ali, Nobile & Tempone (2016), starting from

f ≈
L∑

ℓ=0

(Iℓ − Iℓ−1)[f ], I−1[f ] ≡ 0,

where Iℓ uses a tensor product interpolation with spacing proportional to
2−ℓ in each direction.

We then replace f with a timestep approximation (e.g. Euler-Maruyama)
expansion

f ≈
L∑

ℓ=0

L′ℓ∑
ℓ′=0

∆Iℓ[∆fℓ′ ], ∆Iℓ[∆fℓ′ ] ≡ (Iℓ−Iℓ−1)[fℓ′ − fℓ′−1]

in which L′ℓ is a decreasing function of ℓ, since ∆Iℓ[f ] becomes smaller as ℓ
increases and so less relative accuracy is required in its approximation.
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MIMC for SDE approximations
The final step is to replace ∆Iℓ[∆fℓ′ ] by a Monte Carlo estimate,
giving the MIMC estimator

f̃ =
L∑

ℓ=0

L′ℓ∑
ℓ′=0

 1

Mℓ,ℓ′

Mℓ,ℓ′∑
m=1

∆Iℓ[∆Pℓ′(·;ωℓ,ℓ′,m)]


We now need to choose L, L′ℓ,Mℓ,ℓ′ to achieve the desired accuracy
at the minimum cost.

E[f̃−f ] = (IL−I )[f ] +
L∑

ℓ=0

(Iℓ−Iℓ−1)[fL′(ℓ)−f ]

=⇒
∥∥∥E[f̃−f ]

∥∥∥ ≤ ∥(IL−I )[f ]∥+
L∑

ℓ=0

∥(Iℓ−Iℓ−1)[fL′(ℓ)−f ] ∥

and

V[f̃ ] =
L∑

ℓ=0

L′ℓ∑
ℓ′=0

(
1

Mℓ,ℓ′
V
[
∆Iℓ[∆Pℓ′(·;ω)]

])
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MIMC for SDE approximations
If we have

∥∆Iℓ[∆fℓ′ ] ∥ < c1 2
−rℓ−αℓ′

V [∆Iℓ[∆Pℓ′ ] ] < c2 2
−sℓ−βℓ′

and the total cost is bounded by

c3

L∑
ℓ=0

L′ℓ∑
ℓ′=0

2dℓ+γℓ′Mℓ,ℓ,

then ε RMS accuracy can be achieved at a computational cost of order

ε−2, η < 0

ε−2−η |log ε|p, η ≥ 0

for some p (see MIMC analysis by Haji-Ali et al (2016)), where

η = max

(
γ − β

α
,
d − s

r

)
.
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Numerical analysis

The challenge now is to bound V [∆Iℓ[∆Pℓ′ ] ]

On a level ℓ with spacing ∆θ, and level ℓ′ with timestep h, this involves
bounding

V
[ (

g(Ŝ(θ0−∆θ, h, ω)) − 2 g(Ŝ(θ0, h, ω)) + g(Ŝ(θ0+∆θ, h, ω))
)

−
(
g(Ŝ(θ0−∆θ, 2h, ω))− 2 g(Ŝ(θ0, 2h, ω)) + g(Ŝ(θ0+∆θ, 2h, ω))

) ]
In the smooth case, this variance is O(∆θ4h) for the E-M discretisation,
and O(∆θ4h2) for Milstein.
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Numerical analysis

In the non-smooth case, there are a number of scenarios to consider for
the E-M discretisation regarding the position of ∂K :
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Scenario 1: h1/2 < ∆θ
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c)

d)

Scenario 2: h1/2 > ∆θ
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Numerical analysis

Eventually, the conclusion is that the variance for the Euler-Maruyama
discretisation is approximately

O(min(h1/2,∆θ)) for the digital case, and

O(min(∆θ h,∆θ3)) for the Lipschitz case.

Modifying the meta-theorem, we obtain complexity which is approximately

O(ε−2−max((d+1)/4), (d−1)/2) for the digital case, and

O(ε−2−max((d−1)/4, (d−3)/2)) for the Lipschitz case.

When d=1, we get the usual MLMC complexity; as d increases we hit
the curse of dimensionality
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Strong convergence for pathwise sensitivities

The numerical analysis requires the following strong convergence result
for the Euler-Maruyama discretisation.

For any p > 0 there exists c(p) such that

E
[

sup
0<t<T

∥̂̇S t − Ṡt∥p
]

≤ c(p)hp/2

E
[

sup
0<t<T

∥̂̈S t − S̈t∥p
]

≤ c(p)hp/2

This can also be proved given bounded derivatives for the drift and
diffusion coefficients, but I haven’t yet found a reference for it.
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Conclusions and future work

Conclusions:

excellent asymptotic efficiency in approximating parametric functions
arising from SDEs – nearly optimal in some cases

initial numerical results support numerical analysis

Future work:

numerical results

extension to sparse interpolation, giving complexity ≲ O(ε−5/2)

investigate use of path-branching and conditional expectation for
improved variance for non-smooth cases
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