Variance Reduction Through Multilevel Monte Carlo Path Calculations

Mike Giles

giles@comlab.ox.ac.uk

Oxford University Computing Laboratory
A powerful technique for solving PDE discretisations:

- **Fine grid**
 - more accurate
 - more expensive

- **Coarse grid**
 - less accurate
 - less expensive
Multigrid combines calculations on a nested sequence of grids to get the accuracy of the finest grid at a much lower computational cost.

We will use a similar idea to achieve variance reduction in Monte Carlo path calculations, combining simulations with different numbers of timesteps – same accuracy as finest calculations, but at a much lower computational cost.
Generic Problem

SDE with general drift and volatility terms:

\[dS(t) = a(S, t) \, dt + b(S, t) \, dW(t) \]

Suppose we want to compute the expected value of an option dependent on the terminal state

\[P = f(S(T)) \]

with a uniform Lipschitz bound,

\[|f(U) - f(V)| \leq c \| U - V \|, \quad \forall U, V. \]
Standard MC Approach

Euler discretisation with timestep h:

$$\hat{S}_{n+1} = \hat{S}_n + a(\hat{S}_n, t_n) h + b(\hat{S}_n, t_n) \Delta W_n$$

Simplest estimator for expected payoff is an average of N independent path simulations:

$$\hat{Y} = N^{-1} \sum_{i=1}^{N} f(\hat{S}_{T/h}^{(i)}).$$

- weak convergence – $O(h)$ error in expected payoff
- strong convergence – $O(h^{1/2})$ error in individual path
Standard MC Approach

Mean Square Error is $O\left(N^{-1} + h^2\right)$

- first term comes from variance of estimator
- second term comes from bias due to weak convergence

To make this $O(\varepsilon^2)$ requires

$$N = O(\varepsilon^{-2}), \quad h = O(\varepsilon) \quad \Rightarrow \quad \text{cost} = O(N h^{-1}) = O(\varepsilon^{-3})$$

Aim is to improve this cost to $O\left(\varepsilon^{-2}(\log \varepsilon)^2\right)$

(In 2005, Ahmed Kebaier published a two-level method which reduces the cost to $O\left(\varepsilon^{-2.5}\right)$, equivalent to a single application of Richardson extrapolation.)
Multilevel MC Approach

Consider multiple sets of simulations with different timesteps \(h_l = 2^{-l} T, \ l = 0, 1, \ldots, L \), and payoff \(\hat{P}_l \)

\[
E[\hat{P}_L] = E[\hat{P}_0] + \sum_{l=1}^{L} E[\hat{P}_l - \hat{P}_{l-1}]
\]

Expected value is same – aim is to reduce variance of estimator for a fixed computational cost.

Key point: approximate \(E[\hat{P}_l - \hat{P}_{l-1}] \) using \(N_l \) simulations with \(\hat{P}_l \) and \(\hat{P}_{l-1} \) obtained using same Brownian path.

\[
\hat{Y}_l = N_l^{-1} \sum_{i=1}^{N_l} \left(\hat{P}_l^{(i)} - \hat{P}_{l-1}^{(i)} \right)
\]
Multilevel MC Approach

Discrete Brownian path at different levels
Multilevel MC Approach

Using independent paths for each level, the variance of the combined estimator is

\[V \left[\sum_{l=0}^{L} \hat{Y}_l \right] = \sum_{l=0}^{L} N_l^{-1} V_l, \quad V_l \equiv V [\hat{P}_l - \hat{P}_{l-1}], \]

and the computational cost is proportional to \(\sum_{l=0}^{L} N_l h_l^{-1} \).

Hence, the variance is minimised for a fixed computational cost by choosing \(N_l \) to be proportional to \(\sqrt{V_l h_l} \).
Multilevel MC Approach

For the Euler discretisation and the Lipschitz payoff function

\[V[\hat{P}_l - P] = O(h_l) \implies V[\hat{P}_l - \hat{P}_{l-1}] = O(h_l) \]

and the optimal \(N_l \) is asymptotically proportional to \(h_l \).

To make the combined variance \(O(\varepsilon^2) \) requires

\[N_l = O(\varepsilon^{-2} L h_l). \]

To make the bias \(O(\varepsilon) \) requires

\[L = \log_2 \varepsilon^{-1} + O(1) \implies h_L = O(\varepsilon). \]

Hence, we obtain an \(O(\varepsilon^2) \) MSE for a computational cost which is \(O(\varepsilon^{-2} L^2) = O(\varepsilon^{-2}(\log \varepsilon)^2) \).
Multilevel MC Approach

Theorem: Let P be a functional of the solution of a stochastic o.d.e., and \hat{P}_l the discrete approximation using a timestep $h_l = M^{-l}T$.

If there exist independent estimators \hat{Y}_l based on N_l Monte Carlo samples, and positive constants $\alpha \geq \frac{1}{2}$, β, c_1, c_2, c_3 such that

i) $E[\hat{P}_l - P] \leq c_1 h_l^\alpha$

ii) $E[\hat{Y}_l] = \begin{cases} E[\hat{P}_0], & l = 0 \\ E[\hat{P}_l - \hat{P}_{l-1}], & l > 0 \end{cases}$

iii) $V[\hat{Y}_l] \leq c_2 N_l^{-1} h_l^\beta$

iv) C_l, the computational complexity of \hat{Y}_l, is bounded by

$$C_l \leq c_3 N_l h_l^{-1}$$
then there exists a positive constant c_4 such that for any $\varepsilon < e^{-1}$ there are values L and N_l for which the multi-level estimator

$$\hat{Y} = \sum_{l=0}^{L} \hat{Y}_l,$$

has Mean Square Error $MSE \equiv E \left[(\hat{Y} - E[P])^2 \right] < \varepsilon^2$

with a computational complexity C with bound

$$C \leq \begin{cases}
 c_4 \varepsilon^{-2}, & \beta > 1, \\
 c_4 \varepsilon^{-2} (\log \varepsilon)^2, & \beta = 1, \\
 c_4 \varepsilon^{-2} - (1-\beta)/\alpha, & 0 < \beta < 1.
\end{cases}$$
Results

Geometric Brownian motion:

\[dS = r S \, dt + \sigma S \, dW, \quad 0 < t < 1, \]

\[S(0) = 1, \quad r = 0.05, \quad \sigma = 0.2 \]

Heston model:

\[dS = r S \, dt + \sqrt{V} S \, dW_1, \quad 0 < t < 1 \]

\[dV = \lambda (\sigma^2 - V) \, dt + \xi \sqrt{V} \, dW_2, \]

\[S(0) = 1, \quad V(0) = 0.04, \quad r = 0.05, \quad \sigma = 0.2, \quad \lambda = 5, \quad \xi = 0.25, \quad \rho = -0.5 \]

All calculations use \(M = 4 \), more efficient than \(M = 2 \).
Results

GBM: European call, $\max(S(1) - 1, 0)$
Results

GBM: European call, $\max(S(1) - 1, 0)$

The graph shows the cost N^- and ε^2 cost for different values of ε: 0.00005, 0.0001, 0.0002, 0.0005, and 0.001. The $\varepsilon=0.0005$ curve is marked with circles, $\varepsilon=0.0001$ with crosses, $\varepsilon=0.0002$ with diamonds, $\varepsilon=0.0005$ with stars, and $\varepsilon=0.001$ with squares. The $\varepsilon=0.0002$ line is shown as a dashed line.

[Graph showing the relationship between ε and N^- and ε^2 cost, with different markers for each ε value.]
Results

GBM: lookback option, \(S(1) - \min_{0 < t < 1} S(t) \)
Results

GBM: lookback option, \(S(1) - \min_{0 < t < 1} S(t) \)

- Graph showing the relationship between \(\epsilon \) and the cost of the simulation.
- Different lines represent different values of \(\epsilon \): 0.00005, 0.0001, 0.0002, 0.0005, 0.001.

- The cost is plotted on a logarithmic scale.

- The graph includes a legend indicating the cost for both Std MC and MLMC.

- The y-axis represents the number of samples needed for the simulation, while the x-axis represents the error level.
Results

Heston model: European call

![Graph showing Heston model results for logM variance and logM |mean| over time.](image)
Results

Heston model: European call

N_ε vs ε

ε values: 0.00005, 0.0001, 0.0002, 0.0005, 0.001

ε^2 Cost vs ε

Std MC vs MLMC
Comments

Results so far:
- improved order of complexity
- easy to implement
- significant benefits for model problems

Future work:
- use of Milstein method and a control variate or antithetic variables to reduce complexity to $O(\varepsilon^{-2})$
- adaptive sampling to treat discontinuous payoffs and pathwise derivatives for Greeks
- use of quasi-Monte Carlo methods
- additional variance reduction techniques
Milstein Scheme

Generic SDE:
\[dS(t) = a(S, t) \, dt + b(S, t) \, dW(t), \quad 0 < t < T, \]
with correlation matrix \(\Omega(S, t) \) between elements of \(DW(t) \).

Simplest Milstein scheme sets Lévy areas to zero to give
\[
\hat{S}_{i,n+1} = \hat{S}_{i,n} + a_i \, h + b_{ij} \, \Delta W_{j,n} + \frac{1}{2} \left[\frac{\partial b_{ij}}{\partial S_l} b_{lk} \left(\Delta W_{j,n} \Delta W_{k,n} - h \Omega_{jk} \right) \right]
\]
using implied summation convention.
Milstein Scheme

In scalar case:

- $O(h)$ strong convergence
- $O(\varepsilon^{-2})$ complexity for Lipschitz payoffs
- $O(\varepsilon^{-2} (\log \varepsilon)^2)$ complexity for digitals and Greeks

In vector case:

- still only $O(h^{1/2})$ strong convergence
- but $\hat{S}_n - E[S \mid W_n] = O(h)$
Milstein Scheme

If a coarse path with timestep $2h$ is constructed using

$$
\Delta W^c_n = \sqrt{2h} \ Y_n
$$

where the Y_n are $N(0, 1)$ random variables, and the fine path uses a Brownian Bridge construction with

$$
\Delta W^f_n = \frac{1}{2} \sqrt{2h} \ (Y_n + Z_n), \quad \Delta W^f_{n+\frac{1}{2}} = \frac{1}{2} \sqrt{2h} \ (Y_n - Z_n).
$$

where the Z_n are also $N(0, 1)$ random variables, then perturbation analysis shows that the $O(h^{1/2})$ difference between the two paths comes from a sum of terms proportional to

$$
Y_{j,n} Z_{k,n} - Y_{k,n} Z_{j,n}.
$$
Using the idea of antithetic variables, we use the estimator

\[
\hat{Y}_l = N_l^{-1} \sum_{i=1}^{N_l} \left(\frac{1}{2} \left(\hat{P}_l^{(i)} + \hat{P}_l^{(i)*} \right) - \hat{P}_{l-1}^{(i)} \right),
\]

where \(\hat{P}_l^{(i)*} \) is based on the same coarse path \(Y_n \), but with \(Z_n \) replaced by \(-Z_n\), which leads to the cancellation of the leading order error proportional to \(Z_n \).

- \(V[\hat{Y}_l] = O(h^2) \) for smooth payoffs, \(O(h^{3/2}) \) for Lipschitz
- in both cases, gives \(O(\varepsilon^{-2}) \) complexity for \(O(\varepsilon) \) accuracy
Adaptive sampling

With digital options, the problem is that small path changes lead to an $O(1)$ change in the payoff.

For the Euler discretisation, $O(h^{1/2})$ strong convergence

$\implies O(h^{1/2})$ paths have an $O(1)$ value for \hat{Y}_l

Hence,

$$V[\hat{Y}_l] = O(h^{1/2}).$$

For improved results, need more samples of paths near payoff discontinuities.
Adaptive sampling

Two ideas for adaptive sampling are both based on Brownian Bridge constructions, using coarse timestep realisations to decide which paths are “interesting” (i.e. likely to produce a large variance)

- idea 1: start with lots of paths, and prune those which are not interesting
- idea 2: start with relatively few paths, and sub-divide those which look interesting
- in each case, need to use path weights to ensure estimator remains unbiased
- no results yet, but I think this will make digital and barrier options as efficient as Lipschitz payoffs
Quasi-Monte Carlo methods can offer greatly improved convergence with respect to the number of samples N:

- in the best case, $O(N^{-1+\delta})$ error for arbitrary $\delta > 0$, instead of $O(N^{-1/2})$
- depends on knowledge/identification of “important dimensions” in an application
 - Brownian Bridge
 - Principal Component Analysis
- most theory doesn’t apply to financial applications because of lack of payoff smoothness
- confidence intervals can be obtained by using randomized QMC
- my plans are to start by using Sobol sequences
Other Variance Reduction

- stratified sampling – probably not, because QMC has already done a good job of leading dimensions

- control variate – probably not (except perhaps for geometric Asian) multilevel approach can be viewed as using the coarse path value as a control variate

- importance sampling – might be useful for over-sampling the tails of the Normal distributions
Final words

Results so far:
- improved order of complexity
- easy to implement
- significant benefits for model problems

Future work:
- use of Milstein method and a control variate or antithetic variables to reduce complexity to $O(\varepsilon^{-2})$
- adaptive sampling to treat discontinuous payoffs and pathwise derivatives for Greeks
- use of quasi-Monte Carlo methods
- additional variance reduction techniques