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Monte Carlo simulation
Interested in estimating the expected value of a function of a random
variable E[P(ω)].

The simplest estimator is an average of N independent samples

Ŷ =
1

N

N∑
n=1

P̂(ω(n))

where P̂ is an approximation to P.

The Mean Square Error is

E
[(

Ŷ − E[P]
)2
]

= N−1V[P̂] +
(
E[P̂]−E[P]

)2

so greater accuracy requires more samples, and better accuracy for each
sample — both drive up the cost.
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Two-level Monte Carlo

If we want to estimate E[P̂1] but it is much cheaper to simulate P̂0 ≈ P̂1,
then since

E[P̂1] = E[P̂0] + E[P̂1−P̂0]

we can use the estimator

N−1
0

N0∑
n=1

P̂
(n)
0 + N−1

1

N1∑
n=1

(
P̂

(n)
1 − P̂

(n)
0

)
If C0,C1 and V0,V1 are the cost and variance of P̂0, P̂1−P̂0 then

total cost = N0 C0 + N1 C1, total variance = N−1
0 V0 + N−1

1 V1

so can optimise N0/N1 to minimise cost for given accuracy.
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Multilevel Monte Carlo

Natural generalisation: given a sequence P̂0, P̂1, . . . , P̂L

E[P̂L] = E[P̂0] +
L∑
`=1

E[P̂`−P̂`−1]

so we can use the estimator

N−1
0

N0∑
n=1

P̂
(n)
0 +

L∑
`=1

{
N−1
`

N∑̀
n=1

(
P̂

(n)
` − P̂

(n)
`−1

)}

with independent estimation for each level
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Multilevel Monte Carlo

If we define

C0,V0 to be cost and variance of P̂0

C`,V` to be cost and variance of P̂`−P̂`−1

then the total cost is
L∑
`=0

N` C` and the variance is
L∑
`=0

N−1
` V`.

Using a Lagrange multiplier µ2 to minimise the cost for a fixed variance

∂

∂N`

L∑
k=0

(
Nk Ck + µ2N−1

k Vk

)
= 0

gives
N` = µ

√
V`/C` =⇒ N` C` = µ

√
V` C`
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Multilevel Path Simulation

In 2006, I introduced the multilevel approach for infinite-dimensional
integration arising from SDEs driven by Brownian diffusion.

Level ` corresponds to approximation using 2` timesteps, giving
approximate payoff P̂`.

Choice of finest level L depends on weak error (bias).

To make RMS error less than ε

choose L so that
(
E[P̂L]−E[P]

)2
< 1

2 ε
2

choose N` ∝
√

V`/C` so total variance is less than 1
2 ε

2
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MLMC Theorem

(Slight generalisation of original version)

If there exist independent estimators Ŷ` based on N` Monte Carlo samples,
each costing C`, and positive constants α, β, γ, c1, c2, c3 such that
α≥ 1

2 min(β, γ) and

i)
∣∣∣E[P̂`−P]

∣∣∣ ≤ c1 2−α `

ii) E[Ŷ`] =

 E[P̂0], l = 0

E[P̂`−P̂`−1], l > 0

iii) V[Ŷ`] ≤ c2 N
−1
` 2−β `

iv) E[C`] ≤ c3 2γ `
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MLMC Theorem

then there exists a positive constant c4 such that for any ε<1 there exist
L and N` for which the multilevel estimator

Ŷ =
L∑
`=0

Ŷ`,

has a mean-square-error with bound E
[(

Ŷ − E[P]
)2
]
< ε2

with an expected computational cost C with bound

C ≤


c4 ε
−2, β > γ,

c4 ε
−2(log ε)2, β = γ,

c4 ε
−2−(γ−β)/α, 0 < β < γ.
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MLMC Theorem

Two observations of optimality:

MC simulation needs O(ε−2) samples to achieve RMS accuracy ε.
When β > γ, the cost is optimal — O(1) cost per sample on average.

When β < γ, another interesting case is when β = 2α, which

corresponds to E[Ŷ`] and
√
E[Ŷ 2

` ] being of the same order as `→∞.

In this case, the total cost is O(ε−γ/α), which is the cost of a single
sample on the finest level — again optimal.
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MLMC Theorem

MLMC Theorem allows a lot of freedom in constructing the multilevel
estimator. I sometimes use different approximations on the coarse and fine
levels:

Ŷ` = N−1
`

N∑̀
n=1

(
P̂ f
` (ω(n))−P̂c

`−1(ω(n))
)

The telescoping sum still works provided

E
[
P̂ f
`

]
= E

[
P̂c
`

]
.

Given this constraint, can be creative to reduce the variance

V
[
P̂ f
` − P̂c

`−1

]
.
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Nested simulation

In some applications (especially in pensions / insurance industry for risk
assessment?) interested in estimating quantities of the form

EZ

[
f
(
E[W |Z ]

) ]
Z represents different risk scenarios

E[W |Z ] represents exposure, conditional on the scenario

f might be an indicator function, to determine the percentage
of scenarios under which the company has a loss in excess of its
capital reserves

alternatively, f might correspond to the expected loss in excess
of the capital reserves.
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Nested simulation

How is this simulated?

Nested Monte Carlo simulation:

N outer samples Z (n)

M inner samples W (m,n), conditional on Z (n)

Ŷ =
1

N

N∑
n=1

f

(
1

M

M∑
m=1

W (m,n)

)

Both M and N need to be increased to improve the accuracy of the
estimate
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Nested simulation

How can we use MLMC?

level ` uses M` = 2` inner samples

(coarser levels could also use fewer, larger timesteps and perhaps
small representative subsets of the full portfolio held by the company)

To estimate E[P̂`−P̂`−1] with a low variance we use an antithetic “trick”:

Ŷ` =
1

N`

N∑̀
n=1

{
f

(
1

M`

M∑̀
m=1

W (m,n)

)

− 1
2 f

 1

M`−1

M`−1∑
m=1

W (m,n)

− 1
2 f

 1

M`−1

M∑̀
m=M`−1+1

W (m,n)


which has the correct expectation.
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Nested simulation

If we define

1

M`−1

M`−1∑
m=1

W (m,n) = E[W |Z (n)] + ∆W
(n)
1

1

M`−1

M∑̀
m=M`−1+1

W (m,n) = E[W |Z (n)] + ∆W
(n)
2

then if f is twice differentiable a Taylor series expansion gives

Ŷ ≈ − 1

4N`

N∑̀
n=1

f ′′(E[W |Z (n)])
(

∆W
(n)
1 −∆W

(n)
2

)2

∆W
(n)
1 ,∆W

(n)
2 = O(M

−1/2
` ) and hence V` = O(M−2

` ). For the MLMC
theorem, this corresponds to β = 2, γ = 1, so the complexity is O(ε−2).
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My MLMC research

Lévy processes (Yuan Xia) and Greeks (Sylvestre Burgos)

elliptic SPDEs (with Rob Scheichl, Bath)

parabolic SPDEs (with Christoph Reisinger)

multi-dimensional Milstein (with Lukas Szpruch, Edinburgh)

approximating CDF (with Klaus Ritter, Kaiserslautern)

continuous-time Markov procs (Ruth Baker, Kit Yates, Chris Lester)

engineering SDE application (with Endre Süli)

MLMC with reduced basis functions (with Jaime Peraire, MIT)

stopped and reflected diffusions

adaptive timestepping (with Raul Tempone, KAUST ?)

nested simulation? mean field games?

Webpage: people.maths.ox.ac.uk/gilesm/mlmc.html
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MLMC Community
Abo Academi (Avikainen) – numerical analysis
Basel (Harbrecht) – elliptic SPDEs, sparse grid links
Bath (Kyprianou, Scheichl, Shardlow) – elliptic SPDEs, MCMC, Lévy-driven SDEs
Chalmers (Lang) – SPDEs
Christian-Albrechts University (Gnewuch) – multilevel QMC
Duisburg (Belomestny) – Bermudan and American options
Edinburgh (Davie, Szpruch) – SDEs, numerical analysis
ETH Zürich (Jenny, Jentzen, Schwab) – numerical analysis, SPDEs
Frankfurt (Gerstner, Kloeden) – numerical analysis, sparse grid links
Fraunhofer ITWM (Iliev) – SPDEs in engineering
Hong Kong (Chen) – Brownian meanders, nested simulation in finance
IIT Chicago (Hickernell) – SDEs, infinite-dimensional integration, complexity analysis
Kaiserslautern (Heinrich, Korn, Ritter) – finance, SDEs, complexity analysis, parametric integration
KAUST (Tempone) – adaptive time-stepping
Kiel (Gnewuch) – randomized multilevel QMC
Mannheim (Neuenkirch) – numerical analysis, fractional Brownian motion
Marburg (Dereich) – Lévy-driven SDEs
Munich (Hutzenthaler) – numerical analysis
Oxford (Giles, Hambly, Reisinger) – SDEs, jump-diffusion, SPDEs, numerical analysis
Passau (Müller-Gronbach) – infinite-dimensional integration, complexity analysis
Purdue (Gittelson) – SDPEs
Stanford (Glynn) – numerical analysis
Strathclyde (Higham, Mao) – numerical analysis, exit times, stochastic chemical modelling
Stuttgart (Barth) – SPDEs
Texas A&M (Efendiev) – SPDEs in engineering
UCLA (Caflisch) – Coulomb collisions in physics
UNSW (Dick, Kuo, Sloan) – multilevel QMC
WIAS (Schoenmakers) – Bermudan and American options
Wisconsin (Anderson) – numerical analysis, stochastic chemical modelling

Webpage: people.maths.ox.ac.uk/gilesm/mlmc community.html

Mike Giles (Oxford) MLMC OMI Internal Seminar 16 / 17



Conclusions

MLMC is a very simple idea, but can provide very significant savings

requires the construction of a hierarchy of approximation

the savings are greatest when the coarsest approximations are much
cheaper than the most accurate

limited benefits (10× at most?) for pricing short-dated options?

perhaps more significant opportunities with nested simulations?

lots of MLMC research on a range of different applications
– 100 journal articles in past 5 years
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