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Computational Finance

Options pricing – investment banks

Monte Carlo methods (60%)

PDEs / finite difference methods (30%)

other semi-analytic methods (10%)

High-frequency algorithmic trading – hedge funds
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Computational Finance

Might seem a bad time to be in this business, but as an
academic it’s fine:

clear need for better models

regulators (and internal risk management) are
demanding more simulation

computational finance accounts for 10% of Top500
supercomputers

still plenty of MSc students willing/able to fund
themselves

only problem is lack of research funding
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Computational Finance

Computational finance is where CFD was 20-25 years ago

not many academics working on numerical methods

codes are small – my biggest is probably 1000 lines

still lots of low-hanging fruit

in banks, each product group often has its own codes;
consolidation into a single corporate Monte Carlo
system for both London and New York is underway
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SDEs in Finance

In computational finance, stochastic differential equations
are used to model the behaviour of

stocks

interest rates

exchange rates

weather

electricity/gas demand

crude oil prices

. . .

The stochastic term accounts for the uncertainty of
unpredictable day-to-day events.
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SDEs in Finance

Examples:

Geometric Brownian motion (Black-Scholes model for
stock prices)

dS = r S dt + σ S dW

Cox-Ingersoll-Ross model (interest rates)

dr = α(b − r) dt + σ
√

r dW

Heston stochastic volatility model (stock prices)

dS = r S dt +
√

V S dW1

dV = λ (σ2−V ) dt + ξ
√

V dW2

with correlation ρ between dW1 and dW2
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Generic Problem

Stochastic differential equation with general drift and
volatility terms:

dS(t) = a(S, t) dt + b(S, t) dW (t)

W (t) is a Wiener variable with the properties that for any
q<r<s<t, W (t)−W (s) is Normally distributed with mean 0
and variance t−s, independent of W (r)−W (q).

In many finance applications, we want to compute the
expected value of an option dependent on the terminal state

P ≡ f(S(T ))
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Standard MC Approach

Euler discretisation with timestep h:

Ŝn+1 = Ŝn + a(Ŝn, tn) h + b(Ŝn, tn) ∆Wn

In the scalar case, each ∆Wn is a Normal random variable
with mean 0 and variance h.

Simplest estimator for expected payoff E[P ] is an average
from N independent path simulations:

Ŷ = N−1
N∑

i=1

P̂ (i)

May seem very simple-minded but it’s hard to improve on
the Euler discretisation, and many codes are this simple.
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The “Greeks”

As well as estimating the value V =E[P ], also important to
estimate various first and second derivatives for hedging
and risk management:

∆ =
∂V

∂S0
, Γ =

∂2V

∂S2
0

, Vega =
∂V

∂σ

In some cases, can need 100 or more first order
derivatives, so use of adjoints is natural
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“Smoking Adjoints” (2006)

First significant paper was with Paul Glasserman from
Columbia Business School:

“Smoking Adjoints: fast Monte Carlo Greeks” in
Risk, a monthly publication for the finance industry

explains how to use discrete adjoints for an important
application which requires lots of Greeks

Yves Achdou and Olivier Pironneau had previously
used adjoints for finance PDEs, but the technique
hadn’t been transferred over to the Monte Carlo side

absolutely nothing novel from an academic point of
view, but has had an impact in the industry – I think a
number of banks now use it
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“Smoking Adjoints”

The adjoint implementation is based on pathwise sensitivity
analysis which relies on the identity

∂

∂θ
E[P ] = E

[
∂P

∂θ

]

but this breaks down if P is discontinuous.

There are some other ways of treating this case, but
they don’t have efficient adjoint implementations.

I’ve recently developed a new way of handling the
discontinuity which does retain an efficient adjoint
implementation.
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. . . and for my next trick

Coming from CFD, the use of adjoints was quite natural

What else is there? Multigrid!

But there’s no iterative solver here – instead just keep the
ideas of

a nested sequence of grids

fine grid accuracy at coarse grid cost
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Multilevel Monte Carlo

Consider multiple sets of simulations with different
timesteps hl = 2−l T, l = 0, 1, . . . , L, and payoff P̂l

E[P̂L] = E[P̂0] +
L∑

l=1

E[P̂l−P̂l−1]

Expected value is same – aim is to reduce variance of
estimator for a fixed computational cost.

Key point: approximate E[P̂l−P̂l−1] using Nl simulations
with P̂l and P̂l−1 obtained using same Brownian path.

Ŷl = N−1
l

Nl∑

i=1

(
P̂

(i)
l

−P̂
(i)
l−1

)
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Multilevel Monte Carlo

This has led to a number of papers, covering both
applications and numerical analysis. Main point is a big
reduction in computational cost for many problems.

To achieve a root-mean-square accuracy of ε:

cost of standard approach is O(ε−3)

cost of multilevel approach is O(ε−2)

cost is further reduced using quasi-random numbers
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Back to CFD?

One new project uses multilevel Monte Carlo for oil
reservoir and nuclear waste repository simulation,

∇·
(
κ(x)∇p

)
= 0

where log κ is Normally distributed with a given spatial
correlation.

Some people use “polynomial chaos” or Karhunen-Loeve
expansions, but we think multilevel Monte Carlo may be
better when there is minimal spatial correlation.
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Back to CFD?

Another project concerns the use of GPUs for HPC

current NVIDIA GPUs have up to 240 cores;
next generation has 512

1 GPU is roughly 10× faster than 2 CPUs, with
similar cost and power consumption

programmed in C with some extensions

ideal for trivially-parallel Monte Carlo simulations

also very effective for finite difference applications

new project addresses the needs of unstructured grid
applications through a general-purpose open-source
library and program transformation tools
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Further information

Web: www.maths.ox.ac.uk/∼gilesm/

Email: mike.giles@maths.ox.ac.uk

. . . or talk to me here about GPU project
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