From CFD to computational finance (and back again?)

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford University Mathematical Institute
Oxford-Man Institute of Quantitative Finance

21st Century Challenges in Computational Engineering and Science

Princeton University, Nov 19-21, 2009

Computational Finance

Options pricing – investment banks

- Monte Carlo methods (60%)
- PDEs / finite difference methods (30%)
- other semi-analytic methods (10%)

High-frequency algorithmic trading – hedge funds

Computational Finance

Might seem a bad time to be in this business, but as an academic it's fine:

- clear need for better models
- regulators (and internal risk management) are demanding more simulation
- computational finance accounts for 10% of Top500 supercomputers
- still plenty of MSc students willing/able to fund themselves
- only problem is lack of research funding

Computational Finance

Computational finance is where CFD was 20-25 years ago

- not many academics working on numerical methods
- codes are small my biggest is probably 1000 lines
- still lots of low-hanging fruit
- in banks, each product group often has its own codes; consolidation into a single corporate Monte Carlo system for both London and New York is underway

SDEs in Finance

In computational finance, stochastic differential equations are used to model the behaviour of

- stocks
- interest rates
- exchange rates
- weather
- electricity/gas demand
- crude oil prices
- **_**

The stochastic term accounts for the uncertainty of unpredictable day-to-day events.

SDEs in Finance

Examples:

 Geometric Brownian motion (Black-Scholes model for stock prices)

$$dS = r S dt + \sigma S dW$$

Cox-Ingersoll-Ross model (interest rates)

$$dr = \alpha(b - r) dt + \sigma \sqrt{r} dW$$

Heston stochastic volatility model (stock prices)

$$dS = r S dt + \sqrt{V} S dW_1$$

$$dV = \lambda (\sigma^2 - V) dt + \xi \sqrt{V} dW_2$$

with correlation ρ between dW_1 and dW_2

Generic Problem

Stochastic differential equation with general drift and volatility terms:

$$dS(t) = a(S, t) dt + b(S, t) dW(t)$$

W(t) is a Wiener variable with the properties that for any q < r < s < t, W(t) - W(s) is Normally distributed with mean 0 and variance t-s, independent of W(r) - W(q).

In many finance applications, we want to compute the expected value of an option dependent on the terminal state

$$P \equiv f(S(T))$$

Standard MC Approach

Euler discretisation with timestep *h*:

$$\widehat{S}_{n+1} = \widehat{S}_n + a(\widehat{S}_n, t_n) h + b(\widehat{S}_n, t_n) \Delta W_n$$

In the scalar case, each ΔW_n is a Normal random variable with mean 0 and variance h.

Simplest estimator for expected payoff $\mathbb{E}[P]$ is an average from N independent path simulations:

$$\widehat{Y} = N^{-1} \sum_{i=1}^{N} \widehat{P}^{(i)}$$

May seem very simple-minded but it's hard to improve on the Euler discretisation, and many codes are this simple.

The "Greeks"

As well as estimating the value $V = \mathbb{E}[P]$, also important to estimate various first and second derivatives for hedging and risk management:

$$\Delta = \frac{\partial V}{\partial S_0}, \quad \Gamma = \frac{\partial^2 V}{\partial S_0^2}, \quad \text{Vega} = \frac{\partial V}{\partial \sigma}$$

In some cases, can need 100 or more first order derivatives, so use of adjoints is natural

"Smoking Adjoints" (2006)

First significant paper was with Paul Glasserman from Columbia Business School:

- "Smoking Adjoints: fast Monte Carlo Greeks" in Risk, a monthly publication for the finance industry
- explains how to use discrete adjoints for an important application which requires lots of Greeks
- Yves Achdou and Olivier Pironneau had previously used adjoints for finance PDEs, but the technique hadn't been transferred over to the Monte Carlo side
- absolutely nothing novel from an academic point of view, but has had an impact in the industry – I think a number of banks now use it

"Smoking Adjoints"

The adjoint implementation is based on pathwise sensitivity analysis which relies on the identity

$$\frac{\partial}{\partial \theta} \mathbb{E}[P] = \mathbb{E}\left[\frac{\partial P}{\partial \theta}\right]$$

but this breaks down if P is discontinuous.

There are some other ways of treating this case, but they don't have efficient adjoint implementations.

I've recently developed a new way of handling the discontinuity which does retain an efficient adjoint implementation.

...and for my next trick

Coming from CFD, the use of adjoints was quite natural

What else is there? Multigrid!

But there's no iterative solver here – instead just keep the ideas of

- a nested sequence of grids
- fine grid accuracy at coarse grid cost

Multilevel Monte Carlo

Consider multiple sets of simulations with different timesteps $h_l = 2^{-l} T$, l = 0, 1, ..., L, and payoff \widehat{P}_l

$$\mathbb{E}[\widehat{P}_L] = \mathbb{E}[\widehat{P}_0] + \sum_{l=1}^L \mathbb{E}[\widehat{P}_l - \widehat{P}_{l-1}]$$

Expected value is same – aim is to reduce variance of estimator for a fixed computational cost.

Key point: approximate $\mathbb{E}[\widehat{P}_l - \widehat{P}_{l-1}]$ using N_l simulations with \widehat{P}_l and \widehat{P}_{l-1} obtained using <u>same</u> Brownian path.

$$\widehat{Y}_{l} = N_{l}^{-1} \sum_{i=1}^{N_{l}} \left(\widehat{P}_{l}^{(i)} - \widehat{P}_{l-1}^{(i)} \right)$$

Multilevel Monte Carlo

This has led to a number of papers, covering both applications and numerical analysis. Main point is a big reduction in computational cost for many problems.

To achieve a root-mean-square accuracy of ε :

- cost of standard approach is $O(\varepsilon^{-3})$
- cost of multilevel approach is $O(\varepsilon^{-2})$
- cost is further reduced using quasi-random numbers

Back to CFD?

One new project uses multilevel Monte Carlo for oil reservoir and nuclear waste repository simulation,

$$\nabla \cdot (\kappa(x)\nabla p) = 0$$

where $\log \kappa$ is Normally distributed with a given spatial correlation.

Some people use "polynomial chaos" or Karhunen-Loeve expansions, but we think multilevel Monte Carlo may be better when there is minimal spatial correlation.

Back to CFD?

Another project concerns the use of GPUs for HPC

- current NVIDIA GPUs have up to 240 cores; next generation has 512
- 1 GPU is roughly 10× faster than 2 CPUs, with similar cost and power consumption
- programmed in C with some extensions
- ideal for trivially-parallel Monte Carlo simulations
- also very effective for finite difference applications
- new project addresses the needs of unstructured grid applications through a general-purpose open-source library and program transformation tools

Further information

Web: www.maths.ox.ac.uk/~gilesm/

Email: mike.giles@maths.ox.ac.uk

... or talk to me here about GPU project