
Monte Carlo and finite difference
computations on GPUs

Mike Giles

mike.giles@maths.ox.ac.uk

Oxford-Man Institute for Quantitative Finance

Oxford University Mathematical Institute

Thalesians Workshop: GPUs in Finance

Imperial College, Sept 11, 2009

Finance on GPUs – p. 1/20



Random number generation

Main challenge for Monte Carlo simulation is parallel
random number generation

want to generate same random numbers as in
sequential single-thread implementation

two key steps:
generation of [0, 1] uniform random number
conversion to other output distributions
(e.g. unit Normal)

many of these problems are already faced with
multi-core CPUs and cluster computing

NVIDIA does not provide a RNG library, so I developed
one with NAG

Finance on GPUs – p. 2/20



Random number generation

Key issue in uniform random number generation:

when generating 10M random numbers, might have
5000 threads and want each one to compute 2000
random numbers

need a “skip-ahead” capability so that thread n can
jump to the start of its “block” efficiently
(usually log N cost to jump N elements)

Finance on GPUs – p. 3/20



Random number generation

mrg32k3a (Pierre l’Ecuyer, ’99, ’02)

popular generator in Intel MKL and ACML libraries

pseudo-uniform (0, 1) output is

(xn,1−xn,2 mod m1) /m1

where integers xn,1, xn,2 are defined by recurrences

xn,1 = a1 xn−2,1 − b1 xn−3,1 mod m1

xn,2 = a2 xn−1,2 − b2 xn−3,2 mod m2

a1 =1403580, b1 =810728, m1 =232
−209,

a2 =527612, b2 =1370589, m2 =232
− 22853.

Finance on GPUs – p. 4/20



Random number generation

Both recurrences are of the form

yn = Ayn−1 mod m

where yn is a vector yn = (xn, xn−1, xn−2)
T and A is a

3×3 matrix. Hence

yn+2k = A2
k

yn mod m = Ak yn mod m

where Ak is defined by repeated squaring as

Ak+1 = Ak Ak mod m, A0 ≡ A.

Can generalise this to jump N places in O(log N)
operations.

Finance on GPUs – p. 5/20



Random number generation

output distributions:
uniform
exponential: trivial
Normal: Box-Muller or inverse CDF
Gamma: using “rejection” methods which require
a varying number of uniforms and Normals to
generate 1 Gamma variable

producing Normals with mrg32k3a:
2400M values/sec on a 216-core GTX260
70M values/sec on a Xeon using Intel’s VSL

have also implemented a Sobol generator to produce
quasi-random numbers

Finance on GPUs – p. 6/20



Monte Carlo simulation

Other challenges in Monte Carlo simulation:

be careful to ensure coalesced memory transfers to
maximise memory bandwidth

keep constants in special constant memory, as far as
possible

local volatility surface – use texture mapping for
efficiency?

Longstaff-Schwartz – need to combine regression
matrix contributions from each path using a global
reduction

complex scripting of payoffs – transfer path values back
to CPU for payoff evaluation?

Finance on GPUs – p. 7/20



Finite Difference Model Problem

Jacobi iteration to solve discretisation of Laplace equation

V n+1

i,j = 1

4

(

V n
i+1,j + V n

i−1,j + V n
i,j+1 + V n

i,j−1

)

v v v

v

v

v

Finance on GPUs – p. 8/20



Finite Difference Model Problem

How should this be programmed?

First idea: each thread does one grid point, reading in
directly from graphics memory the old values at the 4
neighbours (6 in 3D).

Performance would be awful:

each old value read in 4 times (6 in 3D)

although reads would be contiguous (all read from the
left, then right, etc.) they wouldn’t have the correct
alignment (factor 2× penalty on new hardware, even
worse on old)

overall a factor 10× reduction in effective bandwidth
(or 10× increase in read time)

Finance on GPUs – p. 9/20



Finite Difference Model Problem

@@
��

Second idea: take ideas from distributed-memory parallel
computing and partition grid into pieces

Finance on GPUs – p. 10/20



Finite Difference Model Problem

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p

p p p p p p p p

p p p p p p p p

Finance on GPUs – p. 11/20



Finite Difference Model Problem

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r r r r r r r r

r r r r r r r r

Each block of threads will work with one of these grid
blocks, reading in old values (including the “halo nodes”
from adjacent partitions) then computing and writing out
new values

Finance on GPUs – p. 12/20



Finite Difference Model Problem

Key point: old data is loaded into shared memory:

each thread loads in the data for its grid point
(coalesced) and maybe one halo point (only partially
coalesced)

need a syncthreads(); instruction
to ensure all threads have completed this before any of
them access the data

each thread computed its new value and writes it to
graphics memory

Finance on GPUs – p. 13/20



Finite Difference Model Problem

2D finite difference implementation:

good news: 30× speedup relative to Xeon single core,
compared to 4.5× speedup using OpenMP with 8 cores

bad news: grid size has to be 10242 to have enough
parallel work to do to get this performance

in a real financial application, more sensible to do
several 2D calculations at the same time, perhaps with
different payoffs

Finance on GPUs – p. 14/20



Finite Difference Model Problem

3D finite difference implementation:

insufficient shared memory for whole 3D block, so hold
3 working planes at a time

key steps in kernel code:
load in k=0 z-plane (inc x and y-halos)
loop over all z-planes

load k+1 z-plane
process k z-plane
store new k z-plane

50× speedup relative to Xeon single core, compared to
5× speedup using OpenMP with 8 cores.

Finance on GPUs – p. 15/20



Finite Difference Model Problem

Third idea: use texture memory

basic approach is the same

difference is in loading of “old” data using texture
mapping

local texture cache means values are only transferred
from graphics memory once (?)

“cache line” transfer is coalesced as far as possible (?)

not as fast as hand-coded version but much simpler

no documentation on cache management, so hard to
predict/understand performance

Finance on GPUs – p. 16/20



More on Finite Differences

ADI implicit time-marching:

each thread handles tri-diagonal solution along a line in
one direction

easy to get coalescence in y and z directions, but not in
x-direction

again roughly 10× speedup compared to two quad-core
Xeons

Finance on GPUs – p. 17/20



More on Finite Differences

Implicit time-marching with iterative solvers:

BiCGStab: each iteration similar to Jacobi iteration
except for need for global dot-product

See “reduction” example and documentation in CUDA
SDK for how shared memory is used to compute partial
sum within each block, and then these are combined at
a higher level to get the global sum

ILU preconditioning could be tougher

Finance on GPUs – p. 18/20



More on Finite Differences

Generic 3D financial PDE solver:

available on my webpages

development funded by TCS/CRL (leading Indian IT
company)

uses ADI time-marching

designed for user to specify drift and volatility functions
as C code – no need for user to know anything about
CUDA programming

an example of what I think is needed to hide
complexities of GPU programing

Finance on GPUs – p. 19/20



Further information

LIBOR and finite difference test codes
www.maths.ox.ac.uk/∼gilesm/hpc/

NAG numerical routines for GPUs
www.nag.co.uk/numeric/GPUs/

NVIDIA’s CUDA homepage
www.nvidia.com/object/cuda home.html

NVIDIA’s computational finance page
www.nvidia.com/object/computational finance.html

Finance on GPUs – p. 20/20


	Random number generation
	Random number generation
	Random number generation
	Random number generation
	Random number generation
	Monte Carlo simulation
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	Finite Difference Model Problem
	More on Finite Differences
	More on Finite Differences
	More on Finite Differences
	Further information

