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Abstract

Some of the fundamental problems in analytic number theory concern sums of arith-
metic functions over short intervals. Such problems include the existence of primes in an
interval, cancellation in M6bius sums and existence of squarefree integers in an interval.

It is conjectured for many naturally occurring functions that their mean in short
intervals is asymptotic to their mean in a full interval. Moreover, sums over short intervals
are expected to enjoy squareroot cancellation, in the sense that the error term is at most
the squareroot of the number of terms. Even under the Riemann Hypothesis, these
problems are open for most functions.

It is common and useful to introduce randomness into the problem, by picking a
short interval at random. One can then study the sum of a arithmetic function over
the random interval. Upper bounds on the variance of this random sum lead one to
‘almost-all’ versions of difficult conjectures.

In this thesis we study the variance of sums of arithmetic functions in function fields.
We use combinatorial, analytic and geometric tools to prove stronger results than known
over the integers. Our four main results are

1. An asymptotic formula for the variance of squarefree polynomials over short inter-
vals, going well beyond R. R. Hall’s 1982 work, and giving evidence to a recent
conjecture of Keating and Rudnick.

2. A tight upper bound for the variance of factorization functions in short intervals.

3. An asymptotic formula for the variance of sums of two squares in short intervals,
in the large-¢ limit. Our formula deviates from a naive probabilistic model and
produces a prediction over the integers which agrees very well with numerical data.

4. A large-q asymptotic formula for the number of twin primes in a polynomial ring
with an optimal error term.
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1 Introduction and results

1.1 Summary of results

Let F,[T] be the polynomial ring over the finite field F,, M,,, C F,[T] be the sub-
set of monic polynomials of degree n and M, = U,>9M, , be the subset of all monic
polynomials. Given a polynomial f, we define a short interval of size ¢"*! around f to
be

I(f,h) == {f + g : deg(g) < h}.

Given a function a: M, — C, its mean value over a finite subset S C M, is

1
(a)g == % Za(f).

fes

1

Given 0 < h < n — 1, the variance of sums of a over intervals of size ¢"*' around

polynomials of degree n is defined as

Var () i=— 37 | 37 alh) — ¢ Ha)a,,

T foeMug |reron)

For a = ug, the indicator of squareefree polynomials, we prove

Theorem 1 (Thm.[1.2). Fiz ¢ and e > 0. As h,n tend to oo with h/n € (e,1/2—¢), we
have ’
Var,z2 (n,h) ~ Cq,hqé

where Cyp, > 0 depends only on q and the parity of h.

Previously this was only known to hold for h/n < 2/9 — ¢ by work of R. R. Hall
[Hal82], and it supports a recent conjecture of Keating and Rudnick [KRI16]. See
for more background and results.

For the next theorem, we recall the notion of a factorization function. To f € M,
that factorizes as [[, P/* we associate the multiset wy = {(deg(FP;),e;)}i. We say that
a: M, — C is a factorization function if «(f) is a function of wy.

Theorem 2 (Thm. . Fiz q. Let a: M, — C be a factorization function. For
0<h<n-—1 we have

Varg(n,h) < max |a(f)[>¢" e ™

EMp q

as n — 0.

Previously this was only known for specific functions, such as the von Mangoldt
function. See §1.9.2] for further background.
Let b,: M, — {0,1} be the indicator of polynomials of the form A% + T'B?. For real
s define 5 5
G(s) :zIF’(l - — <Y< —),

a o)
for Y, ai, o) independent random variables, with Y distributed as Beta(1/4,1/4) and

aq, o) identically distributed copies of the largest part of the Thoma simplex distributed
according to the spectral z-measure with parameters 1/2,1/2. (The spectral z-measure

is defined in §6.6])



Theorem 3 (Thm. , Prop. . Suppose q = p* for a fized odd prime p. The limit

V h
T(n;n—h—1) ::I}i_)r&%

exists when 0 < h < n —max{/n,7}. Furthermore,

lim /7nT(n; N) = G(s)

N/n—s
for s € [0,1].

This theorem allows us to make a precise prediction, over the integers, for the variance
of sums of two squares in short intervals. The prediction agrees very well with numerics.

See §1.9.3| for more details.
Let Ay: My, — C be the von Mangoldt function.

Theorem 4 (Thm. [1.10). Fiz n > 4. We have

ZfeMn,q Ag(f)Aq(f +1) B 1
M, v ()

(1.1)

as q — o0.

This is a large-q version of the twin prime conjecture, in quantitative form. Previously,
(1.1)) was known with error term O,,(¢~*/2) due to works of Pollack, Bender and Pollack,
Bary-Soroker and Carmon [Pol08| BP9, [BS14, [Car15]. In fact, the error term O,,(1/q)
cannot be improved upon under the Hardy-Littlewood Prime Tuple Conjecture in F,[T7].
For further discussion, see

We now survey the background to these results and some of the previous literature.

1.2 Arithmetic functions

Arithmetic functions are functions from the positive integers N to C. Some of the most
fundamental questions in analytic number theory may be expressed as problems about
particular arithmetic functions and their associated sums (or mean values). Let us intro-
duce some well-known examples of arithmetic functions.

1. The von Mangoldt function A: it is defined as

logp if n=p" paprime, k> 1,
A(n) = .
0. otherwise.

This function is closely related to the indicator function of prime numbers. The
celebrated Prime Number Theorem (PNT), proved independently by Hadamard
and de la Vallée Poussin in 1896, says that

Todt

#{1 <n <z :naprime} . Togl

as * — 00. An integration-by-parts argument [SS03, p. 189] shows that PNT is

equivalent to
Z A(n) ~x

n<x

4



as x — 0o. The Riemann Hypothesis (henceforth known as RH), which states that
the non-trivial zeros of the Riemann zeta function ((s) = >, -, n™* lieon s = 1/2,
is equivalent to the estimate [IK04, Prop. 5.14]

> A(n) =z + O.(z'7).

n<x

Unconditionally, it is not even known that the above error term is O(x1~?) for some
positive 9.

. The Mobius function pu: it is defined as

(—=1)* if n. = pipy- - pi, p; are distinct primes,
p(n) = .
0 otherwise.

PNT is equivalent to > . u(n) = o(x) [IK04, Ch. 2], while RH is equivalent to
D on<e () = O.(x'/#*%) [IK04, Prop. 5.14]. Again, it is not even known that the
error term is O(x!7°).

. The divisor function d: it is defined as
d(n) =#{m e N:m | n}.

Dirichlet observed that the number of lattice points (a,b) € N? satisfying ab <
x, that is, lying under an hyperbola, is given by Y  _ d(n). He proved that
> <, d(n) = xlogz+(2y—1)x+O(2'/?) where 7 is the Euler-Mascheroni constant.
It is conjectured that the error term is actually O, (z'/4*¢) (“Dirichlet’s divisor prob-
lem”). There have been many works in that direction, starting with Voronoi [Vor(3],
who proved that the error is O(x'/?logz). The current record is O(2°7/1648+) " due
to Bourgain and Watt [BW17]. That the error term is Q(z'/*(log z)'/*loglog z) is
due to Hardy [Harl6]. Dirichlet divisor problem would follow from the “exponent
pair hypothesis”; see [Mon94, Ch. 3, Conj. 2| for a statement of this hypothesis.

. The indicator of squarefrees, p?: it is defined as

0 )1 if p? | n for some prime p,

1% (n) - . )
0 otherwise,

and is indeed given by the square of the Mobius function. It is elementary to show
that [MV07, Thm. 2.2]

2n:i z'/?).
> 1) = gy +Ol)

n<x
It is conjectured that the optimal exponent in the error term is 1/4+ ¢, but there is
no unconditional improvement on it. Conditionally on RH this is also open, despite
many works, see Axer [Axell] who proved that RH implies an error of O, (x%°+%).
The strongest result is due to Liu, who proved an error term of O,(z''/%**¢) under
RH [Liul6]. It is known that the exponent cannot be 1/4 or smaller [MV07, p. 471].



5. Hooley’s A-function: it is defined by

A(n) = max #{m € (u,eu] : m | n}.

It was introduced by Hooley, who used it in the study of “apparently unrelated top-
ics in the fields of Diophantine approximation, Waring’s problem, and divisor sums”
[HooT79, p. 115]. The pointwise bound 1 < A < d yields bounds on }_ _, A(n).
Despite various works [Erd74 [Hoo79, [HT82], the correct lower and upper bounds
on Y. .. A(n) are not known.

1.3 Statistics of arithmetic functions

As we have seen, the mean value of arithmetic functions, that is, the asymptotics of

1

—E a\n
i

n<x

as x — o0, can hold important number-theoretic information. Moreover, once an asymp-

totic expression M, (z) is found for ) _ a(n)/z, the error term

Eu(x) = xMa(z) = Y o(n)

n<zx

holds information which pertains to deep conjectures such as RH. For functions, such as
11, that exhibit cancellation in the sense that ), _ a(n) = o(>_, o, |a(n)]), we often take
M, =0. -

For applications, one wants to understand the behavior of arithmetic functions on
a finer scale, for instance in short intervals or other sparse sets. By that we mean
understanding the behavior of o when restricted to a set [x,x + h] N Z with h = o(x).
For many functions, it is conjectured that

> aln) ~ hM,(x) (1.2)

n€lz,z+h]

as long as h grows at least like a small power of x, that is h > x° for some ¢ > 0. For
functions with M, = 0 one should replace (|1.2]) with

> a(n) =o(h). (1.3)

nex,z+h]

However, neither nor is known for any interesting function in the ‘full range’
h > x*

Good bounds on FE, yield a result of the form or in some range of h.
For instance, in the case of « = A, RH gives E\(z 2+€ with My = 1, from
which one deduces ) for h > xl/ 240 This still falls short from the expected truth.
Unconditionally, the best known range where holds for a = A is due to Heath-Brown
[AB8Y] (building on Huxley [Hux72]), who obtains a result for h > x7/1270),

For most functions, it is conjectured that not only or hold in a very wide
range, but also that the error term is small. As an example, Montgomery and Vaughan
[IMV07, Conj. 13.4] conjecture that for o = A, holds with an error term of O.(z°v/h):

> A(n) =h+0.(2°Vh). (1.4)

ne€lz,x+h|



That is, there is essentially square-root cancellation even when @ = A — 1 is summed over
short intervals. This is obviously stronger than RH (as for h = x it implies RH) and is
completely open.

Another example is ;2, for which one conjectures that holds with an error term

of O (x=h/*)I}
h g
> pin) = ﬂ+0( 2hMY). (1.5)
ne€lz,x+h]
Again, this is completely open.

1.4 The variance of arithmetic functions

One way to obtain useful results about short intervals is to introduce averaging, as we
now explain. Let z be a uniformly drawn number from [0, X|. Let H be a function of X.
Consider the random variable

Sa(X,H)= > an),
n€lz,z+H|
that is, a sum of a over a random interval of length H. Instead of proving bounds for
every short interval, one can try and study the distribution of S, (X, H), from which one
can obtain information on most intervals. Here is an example. Consider
2

VX, H) 1= B0 )~ M) = [ aln) — HM(X) | da,

nelx :c+H]

which is the second moment of S, — HM, (itself an approximation to the variance of
S«). An application of Chebyshev’s inequality shows that

Vo (X, H)
P X,H)— HM,(X)| >eHM,(X)) < ——"——.
(180X H) = HM, (X)| > <HM,(X)) < izl
It Vo (X, H) = o(H*MZ(X)), it follows that for most « € [0, X] wehave >° 1. .\ gy a(n) =
HM,(X)(1+4o(1)) as X — o0, in the sense that the exceptional set is o(X).
The quantity V,(X, H) and its variants — which we informally call the variance of «

in short intervals — are the main topic of this thesis. We survey a few of the results on
Vo (X, H).

1. For the von Mangoldt function, Selberg [Sel43] studied the following variant of

VA(X7 H)
2

12X
VI(X,0) = }/X > An)—dz | 2 %d.
€lz,(146)z]
Unconditionally, he proved V{(X,d) = O(6?/log* z) for § € [z°7¢ 1] for some ab-
solute ¢ € (0,1), from which he deduced that > . .\ g An) ~ @(z) for al-
most all z, where ® is a positive, increasing function satisfying ®(x) > z'7¢™ and

®(z) = o(x). Under RH, he proved

, B §log® X
=0 ()

LA g-analogue of this is stated in a paper of Croft [Cro75] and is attributed to Montgomery.

7



for § € [X~1, X~/4], which allowed him to take any ®(z) with ®(x)/log®z — oo
instead of ®(x) > z'7°¢ in the short interval result. Saffari and Vaughan [SV77],
building on Selberg, proved that

VA(X, H) = O(Hlog*(2X/H)) (1.6)

on RH. Observe that (1.6 implies ([1.4) for almost all z € [X,2X]. We touch on
some of the ideas behind these works in §4.4.2]

2. For p, Ramachandra [RamT76] proved that
Vi(X,H) = O4.(H?(log X)™* + X°*)

unconditionally for ¢ = 1/6, and under RH for ¢ = 0. A relatively recent break-
through result of Matoméki and Radziwil|[MRI16] gives

Vu(Xa H) = O(HZ)a

as X, H — oo, which is optimal in the sense that it proves cancellation in Zne[m ] p(n)
for almost all = € [X,2X], once H grows to infinity with X.

3. R. R. Hall [Hal82, Thm. 2| proved that

(3/2 32
V2 (X, H) ~ CHY?, Cz%l}(l—ﬁjtﬁ), (1.7)

as X and H tend to infinity with H < X?/°7°. This shows that >3, .\ #*(n) =
6H /7% + O.(HY*X¢) for almost all z € [0, X], as long as H < X*°~¢ and H — oo,

and lends support to the conjectured estimate (({1.5)). Hall’s method is explained in

§L.9.1}
4. Ivié [Ivi09], building on work of Jutila [Jut84], proved that

Vi(X,H) ~ HPy (log g)

uniformly for X¢ < H < X'/27¢ for some cubic polynomial P;. For the comple-
mentary range X /?t* < H < X'~¢, Lester [Les16] proved that Vy(X, H) ~ DvVX
for an absolute constant D. We give new proofs for these results, in the function

setting, in §I.8|

An upper bound for V, leads to a result about the mean value of a in almost all short
intervals (for some range of H and X). We now illustrate why sometimes this is the
best we can hope for, which serves as an additional reason for the study of the vari-
ance. Maier [Mai85] proved that for any A >1, > . 1 0.4, A(n) is not asymptotic to

log® z for infinitely many z’s. However, at least under RH, Selberg’s work shows that
D neetlogh 2 A1) ~ log™ z for almost all 2 once A > 2. We note that the irregulari-
ties in the distribution of primes exhibited by Maier are a part of a much more general
phenomena, see the work of Granville and Soundararajan [GSOT].



1.5 Interpretations of the variance

One reason for being interested in the asymptotics of the variance V,, and not only in
its bounds, is its relations to probabilistic models for Mobius values, primes, and other
objects, and well as its connections with the distribution of zeros of L-functions.

A naive probabilistic model for the values of the Mobius function comes from consid-
ering a random arithmetic function R, such that R,, = 0 with probability 1 if u?(n) # 0,
while for n’s with p?(n) = 1, R, are i.i.d random variables taking the values —1, +1 with
equal probabilities. By studying Zne[x,x a1 By Good and Churchhouse [GC68] conjec-

tured that > .. .. g p(n)/+/H/((2), for random x € [0, X], tends in distribution to
standard Gaussian (at least when H — oo is not too close to X), and investigated this
conjecture numerically. Their conjecture implies in particular that
H
Var, (X, H) ~ —. (1.8)
g ¢(2)
So proving or giving evidence to (1.8) lends support to the randomness of p(n). See
[Ng0g| for conditional evidence towards (L.8)).
Cramér’s model is the name for a similar probabilistic model for primes, where A(n)
is modeled by R, - logn, where now R, = 1 with probability 1/logn and 0 otherwise,
independently of the other R,,’s. This model suggests that

Vary (X, H) ~ Hlog X

as H tends to infinity with X¢ < H < X'~¢. However, there is substantial evidence that
the truth is in fact

X
Vary (X, H) ~ Hlog I (1.9)

which deviates from H log X in the range X¢ < H < X'~¢. However, there is currently
no probabilistic model for the primes explaining why the variance decreases in that way!

1.6 Some Random Matrix Theory

The most satisfactory motivation for comes from Random Matrix Theory, as we
now (briefly) explain, following Goldston’s historical account [Gol05]. Let us denote the
non-trivial zeros of {(s) by p = 1/2+1iv. We shall assume RH, so that the «’s are real. Up
to height T, we have roughly (T'logT) /27 zeros with v > 0, and so their mean spacing
is 27/ log T. Montgomery [Mon73| defined

1
Y. Ty =),

0<yy'<T

Fla) = F(a,T) = (%logT)

where w(u) = 4/(4 + u?). Here the sum is over an ordered pair of non-trivial zeros of ¢
in the upper half-plane. Montgomery proved (still under RH) that F' is real, even and
non-negative. For 0 < a < 1 — ¢ he obtained

F(a)=a+o(1)+ (14 o(1))T**1log T;

this was extended by Goldston to 0 < o < 1 [Gol&1]. Conditionally on a certain uniform
version of the Hardy-Littlewood 2-Tuple Conjecture, Montgomery showed that F'(a) =

9



1+0(1) for 1 < a <2 —e. He speculated that F(a) =1+ o(1) for a € [1, M] for any
fixed M - which is known as the Strong Pair Correlation Conjecture (SPC). To see its
usefulness, observe that by integrating F'(«) against a nice test function r, we have

(moer) 3 r(6- %)t = [ F@p@ o

0<yY'<T

The right-hand side may be computed under SPC, at least for functions with 7 having
compact support. With some work, a particular choice of r leads to

(%logT>_1 > 1~/05(1—%>du

0<y,y'<T
27

/
0<7 _PYS log T

for any fixed § > 0; this asymptotic is known as the Pair Correlation Conjecture (PC).
The left-hand side counts pair of zeros that are close to each other, hence the name. As
observed by Dyson, the right-hand side also arises as the pair correlation of eigenvalues
of random unitary matrices, that is,

1 / /B( sinz(wu)>
— 1] dX ~ 11— ——— ) du.
N U(N) Z 2B 0 (mu)?

0<8;—0),< 222

Here U(N) is the N by N unitary group, endowed with Haar measure, and 60; € [0, 27]
are the angles of the eigenvalues of X € U(N) in some order. Quoting Conrey, “this
important fact was fortuitously discovered at tea at the Institute for Advanced Study
one afternoon in 1971 when Chowla introduced Hugh Montgomery and Freeman Dyson
to each other”. It took 20 years until the work of Montgomery on pair correlation was
extended to n-level correlations by Rudnick and Sarnak |[RS96]. See also the work of
Keating and Snaith [KS00], predicting moments of L-functions through Random Matrix
Theory.

The connection with the variance of primes is a beautiful theorem of Goldston and
Montgomery [GMS8T7], saying that SPC is equivalent to . So the surprising asymp-
totics for the variance of primes reflects deep facts about the distribution of the zeros of
C.

Although SPC and PC are open, in the function field setting there are analogous
of them that are known unconditionally, see for instance the book of Katz and Sarnak
[KS99].

1.7 The function field setting

In this thesis, we study the variance of certain functions in the setting of function fields.
Some of our results go beyond what is known in the integer setting, while others give
predictions for the behavior of certain variances in the number field setting, which were
not understood before. Below we define the basic objects we shall need.

We let ¢ be a prime power and let F,[T] be the polynomial ring over the finite field F,
with ¢ elements. Let M,, , denote the set of monic polynomials of degree n in F [T’], and
let M, = U,>0M,,, denote the set of all monic polynomials in F,[T]. By a well-known
analogy M, serves as a substitute for the set of positive integers.

10



Let h,n be integers such that —1 < h < n — 1. Given f, € M, ,, a short interval
around f; of size ¢"*! is the subset

I(fo,h) = {fo+g:deg(g) < h} C M,

The degree of the zero polynomial is defined to be —oo.

Let P,, € M,, be the subset of monic irreducible polynomials of degree n and
P, = Un>0Pn 4 be the set of all monic irreducible polynomials. The norm || f|| of f € F,[T]
is #F,[T]/(f) = q?e) if f # 0, and ||0]| = 0. The zeta function of (, is defined as

1
Gls)=JTa=1PI"= > Ifll = T
PeP, FfeM,

where both the product and the sum converge for Js > 1.
An arithmetic function in this setting is a function a: M, — C. Its mean value over

M,, 4 is defined as
(@) - ZfeMw a(f)
M T My

Given integers —1 < h < n — 1, the variance of sums of a over intervals of length ¢
around a polynomial of degree n is defined as

h+1

Vamh) =~ S 1Y alf) - o,

T foeMung | Fel(oh)

Studying this quantity while taking n and A to infinity is similar to taking X and H
to infinity in the integer setting. However, in this setting we have a new feature: the
variance also depends on the parameter ¢, the size of the underlying finite field. In recent
years, there has been a lot of fruitful work on understanding the variance of arithmetic
functions, and many other important quantities, in the large-q limit, where one fixes all
parameters and takes ¢ to infinity. Once an asymptotic is found for V,,(n, ¢) in the large-q
limit, one often recovers a combinatorial quantity that can be studied as n, h go to infinity
and still retains important information which can be extracted.

We can often say something about the problem when ¢ grows thanks to algebraic
geometry being able to deal well with varying ¢. In particular, in F,[T] we have versions
of the Pair Correlation Conjecture in the large-¢ limit, but not so in the large-n limit.

As an example, Keating and Rudnick [KRI14, [KR16], using deep results of Katz on
zeros of Dirichlet L-functions in the function field setting [Katl3, Katl5], established
analogues of and . To state their result, we define the polynomial von Mangoldt
function A,: M, — C as

deg(P) if f=PFfor PeP,and k > 1,

0 otherwise,

Aq(f) = {
and the polynomial Mobius function ji,: M, — C as

(=% if f= P P,--- P for distinct P, € Py,
pe(f) = :
0 otherwise.
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It is well-known that

<Aq>Mn,q = 1’ </’Lq>Mn,q = 0 (110)
for n > 2 [Ros02, Ch. 2]. Their results are
V h V h
fi SRy gy YA h)
g—o0 ghtt g—o0 ght1

giving strong evidence for the corresponding statements over the integers.
An example of a different flavor relates to higher divisor functions,

dp(n) == #{(n1,--- ;) € N* 1 n = nyngnz ... ny.}, k> 2.

The work of Ivié and Lester helps us understand Varg (X, H). Lester also obtains
asymptotics for Varg, (X, H) in the range H > X'~Y/*=1 ynder the Lindeléf Hypoth-
esis, but the techniques cannot handle smaller H. Keating, Rodgers, Roditty-Gershon
and Rudnick [KRRGRIS| studied a function-field analogue of this problem, first com-
puting Varg, (n,h)/¢"** as ¢ tends to oo, and then analyzing the remaining quantity
as h/n tends to 0 € (0,1). Based upon their rigorous results, they gave a surprising
prediction for Varg, (X, H) in the integers, involving phase changes. Precisely, they ex-
pect Varg, (X, H) ~ aHPie_y(log H/log X)(log X)¥*~1 for a particular constant a; and
for a piecewise polynomial Py2_; of degree k? — 1, behaving differently on each interval
1—-1/i,1-1/(i+1)] (1 <i<k—1)andon [1 —1/k, 1]. This conjecture predicts a tran-
sition near H = X'~/ for 2 < i < k. This work has already spawned several subsequent
works over the integers, which give results (both conditional on GRH and unconditional)
in agreement with the curious prediction [HS17, [RS1S, [dIBF20), BC20, Mas20)].

In the function field setting, the connection between basic arithmetic questions and
the distribution of zeros of L-functions is much more clearer. As we shall show, this is
even true for problems such at twin primes in function fields, where we uncover such a
connection for the first time.

In this thesis, in addition to large-¢ results (which usually follow from information
about zeros of L-functions), we also prove some large-n results, where other benefits of
function fields come into play.

1.8 Approaches to the computation of the variance

One can study V,(n, h) in physical space and in Fourier space. We explain this through
a worked out example. Recall that Ivi¢ and Lester [Ivi09) Les16] showed

VX H HPs(log ¥X) if X° < H < XV/**,
d( ) )N D\/Y if X1/2+e <H< X1l-e

The polynomial divisor function is

dg(f) =#{m e My :m | f}.
Over F [T, we can obtain the following closed-form expression for Vy, (n, h).
Theorem 1.1. We have

¢ i 1<k < /2 -1,

qu(”’h):{o if /2] ~1<h<n-1

12



We are going to present two completely different proofs for Theorem [I.1} The first
approach is through correlation sums. Expanding Vg, (n, h), we find that

Var;?z—s-?h) - Z (<dq<f)dq(f + A)) e, — ((dq>,/\/[n7q)2) , (1.11)

A€F [T],deg(A)<h
see Lemma for a general statement and a proof. We shall prove
L%)

D d(Ndy(f+A) = (n+1)+ 3

™ JEMn q

1
#M

(n —2i+ 1)

q (CLLA — ai_LA), (112)

where a; o denotes the number of monic divisors of A of degree i, see Lemma for
a proof. For A = 1, (1.12)) is due to Andrade, Bary-Soroker and Rudnick [ABSRI15,
Thm. 7.1}, and the statement for general A follows by generalizing their arguments. See
the introduction of [ABSRIS] for background on the integer sum ) _, d(n)d(n + A),
where weaker results are known. -

Plugging in , an elementary computation yields our theorem. Full details
are given in §3.2

Our second proof involves the functional equation for Dirichlet L-functions. In §2| We
introduce a group G(Ry) of ‘short interval characters’, which are able to detect whether
two polynomial of degree n are in the same interval of size ¢" ‘. A Plancherel-type
theorem yields

Zxo#xeG(Rn_h_ﬂ | Zfe/\/tnﬂq dq(f)X(f)|2

q2(n7h71)

Varg, (n,h) = (1.13)

Since we express the problem as an ‘integral’ over characters, we consider this a Fourier
space approach. The sum 3.\ dg(f)x(f) is a function of L(u,x). Applying the
functional equation of L(u, x) to the right-hand side of and expanding the average
over G(R,_p_1), we reduce to a new problem in physical space, which is easier to deal
with than the original one. Informally, the functional equation allows us to replace sums
over high degree polynomials with sums over lower degree polynomials, which are easier
to study. Full details are given in §3.3|

The approaches of Ivi¢ and Lester over the integers are in the spirit of our second
approach. However, they use ‘ready-made’ transformation formulas for the divisor func-
tions. Our approach is more flexible, and led us eventually to make new progress on
Var,z(n, h) and Var,» (X, H).

We note that the correlation sums approach was not used before in the study of the
variance of divisor functions.

1.9 Results

We now motivate and state the four main results of the thesis. They are results in the
function field setting. Our first two results are in the large-n limit, and the later two are
in the large-¢g limit.

Since the proofs underlying the large-n results use only analytic tools, the results and
proofs should have analogues over the integers (possibly conditional).

The large-q results, however, use techniques based on algebraic geometry which are
unique to the function field setting, and so cannot be transported to Z without new ideas.
However, they help predict new number-theoretic conjectures as well as give support to
existing conjectures.

13



1.9.1 The variance of squarefree polynomials in short intervals

Before discussing our results, we review Hall’s method in proving (1.7). Expanding the
definition of V,2(X, H), one can express the variance as a linear combination of the

correlation sums
S i)+ o
n<X

for c-s between 0 and H. Hall estimated such sums, obtaining [Hal82l Thm. 1]

ST+ o) =] (1 - 2) I1 (1 - %) X+0 (X%(log)o%) (1.14)

<X ple P/ e

uniformly in 0 < ¢ < X. The exponent of X in the error term in leads to the range
H = O.(X?°¢). Inspecting Hall’s argument, if the error term in is O(X4) then
one has Var,:(X, H) ~ CHY? for H = O.(X*1=4/37¢)_ Since the error term in (L.14)) is
expected to be O, (X/4*¢)  the limit of Hall’s argument is H = O_(X'/?7¢). Although we
are very much far from establishing with an optimal error term, we shall extend
Hall’s result (in the function field setting) to the range H = O.(X'/?7¢), unconditionally.

We now introduce ,ug : M, — {0, 1}, the indicator function of squarefree polynomials.
It is known that the mean value of p2 is exactly 1/¢,(2) = 1—1/q [Ros02, Ch. 2], that is,

9 1
<Mq>/vrn,q = Cq(Q)

for all n > 2. We are interested in the asymptotics of the variance V2 (n, h). Keating and
Rudnick [KRI6, Thm. 1.4], using an equidistribution result of Katz [Kat15, Thm. 1.2],
have shown that as ¢ tends to infinity we have

VN%(”? h) ~ qL%J

for any fixed 0 < h < n —6, as long as the characteristic of F, is not 2 or 3. Their large-¢q

result led them to conjecture that Hall’s result — both in Z and F,[T] — holds for
the complete range, that is, X < H < X'7¢ and ¢ < h/n < 1 — ¢, respectively. Let us
see what this means in F [T]. By adapting Hall’s method of proof, Keating and Rudnick
proved the following result in the large-n limit:

Vug (n, h) ~ qL%J)‘q,th (1.15)

uniformly in A which satisfies ¢ < h/n < 2/9 — ¢ for some € > 0, where

3 2 1+ g 11t
c,=1I[ (1- Ap = —2
! ( P2 i HPII3) el 1—q3
PeP,

The constants C,, and A, , do not appear in the large-g result since C,, A, are asymptotic
to 1 in the large-g limit. While C, is analogous to C' appearing in Hall’s result, )\, is
unique to the function field setting.

Keating and Rudnick conjectured that holds for € < h/n < 1 —e. We make
progress towards their conjecture, replacing the exponent 2/9 with 1/2.
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Theorem 1.2. Fiz a prime power q. For any e € (0,1/4), the asymptotic estimate ((1.15))
holds uniformly for h,n tending to infinity with e < h/n < 1/2 —¢.

Additionally, in the full range we have an upper bound of essentially the predicted
magnitude: V,z(n,h) = O.q(q"2q") asn — o0 and —1 < h <n— 1.

The starting point for our proof is the classical identity

e (f) =D g(d) (1.16)

a|f

which follows from an inclusion-exclusion argument. Alternatively, since both sides of
(1.16) are multiplicative, it suffices to verify the identity on prime powers. We introduce
a parameter m € N, and write ,ug as a sum of two functions:

pa(f) = am(f) + Bn(f),

where

am(f) = D weld),  Bu(H) = D peld).

d?| f, deg(d)<m d?|f, deg(d)>m

We shall show that ,, contributes very little to the variance of ,ug, at least for large m.
By passing to Fourier space (that is, an average over characters) and using estimates on
characters sums and Mobius sums, we obtain

Proposition 1.3. Fiz a prime power q. For 1 <h <n—1 and -1 <m < n/2, we have
Vars, (n, ) < grinthamm o
as n — oo. (The o(n) term may depend on q.)

Taking m = —1, (,, coincides with ug and so we obtain the second part of Theorem .

To evaluate Var,, (n,h) we again pass to Fourier space, and apply the functional
equation there. We interpret the obtained expression back in physical space. It turns out
that for small enough m, the problem we obtain in physical space is easy enough in the
sense that only certain diagonal terms contribute to it. We obtain

Proposition 1.4. Fiz a prime power q. For =1 < h <n—1and —1 <m < n/4, we
have
Var,,,(n,h) = F(h,m)
for a function F depending only on h and on m (as well as q).
We have an explicit formula for F(h,m), see (4.10:. However, as we now show,
we can easily conclude Theorem [I.2] from Propositions [I.3] and [1.4] without needing to

work out the behavior of F'(h,m) directly. Indeed, fix small € > 0 and suppose that
h/n € (g,1/2 — ¢€). From Cauchy-Schwarz and the two propositions,

Var,z(n, h) = F(h,m) + O (qg(lg) + \/F(h, m)qg(1§)> (1.17)

if m = h(1+¢)/2. To conclude, it suffices to show that F(h, h(1+¢€)/2) ~ qL%J)\q,hC’q.
To do so, we compute Var,z([h/(2¢)], ) in two different ways. By (L.15),

Vars ([h/(22)],h) ~ q1312, 1 C,. (1.18)

15



By (1.17])),

Var,:([h/(2¢)],h) = F(h,m) + O. (q’5<1—3> + \/F(h, m)qéﬂ—@) . (1.19)

Equating and we find that F(h, h(1+¢)/2) ~ ¢4\, ,C,, as needed. What
was crucial in this bootstrapping-type argument is the independence of F'(h,m) from the
parameter n, allowing as to increase n however we desire.

The proofs of Propositions [I.3] and [I.4] are detailed in §4 Theorem [I.2] has led to a
joint paper titled “On the variance of squarefree integers in short intervals and arithmetic
progressions” [GMRR20] (to appear in GAFA), authored by myself, Kaisa Matoméki,
Maksym Radziwilt and Brad Rodgers, where we transport the method of proof to the
integer setting. In we explain some of the ideas required in proving an unconditional
version of Theorem over the integers.

We expect the methods of proof to apply to many more multiplicative functions,
especially those that, in a sense, are close to the constant function 1 (e.g. are a convolution
of 1 with a function of zero mean value), and plan to explore this in the future.

1.9.2 The variance of factorization functions in short intervals

To any f € M, with prime factorization f = Hle Pf (P, € P, distinct, e; > 1), we can
associate the following multiset, named the extended factorization type of f:

wyr = {(deg(P),e;) : 1 <i < k}.

(We often omit the word ‘extended’.) Following Rodgers [Rod18§], an arithmetic function
a: M, — Cis called a factorization function if o(f) depends only on wy. Some of the
most commonly studied arithmetic functions in number theory, when considered in the
function field setting, are instances of factorization functions: the von Mangoldt function
A, the Mdbius function pi4, the divisor function d,, the indicator of squarefrees ,ug, and
many more. We prove

Theorem 1.5. Let a: M, — C be a factorization function. Let 0 < h < n —1 and
fo € My 4. Then

( n loglog(n+2) )

S alf) = ¢ a)ann,| € max [a(f)] gl S (1.20)
FEI(fo.h) JEM e
and 2 ha1 O (nloglog(n+2))
Varg(n,h) < max |a(f)]* ¢" e Tosti ), (1.21)

T feEMuyg

As long as maxyen,, |a(f)| grows subexponentially in n (as is the case for most
functions), (1.20) is a non-trivial result in the range limsup,,_,.  h/n > 1/2.

For the variance Var,(n, h), we beat the trivial upper bound ¢! max e ., , |(f)
as long as limsup,,_,, h/n > 0, which corresponds to H > X¢ in the number field setting.

We now give a concrete application for Theorem As far as the author is aware,
Hooley’s A-function was not studied in short intervals. The function field analogue of A
is

’ 2

A, M, — C, A = 1.
q q a(f) max(f) Z

0<i<deg dlf
deM; 4
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As (dg) m,,, = n+1 [Ros02, Prop. 2.5], it follows that max e, , Aq(f) < maxpen, , dg(f),
which is known to grow slower than any power of ¢" as n tends to infinity. Also,
(A Mpy = (dg)Mm,,/(n +1) = 1. Applying Theorem with @ = A,, we obtain

the following

Corollary 1.6. Asn — oo, we have

> A~ "THAY M.,

feI(fo,h)
as long as limsup,,_, . h/n > 1/2, uniformly for fo € M, ,.

Over the integers, and conditionally on RH, one can prove results similar to Theo-
rem for certain arithmetic functions — see Ramachandra [Ram76] for a method that
works both for ¢ and A. However, there is no general result similar to Theorem in Z,
and in particular the work of Ramachandra requires the Dirichlet series of a: N — C to
have a very particular form in order to work.

Theorem is a large-n result. It complements a beautiful theorem of Rodgers
[Rod18] in the large-g limit, from which one obtains as a corollary that

Varg(n, h) < ¢ ({|a*)at,., + 0nala™?)). (1.22)

The quantity oma(q_l/ %) goes to zero with ¢, but the implied constant depends both on
n and on maxyse, , |@(f)|, and one cannot infer anything in the large-n from ((1.22)).
It would be interesting if one could improve the ¢/, -dependence on « in to an
ly-dependence, as in (|1.22]).

The proof of Theorem is detailed in §5 The material of §f has appeared in the
paper “Mean values of arithmetic functions in short intervals and in arithmetic progres-
sions in the large-degree limit” published in Mathematika [Gor20]. In that paper we also
prove corresponding results over arithmetic progressions, in addition to short intervals.

1.9.3 The variance of sums of two squares in short intervals

Consider the set S = {n? + m? : n,m € Z} of integers representable as sums of two
squares, and let b be its indicator function. Landau [Lan08] proved that

S b(n) = Kw% + 0(@), (1.23)

n<zx

where

K = 7 [T a-p>"*~0764 (1.24)
is the Landau-Ramanujan constant. Thus, roughly stated, the likelihood that a random
integer near X will be the sum of two squares is around K/4/log X.

A naive probabilistic model would predict that Var,(X, H) ~ K H/\/log X. We shall
give evidence, in terms of a function field theorem, that this natural prediction fails,
and instead produce a prediction that matches very well numerically. As in the case of
primes, we predict that the variance is asymptotically smaller than one would expect
once H grows like a power of X.

In the study of the function field analogue of b, we shall let ¢ be an odd prime power. In
[BSSW16], Bary-Soroker, Smilansky and Wolf studied an analogue of Landau’s problem in

p=3 mod 4
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[F,[T] by introducing the following set and indicator function, which by abuse of notation
we will also denote by S and b:

S={A>+TB*: A,Be M,},

b: Mq — C, bq(f) = 1f€S-

The analogy with integers can be seen in the following way: a positive integer lies in S if
an only if it is the norm of some element of Z[i], and an element of M, lies in S if and
only if it is the norm of some element of F,[v/—T]. In F,[T], the mean value of b can be
estimated as follows [Gorl7, Thm. 1.1]:

B, = K, (“ . l) (1 +0 (qln)) , (1.25)

where the implied constant is absolute, and the constant K, is positive and is an analytic
function of ¢~'. The constant K, is given by

S | I A )

x2(P)=-1 q

where Y- is the unique non-trivial quadratic Dirichlet character modulo 7. By Stirling’s
formula, (") = 1/y/7n + O(1/n*?), and so has a resemblance to ([1.23)).

We evaluate Vary(n, h) in the large-¢ limit. The evaluation involves the z-measure on
partitions introduced in [KOV93|, with z = 1/2. The z-measures arise in an evaluation
of certain integrals over the unitary group (Theorem .

We give a brief introduction to these measures in §6.6] but for the moment we discuss
only the notation; recall that we write A - n to indicate that X is a partition of n and
A1 to indicate the largest part of a partition A. For parameters z € C and n € N, the
z-measure is a probability measure M. (n)()\) on the set of partitions A - n. In fact these
2- measures are a generalization of the well-known Plancherel measure on partitions. The
notation P{" ()\1 < N) denotes the obvious thing, namely

PO (A < N) = > MIM(A
AFn
M <N
The actual deﬁmtlon of these probability measures M will be given in §.
convention we set M. ()\1 < N) =1 for any N.) We show

Theorem 1.7. For a fixed odd prime p, and fired n > 6, take 0 < h < n —7 and let
N:=n—h—1 and g = p*. Define

T(n;N) := Z (1/4);(1/4)n- ipl)

Jli(n —j)! (M < N = )y 12 P < ).
j=0

For N(N —1) > n,

Vary(n, h) = ¢"7'T(n; N) + 0,,(¢"™),

as q — oo (that is k — 00 ).
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Here (z); :=2z(x +1)--- (z + j — 1) is the Pochhammer symbol.

We use this theorem to inform an analogous conjecture in the setting of the integers.
We require for this purpose an understanding of the limiting behavior of T'(n; N) as
h,n — oo with h/n — § € (0,1). Note that if h and n are both sufficiently large and
h ~ on, then N(N — 1) > n and N > 6 will both be satisfied.

Proposition 1.8. For n, N — oo with N/n — s € [0,1], we have

1 1
T(n;N) = ﬁG(s) + 0<%>,
where for real s we define
G(s) = P(l - a_1 <y < a—1> (1.26)

for'Y, aq, o) independent random wvariables, with Y distributed as Beta(1/4,1/4) and
aq, o) identically distributed copies of the largest part of the Thoma simplex distributed
according to the spectral z-measure with parameters 1/2,1/2. (The spectral z-measure is
defined in §6.6,)

Note that the random variable Y ~ Beta(1/4,1/4) is defined by P(a <Y < b) :=
Vrl(1/4)~ f t=3/4(1 — t)=3/* dt for a,b € [0, 1], with Y € [0, 1] almost surely. Interest-
ingly, an explicit computations shows that G”(s) has a jump discontinuity as s = 1/2.

The random variables a; and o also lie in [0, 1] almost surely, but an explicit char-
acterization of their distribution takes more space to give. Historically they arose in
formulas for the characters of certain important representations in the infinite symmetric
group (see [KOV93]), but more concretely they are the limiting distribution of the ran-
dom variable A\;/n for A - n drawn according to the z-measure of Theorem That
such a limiting distribution even exists is not obvious, but was shown in [Ols98]. We
discuss z-measures on the Thoma simplex in more detail in §6.6]

Plainly for all s € [0,1] we have 0 < G(s) < 1. It also is easy to see (i) that
G(s) is non-decreasing (from the definition) and (ii) that G(1) = 1 (from the fact that
Y, a1, € [0,1] almost surely). Very recent work on z-measures of Korotkikh [Korl§]
and Olshanski |OIs1§| tells us that P(a; < ¢) is non-zero for any small e, which forces G
to be strictly positive.

Using Theorem and Proposition together, we can write somewhat more suc-
cinctly,

Corollary 1.9. For a fized odd prime p let ¢ = p*. If h,n — oo in such a way that
h/n — 4 € (0,1), then

lim Vary(n,h)  G(1—46)+o(1)
g—oo gttt NZZD ’
where the function G(s) is defined in Proposition[1.§

Corollary suggests a conjecture for the integers regarding the number of elements
of S that lie in a short interval. Naively one might think it will suggest a conjecture
regarding the quantity

N ( 3 b(n)—MX,Hfdx, (1.27)



where H = X° with 6 € (0,1) and

I T H
X X r<n<z+H lOgX
Here ([1.27)) is the probabilistic variance of 3, _, ..,y b(n) = B(x + H) — B(z) where
B(x) =Y b(n) (1.29)
n<x

and is the probabilistic mean. This is not exactly the right quantity to look at,
owing to the fact that b(n) on average behaves like 1/4/logn, and the slow change of
this function means that the variance in will be much larger than we would like.
Indeed, even the probabilistic variance of . .1/ Vlogn is quite large owing to this
change; the probabilistic variance of this sum is

1 2X 1 1 2X 1 2
Y/X ( Z \/logn_y/x Z vlog”dt> b

z<n<z+H t<n<t+H

and with a little work one may see that this is at least of order H?/(log X)3.

Thus instead of (1.27), we consider a variant in which Mx g has been replaced by
a better approximation to n<otH b(n) which changes with x; this approximation is
given in terms of an integral of L-functions. Define the function F'(s) for ®s > 1 by

F(s) = Z bg:)

Using the fact that n is an element of S if and only if n can be written in the form 21?2,
for p a product of primes congruent to 1 modulo 4 and v a product of primes congruent
to 3 modulo 4, it may be seen that for s > 1,

1 1 1
Fio) === 11 1—q Il ==

q=1 mod 4 r=3 mod 4
(S L(s, xa)\ 2 Ty [ C(28s) e\ /2
_(T) H<m<l_2 2 )> ’

where y4 is the non-trivial character modulo 4. The first Euler product here dates at
least back to Landau [Lan08], while the second factorization has in effect been derived
many times (see e.g. [Sha64, [FV94]).

The second representation allows one to analytically continue F(s) to the cut disc
E={s:]s—1]<1/2}\ {s:Js=0,Rs < 1}: note that in this region, because neither
¢(s) nor L(s, x) have low-lying zeros inside of it (see [LMF18] for a list of zeros), we can
write

F(s) = (s = 1) f(s), (1.30)

where f(s) is an analytic function and where the principal branch of the function (s —
1)~1/2 is taken. Under RH for ((s) and L(s,x4), it may be shown that (see §6.10| for a
full proof)

B(x) = Blx) + 0.(e*%), where Bla)= /1 ) ﬁm £(5) ds
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Thus we approximate B(x + H) — B(z) (the number of elements of S in a short interval
(x,x + HJ) by B B
I(z,H) = B(zx+ H) — B(z).

We will consider variance defined in the following sense:
12X
VX H) = ¢ [ (Bl H) - B) - 1o, ) da.
X

Ramachandra [Ram76|] investigated a quantity equivalent to this one and showed that
there is some cancellation over the trivial bound of H?/log X; namely

Vo(X, H) = O(H? exp(—(log X)'/%)),

for H > X'/6+¢. Under density hypotheses for the zeros of ((s) and L(s, x4) (see [Ram76),
Eq. (6)]) this is improved to the more complete range H > X¢. Motivated by Corol-
lary [I.9] we conjecture the following

Conjecture 1. Fix 6 € (0,1). As X — oo with H = X?, we have

H
Viog X’

Vo(X, H) = (K G(1—6) + 0(1))

for K as in and G(s) as in ((1.26)).

The proofs of Theorem and Proposition are detailed in §6] Their are taken
from a joint paper titled “The variance of the number of sums of two squares in F,[T]
in short intervals” |[GRI1§| (to appear in AJM), authored by myself and Brad Rodgers.
In the paper we also deal with the variance of the generalized divisor functions d, (z not
necessarily an integer).

In Figure [1| we plot numerical data supporting the conjecture.

1.9.4 Twin primes in the large-¢ limit

One of the oldest open problems in number theory is the existence of infinitely many
twin primes, that is, primes with distance 2 from one another. This can be expressed as

asking whether
Z A(n)A(n + 2)

n<x

as r — 00. A heuristic computation based on the circle method led Hardy and Littlewood
to conjecture a quantitative version of the above [HL23|. The Hardy-Littlewood 2-Tuple
Conjecture says that, as x — o0,

1— #{0 mod p, A mod p}

iZA(n)A(n +Aa)~]] iz f)2

n<lx p

for even A € N. Over F [T, the analogous conjecture is

1 — #{0 mod P, A mod P}

ST A A +A) ~ T] (1_;”)2 (1.31)

Mg FEMuq PeP,

for all non-zero polynomials A, as ¢" — oco. When ¢ is fixed while n tends to oo, two
results are known:
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Figure 1: Numerically produced data compared to the z-measure induced prediction given
in Conjecture (1| for variance in short intervals. Let V,(X, H) be the variance of counts
of S in random short intervals [z, z + H] for n < X. For X = 10% and H < X, set § =
o = log(H)/log(X). For a selection of H, we plot the points (8, V,(X, H)/(H/+/log X))
under the label data, and the curve (§, K G(1 — 0)) under prediction.

e C. Hall [Hal03|, Prop. 19], in his PhD Thesis, proved the existence of infinitely many
twin primes with distance ¢ € ;. His proof is constructive - he provided an explicit
infinite family of ¢ € N for which there are 8 € F, with 7% — 3, T* — 8 + ¢ both
irreducible. However, the family of ¢’s is quite sparse, and contains only perfect
powers.

e Very recently, Sawin and Shusterman proved, for certain ¢’s, the Hardy Littlewood
2-Tuple Conjecture in Fy[T] in the large-n limit [SS19]. Specifically, they require
q > 685090p* where p is the characteristic of F,.

Here we concentrate on fixed n and growing ¢q. The constant in the right-hand side of
[1.31) is 1 + (aa — 1)/q + Odeg(a)(1/¢?), where an is the number of zeros of A in Fy
(without multiplicities), see [GS20, Eq. (5.4)]. We may consider for fixed n, and
ask whether

-1 1
Y AmAm+A) =1+ 40, (—Q)
n M, q q

as ¢ — oo (uniformly for A of degree between 0 and n — 1). This question has received
significant attention. Pollack [Pol08, Thm. 2], Bender and Pollack [BP09, Thm. 1.3],
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Bary-Soroker [BS14, Thm. 1.1] and Carmon [Carl5l, §6] have shown that

1 1
ryy Z Ay(n)A (n+A)=1+0, <ﬁ) .

Their proof is based on Galois-theoretic methods, which give an implied constant of order
n!? (see the statement of [BP09, Thm. 1.3]). We concentrate on scalar A and prove the
following.

Theorem 1.10. Fiz n > 4. Uniformly for ¢ € Fy, we have

Zfe/vln,q;j\(/l]:i\q(f +e) o (%) (1.32)
and

ZfeMn,q;\j\(/li)i\Q(f—'—C) _1:0, (1) (1.33)
as q — oo.

The first estimate has the same dependence on ¢ as the previous works, but polynomial
dependence on n. Its proof is short and self-contained, taking barely 3 pages. The second
estimate improves the exponent with which ¢ appears, and is optimal, in the sense that
the error term cannot be replaced with O,,(1/¢%), o > 1 (at least if the Hardy-Littlewood
Conjecture is correct).

The main ideas of the proof of Theorem [1.10| are new. We introduce an L-function
formula for the correlation of general arithmetic functions, which relates an average over
polynomials to an average over short interval characters (Proposition . This falls into
the general framework in analytic number theory where we replace an identity, in this
case fo = f1 4+ ¢, with an average over characters. This case may be surprising because
we are detecting an additive identity using multiplicative Dirichlet characters. However,
using Dirichlet characters ramified at oo, it is possible to do this. The contribution of a
given character is closely related to the Dirichlet L-function of that character.

We can compose a short interval character with a ring automorphism of F,[T] to get
a new character, which will have the same Dirichlet L-function. This gives an additional
symmetry of the average over characters (Proposition which we are able to use in
order to derive , by first summing over compositions of a given character and then
using pointwise estimates for Gauss sums that give a saving of \/q. To prove (1.33)), we
use the fact that we sum over all characters in the family G(R,), and use L-function
equidistribution results (Theorem for a saving of an additional /g.

The proof of Theorem is detailed in §7] The material of §7]is based on the joint
paper “Correlation of arithmetic functions over F,[T]” published in Mathematische An-
nalen [GS20], authored by myself and Will Sawin. In the paper, we extend Theorem
to general factorization functions. We also study the easier problem where one averages
over the larger space of non-monic polynomials. There one obtains stronger results than
over monics, uncovering an (expected) lower term by relating the problem to a variance
problem in intervals of size q.
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2 Short interval characters

Here we review the notion of short interval characters in F,[T]. These are characters
that can be used to detect whether two polynomials are ‘close’, that is, have a difference
of small degree. These characters are ramified only at the prime at infinity, and are
analogous to the functions n — n' (¢ € R) in the integers.

More general characters are studied, in an elementary fashion, by Hayes [Hay65], and
in the context of class field theory by Weil [Wei74].

2.1 Equivalence relation

Let ¢ be a non-negative integer. We define an equivalence relation R, on M, by say-
ing that A = B mod Ry if and only if A and B have the same first ¢ next-to-leading
coefficients. We adopt throughout the following convention: the j-th next-to-leading
coeflicient of a polynomial f(T) € M, with j > deg(f) is considered to be 0. It may
be shown that there is a well-defined quotient monoid M,/R,, where multiplication is
the usual polynomial multiplication. Any element of M, is invertible modulo R,, and
M, /Ry forms an abelian group, having as identity element the equivalence class of the
polynomial 1. It may be shown that

|Mq/R€| = QZ-

2.2 Characters

For every character y of the finite abelian group M,/R, we define x! with domain M,
as follows. If ¢ is the equivalence class of A, then xT(A) = x(c). We shall abuse language
somewhat and write y instead of x' to indicate a character of the relation R, derived
from the character y of the group M,/R,. Thus we write x, for the character of R,

which is identically 1. We denote by G(R,) the set {x: x € /\/l/q/\Rg}.

Elements of G(Ry) are called “characters of the relation R,” or “characters modulo
R,”. We also call them “short interval characters of ¢ coefficients” (short interval char-
acters for short), because for any A € M, of degree > ¢ , x € G(Ry) is constant on the
set

{f € Mdeg(A),q : f = A mod Rg}

which is nothing but the short interval I(A, deg(A) — ¢ —1).

A character modulo R, is said to be primitive if it does not coincide with a character
modulo Ry_;.

A set of polynomials in M, is called a representative set modulo R, if the set contains
one and only one polynomial from each equivalence class of R,. If x1, x2 € G(Ry), then

1 _ 0 if x1 # X2,
— Fyx(F) = 2.1
7 2 a(FraE) {1 P (2.1)

F running through a representative set modulo R,. If n > ¢, then M, , is a disjoint
union of ¢"~* representative sets. Thus, applying (2.1]) with x» = xo, we obtain that for
alln >/,

1 3 X(F):{O ifx 7 xo, (2.2)



We also have, for all A, B € M,,

LS ) - {1 if A= B mod Ry, (2.9

0 otherwise.

2.3 L-functions

Let x € G(Ry). The L-function of x is the following series in u:
Lu,x) = ) x(fu's?,
feMqy
which also admits the Euler product
Liu,x) = [T (1 = x(Pyus™) 1. (2.4)
PeP
The series converges in |u| < 1/q. If x is the principal character xo of G(Ry), then

B 1
C1l—qu

L(u, x)

Otherwise, the orthogonality relation (2.2)) implies that L(u, x) is a polynomial in u of
degree at most
deg L(u, x) < ¢ —1. (2.5)

The L-function L(u, ) satisfies a functional equation (originally proved by Witt in the
thirties; see Roquette [Roql8] for an historical account): if x is a primitive character

modulo R, then )

L(u,x) = (\/au)zflff(X)L(q—u,Y) (2.6)
where £(x) is a quantity of modulus 1 (sometimes known as ‘root number’). Comparing
coefficients, we obtain that

deg L(u,x) =¢—1
for primitive y € G(Ry), as well as the following equality:

SToxth =i T > X, (2.7)

feEM; 4 feEMp—1-i4

forall0<i</¢—1.

The first one to realize that Weil’s proof of the Riemann Hypothesis for Function
Fields [Wei74, Thm. 6, p. 134] implies the Riemann Hypothesis for the L-functions of
X € G(Ry) was Rhin [Rhi72, Chapitre 2] in his thesis (cf. [EH9I, Thm. 5.6] and the
discussion following it). Hence we know that if we factor L(u, x) as

deg L(u,x)

Lwx) = ] (1=wuuw), (2.8)

=1

then for any ¢,
7001 = v (2.9)

We note the following standard consequences of (2.9)), and include a proof for complete-
ness.
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Lemma 2.1. Let n,{ € N and x € G(Ry). Then

> AHX()] < (2.10)

feEMun q

(0—1)g2 if X # X0
q" if X = Xo,

and

n .
v otherwise.

n

> x(p)| < {min{%““)?%} if X # Xo,

PE’Pn,q

Proof. The case x = xo of (2.10) follows from ((1.10). For x # xo, we equate (2.4) with
(2.8) and take logarithmetic derivatives to obtain

deg L(u,x)
SOAX == D ko™ (2.11)
JeMun.q i=1
By (2.5), (2.9), and the triangle inequality,
D AN < (=12 (2.12)

fEMn,q

The bound ‘ZPGP” . X(P)‘ < ¢"/n follows from the bound | P, 4| < ¢"/n [Ros02, Prop. 2.1].

For x # xo, we obtain the additional bound as follows. We can split (2.12) into the con-
tribution of primes of degree n and proper prime powers:

D SREED DI I DSV ES e (2.13)

FEPn.q din,d#1 "~ fEPy ,

As

Z g Z X4 < Z g|73n/d,q|§ Z gV < 247,

din,d#1 " f€Pn , d|n, d#1 d|n, d#1

we obtain from ([2.13]) and the triangle inequality that

n 30 X< 0+ gt

J€Pn,q

After dividing by n, the lemma is established. O]

2.4 Sums over short intervals and their variance

For an arithmetic function a: M, — C and n > 1, define

Sn,a)= Y a(f). (2.14)

fEMn,q

The following lemma expresses sums over short intervals, and the variance of such sums,

as sums over characters in G(Ry). A variant of this lemma appeared in a paper of Keating
and Rudnick [KR16].
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Lemma 2.2. Let -1 < h<n—1and set { =n —h — 1. Then the following hold.

1. For any f,g € M4,
erG(R[) X(A)x(g)
¢ '

loersn) =

2. For any arithmetic function o: My — C and f € M,, , we have

ZXGG(RZ) X<A)S(na Q- X)
> alg) = "
geI(f,h) (2.15)
n,g<a> n ZxoyéxeG(R[) X(A)S(n, o x)
Mo q . .

8. For any arithmetic function o: My — C, the variance Vara(n, h) of {32 cp.m @(9)} remn,
may be expressed as

2
Zxo;éxeG(R[) [S(n, o x)|
g% '

Var,(n,h) = (2.16)

Proof. The first part of the lemma is a restatement of the orthogonality relation ({2.3)). For
the second part of the lemma, we observe that >° ;. p (9) = > e, @(9) - Lger(rn),
and now we apply the first part of the lemma and interchange the order of summation.

Note that
S(”? a - X0> n—f(

¢’
We now prove the last part of the lemma. Given A € M, /Ry, write f4 for a polynomial
in M,, , in the equivalence class of A. We use (2.17) and ({2.15] as follows:

2

) My - (2.17)

Vara () = 3 | Y alg) - ¢ e,

T (Mg |ger(rh)

1 S(n,a - xo
I DIRCEE S

AeM/Ry |g€I(fa,h)

Q

_ 2
_ i Z Zxo#xeG(RIg) X(A)S(n, a - X)
= qf =

AeM/Ry

1 . -
= 2 2, WS xa)e()Sha ),
AeM/Rg x1,x2€G(Re)\{x0}

Interchanging the order of summation and applying (2.1), we conclude the proof. O

3 The variance of divisor function in short intervals

3.1 Moments of d,

Lemma 3.1. * We have
<dq>Mn,q =n + 1
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and

(dg) Mo, = (n —; 3) - %(n _;: 1>. (3.1)

Proof. The first part follows by interchanging the order of summation:

in Z d :qin Z Zl— Z Z 1:% Z qn—deg(d)

fEMn q fEMn,q d|f deMy fFEMyp g2 d|f T jem,, deg(d)<n

Y R ey
deMygy, deg(d)<n

For the second part, let Z(u) = 37y u'Y) = [Tpep (1 —us")~" Since Z(q~*) =
(y(s), we have Z(u) = 1/1(1 — qu). We use the multiplicativity of d, to write

Z d2 deg _ H (Z(k+1)2ukdeg(P)>

feM, PePy \k>0

_ H 1+udeg(P)

1 — udeg(P )
PeP,

-1
_ Z(u)* _ 1 — qu?
Z(u?) (1 —qu)*

(
(1 2deg P))
(

1 — udeg )4

By the binomial theorem, (1 — qu)™ = 37 -, u(—q)" () = > om0 UG " ("4%), and so

n

D feMoy d2(f) = q n(") —q- q"‘Q(("_§)+3), and dividing through by ¢" concludes the

proof. O

3.2 Correlation sums proof

Lemma 3.2. Let A, B € M, be coprime polynomials. Let n be a positive integer such
that
n > deg(A) + deg(B).

Let A be a non-zero polynomial of degree < n. Then the number of solutions to the
polynomial equation

Au — Bv = A, deg(Au) = deg(Bv) =n, wu,v monic
is qn—deg(A)—deg(B)_
Proof. The case A =1 is proven in [ABSRI5, Lem. 7.2]. The general case is proved in
the same way. O]

Lemma 3.3. Let A be a non-zero polynomial of degree < n. Let a; o denote the number
of monic divisors of A of degree i. Then

> sem,, da(F)dy(f + A) = 2i+1)?
qn

(ai,A - ai—l,A)-



Proof. We follow and generalize the proof of [ABSR15, Thm. 7.1|. Fix a positive integer
n. Let o, 3,7,0 be non-negative integers such that o + =~ + 9 = n. Set

Sla, B;7,6;A) = #{r € Mag,y € Mpg,z€ M, ue Msg:xy —zu= A}
We have some obvious symmetries from the definition:
S(a, B57,0;A) = S(B,a;7,0;A) = S(a, B;0,7; A).
Hence, to evaluate S(a, 3;7,0; A) it suffices to assume that
a<pB, <. (3.2)
Assuming we write

S, B 60) =3 S #lye MagueMs,ay—zu=A}.  (33)

glA  zEMa,
monic zE€EM~ 4

ged(z,2)=g

If 2 € Myy, 2 € M., and ged(z, 2) = g, then x/g, y/g are coprime and deg(g) < o <
n/2. Hence

x z A
#{y e Mpgu€ Msy:ay—zu=A} =#{y € Mgg,uec M, : Ey— ;u = ;}, (3.4)

and by Lemma |3.2| we have

T z A
#{y € Mpggue Ms,: —y——u= —}= qn—a—7+deg(g). (3.5)
g g g
Plugging (3.4) and (3.5) in (3.3)), we get that
S(a, B;7,0;A) = > grreTtdess N (3.6)
g|A, monic TEMa,q
deg(g) <min{a,B,7,0} 2EMa q

ged(z,2)=g

Note that by [ABSR15, Eqgs. (7.14-7.17)],

Z 1= Z 1= qa—deg(g)+7—deg(g) . 1 = deg(Q) or 7y = deg(g),
"EEMO‘#I iEIGMa_deg(g) q 1 - é « > deg(g) or /y > deg(g)

2E€Myq 2 €My _deg(g).q
ged(z,2)=g ged(a! ') =1

(3.7)
Plugging (3.7 in (3.6 we get that

e 1
S(Oé, 67 v, 5’ A) = qn Z q deg(9) (1 - 5 : 1min{a,ﬁ,’y,5}>deg(g)) . (38)
g|A, monic

deg(g)<min{a,8,7,5}

Consider the following sum:

Z dy(f)d (f+A) = #{x,y,z,u € M, : xy—zu = A, deg(zy) = deg(zu) = n}. (3.9)
FEMn g
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We partition the right-hand side of (3.9)) into a sum over variables with fixed degree, that

it
D d(Nd(f+A) = > S(e, 57,540, (3.10)
FeMun.q atpB=vy+d4=n,
a,B,7,6>0
Plugging (3.8) in (3.10)) we get that
ZfeMw dq(f)dq(f + A)

qn

1
—d
= > > T (1 “y lmin{aﬂﬁﬁbdeg(g)) :

a+p=y+d=n, g|A, monic
,8:7,620  deg(g)<min{c,B,7,0}

Interchanging the order of summation we obtain

> rem, da(f)dg(f + A) _ 1
€ T = > g > (1 - 1min{a,ﬁm6}>deg(g))
q g|A, monic OH‘,BB:’Y‘gizW 1
d <n ,8,7,6>
c8l9)<3 deg(g)gm’iyn{a,ﬁ,’y,é}
= Z g desl9) ((n — 2deg(g) + 1)?
g|A, monic
deg(9)<%
(n —2deg(g) — 1)°
- “Leg(g)<n -1
q
= 2i 4 1)2
=(n+ 1)2 + —i(az,A — ai1,n),
=1 q
as claimed. O

Lemma 3.4. Let ao: M, — C. For -1 < h<n—1,

Var,(n, h) _ 2

T = Z (<04(f)04(f +A)) femy, — }<04>Mn,q‘ ) ;

AEF[T),deg(A)<h
where the summation is over (not necessarily monic) polynomials A.
Proof. Expanding the square in Var,(n, h), we have
1
Var,(n,h) = —n Z Z q2h+2|<0‘>Mn,q|2-
foeMn,q f,9€1(fo,h)

Letting A := f — g, we see that deg(A) < h and that o(f)a(f + A) appears with weight
q" 1" (since we may take fy to be any polynomial in I(f, h)), which concludes the proof
once we divide by ¢"**. O
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3.2.1 Conclusion

Applying Lemma 3.4 with a = d,;, separating the contribution of A = 0 from the rest of
the terms and then using Lemmas [3.3] and [3.1] to evaluate the terms, we obtain

Varg, (n, h) (n— 2@ +1
T (1dg*) g = )t P+ > Z (ai,A —ai_1)

0<deg(A)<h i=1
LZJ

D)) e R g

q 0<deg(A)<h
(3.11)

To evaluate the inner sum, observe that

2 e 2 2 s

deg(A)=k deMg,q deg(A)=k

= Z (q - 1>qk—deg(d) . 1k2deg(d) = qk(q - 1) . 1k2i' (312)
dEMi,q

From (319,
(%A - aifl,A) = —qk<q - 1) i (3-13)
deg(A)=k

Plugging (3.13)) in (3.11]), we obtain
Varg, (n, h) n+3 1/n+1 s q—1 . 2
—qzﬂ =5 ). 3 —(n+1) S Z (n—2i+1)"
1<i< |2 | 1
Now it is a matter of school algebra to show that the above expression simplifies to

(1-1/q) (”723}‘71) for h < |n/2] — 1, and vanishes for larger h. O

3.3 Functional equation proof

We write [u"]f for the coefficient of ™ in a power series f. Since d, is the Dirichlet
convolution of the constant function 1 with itself, we have

S(n,dy - x) = [ L, X)*. (3.14)

From the third part of Lemma and from (3.14]) we obtain

"L [u") L (u, )
EG(Rp)\G(RE-1) ’
Varg, (n, h) = E X q2é“n_h_1) . (3.15)

k=1

If y € G(Ry)\G(Ry_1) then deg L(u, x)* = 2(k—1). Hence, the k’s for which n > 2(k—1)
contribute 0 to the sum in (3.15)), so that

n ! Z € |[un]‘[‘(u X)2|2
AV 2 : G(Rk)\G(Ry— )
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From the functional equation ([2.6) we obtain

912

1 D eGRO\G(Ri1)

] (L(& (/@) =)

q2(n—h—1)

Z
=31+ (3.16)
>

Varg, (n,h) =

1 2%k—2-n —\212
2n—2k+2 ZXGG(Rk)\G(Rk—l) |[u JL(u,X) ‘
q q2(n—h—1) ’

k=[274+1

3

By (3.14), we may replace [u**=2~"|L(u,X)? with S(2k —2—n,d,-X). Doing so, and then
interchanging the order of summation in (3.16)), we have

n—

iy dg(f)x(f)dq(9)x(g
Vardq(n7h) = Z q2n—2k+22X€G(Rk)\G(Rk71) Efvgez-/(\;ll%h2l;,q q( ) ( ) q( ) ( )
k:f[ng q

—h—

' EMog_2_p dq f dq —
= Zf’qu%_é;_ﬁ) ) S (Ol

k=[27+1 XEG(RK)\G(Rk-1)

(3.17)
Since 2k —2 —n < k —1 < k, we have
f=gmod Ry 1< f=gmod R+ f=g

for all f,g € Moy_o_,,. Hence, the orthogonality relation (2.3) implies that

Y x(hxlg) = (" —d*") 14 (3.18)

XEG(Rk)\G(Ri—-1)

for all f,g € Mog_s_pq. Plugging (3.18) in (3.17)), we find that

Vo, (n, ) = (1 - _) k

From (3.1) and (3.19), we have that
n—h—1
V A=1(1-= E k+2h—n+2 _ k+2h—n+1 .
s (. h) ( q > (q 3 q 3

k=[2]+1

1

h—
Z qk+2h n+2 d2>/\/l2k o (319)

=[31+1

n—

If h > |n/2] —1, the sum is 0 as it is empty and is 0. Otherwise, it telescopes to

(1_1) qh+1(n—2h—1)’
q 3

as needed. O
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4 The variance of squarefree polynomials in short
intervals

4.1 Bounds on character sums and Mobius sums

The following bounds are originally due to Bhowmick, Lé and Liu [BLLI7, Thms. 1-2].
They also follow from Theorem [5.1] below.

Lemma 4.1. [BLL17, Thms. 1-2] Let k > 1 and let xo # x € G(Rx). We have

i iloglog(k+2) k42
Z X(f)? Z Mq(f)X(f) = O (QQBO‘I( log(k+2) +10g2?;c+2))) .

feEM; 4 feEMi;q

4.2 Proof of Proposition (1.3
We begin by assuming that ¢ is odd. By Lemma [2.2]

2
oAttt s ) | Zrertng S (D)
Varg, (n,h) = 20T (4.1)
We have
[n/2]
ST Bl = D > mldx(@g) =" > pdxd) D xl(g).
feEMn q feEMn 4 f:d2g i>m dG./\/lz‘,q gEMp_2i4
deg(d)>m
(4.2)
Observe that we may start the summation over ¢ from ¢ > (h+1)/2, since deMW%q x(9)

vanishes for smaller 7. In odd characteristic, if x is non-trivial then so is x? (since M, /R,
is of odd order ¢*). Hence, we may apply Lemma with k =n >n — h — 1 and with
both y and x?, obtaining

/2] - )
DD ‘q%q"’%’eom) < R o) (g )
by the triangle inequality. Plugging (4.3) in (4.1]), we obtain
Varg, (n, h) < g maxdmh/2} gog(n) (4.4)

as needed. If ¢ is even, there are non-trivial characters y € G(R,_;_1) such that x? is
trivial. For such characters,

Z Mq(d)XQ(d) = Z fig(d) =0

deM; 4 deM; 4

if i > 1, according to (L.10). For i = 0,1 we have >° .\, . x(g) = 0. This implies
> fem, \ Bm(f)x(f) = 0. Hence (4.4)) holds for all characters and the proof goes through
for even ¢ as well. O]
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4.3 Proof of Proposition
By Lemma [2.2]

2

Zxo;ﬁxeG(Rn, 1) Zfe/\/[n q Oém(f)X(f)
Varg,, (n,h) = u P . (4.5)

As in ,
D anMx() =D D m(@xd) D> x(g).

fEMn,q i<m deMi,q geMn—Qi,q

If x € G(Re) \G(Ry-1), then 30y

equation in the form (2.7), we may write

YooawMx( =0 D @Y pmldxid) > X(g) (46)

FEMun 4 i<m, (n—k) /2 deM,; GEME_ 1 (n—2i).q

where |e(x)| = 1. Plugging (4.6]) in (4.5)), we obtain

x(g) = 01if n—2i > k. Applying the functional

n—h—1

Var,, (n, h) = ¢*"*3 Z Z g "

k=1 x€G(Rp)\G(Rr_1)

| P ) m@xd) Y X(9)] - (4T)

i<m, (n—k)/2 deM; 4 GEMp_1_(n—2i).,q

The orthogonality relation (2.3) tells us that

Z X(A)X(f2) = "7 (¢ Lp=f, mod Ry — Lfi=f2 mod Ry ) - (4.8)

XEG(Rk)\G(Ri—1)

Expanding the square in (4.7)), interchanging the order of summation and plugging (4.8)
yields

n—h—1

Var,, (n,h) = g>ht? Z Z

k=1 i1,ig<m, (n—k)/2

Z Mq(dl)ﬂq(dQ)q_Q(il+i2) (q 1d292 d2g1 mod Ry, — 1d2g2 d2g1 mod Ry,_ 1) ’ <4'9)

diEM;y 4
d2€EMiy 4
GLEME_1_(n—2i1),q
92EMp_1_(n—2iy),q

We have deg(digs) = deg(dagi) = 2i; +2is +k—1—n < k—1since m < n/4. If
fi = fomod Ry_1 or fi = fo mod Ry, for polynomials f;, fo of the same degree which is
at most k — 1, then f; must equal f;. Hence, the only terms that contribute to are
those with d3g, = d3g; (‘diagonal terms’), and so

n—h—1

h—
Var,,, (n, h) = ¢*"*2(q Z S () pg(do)g ),

=1 41,52<m,(n—k)/2 d1eEM;y 4
d2eEMiy 4

GLEM 1 (n—2iq),q

G2EMp_1_ (n—2ig),q
d%QQ d291
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The condition d3g, = d3g; can be written as

Cd N d Y
ged(di,dz) ) 7 \ged(dr,do) ) ¥

d; 2
= ——— s
g (ng(dlyd2)>

for a monic polynomial s of degree 2degged(dy,dy) — (n+ 1 — k) (of which there exist
q?deseed(did2)=(n+1-k) §f deg ged(dy, dy) > (n+ 1 — k)/2, and otherwise there are no such

s). Writing D for deg ged(dy, dy), we can rewrite the last sum as

which is equivalent to

n—h—1

v pa(d)pig(da) op (i1
Vara,, (n,h) = ¢*"(g—1) Y > WQQD RS PY S

k=1 iyia<m, (n—k)/2d1EM;, 4 ¢ 2

d2€Miy 4
Summing first over i; and iy, we may write
o d)pg(ds) "G
1 2 (41—
Varam<n7 h) = q2h+2(q - 1) Z |rd ||2||2 ||2 Z q2D (ntl k)
iniz<mdi €My, 4 L 2 k=n+1-2D

do EMZ'%Q

The inner sum is ¢?P~ 23222 g = @2D=h=2(] — =CD=h=Dy /(1 — 7YY if D >
(h+2)/2, and is 0 otherwise. All in all, Var,,, (n,h) = F(h, m) where

d d — eggc —h—
F(hm) = g™ > WH ged(dy, da) [2(1 — g Cdereedtind) 1)

1=1,2: deg(d;)<m, d; monic
deg gcd(d1,d2)>(h+2)/2

(4.10)
This concludes the proof. n

4.4 Over the integers and far away
In [GMRR20] we prove the following integer analogue of Theorem .

Theorem 4.2. We have Var,2(X, H) ~ CHY? as X — oo in the range H = O.(X'/6-¢),
H — oo.

As can be seen, we go slightly beyond the X'/2~¢ range! We explain some of the ideas
that go into the proof of Theorem . The starting point is again a decomposition of y?:

=t B au(n) = Y ud),  Bulm) = Y ()

d?|n,d<M d?|n,d>M

4.4.1 On Proposition in Z

We want to evaluate

I = Var,,, (X, H) = %/0 S ) -HY “flf) dz.

d’>me[w,x+H| d<M



Here Y, 11(d)/d? is the mean value of avpy. In place of the functional equation of L(u, x)
used originally, we use a Poisson summation argument (which is philosophically the same).
To apply it, we first introduce smoothing. For smooth o, p: R — R concentrated on [0, 1],
consider the smoothed variance

2

~ 1 [* sz d*m — x . p(d)
mez, d<M d<M

We can now apply Poisson summation to

Z“ (d%—x)

d<M

obtaining

2
> i () - Y
veZ,d<M

meZ,d<M

The term p(0) Y- <y, p1(d) /d* cancels with the contribution of v = 0. Plugging in (4.11]),
we have

dy)p(d Hvy Hv v, U

>y Al (2 - )
d1,do <M vy v, €Z\{0} 172 1 2 1 2

We choose o so that the support of ¢ is in (—1,1). If M is small enough, namely M <

X1/4 only the ‘diagonal terms’ (i.e. those with v;/d? = v,/d3) survive, since otherwise we

have a lower bound on | X (v /d?vy/d3)| which is outside the support: | X (v /d? —vy/d3)| >

X/(d3d3) > X/M* > 1. Hence,

Hl/1

= 5 p(di)p(da) |.

I=06(0)H E P p
d1,d2 <M 12
v1,v2€Z\{0}
Vld%:VQd%

This expression can either be evaluated directly, or as in F,[T], we can evaluate it in-
directly by a bootstrapping-type argument. A useful feature is that I does not depend
directly on X, but rather on H and M only. Removing the weights o and p is routine,
by taking a limit of weight functions. B

In the paper, we are in fact able estimate I for M larger than X'/4, by studying
some of the non-diagonal terms that arise. That is, terms with v} /d? — vy/d5 small but
non-zero. We bound the contribution of such terms using the theory of quadratic forms.

4.4.2 On Proposition [1.3]in Z

The starting point for Proposition is a Plancherel-type formula, namely (2.16]). Over
the integers, we do not have such a nice, simple formula available. Fortunately, since we
only want to upper bound

J = Varg,, (X, H) = %/0 >oud)-HY % dr,

d’mé€[z,z+H| d>M
d>M
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we can make some simplifications which allow us to pass to Fourier space. An inequality

of Saffari and Vaughan [SVTT, p. 25] tells us (roughly) that J is bounded by
2

1(d)
X/ (d)—e)xz7 dx

d2m€ [z a:(1+9)] d>M

for some 6 with § < H/X (so that the length of the interval [z, z(146)] is of order O(H)).
In this new form, there is Plancherel-type formula, first found by Selberg in his study of
the variance of A [Seld3]. We explain his formula. We have, by Perron’s formula,

1 e,
ZA(TL)  2mi © C(s) s d

n<x

for any ¢ > 1 and non-integer z. At least under RH, we can shift the contour to ¢ €
(1/2,1), picking a pole at s = 1:

B C/ S 1.5
ZA(H) N 2m/ (s) s

n<x

Using this with = and z(1 + ), we find

L[ )z ((1+6)°—1) L [dletit) ao((1+6)° 1)
An)—1) =~ — ds = — ! dt.
ne[x,g(;re)]( (n)=1) 2me /(c) ¢(s) s T or r Clc+1it) * c+ it t

Writing e” in place of x,

nele®, e An—l ]_ : ! t 1 06+it_1
2onefer er(1+) (A1) )N_/emé(0+”< +0) dt.  (4.12)

ere o ((c+1it) c+it
The function of x in the left-hand side of (4.12) is the Fourier transform of

('(c+it) (140)*" —1
C(c+it) c+it

Y

and upon applying Plancherel theorem we obtain

[I Y am-npsg~en

nefet,e*(1+0)]

2

1 00+it_1
(1+6) dt.

¢+t

'(c+it) |
g | C(c+1it)

(As written, the integrals do not necessarily converge. However, introducing certain
weights solves the issue.) At this point, we can input information on the zeros and
growth of ¢ to study the variance of primes. _

A similar ‘trick’ can be used to relate J to an integral of a Dirichlet series. In
practice, we dissect the series Y -, Bn(n)/n® = ((s) > 4o 1(d)/d* into dyadic pieces:
C(8) Yo gey, muld)/d* for I, = (28 M, 2¥" m]. This is beneficial, since Dirichlet polynomials
are easier to work with than with series (for instance, we may take ¢ = 1/2 without wor-
rying about convergence issues), and more importantly, the contributions of the different
Dirichlet polynomials are different so they should be estimated separately. To summarize,
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the study of J reduces to that of J, , and by a dydadic decomposition and an application
of Plancherel, we want to bound

/|g (1/2 + it)|?

RH gives strong pointwise bounds on Y7, , f(d)/d**, which allow us to bound the inte-
gral quite easily. However, we can do nicely without RH, by combining standard tools
for handling Dirichlet polynomials. These include Montgomery’s mean value theorem,
Huxley’s large value theorem and subconvexity bounds for (. For more details, see
[GMRR20].

2

(d) dt.

d2zt

2 .
(1 + 9)1/2+zt -1
1/2 + it

dely

5 The variance of factorization functions in short in-
tervals

5.1 Strategy of proof of Theorem
By Lemma and the triangle inequality, we have

> alf) "M )m,,| < max | > alh)x()

G(Ry—_n—
FEI(fosh) XoFXEG )

and
2

2 remy,, @)X

qnfhfl

MaXyo#xeG(Ry—n—1)

Var,(n, h) <
Thus, the result follows at once from the following theorem.

Theorem 5.1. Let a: M, — C be a factorization function, and let xo # x € G(Ry).

n loglog(£+2) + 14 )

>° alx()| < max a(f)]qie” =),

[ (5.1)
JeMnq e

Indeed, if ¢ = n—h—1 then the exponent of e in is O(nloglog(n+2)/log(n+2)).
The rest of this section is dedicated to the proof of Theorem [5.1 We manage to prove
such a theorem, which works for any «, by reducing it to estimating a single character
sum, which we now describe.

Let Q be the set of finite multisets of elements from N x N, so that wy, the factorization
type of a polynomial f, is an element of Q. For an element w = {(d;,¢;) : 1 <i < k} € ,
we define its size to be |w| := 31, die; and its length to be £(w) := k. For a factorization
function « and a factorization type w € (2, we denote by «(w) the value of « on a
polynomial f with wy = w if such a polynomial exists, and otherwise set a(w) = 0. We
have, by the triangle inequality,

T alhx(ND] =D aw) D> x(H| < max Ja(f WYY X (62

feMn q we feEMun 4 weQ |fEMn q
|w|=n wp=w |w[=n | wp=w
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Thus, it suffices to bound the sum on the right-hand side of (5.2)). In order to bound the

character sums
> X,

feMp g wp=w

we relate them to products of monomial symmetric polynomials evaluated at x(P) where
P runs over irreducible polynomials of certain degrees, see Lemmas and below.
We use tools from symmetric function theory in order to be able to use RH efficiently in
bounding these evaluations of symmetric polynomials.

We shall use the notation [u"]f(u) for the coefficient of u" in a power series f. We
also write exp(e) for e®.

5.2 Preparation for proof of Theorem 5.1
5.2.1 Symmetric function theory

A partition of size n is a finite (possibly empty) non-increasing sequence of positive
integers that sum to n. The length of a partition A = (Ay, Ag, ..., Ag) is the number of
its elements and is denoted by ¢(\) := k. We write A F n to indicate that A sums to n.
The empty partition is of size and length 0. We denote by Y the set of all partitions.
An important class of symmetric polynomials is the monomial symmetric polynomi-

als. Given a partition A = (A1, Ag,..., \g) and variables X, ..., X, then the monomial
symmetric polynomial my (X7, ..., X}) is the symmetric polynomial
k
N
m)\<X17"'7X/€) = Z HXiZEZ[XlV"an]?

Ewesk:(A’l,...,A;):()\ﬂ(l) ""7)\7f(k‘)) =1

where the sum is over the distinct permutations of . It is useful to extend m) to the
case of a general number of variables X1,..., X,,. If n < k we define my(X; : 1 <i < n)
to be zero. If n > k we set \; =0 for j =k +1,...,n and define

max(X;:1<i<n):= Z HX;‘QEZ[Xl,...,Xn],

€S (N e ML) =(Ar (1) - A () 1=1

where the sum is over the distinct permutations of A followed by n—k zeros. In particular,
m, is the elementary symmetric polynomial e if A = (1,1,...,1) with &k ones.

Another class of symmetric polynomials is the power sum symmetric polynomials.
Given a positive integer r, the power sum symmetric polynomial p,.(X; : 1 < i < n) is
the symmetric polynomial

pr(Xi:1<i<n):= ZX; € Z[X1,..., X,
i=1

More generally, given a partition A = (A1, Ag, ..., Ax), then the power sum symmetric
polynomial py(X; : 1 <7 <mn) is the symmetric polynomial

k
(X1 <i<n) ::Hpki(Xizlgign).

=1
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A basic result in symmetrlc function theory says that whenever m > n, {m\(X; : 1 <
i < m)bxay and {pr(X; : 1 <4 < m)}ap are both bases for homogeneous symmetric
polynomials of degree n w1th rational coefficients. In particular, my(X; : 1 < i < m)
can be expressed uniquely as a linear combination of the symmetric polynomials p, for
partitions p of size n, that is, there are unique coefficients ¢, , € Q such that

ma(X; 1 1<i<m) = expu(Xi:1<i<m) (5.3)
ukn

for all m > n (¢, are independent of m).

5.2.2 Multiplicativity of character sums

Given d > 1 and a factorization type

w={(d;,e;): 1 <i<k}eq,
we denote by w(d) C w the factorization type {(d;,e;) : 1 <1i < k, d; = d}. By definition,
w is the disjoint of union of the w(d)-s. Let 1, be the indicator function of polynomials

f with wy = w. The following lemma shows that the character sums S(n, x - 1,,) (recall
(2.14))) enjoy a multiplicative property.

Lemma 5.2. Let w € Q with |w| =n. Let x be a Hayes character. Then
S(n,x - 1) HSIw ) x - Laa))- (5.4)

Proof. Each f with wy = w can be written uniquely as f = [[},_, fa where f; is divisible
only by primes of degree d. We then have w;, = w(d), and the lemma follows by expanding
the right-hand side of ([5.4]). O

5.2.3 Symmetric function theory
The following lemma expresses character sums, of the form appearing in the right-hand
side of (5.4]), as an evaluation of a monomial symmetric polynomial.

Lemma 5.3. Let w = {(d,e;) : 1 <i <k} € Q. Let A € Y be the partition whose parts
are {e;}¥_, in non-increasing order. Let x be a Hayes character. We have

S(lwl, x - L) = ma(x(P) : P € Pa).
Proof. A polynomial f with wy = w is necessarily given by a product Hf: P Where =

(2
are distinct elements from Py ,. Equivalently, f may be expressed as [ Pep, Pe ) where

the multiset {e(P) : P € Py,} is equal to
E:={e:1<i<k}U{0:1<i<|Pyyl —k}.

Moreover, by unique factorization, this form is unique. Thus,

Swlx-1)= > x(Hh= S x| ] P?

fEM‘w‘:UJf:UJ e: Py q—)N>0 PG’Pd,q
{e(P):PEPy q} E

= 2> 1l

e: Py q—N>g PEPy,
{e(P):PEPyq}=E

which is just m, evaluated at {x(P) : P € Pay,}, as needed. O
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Figure 2: (3,2, 1, 1)-brick tabloids of shape (4, 3)

Egecioglu and Remmel [ER91, pp. 107-111] gave a combinatorial interpretation of
ey in (5.3)) which we now describe. We begin with their definition of A-brick tabloids.

Let A = (A1, Aoy .o, Ak), it = (1, o, - - -, i1yr) be two partitions. Recall that the Young
diagram Y, is the diagram which consists of left justified rows of squares of lengths
1, fe, - . -, p reading from top to bottom. For instance, if = (4,3) then Y), is given by

Y, =

A A-brick tabloid T' of shape 1 is a filling of Y, with bricks by, ..., by of lengths Ay, ..., g,
respectively, such that

1. each brick b; covers exactly \; squares of Y, all of which lie in a single row of Y,
2. no two brick overlap.

For example, if A = (3,2,1,1) and p = (4, 3), then we must cover Y, with the bricks

b1 bo b3 bs

Here, bricks of the same size are indistinguishable. There are in total seven A-brick
tabloids of shape u, given in Figure [2]

We let B, , denote the set of A-brick tabloids of shape pu. We define a weight w(T)
for each A-brick tabloid 7' € B, ,, by

w(T) = ] wr(b).
beT
where for each brick b in 7', |b| denotes the length of b and

() 1 if b is not at the end of a row in T,
w —=
g |b| if b is at the end of a row in 7.

Thus w(T) is the product of the lengths of the rightmost bricks in 7T". For example, for the
seven (3,2, 1, 1)-brick tabloids of shape (4, 3) given in Figure [2 the weights are computed
to be w(Th) =6, w(Ty) = 3, w(T3) = 3, w(Ty) = 2, w(T;5) = 6, w(Ts) = 1 and w(Ty) = 3.

We let
w(Byy) = Y w(T).

TEBNM

41



Egecioglu and Remmel [ER91, p. 111, Rel. (11)] proved that for partitions A\, u - n we

have
ey = (—1) Iy (B, )P, (5.5)

where
P, := Preg, (7 has cycle type p).

Here P,cg, is the uniform probability measure on the symmetric group 5, and we say
that m has a cycle type (u1, fto, . . ., p,-) if the cycle sizes of 7 are given by py, ..., i,

Lemma 5.4. Let n and k be positive integers. Let ptn. We have

> (B < Z (7). 59

W0k

Proof. Write p as (p1, ..., pr). A A-brick tabloid of shape p determines the partition A
uniquely. Indeed, A can be recovered by reading the lengths of the bricks in each row
of the tabloid. Thus, the set Uy-p ¢x)<k By, may be identified with a sequence {b;}i_;
of positive integers with Y’ _, b; < k, and a double sequence {a; j}1<i<,, 1<j<p; 0f positive
integers with Z?;l a; j = p; for each ¢ as follows. The number b; is set to be the number
of blocks in the i-th topmost row of the tabloid, and the number q;; is set to be the
length of th j-th leftmost brick in the i-topmost row. Under this identification, w(B) ,)
is given by the product [];_; aip,, and it follows that for any ¢ > 0 we have

S wBr) = Y. > e (5.7)

AFn brybe>l  VI<i<e:  i=1

LN)=t b1+...+b7a:tai,17...,ai’bi21
b
2o i =h

Consider the generating function

B(u) = Z w(By . )u'™.

AFn

Letting c¢(ny,n2, n3) be the number of solutions to x1 + z3 + ... + z,, = ng with x,,, = no

and x; > 1, it follows from ({5.7)) that

r

B(u) = Z Hc(bi,yi,ui)yiubi = H( Z C(bhyiaui)yiubi)'

Vlgig’f‘: =1 =1 bzayzzl
biyyi>1

As ¢(nq,ng, ng) is also the number of solutions to z; + ...+ x,,_1 = ng — ny in positive
integers, a standard combinatorial result says that

—no—1 .
("oret) ifng > g4y — 1,0y > 2,
c(n1,n2,n3) = < Lyyen, if ng =1,

0 otherwise,
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so that

where in the last passage we made use of the identity 2?21 ir' = z(dz?™ — (d+ 1)a? +
1)/(x—1)? withd = p; —1 and z = 1/(1+u). As the left-hand side of is the sum of
the first k+1 coefficients of B(u), and they are bounded from above by the corresponding
coefficients of [T/_; (1 4+ u)* = (14+w)" = Y1, (7)u’, the proof is concluded. O

5.2.4 Permutation statistics

We denote the expectation of a function f: S,, — R with respect to the uniform probabil-
ity measure on S, by E.cs, f(7m). We denote by ¢(7) the number of cycles in a permutation
.

Lemma 5.5. Let n > 1, m > 2 be positive integers. Let z1,zo € C. Define the following
function on Sy,:
f(r) = H 21 H 29 (5.8)

Cem,mf|C]  Cem,m||C|

where the product is over the disjoint cycles of w. Then

Eﬂ-esnf(ﬂ) = [u”](l _ u)_zl(l . um)(—z2+z1)/m'

Proof. The exponential formula for permutations [Sta99, Cor. 5.1.9] states the following.
Given a function g: N — C, we construct a corresponding function on permutations (on
arbitrary number of elements) as follows:

= [T sticn,

where the product is over the disjoint cycles of 7. We then have the following identity of
formal power series:

1+ Z (Eﬂ'ESiG( u = eXp Z g j

i>1 §>1

9(j) = {Zl ifm”.’

zo otherwise,

Applying the ideneity with

we find that G(7) = f(m) for every 7 € S,,, and the lemma follows by a short computation.
[l
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5.2.5 Bounds on certain finite sums

Lemma 5.6. Let x > 2 be a real number and n be a positive integer. Then
LY didyen 2 pdz < gy
2. If furthermore x >4, 3, 4 0 4 o 2 g2 < 10272,

Proof. We begin with the first part. We may assume n > 1. Consider the function
f(t) =27z on [1,n]. Its derivative is

(1) = £(1)loga — 082,

so that f is either increasing from 1 to n (if nlog2/logz < 1), or decreasing from 1 to

v/nlog2/logz and increasing from y/nlog2/logx to n (otherwise). As f(1) = 2"z <
22" = f(n), it follows that

D 2Ma™ =) f(dy) < da" + (n = 2) max{f(2), f(n/2)} - Lu not a prime-

dido=n da|n

If n is a prime, we are done. Otherwise, it suffices to show that (n — 2)222™/? < 42™ and
that (n — 2)2”/ 222 < 42™. For n = 4,5 these are easy to verify, and for larger n they
follow by induction. This establishes the first part of the lemma. The proof of the second
part follows similar lines and is therefore omitted. O

The following variant of Lemma [5.6] is also needed. We omit the similar proof.

Lemma 5.7. Let x € {\/5, V3,2, 3}. For any positive integer n we have

Z 2 pdz < 7,

dide=n,d1#n
For x € {2,3} we also have Y, 4 1 g o 2% 2™ + 14" < 14272
Lemma 5.8. For anyn > 1 we have 25’:0 (7;) < 7-1.4"™.

Proof. For n <9 this is checked by a short computation. For n > 10 we have Z?:o (7;)
(n® +5n +6)/6 < 2n3, and an inductive argument shows that 2n3 < 7-1.4".

LIl

5.2.6 Bounds on coefficients of a generating function

The following lemma is based on recent proofs by Bhowmick, Lé and Liu [BLLIT,
Thms. 1-2].

Lemma 5.9. Let t,r > 2. Set L := |2log,r]| and

Z(u):zexp(Z ﬁu +2207"+1 )

1<k<L k>L

Then

20(r+1)+n— 1> (5.9)

n

2] < 13 (
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for all n > 1. If r > max{200000, £*°¢* t} | we have

[u"]Z ()| < t3t" Ter exp(140 ((fo;l)lt) (5.10)
foralln > 1. If r = O(n), we have
) 2(w) < O (5.11)
Proof. We work with the modified function
Z(u) = Z(u/V1),
so that B
(W™ Z(u) = t"?[u"] Z (u).
As t*2 < r 41 for k < L, we have
12| < |l exp(3 200 + 1)) | = (1 — w0+,
k>1

which establishes (5.9). As Z has non-negative coefficients and radius of convergence 1,
we have

Z(R)

[u"Z(u)] <Y R"[w])Z(u) = 7

>0

for every R € (0,1). If R € (1.2/+/t,1), we can bound > i<k<l 20t*/2 R¥ /k from above by

k/2 L
&Rk < M < 120(r + 1) R*,
L2k 1—1/(RVt)

and the sum »_,_; 20(r + 1)R*/k by

20(r +1) RE
L+1 1-R

Rk
> 20(r+1)—- <

k>L
Thus, for every R € (1.2/v/1,1),

1
(L+1)(1 - R)

[w"] Z (w)] < exp (10(?" +1)RE(6 + ) — nlog R). (5.12)

Assume r > 200000 and choose R = ¢ in 5.12)). We then have

log log

loglogr L _loglogr(2lo _1 t log r t
—nlog R =n———logt,  RE <t teer Gloarl < . (513
e ! log o8h - ) (logr)? = (logr)? (5.13)
Assuming further r > °6°, we have % € (0,1), which implies R < 1—logtloglogr/(2logr),
and so . s 1 .

<k ®L_ < (5.14)

(L+1)(1—R) ~ 2logrlogtloglogr —
Plugging (5.13) and (5.14) in (5.12)), we obtain (5.10). To prove (5.11)), use (5.10) if
r > max{200000, 2"t \/n}, and otherwise use (5.9) together with the bound (") <
(7’L+ k)min{n,k}‘ ]
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5.3 Proof of Theorem [5.1]

By (5.2), it suffices to bound
Z ’S(”aX ' 1UJ)|>

weN
|w|=n

where 1, is the indicator function of polynomials f with w; = w (see (2.14) for the
definition of S). Let
Q2 CQ

be the subset of factorization types containing only pairs (z,y) € N* with z = d. The ele-
ments of {24, for each d, may be parametrized by partitions — to each A = (A1, Ao, ..., A\x) €
Y we associate
wad = {(d; A1), ..., (d, M)} € Qa.
Note that |wyq| = d|A\|. By Lemma , > weq jwj=n [9(, X - 1,)[ is the coefficient of u”
in the following power series:
Py(u) =[] Fa(u®)
a>1

where

Fy(u) == SN, x - 1, )| u.

AEY

The terms with £(\) > |Py,| do not contribute to Fy(u), as there is no factorization type
with more than |Py,| distinct primes of degree d. By Lemma and (j5.3), for each
A€ Y and d > 1 we have

SN, x - 1o, ,) = Z cxuPu(X(P) 1 P € Pay). (5.15)
p[A|

Let ord(x) > 2 be the order of x. Writing p as (p1, fto, . - ., i), we may bound p,(x(P) :
P € P,,) using Lemma [2.1] as follows:

Ipu(X(P) : P € Pag)| = H P (X(P) : P € Pay)|

i=1
d d d (516)
. Q2 q q
< — = = .
< [I (mln{d(€+1),d}> 11 (d>
1<i<r 1<i<r
ord (X )t ord(x)|pi

From (5.15), (5.16), and (5.5]), we have for all n > 1
q: q’ q’
> Isnoc i)l s Yl T (wintSesn ) T (%)
(1)

AEn A, ubn 1<i<t 1<i<t(p)
£(N)<[Pa,ql N <[Pay] ord (x)tus ord(x)|ps

= Enesnf(7)< Z w<B/\’“")>’

AFn
YUN)Z[Pa,ql

(5.17)
where f is defined as in (5.8]) with m := ord(x) and
: ’ .
2= 214 0= min{%(ﬁ+ 1), %}, 2y = 2g4 = %,
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and pu, is the partition of n whose parts are the cycle sizes of 7. By Lemma and
(5.17)), the coefficients of Fj; are bounded from above by the coefficients of

_1+;<|%< )) res, f(m)u".

If ¢ > 4, we do the following. Replacing Z' Pl ( Z) with 2", we use Lemma to bound
the coefficients of G4 from above by the coefﬁments of

Hy(u) := (1 — 2u) =214 (1 — (2u)ord(><))(—Zz,d+21,cz)/ord(x)7

and so the coefficients of F) are bounded from above by the coefficients of

u) = H Hy(u®

a>1
Summarizing,
D 1S x - 1) = W' Fy(u) < [u"]Hy(u)
weQ, |w|=n

5.18
_ [un] H(l . 2ud)—21,d(1 . (2u)dord(x))(—z27d+21,d)/ord(x)' ( )

d>1

The logarithm of the power series H, is given by

27;ud7; 2i0rd(x)udi ord(x)

22.d — *1,d
log H, (u) = Z At Z - ord(y)
id>1 id>1 X
so that
[u*]log H.(u Z 2 (214 °“j{f><>' : Z 20014004 (25 4 — 2 4)d.
dz:m
Set

L:=[2log,({+1)].
For d < L, we have z; g = 224 = ¢%/d, so that by the first part of Lemma with x = ¢,

[ log Hy(u) < + 3 2ig? < 8¢°
: ~k di=k Tk

forall 1 <k < L. As 290 — 219 < q¥/d and 2,4 < q%(ﬁ + 1)/d, we also have, by the first
part of Lemma with x = ,/q and the second part of the lemma with x = ¢, that

[ ] IOg H Z 2z ord(x Z 210rd

di= ordm (5.19)
k k L
<80+ 1)qk + 10? <10(0+ 2)qk
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for all & > 1. From (| - ) and ( - we have
n 10q
> 18(nx - L) < [uMexp( Y +21”+2 uk),

weq, |w|=n 1<k<L k>L

M\a—

and by Lemma with ¢t = ¢, 7 = £ + 1, we establish the theorem for ¢ > 4. We now
suppose ¢q € {2,3}. We define Hy := Hy for d > 2, while for d = 1

Hy(u) =1+ 14 Eres, f(m)u" = (1 — Ldu) ™ (1 — (Ldu)°rd00) (m2ata/ord(o
n>1

where in the last passage we used Lemma [5.5] As [Py 4| = ¢ < 3 for ¢ € {2,3}, it follows
that lel ol (l) < ZZ 0 ( ) which is at most 7-1.4" by Lemma . Thus the coefficients

of GGy are bounded from above by those of H1 times 7, and so the coefficients of F, are
bounded from above by those of
H(u) = [ Ha(u),

a>1
times 7. As in the case ¢ > 4, we proceed to upper bound the coefficients of log f{vx For
d < L, we have 2, 4 = 204 = q%/d, so that by Lemma with x = ¢,
[u*] log H, (u) < l(1 4kq + Z 2iqd) < 10q—k
X — k . ' = ]{7 )
di=k, d#1
for all 1 < k < L, where we used 1.4 < ¢ < 3. For any k > 1 we have by Lemma|[5.7] that

7 14 +1 1 ; 4 1ord k jor
(W] log H, (u) < %(1.4%2 + Z 2'q ) + % : ( Z giord() gd 1 1.4kq>

di=k, d#1 di:ﬁ, d#1

»

NI

k
2

(2148 +7¢%) + 1% <200+ 9L

From this point we continue as in the case ¢ > 4 and conclude the proof of the theorem.

]

6 The variance of sums of two squares in short in-
tervals

6.1 Outline of proof

In this section we write [u"]f for the coefficient of u™ in a power series f, and s for the
unique non-principal quadratic Dirichlet character modulo 7.

We have discussed short interval characters x € G(R,) and their L-functions. For
such characters, x - x2 is a Dirichlet character ramified at co and at T". Its L-function is
defined as one would expect: L(u, X - Xx2) = >_ e, X(f)u des(). If x € G(Ry) then x(f)
depends only on the first ¢ coefficients of f, we find that, for n > ¢ + 1,

Yo=Y Y xHeT+o=> xo(T+c) > x(f)=0

JEMn 4 c€Fy fE€EMn q, f(0)=c c€FY fEMn_1,4
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so that L(u, x - x2) is a polynomial of degree at most ¢. If y is primitive then the degree
is exactly ¢. Weil’s RH applied to L(u, x), L(u, x - x2) implies

[un]L(u7 X)? [un]L(ua X X?) = On,£<q%> (61)

Given a short interval character x, the following lemma relates 3, b(f)x(f) to the
L-functions of y and x - x2. It is proved in §6.2]

Lemma 6.1. Let x € G(Ry). Then

—i—1

> o) = ) (VIO @ [ ( L0 x*) )

fEMnq L, x* - x2)
X (L= X P TI =3 ). (62

(The roots in the right-hand side of (6.2)) are chosen so that the constant terms remain

1)

In the large-g limit, this identity can be significantly simplified, as the following lemma
shows, whose proof is given in §6.3

Lemma 6.2. Let o # x € G(Ry). Then

ST b)) = [/ Llu, ) L(u, x - x2) + Onlg3 1), (6.3)
feEMn q

> b()x(f) = Oulg?). (6.4)
fEMn q

For x € G(Ry)\G(Ry_1), we factorize L(u, x) = [Ty (1—~(x)u) and L(u, x-x2) =
Hij\il(l —7(x - x2)u), and define ©, € U(N — 1) to be a unitary matrix with eigenvalues
7i(x)/+/q and ©,.,, € U(N) to be a unitary matrix with eigenvalues v;(x - x2)/,/q- In
the following proposition, proved in , we express Vary(n, h) in terms of ©,, and O,.,,.

Proposition 6.3. Let —1 < h <n—1. We have

Vary(n, h)
g+

_ q—(n—h—l) Z

XEG(Ry—p-1)\G(Rp_n—2)

2

[u"]y/det(I —u©,) - det(I — u,.,)

+0, (q*i) . (6.5)

We are able to evaluate the integral in by making use of a recent equidistribution
theorem of Sawin [Sawl8]. We adopt the following notation: for a continuous class
function f: U(N — 1) x U(N) — C, where U(n) is the n x n unitary group, we define
the function (f): U(1) x U(1) — C as the unique continuous map such that

/ [ (91, g2)(det g1, det go) dgy dgo
U(N—1)xU(N)

= / (f)(det g1, det g2)v(det g1, det g2) dgy dga,
U(N=1)xU(N)
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for all continuous functions ¢: U(1) x U(1) — C. That is, (f)(c1, c2) is the integral of f
over the coset of SU(N — 1) x SU(N) < U(N — 1) x U(N) consisting of elements with
determinants ¢y, ¢z, against the unique SU(N — 1) x SU(N)-invariant measure on that
coset, of total mass 1. We can now state the special case of Sawin’s result that we need.

Theorem 6.4. [Sawl8, Thm. 1.2] If f: U(N —1) x U(N) is a continuous class function
and N > 6, then

lim LILN > F(Oy,04,) — qiN > (f)(det ©,det O,.,,)| =0

LT eara NG Ry-) XEG(RNNG (R 1)
where the limit is taken for q of fixed characteristic.

We introduce the notation, for a unitary matrix g,

Ap () = [u"] det(1 — ug)®. (6.6)

Note that Ay .)(g) is a symmetric homogeneous polynomial of degree k in the eigenvalues
of g. Because we will make use especially of the case z = 1/2, we introduce the abbrevia-
tion Ax(g) := Ak 1/2)(g9). Theorem [6.4]allows us to deduce the following corollary, proved

in 63
Corollary 6.5. Fix constants —1 < h<n—1andlet N=n—h—1. Forn < N(N—1)
and N > 6,

2
: —(n—h-1) n . .
qlggoq Z ’ \/det 1 —u©,)det(l — uB,.y,)
XGG(Rn—h—l)\G( n—h— 2
S / SonPdgr [ Ao g, (67)
hen JUN- 1) U(N)
7,k>0

with the limit taken along a sequence of q of fixed characteristic.

In order to give a succinct evaluation of the integrals on the right-hand side of Corol-
lary [6.7 we make use of z-measures on partitions, first introduced by Kerov, Olshanski,
and Vershik [KOV93]. We briefly survey them in §6.6] The following theorem evaluates
the random matrix integrals appearing in Corollary It is proved in §6.7]

Theorem 6.6. For g € U(N), with A, (,)(g) defined by (6.6)), we have

_ 22 )n (n
/ A (@) An (971 dg = #Pi}% < N). (6.8)
U(N) n.

In §6.8 we quickly prove Theorem [I.7] from Proposition [6.3, Corollary [6.5] and Theo-
rem [6.6, In we prove Proposition [I.§ from basic properties of z-measures.

6.2 Proof of Lemma [6.1]

The lemma is equivalent to the following formal identity:

—i—1

S BN = /Ll )L x ) [ (LL< u? x) )

FeM, s \ LU X XQ). (6.9)
x (1= x(T)u)~'/? H(l — X" (T
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We verify by comparing the Euler product of both sides. By [BSSW16, Prop. 2.4],
the function b is multiplicative (that is, b(fg) = b(f)b(g) for coprime f,g € M,), and at
prime powers we have

b(P) — {1 if 2| k or xo(P) € {0,1}, (6.10)

0 otherwise.

Since b - x is multiplicative, (6.10]) implies that the left-hand side of factors as

[[ a—x@u=m) I = x(@)a?* =) (1= (D", (6.11)

Pixa(P)=1 Q:x2(Q)=—-1

where P, () denote monic irreducible polynomials. We have

Liwx)= [[ @—x@u=) I 0= x(@u**?) ™ 1 —x(T)u) ™,

P:x2(P)=1 Q:x2(Q)=-1
Liw,x-x2)= ] @=x(Pu=" [ 0+x(@u'=e)
Pix2(P)=1 Qx2(Q)=-1
(6.12)
In particular, (6.12) implies that
L(u, x) (1 - x(Qu®=9)™! 4
Huvow U T@ues X0 (6.13)
and that
VLW )L(u,x-x2) =[] (1= x(Pu'e")™ (1= X} (QuP @)~/
Pix2(P)=1 Q:x2(Q)=-1

x (1 —x(T)u)"Y2. (6.14)
Using (6.12)), (6.13]) and (6.14)), we find that the right-hand side of factors as
H (1 . X(P)’U/degp)il . H (1 . XQ(Q)UZdegQ)flﬂ

Pix2(P)=1 Q:x2(Q)=—1 |
(17 @ =)\
Hﬂ <<1 @ >)
(1= x(Muw) ™[~ —27i
i>1
(L= x(Dw) T = (M)
i>1
_ H (1 i X(P)udegP)—l . H (1 . XQ(Q)UZdegQ)—1/2
Pix2(P)=1 Q:x2(Q)=
(1 _ 21'( ) 21degQ) 1 27! -
H H ((1+§2Z( Q)u2 dea @)~ 1) (1= x(T)u) ™"
121 Q:x2(Q)=-1
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It remains to establish equality between the Euler products (6.11]) and - The con-
tribution of the prime 7' is the same in both, and so is the contrlbutlon of primes P
satisfying x2(P) = 1. Now let @) be a prime satisfying y2(Q) = —1. It is sufficient to
prove that the contribution of this prime in both products is the same, that is

—i—1

28 u2idegQ -1
(1 (@) = (12 (Qu =) 2 (ﬁ - iégiu%) (610

Letting z = x2(Q)u?9?, the identity (6.16) becomes

—i—1

. 2
14 227"
-2 =T (2] . (6.17)
1— 22

i>1

which follows by noting the telescoping nature of the right-hand side of (6.17)):

) 9—i—1
1 + Z21—1 1 _ 221)2 i—1 -
I1 (1_—> - H o = (=97

i>1 1>1

6.3 Proof of Lemma [6.2]
By Lemma

> WX = [V, ) L{u, x - xa)

fEMn,q

—i—1

XH( TORY: f()> (1= (w2 [T - @) (6.18)

i>1

Although the products in (6.18) are infinite, we may truncate them because only the
coefficient of u" is of interest to us:

> WX = [V, ) L(u, x - xa)

FEMn q

—i—1

X H( 7 x7) ) (1— WH TV®)> . (6.19)

UQZ,X " X2)

For any i > 1, the character % is non-trivial, since the order of x is odd (it divides
|G(R,)| = ¢"). Hence, by making use of (6.1)) with x* and x* - x2, we see that the j-th
coefficients of L(u, x?) and of L(u, x* - x2) are both of size O;,(¢’/?). In particular, for
any 7 > 1,

WL, X)), W)L, X" - x2) = Ojn(@”™) = Ojulg??). (6.20)
From ([6.20) we deduce that

mH( g ) (1= Xy 2 [T = x* (M) = Opula?”).

i=1 L(U2Z, X X2)
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Additionally, from (6.1]),

[w]/Lu, X)L(u, x - x2) = Oja(@”?). (6.22)
Plugging the estimates and (6.22)) in (6.19), we establish (| . From and
(6.22)) with j = n, we obtaln (6.4)). ]

6.4 Proof of Proposition

By Lemma [6.2]
7 b()x(f) = [V I(u )L, x - x2) + Onlq?71) = Ou(g?) (6.23)
feEMn q

From ((6.23) and (2.16]) we obtain

[u) /L, X)L, X X2) + Onlgd )
q2(n—h—1)

ZXO#XGG(Rn—h—ﬂ

Vary(n, h) =

(6.24)

Since the number of characters in G(R,,_5_1) which are in G(R,,_5_2) as well is O(¢g""2),

(623) and (6:24) imply that

2

[u”)\/L(u, X)L, X - x2) + On(g? %)

Y MO AXEG (R NG ) |1V Tt X) L, X - X2)

_ h—1
= Z0—h=T) +O0n(q" %)

ZXO#XEG(Rn—h—ﬂ

Vary(n, h) = + On(qh)

‘ 2

We now write L(u, x) as det(! —u,/qOy)(1 —u) and L(u, x - x2) as det(I —u,/qO,.y,) to
obtain

2
D e (R NG R |13/t (T =1y /g0, ) det(I —uy /g0, )(1 — )]

q 2(n—h—1)

Vary(n, h) =

+ On(¢" 7). (6.25)

The proof is concluded by writing in (6.25]) [u"]+/det(I — u,/gO,) det(I — u /gO,)(1 — u) =
q"*[u"])\/det(I — uO,) det(I — uO,.,) + O,(¢"""Y/?) and dividing both sides by ¢"*1.
[

6.5 Proof of Corollary
We begin with the following lemma.

Lemma 6.7. Let f: U(N) — C be a function such that for g € U(N), f(g) is a symmet-
ric homogeneous Laurent polynomial of degree k in the eigenvalues of g. The following
hold.

1. If k Z0 mod N, then
(f)z)=0, forall [z] =1,
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2. If k=0, then
(N)(z) = f(g)dg, forall |z| =1.

U(N)

Proof. Both i) and ii) make use of the following assertion: that if F': U(N) — C is a
symmetric homogeneous polynomial of degree k£ # 0 in the eigenvalues of a matrix from
U(N), then

/U(N) F(g)dg = 0. (6.26)

For, the Haar measure is invariant under scalar multiplication, so for any ¢ € U(1),

o~/ RS / o Flepydg == / P

If k # 0, there exists ¢ € U(1) such that (1 — c¥) # 0 and ([6.26]) follows.
Turning to i), note that this will be proved if we show for & #Z 0 mod N that

/ F(g)(det g) dg = 0, (6.27)
U(N)

for all continuous ¢: U(1) — C. In turn by Fourier analysis, since detg € U(1) for all
g € U(N), to establish (6.27)) we need only establish it for ¢(z) = 2 with ¢ € Z. But if
f(g) is of degree k in the eigenvalues of g, then

f(g)(det g)*

is of degree k + N/¢. As k % 0 mod N, we have k + N/¢ # 0, and hence
/‘ f(g)(det g)*dg =0,
U(N)
establishing the claim i). For ii), our proof is similar. We must show
| towegydg= [ flodg [ vetg)ds (6.2
U(N) U(N) U(N)

As before it suffices to verify this claim when v(2) = 2°. For £ = 0 this is clear, and when

¢ # 0, note that
/ (det g)" dg = 0,
U(N)

so that we establish ([6.28)) by showing
/‘ f(g)(det g)" dg = 0.
U(N)

But as f(g)(det g)* is of degree £ # 0, this is indeed the case, establishing the claim. [
Note that

] fdet(1 — uO,) det(l — uBy,) = > Aj(O)Ax(Oyys).

Jj+k=n
7,k=>0
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Hence the left-hand side of is

1
qlg?om Z Z Z Aj(@x)Ak(@xm)Aj’(@X)Ak’(@X‘m)‘

XEG(Ry—p—1)\G(Rp_p—2) j+k=nj' +k'=n
J3,k>0 57 k'>0

(6.29)

We will need to evaluate the random matrix coset integral
(AjARA A = (A A (AR Ay).

Note that if j = j/, then k = k' also. Noting that A;(9)4;(g9) = A4;(9)A;(g7") and
likewise for Ay, one may see that A;A; and AyA} are homogeneous symmetric Laurent
polynomials of degree 0. Thus by Lemma - we have for all |z| =1,

AmE = [ Al

(AT () = / o dg

Furthermore, in the sum ,if 7 # 7" and k # K/, we may reason in the same way to
see that A;A; and AkAk/ are homogeneous symmetric Laurent polynomials of non-zero
degrees, say £ and —/ respectively, with [{| < n < N(N —1). As no non-zero number
smaller in magnitude than N (N —1) is divisible by both N and N —1, Lemmal6.7)implies
that one of

/ A,(9) A (9 dg =0 or / A(9) A (g) dg = 0
U(N-1) U(N)

holds, so in particular the product is always 0. From this analysis it follows that for all
matrices O, and ©,.,,

fU(N 1) |A (91) | dg, - fU(N) |Ak(g2)| dgs ifj =7,
0 otherwise.

<A AkA Ak/>(det @X’ det @X X2) {

Thus using Theorem [6.4] (6.29) simplifies to

Z / ‘A g1 | dgl/ |Ak(92)’2d92>
U(N)

j+k n
3,k>0

as claimed. O

6.6 z-measures on partitions

The z-measures are a two-parameter family of measures on partitions, though it is often
natural to specialize to a one-parameter subfamily. In order to define the z-measures
we make use of standard notation in enumerative combinatorics, along the lines of e.g.
[Sta99l Ch. 7]. We view partitions A - n as Young diagrams with n boxes. Recall (from
e.g. [Sta99, Sec. 7.21]) that for a square O in A with position (7, ) (where 1 < j < \;),
the content ¢(O) is defined by

cd) =5 —1.
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We let dim(A) be the dimension of the irreducible representation of S, associated to the
partition \; equivalently dim()\) is equal to the number of standard Young tableaux of
shape A. The z-measure on partitions of n with parameters z and 2/, written M Z( _, is the
measure on the set of all partitions A of n satisfying

dim(\)?

nl(zz)

M(n)/()\) =

2,z

[+ @) +c@)). (6.30)

" Oex

Recall that (z); := (z)(z +1)--- (x +j — 1) is the Pochhammer symbol. The expression
(6.30) is well-defined for all z, 2’ € C with zz' ¢ Z<,. Furthermore we use the convention
that & is the sole partition of 0 and for any z, 2/,

M9(z) =1.

2,2

For any n and z, 2 € C with 22’ ¢ Z<, one has

STMIT) =1,

P\

though this fact is not obvious (see e.g. [Oko01] for a proof). It is not always the case that
M™ /(A) > 0 for all A (so that in some cases M, (m ), must be viewed as a signed measure)

z,2!
but when, for instance, 2’ = Z, plamly is always non-negative.

Note from the definition (6.30), for ﬁxed n, this measure tends toward the Plancherel
measure as z, 2 — oo. In this sense, z-measures can be thought of as a generalization of
Plancherel measures.

We denote M. Z(")()\) =M (75)()\), and moreover for a subset A of the set of all partitions

2,2
of n, we use the notations

CheAd) =D MM, and PN A) =Y MM

A€A AEA

It is known that there exists a scaling limit of the z-measures as n — oo; these scaling
limits were first investigated as a part of representation theory on the infinite symmetric
group. We do not review the full theory here, instead referring the reader to |OIs03] for
an introduction. The result from this theory that we will make use of is

Theorem 6.8. For any z € C\ Z<, there exists a random variable al lymg almost
surely in the interval [0,1] such that for A &= n chosen according to the z-measure with
parameters z,Z we have

lim P(ﬁ < m) = ]P’(ozgz) <),

n—00 n
for all real x.

Moreover for z € C\ Z<y with 2/ = Z as above, the function F.(x) = P(agz) < x) is

continuous for all v € R.

We simply take this theorem as our definition of a&z) — that is, a§z) is the random
variable with distribution function given by this limit — but we note that there exists a
more sophisticated perspective in which the random variable agz) is the largest part of the
z-measure point process with parameters z,z on the Thoma simplez; see [Bor98] for more
about this latter object and its connection to the infinite symmetric group. We adopt

the notational convention that a; = agl/ 2,
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6.7 Proof of Theorem 6.6

We use Schur functions to prove this theorem. For # = (x1,...,xy) and A a partition, we
use the notation s, (z) to denote the Schur function of shape A (see [Sta99, Ch. 7]).

We will use of the following well-known results:

First, we recall the dual Cauchy identity (see [Sta99, Thm 7.14.3]),

[+ ;) ZS)\ z)sn(y (6.31)
1,7

where )\ is the dual partition to \.
Second, we recall the following evaluation of Schur functions (proved by combining
[Sta99, Cor 7.21.4] and [Sta99, Cor 7.21.6]),

sx(1,...,1) = dim(}) [+ @), (6.32)

< , !
4 ad

for A F n.

Third, we recall the orthogonality relations for Schur functions in eigenvalues of the
unitary group (see e.g. [Bum04]). If g € U(NV) has eigenvalues vy, ..., yy and we use the
Schur function notation sy(g) := sA(v1, .., yn), for any two partitions A and v,

/ sx(9)su(97") dg = Srzven<n- (6.33)
U(N)

We start by specializing to the case where z is a positive integer; later on we will
consider more general z. We make use of the dual Cauchy identity in the variables
1, ..., T, and yy,...,yn where for all i, z; = —u, and yy, ..., yny are the N eigenvalues of
g € U(N). The dual Cauchy identity tells that

det(1 — ug)® Zs,\ —u)sy(g) = Z(—u)ws)\(l, oy D)sn(g).

A

Yet from ([6.32)), we see we can write this as

det(1 — ug)® = Zu”((—l)" 3 di%“) I1¢+ C(D))sx(g)>, (6.34)

n=0 AFn ’ Oex

where we adopt the convention that the coefficient for n = 0 is 1. Note that we have so
far only proved (6.34]) for positive integer z.
For |u| < 1, the binomial series tells us that

(1 —uy)” = i (( yi)" <Z),”)

n=0

for all complex z. In particular the coefficients of u™ in this series are polynomials in z.
Multiplying N such identities, it follows that for |u| < 1 and all complex z,

N
det(1 — ug)® = H (1 —uy;)? Zu
i=1

o7



where P, ;(z) are polynomials in z. From ([6.34)) we obtain the expression

Poy() = (-1 3" B2 T4 @)oo, (6.35)

n:
AFn Oex

valid for positive integer z. But as both the left and right-hand sides are polynomials in
z equal at all positive integers, it follows that this identity holds for all z € C.

But of course, P, (2) = A, 2)(g), so that using and orthogonality relations
for Schur functions,

/U(N) An()(9)Ann (g™ ) dg =) % [+ @) + c@)dyny<n

!
_ (ZZ )nPS,LZ)/<)\1 S N)
This verifies . O

6.8 Proof of Theorem [1.7]
We note from Proposition and Corollary [6.5] that for N =n — h — 1,

Vary(n, h) = ¢"** Z / 14;(g1 |2d91/( )IAk(ga)ldeﬁO(qh“),
U(N

j+k=n U(N-1)
7,k>0

for n < N(N —1) and 0 < h < n — 7 (the upper bound restriction comes from requiring
that N > 6 in Corollary . But then these integrals are evaluated using Theorem
with z = 2z’ = 1/2, and the result is Theorem [1.7] O

6.9 Proof of Proposition

By Stirling’s approximation, we have

(1/4); j3/ _3/4
T T4 ol

as j — oo. In general, (1/.‘,1” = O(j73/*) for all j > 1. By Theorem , we have

1/2()‘1 <N)=P(a; < N/j)+o(1)

for j — oo. This convergence is uniform as N varies (because PgJ/Q(/\l <N)=1-=
P(ay < N/j) for N > j and otherwise N/j lies in a compact interval). Furthermore, we

have ]P’gj/2(>\1 < N —1) =0(1) in general. Fix an arbitrary ¢ € (0, 1), and decompose

T(n;N):< > o+ Y >1/4 1/437; IPUL (M < N = DB, (A < N)

en<j<(l—e)n  j<en,or
J>(1=€)n

o L =) YR <

en<j<(l—e)n

o X iMm-pT)+o( X M=) ) 4 O

en<j<(1—e)n 0<j<en,or
n>j>(l—e)n

J n—j

(6.36)
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as n — oo, where the rate at which the error term o(---) tends to zero depends upon
e, but the constants of other error terms are absolute, with the last error term O(n=%/4)
coming from the terms j = 0 and j = n in the sum. If N/n — s as n — oo, then
N -1 —1)/n s
Pl < X b) = oy « WD _pia, <2y 1 o),
J jfn j/n

uniformly for 1 < j < n. (The reason for uniformity is again due to compactness.) Of
course we have

Play < =Pla; <

) +o(1)

as n — o0o. Moreover,

Z j73/4( ]) 3/4 __ 0(81/47171/2)’

0<j<en,or
n>j>(l—e)n

and

Z j 3/4 3/4 O(n*1/2)

0<j<n

Hence we can simplify (6.36) to

N L \—3/4
(6:36) = (1/4) \/_ > ~(/m) (L= /) /P(alg.—)P(algl_j/n>

en<j<(l—e)n

+O( 1/4 1/2) +0( —1/2)

1/4 \/_/ —e 341 — )P (ay g)P(alg l—t)dt
+O( 1/4 1/2)+0( _1/2)’

with the second line following because the sum in the previous line is a Riemann sum.
Completing the integral from the interval [¢, 1—¢] to [0, 1] adds only an error of O(e'/4n=1/2).
Hence

~

1
T3 N) = / £3/4(1 — )~ 4P(ay f)ﬂ»(alg%t)dHO(el/‘ln—l/Z)+o(n-1/2)

:\/ﬁ(/ E1(1 — a— <t< a—)fr(1/4) 2341 — )’3/4dt+0(61/4)+0(1)>

:\/%(]P’(l _ &—1 <Y < a—) + O +0(1))»

where o is an independent copy of a; and Y ~ Beta(1/4,1/4). As ¢ is arbitrary this
establishes the claim. O

6.10 Approximating B(x)
Recall the definitions of B(z) and f, given in (1.29) and (L.30).
Theorem 6.9. On the assumption of RH for ((s) and L(s, x4), for any e > 0,

1 ! z’ 1/2+e
B(l’) = %/1/2 mf(&’) dS+O€(I + )
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Proof. We have by Perron’s formula (see [MV07, Cor. 5.3]), for T = z'%
1 24T 5
B(z) = — —F(s)d 1).
@ =g [ RGO

For arbitrary € > 0, let 0 = 1/2 4 ¢, and let /s be a contour from o —id to 1+ —id to
1+0+10 to o+16 for 6 > 0. On the Riemann Hypothesis the contour from 2—¢7" to 2+iT
may be shifted to a contour from 2 —i7T" to o —iT to o —id, followed by Ks, followed by a
contour from ¢ + 0 to o 44T to 2+ ¢T. The Lindel6f estimates ((s), L(s, x4) = O(]s|)
for Rs > 1/2, |s—1| > 1/10 can be used to bound those contours other than Ky, yielding

1 z®  f(s) 1/2+10¢
B(z) = 5 /}C(s S ds + O.(x ).

Letting 6 — 0 shows this is

1 1 s 1 1 s
== / (1“”6— f(s)ds + O(x"/*+1%) = — / L f(s) ds + O.(V/>+1%),

7r — 5)1/2s T Jijg (1 —5)1/2%s

which yields the claim. O

7 Twin primes in the large-q limit

7.1 Fundamental identity
We start by proving an identity, transporting the study of twin primes to Fourier space.

Proposition 7.1. Let o, 3: My, — C be two arithmetic functions. Let n be a positive
integer and let c € F. We have

c AU+
Zf Mn;éi\(/lf) (f C) :%n Z X(Tn—l-C)S(n,aX)S(n;BX)
n,q q XEG(Ry)

Proof. The orthogonality relation (2.3) implies that for any f € M,, , we have
1 R

o)=L S ale)n(ex ). @
q g1EMun g
xEG(Rr;)
and similarly we have
B+ == Y Blax(an(T o) (72)
Vealn)
From and we obtain
Zfe,/\/(nyq C“(f)B(f + C)
#Mo g
1 . (7.3)
= > (Oé(g1)x1(g1)5(92)x2(92) > xalxelf + C)>‘
91,92€EMp 4 feEMun 4

x1,X2€G(Rn)
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We have
f+e=T"+c¢): fmod R, (7.4)

for all f € M,,,. For any pair of characters x1, x2 € G(R,) we have, by (7.4) and the
orthogonality relation (2.1) with F' = M,, 4,

. xlMelf+o)=x(T"+0 > xa(Hxlf)

FEMun g FEMun q (7.5)
=x2(T"+¢) ¢" 1=y
Plugging ([7.5)) in ([7.3)), we conclude the proof. ]

7.2 Hidden symmetry

The following key proposition introduces an action of Fy on G(R,), which preserves
primitivity and L-functions.

Proposition 7.2. Let { be a positive integer. Let x € G(Ry) be a primitive character.
For any c € F, define a function x.: My, — C by

Xe(f) = x(f(cT) /8 7).

Then x. is well defined on My/Ry and in fact is a primitive character in G(Ry). More-
over,

L(u, x) = L(u, Xc)-

Proof. Fix ¢ € Fy. Let fi, foa € M, be polynomials such that f; = f; mod R,. Then
f1, fo have the same first ¢ next-to-leading coefficients. The i-th next to leading coefficient
of f;(cT)/cieli (j € {1,2}) is the i-th next-to-leading coefficient of f;(T), divided by
c. Thus, fi(cT)/c%8 = fy(cT)/c 2 mod R,;. This shows that x. can be regarded
as a function of M,/R,,. By definition, x. is multiplicative, and it takes 1 to 1, so
Xc € G<R£,1)- '

The coefficients of u" in L(u,x) and L(u,x.) are given by ZfeMm X(f(T)) and
ZfeMi,q x(f(cT)/c"), respectively. The map f +— f(cT)/c" is a permutation of M,,,
whose inverse is given by f — f(T/c)c'. Thus, L(u,x) = L(u, x.). As deg L(u, x.) =
deg L(u, x) = ¢ — 1, it follows that x. is a primitive character. O]

Lemma 7.3. Let { be a positive integer. Let x € G(Ry1). Let ¢ € F. For any
factorization function o, we have

S(n7a'X):S(n’a'X0)'

Proof. Since f(T), f(cT)/c*/ have the same extended factorization type for any ¢ € F,
and the inverse of f — f(cT)/c% 7/ is f s f(T/c)c*8/, we have

Sa-xe) = > alf)x(f(D)/c") = > alf(T/c)c")x(f)

feEMan q feEMn 4
= > alf)x(f) = S(n.a-x),
fEMnq
as needed. O
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7.3 An equidistribution result

Let x € G(R)\G(Ry-1). By § L(u, x) = [T=1 (1 =%(0)u) with [y:(x)| = /g We de-
note by ©, any unitary matrix in U (¢—1) whose eigenvalues are v1(x)/1/aQ - - - , Ye—1(X)//@-
The following theorem is proved in Appendix A of [GS20].

Theorem 7.4. [GS20, Thm. 8] Let { > 4. For any x € G(R;) and c € F, set

ACFX T + e\
Aoy = Z qx\(/aJr )

Let p be an irreducible representation of PU(¢ — 1). Then

> vec(ro\G (R TT(P(Ox))A(X, €) _ (i)
|G(Re) \ G(Re-1)| "\va)’

Informally, it says that the zeros of L(u,x) are do not correlate, in the large-¢ limit,
with the Gauss sum A(x;, c).

7.4 Conclusion of proof
Applying Proposition with @ = = A,, we find that
Efe/vln,q Ag(f)A(f + ) 1

q q XEG(Rn)

The term corresponding to x = xo is 1, since (Ag)a,, = 1 (1.10). Since S(n, A, - x) =
O(ng™?) by Lemma , and since there are O(¢"™!) non-primitive characters modulo
R,,, we have

5 rnn. MDA +0) | :
restoy Aal M)Ay — 14— 3 X(Tn+c)|5(n,Aq-x)|2+O<n_).
q T ca(rR) /G (R1) !

We claim that the multiset A = {x» : A € FX,x € G(R,)} consists of ¢ — 1 copies of
G(R,). Indeed, the map x + Xy is a bijection for any A € F. Thus, in (7.6) we may
sum over primitive characters in A and divide by ¢— 1, instead of summing over primitive

characters in G(R,,), and obtain from Lemma the following:

A(HN(f + ¢ « XA(T™ + ¢)
Zfe./\/lnyq tI(n ) tI( ) — 14 q,Qn Z Z/\GIFq _(1 ]S(n, Aq ) X)’Q
1 YEG(BNG (R 1) 1
n2
o). o

When x € G(R,), ¥y (x) :== x(T"+=) is an additive character of Fy, since (T" +z1)(T™ +
x9) = T" 4+ 1 + 9 mod R, and (7™ 4+ x)? = 1 mod R,,. Moreover, we claim that if y

is primitive then 1, is non-trivial. Otherwise, whenever f = g mod R,_; we may write

f =g -(T"+ x) mod R, for some z € F,, and then x(f) = x(g)x(T" + z) = x(9),
implying x is not primitive, a contradiction. We set

B Z,\GF; Xa(T" +¢) B Z,\EF; X(T" + 57) B Z,\EF; X(T" +cA") B ZA@F; Uy (eA™)

Ao =—""7 NG Vi Vi
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We express (7.7)) as

> remyy Na(F)Ng(f +¢) o Ve D xeGRNG(Rn ) A O)]S (0, Ag - X)l2+0 <n2)

q" qg—1 q" q

To establish the bound , all we need is S(n, Ay, x) = O(ng™/?) and Weil’s bound on
additive character sums [Sch76, Thm. 2E], implying |A(x, ¢)| < n.

To obtain a better saving in ¢ we proceed as follows. By ([2.11), if x € G(R,)\G(R,_1)
then we may write S(n, A, - x) as —q”/QTr(@;). Hence it suffices to prove that

ZXeG(Rn)\G(Rn—l) |Tr(@;)|2A(X’C) — ( 1 ) ) (7.8)

G(R.)\ G(Ry 1) Vi

We decompose |Tr(U)"|? as a linear combination of irreducible characters of PU(n — 1),
and apply Theorem with ¢ = n to each character and conclude that ([7.8)) holds, which
concludes the proof of the theorem. O
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NPLNIPIN NPIPND DY ODDDD MY PYDIND OI9DNN NN NPD DN NPYIANN PN
DPPM DPAN MMODA NV ,YOPA OPNYRI DY OPP MO0 DN Nrya D8P DYOP N9 Dy
Y0P DWITIION 190N SV

YOIVHON NP YOP 29 DY OV YNNIV 2YI0 19IND MINND NPXPNNN MAT 220D WvN
12102 ,YNY N0N 210220 1IN NP YOP N9 DY ODIDD 1D NN QDN NI YOPI OV YNNI
MMNY BN NPYA )07 NIYYN DNN AN .DIINNN 19010 YNY NP 900 NN NRIVIY
J8PNON N3N

N ONIPND NP YOP NN OT DY LPYAN TIND NPXIAPN DIOND NIN VDI Y19) PYI
N OIPN DD DY MNVYN DY DIPOY DNON IPNN YOPN 29 DY PNPNS OV DIDD MPNY 1N
VP MYV DY D5 VYN MINDND DDA

NN DVYPNS MTYVI NPLNIIN NPIPND DY MDD DY MNVA NN DIPIN X 1 MmN
VTN IOND MPIN MIRNN MHIND 2TD OPIVNIND DVDIN ,0NVYIMP DDI1 DVYNNYN
1N NOW NPEOINN MNRNIND NYAIN .ONOVN Dyn

290 NYHNN D8P DYOP 29 DY DIWIITII0N D919 DY MNYO NPOIVION NNDI .1
T DY NNINND NNDNY NIYYN NIV NPNI 1IN (1982) D)1 .9 .3 DY NTaYd 7avn
TN VP

DINP DYOP N9 SY MPISNN NPEPNS DY MNVN Sy PN 1oy Don .2

DTG DY 91202 , 08P DYLPA O IV DY DINMIDD DY MNYI MHOIVION INDY .3
DODNY DNOYN SYn MNNN NINMMIY YN YMIANDNN DTN NOID NHY INONN
20NN NONTN DY 20

NNOY DY OXMIP19 NN DNYRIN DNINNN 19010 51 TX7g DV 912)2 MOVIVION NNDN .4
TPODVNIN
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