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Abstract
Some of the fundamental problems in analytic number theory concern sums of arith-

metic functions over short intervals. Such problems include the existence of primes in an
interval, cancellation in Möbius sums and existence of squarefree integers in an interval.

It is conjectured for many naturally occurring functions that their mean in short
intervals is asymptotic to their mean in a full interval. Moreover, sums over short intervals
are expected to enjoy squareroot cancellation, in the sense that the error term is at most
the squareroot of the number of terms. Even under the Riemann Hypothesis, these
problems are open for most functions.

It is common and useful to introduce randomness into the problem, by picking a
short interval at random. One can then study the sum of a arithmetic function over
the random interval. Upper bounds on the variance of this random sum lead one to
‘almost-all’ versions of difficult conjectures.

In this thesis we study the variance of sums of arithmetic functions in function fields.
We use combinatorial, analytic and geometric tools to prove stronger results than known
over the integers. Our four main results are

1. An asymptotic formula for the variance of squarefree polynomials over short inter-
vals, going well beyond R. R. Hall’s 1982 work, and giving evidence to a recent
conjecture of Keating and Rudnick.

2. A tight upper bound for the variance of factorization functions in short intervals.

3. An asymptotic formula for the variance of sums of two squares in short intervals,
in the large-q limit. Our formula deviates from a naive probabilistic model and
produces a prediction over the integers which agrees very well with numerical data.

4. A large-q asymptotic formula for the number of twin primes in a polynomial ring
with an optimal error term.
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1 Introduction and results

1.1 Summary of results

Let Fq[T ] be the polynomial ring over the finite field Fq, Mn,q ⊆ Fq[T ] be the sub-
set of monic polynomials of degree n and Mq = ∪n≥0Mn,q be the subset of all monic
polynomials. Given a polynomial f , we define a short interval of size qh+1 around f to
be

I(f, h) := {f + g : deg(g) ≤ h}.
Given a function α : Mq → C, its mean value over a finite subset S ⊆Mq is

〈α〉S :=
1

#S

∑
f∈S

α(f).

Given 0 ≤ h ≤ n − 1, the variance of sums of α over intervals of size qh+1 around
polynomials of degree n is defined as

Varα(n, h) :=
1

qn

∑
f0∈Mn,q

∣∣∣∣∣∣
∑

f∈I(f0,h)

α(f)− qh+1〈α〉Mn,q

∣∣∣∣∣∣
2

.

For α = µ2
q, the indicator of squareefree polynomials, we prove

Theorem 1 (Thm. 1.2). Fix q and ε > 0. As h, n tend to ∞ with h/n ∈ (ε, 1/2− ε), we
have

Varµ2q(n, h) ∼ Cq,hq
h
2

where Cq,h > 0 depends only on q and the parity of h.

Previously this was only known to hold for h/n < 2/9 − ε by work of R. R. Hall
[Hal82], and it supports a recent conjecture of Keating and Rudnick [KR16]. See §1.9.1
for more background and results.

For the next theorem, we recall the notion of a factorization function. To f ∈ Mq

that factorizes as
∏

i P
ei
i we associate the multiset ωf = {(deg(Pi), ei)}i. We say that

α : Mq → C is a factorization function if α(f) is a function of ωf .

Theorem 2 (Thm. 1.5). Fix q. Let α : Mq → C be a factorization function. For
0 ≤ h ≤ n− 1 we have

Varα(n, h) ≤ max
f∈Mn,q

|α(f)|2qh+1eoq(n)

as n→∞.

Previously this was only known for specific functions, such as the von Mangoldt
function. See §1.9.2 for further background.

Let bq : Mq → {0, 1} be the indicator of polynomials of the form A2 + TB2. For real
s define

G(s) := P
(

1− s

α1

≤ Y ≤ s

α′1

)
,

for Y , α1, α′1 independent random variables, with Y distributed as Beta(1/4, 1/4) and
α1, α

′
1 identically distributed copies of the largest part of the Thoma simplex distributed

according to the spectral z-measure with parameters 1/2, 1/2. (The spectral z-measure
is defined in §6.6.)
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Theorem 3 (Thm. 1.7, Prop. 1.8). Suppose q = pk for a fixed odd prime p. The limit

T (n;n− h− 1) := lim
k→∞

Varbq(n, h)

qh+1

exists when 0 ≤ h ≤ n−max{
√
n, 7}. Furthermore,

lim
N/n→s

√
πnT (n;N) = G(s)

for s ∈ [0, 1].

This theorem allows us to make a precise prediction, over the integers, for the variance
of sums of two squares in short intervals. The prediction agrees very well with numerics.
See §1.9.3 for more details.

Let Λq : Mq → C be the von Mangoldt function.

Theorem 4 (Thm. 1.10). Fix n ≥ 4. We have∑
f∈Mn,q

Λq(f)Λq(f + 1)

#Mn,q

= 1 +On

(
1

q

)
(1.1)

as q →∞.

This is a large-q version of the twin prime conjecture, in quantitative form. Previously,
(1.1) was known with error term On(q−1/2) due to works of Pollack, Bender and Pollack,
Bary-Soroker and Carmon [Pol08, BP09, BS14, Car15]. In fact, the error term On(1/q)
cannot be improved upon under the Hardy-Littlewood Prime Tuple Conjecture in Fq[T ].
For further discussion, see §1.9.4.

We now survey the background to these results and some of the previous literature.

1.2 Arithmetic functions

Arithmetic functions are functions from the positive integers N to C. Some of the most
fundamental questions in analytic number theory may be expressed as problems about
particular arithmetic functions and their associated sums (or mean values). Let us intro-
duce some well-known examples of arithmetic functions.

1. The von Mangoldt function Λ: it is defined as

Λ(n) =

{
log p if n = pk, p a prime, k ≥ 1,

0. otherwise.

This function is closely related to the indicator function of prime numbers. The
celebrated Prime Number Theorem (PNT), proved independently by Hadamard
and de la Vallée Poussin in 1896, says that

#{1 ≤ n ≤ x : n a prime} ∼
∫ x

2

dt

log t

as x → ∞. An integration-by-parts argument [SS03, p. 189] shows that PNT is
equivalent to ∑

n≤x

Λ(n) ∼ x

4



as x→∞. The Riemann Hypothesis (henceforth known as RH), which states that
the non-trivial zeros of the Riemann zeta function ζ(s) =

∑
n≥1 n

−s lie on <s = 1/2,
is equivalent to the estimate [IK04, Prop. 5.14]∑

n≤x

Λ(n) = x+Oε(x
1/2+ε).

Unconditionally, it is not even known that the above error term is O(x1−δ) for some
positive δ.

2. The Möbius function µ: it is defined as

µ(n) =

{
(−1)k if n = p1p2 · · · pk, pi are distinct primes,

0 otherwise.

PNT is equivalent to
∑

n≤x µ(n) = o(x) [IK04, Ch. 2], while RH is equivalent to∑
n≤x µ(n) = Oε(x

1/2+ε) [IK04, Prop. 5.14]. Again, it is not even known that the

error term is O(x1−δ).

3. The divisor function d: it is defined as

d(n) = #{m ∈ N : m | n}.

Dirichlet observed that the number of lattice points (a, b) ∈ N2 satisfying ab ≤
x, that is, lying under an hyperbola, is given by

∑
n≤x d(n). He proved that∑

n≤x d(n) = x log x+(2γ−1)x+O(x1/2) where γ is the Euler-Mascheroni constant.

It is conjectured that the error term is actually Oε(x
1/4+ε) (“Dirichlet’s divisor prob-

lem”). There have been many works in that direction, starting with Voronoi [Vor03],
who proved that the error is O(x1/3 log x). The current record is O(x517/1648+ε), due
to Bourgain and Watt [BW17]. That the error term is Ω(x1/4(log x)1/4 log log x) is
due to Hardy [Har16]. Dirichlet divisor problem would follow from the “exponent
pair hypothesis”; see [Mon94, Ch. 3, Conj. 2] for a statement of this hypothesis.

4. The indicator of squarefrees, µ2: it is defined as

µ2(n) =

{
1 if p2 | n for some prime p,

0 otherwise,
,

and is indeed given by the square of the Möbius function. It is elementary to show
that [MV07, Thm. 2.2] ∑

n≤x

µ2(n) =
x

ζ(2)
+O(x1/2).

It is conjectured that the optimal exponent in the error term is 1/4+ε, but there is
no unconditional improvement on it. Conditionally on RH this is also open, despite
many works, see Axer [Axe11] who proved that RH implies an error of Oε(x

2/5+ε).
The strongest result is due to Liu, who proved an error term of Oε(x

11/35+ε) under
RH [Liu16]. It is known that the exponent cannot be 1/4 or smaller [MV07, p. 471].
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5. Hooley’s ∆-function: it is defined by

∆(n) = max
u≥0

#{m ∈ (u, eu] : m | n}.

It was introduced by Hooley, who used it in the study of “apparently unrelated top-
ics in the fields of Diophantine approximation, Waring’s problem, and divisor sums”
[Hoo79, p. 115]. The pointwise bound 1 ≤ ∆ ≤ d yields bounds on

∑
n≤x ∆(n).

Despite various works [Erd74, Hoo79, HT82], the correct lower and upper bounds
on
∑

n≤x ∆(n) are not known.

1.3 Statistics of arithmetic functions

As we have seen, the mean value of arithmetic functions, that is, the asymptotics of

1

x

∑
n≤x

α(n)

as x→∞, can hold important number-theoretic information. Moreover, once an asymp-
totic expression Mα(x) is found for

∑
n≤x α(n)/x, the error term

Eα(x) = xMα(x)−
∑
n≤x

α(n)

holds information which pertains to deep conjectures such as RH. For functions, such as
µ, that exhibit cancellation in the sense that

∑
n≤x α(n) = o(

∑
n≤x |α(n)|), we often take

Mα ≡ 0.
For applications, one wants to understand the behavior of arithmetic functions on

a finer scale, for instance in short intervals or other sparse sets. By that we mean
understanding the behavior of α when restricted to a set [x, x + h] ∩ Z with h = o(x).
For many functions, it is conjectured that∑

n∈[x,x+h]

α(n) ∼ hMα(x) (1.2)

as long as h grows at least like a small power of x, that is h � xε for some ε > 0. For
functions with Mα ≡ 0 one should replace (1.2) with∑

n∈[x,x+h]

α(n) = o(h). (1.3)

However, neither (1.2) nor (1.3) is known for any interesting function in the ‘full range’
h� xε.

Good bounds on Eα yield a result of the form (1.2) or (1.3) in some range of h.
For instance, in the case of α = Λ, RH gives EΛ(x) = Oε(x

1/2+ε) with MΛ ≡ 1, from
which one deduces (1.2) for h ≥ x1/2+δ. This still falls short from the expected truth.
Unconditionally, the best known range where (1.2) holds for α = Λ is due to Heath-Brown
[HB88] (building on Huxley [Hux72]), who obtains a result for h ≥ x7/12−o(1).

For most functions, it is conjectured that not only (1.2) or (1.3) hold in a very wide
range, but also that the error term is small. As an example, Montgomery and Vaughan
[MV07, Conj. 13.4] conjecture that for α = Λ, (1.2) holds with an error term of Oε(x

ε
√
h):∑

n∈[x,x+h]

Λ(n) = h+Oε(x
ε
√
h). (1.4)

6



That is, there is essentially square-root cancellation even when α = Λ−1 is summed over
short intervals. This is obviously stronger than RH (as for h = x it implies RH) and is
completely open.

Another example is µ2, for which one conjectures that (1.2) holds with an error term
of Oε(x

εh1/4)1: ∑
n∈[x,x+h]

µ2(n) =
h

ζ(2)
+Oε(x

εh1/4). (1.5)

Again, this is completely open.

1.4 The variance of arithmetic functions

One way to obtain useful results about short intervals is to introduce averaging, as we
now explain. Let x be a uniformly drawn number from [0, X]. Let H be a function of X.
Consider the random variable

Sα(X,H) =
∑

n∈[x,x+H]

α(n),

that is, a sum of α over a random interval of length H. Instead of proving bounds for
every short interval, one can try and study the distribution of Sα(X,H), from which one
can obtain information on most intervals. Here is an example. Consider

Vα(X,H) := E(Sα(X,H)−HMα(X))2 =
1

X

∫ X

0

 ∑
n∈[x,x+H]

α(n)−HMα(X)

2

dx,

which is the second moment of Sα − HMα (itself an approximation to the variance of
Sα). An application of Chebyshev’s inequality shows that

P(|Sα(X,H)−HMα(X)| ≥ εHMα(X)) ≤ Vα(X,H)

ε2H2Mα(X)2
.

If Vα(X,H) = o(H2M2
α(X)), it follows that for most x ∈ [0, X] we have

∑
n∈[x,x+H] α(n) =

HMα(X)(1 + o(1)) as X →∞, in the sense that the exceptional set is o(X).
The quantity Vα(X,H) and its variants – which we informally call the variance of α

in short intervals – are the main topic of this thesis. We survey a few of the results on
Vα(X,H).

1. For the von Mangoldt function, Selberg [Sel43] studied the following variant of
VΛ(X,H):

V ′Λ(X, δ) =
1

X

∫ 2X

X

 ∑
n∈[x,(1+δ)x]

Λ(n)− δx

2

x−2 dx.

Unconditionally, he proved V ′Λ(X, δ) = O(δ2/ log4 x) for δ ∈ [xε−c, 1] for some ab-
solute c ∈ (0, 1), from which he deduced that

∑
n∈[x,x+Φ(x)] Λ(n) ∼ Φ(x) for al-

most all x, where Φ is a positive, increasing function satisfying Φ(x) > x1−c+ε and
Φ(x) = o(x). Under RH, he proved

V ′Λ(X, δ) = O

(
δ log2X

X

)
1A q-analogue of this is stated in a paper of Croft [Cro75] and is attributed to Montgomery.
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for δ ∈ [X−1, X−1/4], which allowed him to take any Φ(x) with Φ(x)/ log2 x → ∞
instead of Φ(x) > x1−c+ε in the short interval result. Saffari and Vaughan [SV77],
building on Selberg, proved that

VΛ(X,H) = O(H log2(2X/H)) (1.6)

on RH. Observe that (1.6) implies (1.4) for almost all x ∈ [X, 2X]. We touch on
some of the ideas behind these works in §4.4.2.

2. For µ, Ramachandra [Ram76] proved that

Vµ(X,H) = OA,ε(H
2(logX)−A +Xc+ε)

unconditionally for c = 1/6, and under RH for c = 0. A relatively recent break-
through result of Matomäki and Radziwi l l[MRl16] gives

Vµ(X,H) = o(H2),

asX,H →∞, which is optimal in the sense that it proves cancellation in
∑

n∈[x,x+H] µ(n)

for almost all x ∈ [X, 2X], once H grows to infinity with X.

3. R. R. Hall [Hal82, Thm. 2] proved that

Vµ2(X,H) ∼ CH1/2, C =
ζ(3/2)

π

∏
p

(
1− 3

p2
+

2

p3

)
, (1.7)

as X and H tend to infinity with H < X2/9−ε. This shows that
∑

n∈[x,x+H] µ
2(n) =

6H/π2 +Oε(H
1/4Xε) for almost all x ∈ [0, X], as long as H < X2/9−ε and H →∞,

and lends support to the conjectured estimate (1.5). Hall’s method is explained in
§1.9.1.

4. Ivić [Ivi09], building on work of Jutila [Jut84], proved that

Vd(X,H) ∼ HP3

(
log

√
X

H

)

uniformly for Xε ≤ H ≤ X1/2−ε, for some cubic polynomial P3. For the comple-
mentary range X1/2+ε ≤ H ≤ X1−ε, Lester [Les16] proved that Vd(X,H) ∼ D

√
X

for an absolute constant D. We give new proofs for these results, in the function
setting, in §1.8.

An upper bound for Vα leads to a result about the mean value of α in almost all short
intervals (for some range of H and X). We now illustrate why sometimes this is the
best we can hope for, which serves as an additional reason for the study of the vari-
ance. Maier [Mai85] proved that for any A > 1,

∑
n∈[x,x+logA x] Λ(n) is not asymptotic to

logA x for infinitely many x’s. However, at least under RH, Selberg’s work shows that∑
n∈[x,x+logA x] Λ(n) ∼ logA x for almost all x once A > 2. We note that the irregulari-

ties in the distribution of primes exhibited by Maier are a part of a much more general
phenomena, see the work of Granville and Soundararajan [GS07].
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1.5 Interpretations of the variance

One reason for being interested in the asymptotics of the variance Vα, and not only in
its bounds, is its relations to probabilistic models for Möbius values, primes, and other
objects, and well as its connections with the distribution of zeros of L-functions.

A naive probabilistic model for the values of the Möbius function comes from consid-
ering a random arithmetic function Rn, such that Rn = 0 with probability 1 if µ2(n) 6= 0,
while for n’s with µ2(n) = 1, Rn are i.i.d random variables taking the values −1,+1 with
equal probabilities. By studying

∑
n∈[x,x+H] Rn, Good and Churchhouse [GC68] conjec-

tured that
∑

n∈[x,x+H] µ(n)/
√
H/ζ(2), for random x ∈ [0, X], tends in distribution to

standard Gaussian (at least when H → ∞ is not too close to X), and investigated this
conjecture numerically. Their conjecture implies in particular that

Varµ(X,H) ∼ H

ζ(2)
. (1.8)

So proving or giving evidence to (1.8) lends support to the randomness of µ(n). See
[Ng08] for conditional evidence towards (1.8).

Cramér’s model is the name for a similar probabilistic model for primes, where Λ(n)
is modeled by Rn · log n, where now Rn = 1 with probability 1/ log n and 0 otherwise,
independently of the other Rm’s. This model suggests that

VarΛ(X,H) ∼ H logX

as H tends to infinity with Xε < H < X1−ε. However, there is substantial evidence that
the truth is in fact

VarΛ(X,H) ∼ H log
X

H
, (1.9)

which deviates from H logX in the range Xε < H < X1−ε. However, there is currently
no probabilistic model for the primes explaining why the variance decreases in that way!

1.6 Some Random Matrix Theory

The most satisfactory motivation for (1.9) comes from Random Matrix Theory, as we
now (briefly) explain, following Goldston’s historical account [Gol05]. Let us denote the
non-trivial zeros of ζ(s) by ρ = 1/2+iγ. We shall assume RH, so that the γ’s are real. Up
to height T , we have roughly (T log T )/2π zeros with γ > 0, and so their mean spacing
is 2π/ log T . Montgomery [Mon73] defined

F (α) = F (α, T ) =

(
T

2π
log T

)−1 ∑
0<γ,γ′≤T

T iα(γ−γ′)ω(γ − γ′),

where ω(u) = 4/(4 + u2). Here the sum is over an ordered pair of non-trivial zeros of ζ
in the upper half-plane. Montgomery proved (still under RH) that F is real, even and
non-negative. For 0 ≤ α ≤ 1− ε he obtained

F (α) = α + o(1) + (1 + o(1))T−2α log T ;

this was extended by Goldston to 0 ≤ α ≤ 1 [Gol81]. Conditionally on a certain uniform
version of the Hardy-Littlewood 2-Tuple Conjecture, Montgomery showed that F (α) =
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1 + o(1) for 1 ≤ α ≤ 2 − ε. He speculated that F (α) = 1 + o(1) for α ∈ [1,M ] for any
fixed M - which is known as the Strong Pair Correlation Conjecture (SPC). To see its
usefulness, observe that by integrating F (α) against a nice test function r, we have(

T

2π
log T

)−1 ∑
0<γ,γ′≤T

r

(
(γ − γ′) log T

2π

)
ω(γ − γ′) =

∫
R
r̂(α)F (α) dα.

The right-hand side may be computed under SPC, at least for functions with r̂ having
compact support. With some work, a particular choice of r leads to(

T

2π
log T

)−1 ∑
0<γ,γ′≤T

0<γ′−γ≤ 2πβ
log T

1 ∼
∫ β

0

(
1− sin2(πu)

(πu)2

)
du

for any fixed β > 0; this asymptotic is known as the Pair Correlation Conjecture (PC).
The left-hand side counts pair of zeros that are close to each other, hence the name. As
observed by Dyson, the right-hand side also arises as the pair correlation of eigenvalues
of random unitary matrices, that is,

1

N

∫
U(N)

 ∑
0<θj−θk< 2πβ

N

1

 dX ∼
∫ β

0

(
1− sin2(πu)

(πu)2

)
du.

Here U(N) is the N by N unitary group, endowed with Haar measure, and θi ∈ [0, 2π]
are the angles of the eigenvalues of X ∈ U(N) in some order. Quoting Conrey, “this
important fact was fortuitously discovered at tea at the Institute for Advanced Study
one afternoon in 1971 when Chowla introduced Hugh Montgomery and Freeman Dyson
to each other”. It took 20 years until the work of Montgomery on pair correlation was
extended to n-level correlations by Rudnick and Sarnak [RS96]. See also the work of
Keating and Snaith [KS00], predicting moments of L-functions through Random Matrix
Theory.

The connection with the variance of primes is a beautiful theorem of Goldston and
Montgomery [GM87], saying that SPC is equivalent to (1.9). So the surprising asymp-
totics for the variance of primes reflects deep facts about the distribution of the zeros of
ζ.

Although SPC and PC are open, in the function field setting there are analogous
of them that are known unconditionally, see for instance the book of Katz and Sarnak
[KS99].

1.7 The function field setting

In this thesis, we study the variance of certain functions in the setting of function fields.
Some of our results go beyond what is known in the integer setting, while others give
predictions for the behavior of certain variances in the number field setting, which were
not understood before. Below we define the basic objects we shall need.

We let q be a prime power and let Fq[T ] be the polynomial ring over the finite field Fq
with q elements. LetMn,q denote the set of monic polynomials of degree n in Fq[T ], and
let Mq = ∪n≥0Mn,q denote the set of all monic polynomials in Fq[T ]. By a well-known
analogy Mq serves as a substitute for the set of positive integers.

10



Let h, n be integers such that −1 ≤ h ≤ n − 1. Given f0 ∈ Mn,q, a short interval
around f0 of size qh+1 is the subset

I(f0, h) = {f0 + g : deg(g) ≤ h} ⊆ Mn,q.

The degree of the zero polynomial is defined to be −∞.
Let Pn,q ⊆ Mn,q be the subset of monic irreducible polynomials of degree n and

Pq = ∪n≥0Pn,q be the set of all monic irreducible polynomials. The norm ‖f‖ of f ∈ Fq[T ]
is #Fq[T ]/(f) = qdeg(f) if f 6= 0, and ‖0‖ = 0. The zeta function of ζq is defined as

ζq(s) =
∏
P∈Pq

(1− ‖P‖−s)−1 =
∑
f∈Mq

‖f‖−s =
1

1− q1−s ,

where both the product and the sum converge for <s > 1.
An arithmetic function in this setting is a function α : Mq → C. Its mean value over

Mn,q is defined as

〈α〉Mn,q =

∑
f∈Mn,q

α(f)

#Mn,q

.

Given integers −1 ≤ h ≤ n − 1, the variance of sums of α over intervals of length qh+1

around a polynomial of degree n is defined as

Vα(n, h) =
1

qn

∑
f0∈Mn,q

∣∣∣∣∣∣
∑

f∈I(f0,h)

α(f)− qh+1〈α〉Mn,q

∣∣∣∣∣∣
2

.

Studying this quantity while taking n and h to infinity is similar to taking X and H
to infinity in the integer setting. However, in this setting we have a new feature: the
variance also depends on the parameter q, the size of the underlying finite field. In recent
years, there has been a lot of fruitful work on understanding the variance of arithmetic
functions, and many other important quantities, in the large-q limit, where one fixes all
parameters and takes q to infinity. Once an asymptotic is found for Vα(n, q) in the large-q
limit, one often recovers a combinatorial quantity that can be studied as n, h go to infinity
and still retains important information which can be extracted.

We can often say something about the problem when q grows thanks to algebraic
geometry being able to deal well with varying q. In particular, in Fq[T ] we have versions
of the Pair Correlation Conjecture in the large-q limit, but not so in the large-n limit.

As an example, Keating and Rudnick [KR14, KR16], using deep results of Katz on
zeros of Dirichlet L-functions in the function field setting [Kat13, Kat15], established
analogues of (1.8) and (1.9). To state their result, we define the polynomial von Mangoldt
function Λq : Mq → C as

Λq(f) =

{
deg(P ) if f = P k for P ∈ Pq and k ≥ 1,

0 otherwise,

and the polynomial Möbius function µq : Mq → C as

µq(f) =

{
(−1)k if f = P1P2 · · ·Pk for distinct Pi ∈ Pq,
0 otherwise.

11



It is well-known that
〈Λq〉Mn,q = 1, 〈µq〉Mn,q = 0 (1.10)

for n ≥ 2 [Ros02, Ch. 2]. Their results are

lim
q→∞

VarΛq(n, h)

qh+1
= n− h− 2, lim

q→∞

Varµq(n, h)

qh+1
= 1,

giving strong evidence for the corresponding statements over the integers.
An example of a different flavor relates to higher divisor functions,

dk(n) := #{(n1, · · · , nk) ∈ Nk : n = n1n2n3 . . . nk}, k ≥ 2.

The work of Ivić and Lester helps us understand Vard2(X,H). Lester also obtains
asymptotics for Vardk(X,H) in the range H > X1−1/(k−1) under the Lindelöf Hypoth-
esis, but the techniques cannot handle smaller H. Keating, Rodgers, Roditty-Gershon
and Rudnick [KRRGR18] studied a function-field analogue of this problem, first com-
puting Vardk(n, h)/qh+1 as q tends to ∞, and then analyzing the remaining quantity
as h/n tends to δ ∈ (0, 1). Based upon their rigorous results, they gave a surprising
prediction for Vardk(X,H) in the integers, involving phase changes. Precisely, they ex-
pect Vardk(X,H) ∼ akHPk2−1(logH/ logX)(logX)k

2−1 for a particular constant ak and
for a piecewise polynomial Pk2−1 of degree k2 − 1, behaving differently on each interval
[1−1/i, 1−1/(i+ 1)] (1 ≤ i ≤ k−1) and on [1−1/k, 1]. This conjecture predicts a tran-
sition near H = X1−1/i for 2 ≤ i ≤ k. This work has already spawned several subsequent
works over the integers, which give results (both conditional on GRH and unconditional)
in agreement with the curious prediction [HS17, RS18, dlBF20, BC20, Mas20].

In the function field setting, the connection between basic arithmetic questions and
the distribution of zeros of L-functions is much more clearer. As we shall show, this is
even true for problems such at twin primes in function fields, where we uncover such a
connection for the first time.

In this thesis, in addition to large-q results (which usually follow from information
about zeros of L-functions), we also prove some large-n results, where other benefits of
function fields come into play.

1.8 Approaches to the computation of the variance

One can study Vα(n, h) in physical space and in Fourier space. We explain this through
a worked out example. Recall that Ivić and Lester [Ivi09, Les16] showed

Vd(X,H) ∼

{
HP3(log

√
X
H

) if Xε ≤ H ≤ X1/2−ε,

D
√
X if X1/2+ε ≤ H ≤ X1−ε.

The polynomial divisor function is

dq(f) = #{m ∈Mq : m | f}.

Over Fq[T ], we can obtain the following closed-form expression for Vdq(n, h).

Theorem 1.1. We have

Vdq(n, h) =

{
qh+1

(
n−2h−1

3

)
if − 1 ≤ h ≤ bn/2c − 1,

0 if bn/2c − 1 ≤ h ≤ n− 1.
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We are going to present two completely different proofs for Theorem 1.1. The first
approach is through correlation sums. Expanding Vdq(n, h), we find that

Vardq(n, h)

qh+1
=

∑
∆∈Fq [T ],deg(∆)≤h

(
〈dq(f)dq(f + ∆)〉f∈Mn,q − (〈dq〉Mn,q)

2
)
, (1.11)

see Lemma 3.4 for a general statement and a proof. We shall prove

1

#Mn,q

∑
f∈Mn,q

dq(f)dq(f + ∆) = (n+ 1)2 +

bn
2
c∑

i=1

(n− 2i+ 1)2

qi
(ai,∆ − ai−1,∆), (1.12)

where ai,∆ denotes the number of monic divisors of ∆ of degree i, see Lemma 3.3 for
a proof. For ∆ = 1, (1.12) is due to Andrade, Bary-Soroker and Rudnick [ABSR15,
Thm. 7.1], and the statement for general ∆ follows by generalizing their arguments. See
the introduction of [ABSR15] for background on the integer sum

∑
n≤X d(n)d(n + ∆),

where weaker results are known.
Plugging (1.12) in (1.11), an elementary computation yields our theorem. Full details

are given in §3.2.
Our second proof involves the functional equation for Dirichlet L-functions. In §2 We

introduce a group G(R`) of ‘short interval characters’, which are able to detect whether
two polynomial of degree n are in the same interval of size qn−`. A Plancherel-type
theorem yields

Vardq(n, h) =

∑
χ0 6=χ∈G(Rn−h−1) |

∑
f∈Mn,q

dq(f)χ(f)|2

q2(n−h−1)
. (1.13)

Since we express the problem as an ‘integral’ over characters, we consider this a Fourier
space approach. The sum

∑
f∈Mn,q

dq(f)χ(f) is a function of L(u, χ). Applying the

functional equation of L(u, χ) to the right-hand side of (1.13) and expanding the average
over G(Rn−h−1), we reduce to a new problem in physical space, which is easier to deal
with than the original one. Informally, the functional equation allows us to replace sums
over high degree polynomials with sums over lower degree polynomials, which are easier
to study. Full details are given in §3.3.

The approaches of Ivić and Lester over the integers are in the spirit of our second
approach. However, they use ‘ready-made’ transformation formulas for the divisor func-
tions. Our approach is more flexible, and led us eventually to make new progress on
Varµ2q(n, h) and Varµ2(X,H).

We note that the correlation sums approach was not used before in the study of the
variance of divisor functions.

1.9 Results

We now motivate and state the four main results of the thesis. They are results in the
function field setting. Our first two results are in the large-n limit, and the later two are
in the large-q limit.

Since the proofs underlying the large-n results use only analytic tools, the results and
proofs should have analogues over the integers (possibly conditional).

The large-q results, however, use techniques based on algebraic geometry which are
unique to the function field setting, and so cannot be transported to Z without new ideas.
However, they help predict new number-theoretic conjectures as well as give support to
existing conjectures.
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1.9.1 The variance of squarefree polynomials in short intervals

Before discussing our results, we review Hall’s method in proving (1.7). Expanding the
definition of Vµ2(X,H), one can express the variance as a linear combination of the
correlation sums ∑

n≤X

µ2(n)µ2(n+ c)

for c-s between 0 and H. Hall estimated such sums, obtaining [Hal82, Thm. 1]∑
n≤X

µ2(n)µ2(n+ c) =
∏
p-c

(
1− 2

p

)∏
p|c

(
1− 1

p

)
X +O

(
X

2
3 (logX)

2
3

)
(1.14)

uniformly in 0 < c < X. The exponent of X in the error term in (1.14) leads to the range
H = Oε(X

2/9−ε). Inspecting Hall’s argument, if the error term in (1.14) is O(XA) then
one has Varµ2(X,H) ∼ CH1/2 for H = Oε(X

2(1−A)/3−ε). Since the error term in (1.14) is
expected to be Oε(X

1/4+ε), the limit of Hall’s argument is H = Oε(X
1/2−ε). Although we

are very much far from establishing (1.14) with an optimal error term, we shall extend
Hall’s result (in the function field setting) to the range H = Oε(X

1/2−ε), unconditionally.
We now introduce µ2

q : Mq → {0, 1}, the indicator function of squarefree polynomials.
It is known that the mean value of µ2

q is exactly 1/ζq(2) = 1− 1/q [Ros02, Ch. 2], that is,

〈µ2
q〉Mn,q =

1

ζq(2)

for all n ≥ 2. We are interested in the asymptotics of the variance Vµ2q(n, h). Keating and
Rudnick [KR16, Thm. 1.4], using an equidistribution result of Katz [Kat15, Thm. 1.2],
have shown that as q tends to infinity we have

Vµ2q(n, h) ∼ qb
h
2
c

for any fixed 0 ≤ h ≤ n− 6, as long as the characteristic of Fq is not 2 or 3. Their large-q
result led them to conjecture that Hall’s result (1.7) – both in Z and Fq[T ] – holds for
the complete range, that is, Xε ≤ H ≤ X1−ε and ε ≤ h/n ≤ 1 − ε, respectively. Let us
see what this means in Fq[T ]. By adapting Hall’s method of proof, Keating and Rudnick
proved the following result in the large-n limit:

Vµ2q(n, h) ∼ qb
h
2
cλq,hCq (1.15)

uniformly in h which satisfies ε ≤ h/n ≤ 2/9− ε for some ε > 0, where

Cq =
∏
P∈Pq

(
1− 3

‖P‖2
+

2

‖P‖3

)
, λq,h =

1 + q−1−12|h

1− q−3
.

The constants Cq and λq,h do not appear in the large-q result since Cq, λq,h are asymptotic
to 1 in the large-q limit. While Cq is analogous to C appearing in Hall’s result, λq,h is
unique to the function field setting.

Keating and Rudnick conjectured that (1.15) holds for ε ≤ h/n ≤ 1 − ε. We make
progress towards their conjecture, replacing the exponent 2/9 with 1/2.
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Theorem 1.2. Fix a prime power q. For any ε ∈ (0, 1/4), the asymptotic estimate (1.15)
holds uniformly for h, n tending to infinity with ε ≤ h/n < 1/2− ε.

Additionally, in the full range we have an upper bound of essentially the predicted
magnitude: Vµ2q(n, h) = Oε,q(q

bh/2cqnε) as n→∞ and −1 ≤ h ≤ n− 1.

The starting point for our proof is the classical identity

µ2
q(f) =

∑
d2|f

µq(d) (1.16)

which follows from an inclusion-exclusion argument. Alternatively, since both sides of
(1.16) are multiplicative, it suffices to verify the identity on prime powers. We introduce
a parameter m ∈ N, and write µ2

q as a sum of two functions:

µ2
q(f) = αm(f) + βm(f),

where
αm(f) =

∑
d2|f, deg(d)≤m

µq(d), βm(f) =
∑

d2|f, deg(d)>m

µq(d).

We shall show that βm contributes very little to the variance of µ2
q, at least for large m.

By passing to Fourier space (that is, an average over characters) and using estimates on
characters sums and Möbius sums, we obtain

Proposition 1.3. Fix a prime power q. For 1 ≤ h ≤ n− 1 and −1 ≤ m ≤ n/2, we have

Varβm(n, h) ≤ qmin{h
2
,h−m}+o(n)

as n→∞. (The o(n) term may depend on q.)

Takingm = −1, βm coincides with µ2
q and so we obtain the second part of Theorem 1.2.

To evaluate Varαm(n, h) we again pass to Fourier space, and apply the functional
equation there. We interpret the obtained expression back in physical space. It turns out
that for small enough m, the problem we obtain in physical space is easy enough in the
sense that only certain diagonal terms contribute to it. We obtain

Proposition 1.4. Fix a prime power q. For −1 ≤ h ≤ n − 1 and −1 ≤ m ≤ n/4, we
have

Varαm(n, h) = F (h,m)

for a function F depending only on h and on m (as well as q).

We have an explicit formula for F (h,m), see (4.10). However, as we now show,
we can easily conclude Theorem 1.2 from Propositions 1.3 and 1.4, without needing to
work out the behavior of F (h,m) directly. Indeed, fix small ε > 0 and suppose that
h/n ∈ (ε, 1/2− ε). From Cauchy-Schwarz and the two propositions,

Varµ2q(n, h) = F (h,m) +Oε

(
q
h
2

(1− ε
2

) +

√
F (h,m)q

h
2

(1− ε
2

)

)
(1.17)

if m = h(1 + ε)/2. To conclude, it suffices to show that F (h, h(1 + ε)/2) ∼ qb
h
2
cλq,hCq.

To do so, we compute Varµ2q(bh/(2ε)c, h) in two different ways. By (1.15),

Varµ2q(bh/(2ε)c, h) ∼ qb
h
2
cλq,hCq. (1.18)
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By (1.17),

Varµ2q(bh/(2ε)c, h) = F (h,m) +Oε

(
q
h
2

(1− ε
2

) +

√
F (h,m)q

h
2

(1− ε
2

)

)
. (1.19)

Equating (1.18) and (1.19) we find that F (h, h(1+ε)/2) ∼ qbh/2cλq,hCq, as needed. What
was crucial in this bootstrapping-type argument is the independence of F (h,m) from the
parameter n, allowing as to increase n however we desire.

The proofs of Propositions 1.3 and 1.4 are detailed in §4. Theorem 1.2 has led to a
joint paper titled “On the variance of squarefree integers in short intervals and arithmetic
progressions” [GMRR20] (to appear in GAFA), authored by myself, Kaisa Matomäki,
Maksym Radziwi l l and Brad Rodgers, where we transport the method of proof to the
integer setting. In §4.4 we explain some of the ideas required in proving an unconditional
version of Theorem 1.2 over the integers.

We expect the methods of proof to apply to many more multiplicative functions,
especially those that, in a sense, are close to the constant function 1 (e.g. are a convolution
of 1 with a function of zero mean value), and plan to explore this in the future.

1.9.2 The variance of factorization functions in short intervals

To any f ∈Mq with prime factorization f =
∏k

i=1 P
ei
i (Pi ∈ Pq distinct, ei ≥ 1), we can

associate the following multiset, named the extended factorization type of f :

ωf := {(deg(Pi), ei) : 1 ≤ i ≤ k}.

(We often omit the word ‘extended’.) Following Rodgers [Rod18], an arithmetic function
α : Mq → C is called a factorization function if α(f) depends only on ωf . Some of the
most commonly studied arithmetic functions in number theory, when considered in the
function field setting, are instances of factorization functions: the von Mangoldt function
Λq, the Möbius function µq, the divisor function dq, the indicator of squarefrees µ2

q, and
many more. We prove

Theorem 1.5. Let α : Mq → C be a factorization function. Let 0 ≤ h ≤ n − 1 and
f0 ∈Mn,q. Then∣∣∣∣∣∣

∑
f∈I(f0,h)

α(f)− qh+1〈α〉Mn,q

∣∣∣∣∣∣ ≤ max
f∈Mn,q

|α(f)| q
n
2 eOq(

n log log(n+2)
log(n+2)

) (1.20)

and
Varα(n, h) ≤ max

f∈Mn,q

|α(f)|2 qh+1eOq(
n log log(n+2)

log(n+2)
). (1.21)

As long as maxf∈Mn,q |α(f)| grows subexponentially in n (as is the case for most
functions), (1.20) is a non-trivial result in the range lim supn→∞ h/n > 1/2.

For the variance Varα(n, h), we beat the trivial upper bound q2(h+1) maxf∈Mn,q |α(f)|2
as long as lim supn→∞ h/n > 0, which corresponds to H � Xε in the number field setting.

We now give a concrete application for Theorem 1.5. As far as the author is aware,
Hooley’s ∆-function was not studied in short intervals. The function field analogue of ∆
is

∆q : Mq → C, ∆q(f) := max
0≤i≤deg(f)

∑
d|f,

d∈Mi,q

1.
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As 〈dq〉Mn,q = n+1 [Ros02, Prop. 2.5], it follows that maxf∈Mn,q ∆q(f) ≤ maxf∈Mn,q dq(f),
which is known to grow slower than any power of qn as n tends to infinity. Also,
〈∆q〉Mn,q ≥ 〈dq〉Mn,q/(n + 1) = 1. Applying Theorem 1.5 with α = ∆q, we obtain
the following

Corollary 1.6. As n→∞, we have∑
f∈I(f0,h)

∆q(f) ∼ qh+1〈∆q〉Mn,q

as long as lim supn→∞ h/n > 1/2, uniformly for f0 ∈Mn,q.

Over the integers, and conditionally on RH, one can prove results similar to Theo-
rem 1.5 for certain arithmetic functions – see Ramachandra [Ram76] for a method that
works both for µ and Λ. However, there is no general result similar to Theorem 1.5 in Z,
and in particular the work of Ramachandra requires the Dirichlet series of α : N→ C to
have a very particular form in order to work.

Theorem 1.5 is a large-n result. It complements a beautiful theorem of Rodgers
[Rod18] in the large-q limit, from which one obtains as a corollary that

Varα(n, h) ≤ qh+1(〈|α|2〉Mn,q + on,α(q−1/2)). (1.22)

The quantity on,α(q−1/2) goes to zero with q, but the implied constant depends both on
n and on maxf∈Mn,q |α(f)|, and one cannot infer anything in the large-n from (1.22).
It would be interesting if one could improve the `∞-dependence on α in (1.21) to an
`2-dependence, as in (1.22).

The proof of Theorem 1.5 is detailed in §5. The material of §5 has appeared in the
paper “Mean values of arithmetic functions in short intervals and in arithmetic progres-
sions in the large-degree limit” published in Mathematika [Gor20]. In that paper we also
prove corresponding results over arithmetic progressions, in addition to short intervals.

1.9.3 The variance of sums of two squares in short intervals

Consider the set S = {n2 + m2 : n,m ∈ Z} of integers representable as sums of two
squares, and let b be its indicator function. Landau [Lan08] proved that∑

n≤x

b(n) = K
x√

log x
+O

( x

(log x)3/2

)
, (1.23)

where

K =
1√
2

∏
p≡3 mod 4

(1− p−2)−1/2 ≈ 0.764 (1.24)

is the Landau-Ramanujan constant. Thus, roughly stated, the likelihood that a random
integer near X will be the sum of two squares is around K/

√
logX.

A naive probabilistic model would predict that Varb(X,H) ∼ KH/
√

logX. We shall
give evidence, in terms of a function field theorem, that this natural prediction fails,
and instead produce a prediction that matches very well numerically. As in the case of
primes, we predict that the variance is asymptotically smaller than one would expect
once H grows like a power of X.

In the study of the function field analogue of b, we shall let q be an odd prime power. In
[BSSW16], Bary-Soroker, Smilansky and Wolf studied an analogue of Landau’s problem in
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Fq[T ] by introducing the following set and indicator function, which by abuse of notation
we will also denote by S and b:

S = {A2 + TB2 : A,B ∈Mq},

b : Mq → C, bq(f) = 1f∈S.

The analogy with integers can be seen in the following way: a positive integer lies in S if
an only if it is the norm of some element of Z[i], and an element of Mq lies in S if and
only if it is the norm of some element of Fq[

√
−T ]. In Fq[T ], the mean value of b can be

estimated as follows [Gor17, Thm. 1.1]:

〈b〉Mn,q = Kq

(
n− 1

2

n

)(
1 +O

(
1

qn

))
, (1.25)

where the implied constant is absolute, and the constant Kq is positive and is an analytic
function of q−1. The constant Kq is given by

Kq = (1− q−1)−1/2
∏

χ2(P )=−1

(1− q−2 degP )−1/2 = 1 +O

(
1

q

)
,

where χ2 is the unique non-trivial quadratic Dirichlet character modulo T . By Stirling’s
formula,

(
n−1/2
n

)
= 1/

√
πn+O(1/n3/2), and so (1.25) has a resemblance to (1.23).

We evaluate Varb(n, h) in the large-q limit. The evaluation involves the z-measure on
partitions introduced in [KOV93], with z = 1/2. The z-measures arise in an evaluation
of certain integrals over the unitary group (Theorem 6.6).

We give a brief introduction to these measures in §6.6, but for the moment we discuss
only the notation; recall that we write λ ` n to indicate that λ is a partition of n and
λ1 to indicate the largest part of a partition λ. For parameters z ∈ C and n ∈ N, the
z-measure is a probability measure M

(n)
z (λ) on the set of partitions λ ` n. In fact these

z-measures are a generalization of the well-known Plancherel measure on partitions. The
notation P(n)

z (λ1 ≤ N) denotes the obvious thing, namely

P(n)
z (λ1 ≤ N) :=

∑
λ`n
λ1≤N

M (n)
z (λ).

The actual definition of these probability measures M
(n)
z will be given in §6.6. (By

convention we set M
(0)
z (λ1 ≤ N) = 1 for any N .) We show

Theorem 1.7. For a fixed odd prime p, and fixed n ≥ 6, take 0 ≤ h ≤ n − 7 and let
N := n− h− 1 and q = pk. Define

T (n;N) :=
n∑
j=0

(1/4)j(1/4)n−j
j!(n− j)!

P(j)
1/2(λ1 ≤ N − 1)P(n−j)

1/2 (λ1 ≤ N).

For N(N − 1) ≥ n,
Varb(n, h) = qh+1T (n;N) + on,p(q

h+1),

as q →∞ (that is k →∞).

18



Here (x)j := x(x+ 1) · · · (x+ j − 1) is the Pochhammer symbol.
We use this theorem to inform an analogous conjecture in the setting of the integers.

We require for this purpose an understanding of the limiting behavior of T (n;N) as
h, n → ∞ with h/n → δ ∈ (0, 1). Note that if h and n are both sufficiently large and
h ∼ δn, then N(N − 1) ≥ n and N ≥ 6 will both be satisfied.

Proposition 1.8. For n,N →∞ with N/n→ s ∈ [0, 1], we have

T (n;N) =
1√
πn

G(s) + o
( 1√

n

)
,

where for real s we define

G(s) := P
(

1− s

α1

≤ Y ≤ s

α′1

)
, (1.26)

for Y , α1, α′1 independent random variables, with Y distributed as Beta(1/4, 1/4) and
α1, α

′
1 identically distributed copies of the largest part of the Thoma simplex distributed

according to the spectral z-measure with parameters 1/2, 1/2. (The spectral z-measure is
defined in §6.6.)

Note that the random variable Y ∼ Beta(1/4, 1/4) is defined by P(a ≤ Y ≤ b) :=√
πΓ(1/4)−2

∫ b
a
t−3/4(1− t)−3/4 dt for a, b ∈ [0, 1], with Y ∈ [0, 1] almost surely. Interest-

ingly, an explicit computations shows that G′′(s) has a jump discontinuity as s = 1/2.
The random variables α1 and α′1 also lie in [0, 1] almost surely, but an explicit char-

acterization of their distribution takes more space to give. Historically they arose in
formulas for the characters of certain important representations in the infinite symmetric
group (see [KOV93]), but more concretely they are the limiting distribution of the ran-
dom variable λ1/n for λ ` n drawn according to the z-measure of Theorem 1.7. That
such a limiting distribution even exists is not obvious, but was shown in [Ols98]. We
discuss z-measures on the Thoma simplex in more detail in §6.6.

Plainly for all s ∈ [0, 1] we have 0 ≤ G(s) ≤ 1. It also is easy to see (i) that
G(s) is non-decreasing (from the definition) and (ii) that G(1) = 1 (from the fact that
Y, α1, α

′
1 ∈ [0, 1] almost surely). Very recent work on z-measures of Korotkikh [Kor18]

and Olshanski [Ols18] tells us that P(α1 ≤ ε) is non-zero for any small ε, which forces G
to be strictly positive.

Using Theorem 1.7 and Proposition 1.8 together, we can write somewhat more suc-
cinctly,

Corollary 1.9. For a fixed odd prime p let q = pk. If h, n → ∞ in such a way that
h/n→ δ ∈ (0, 1), then

lim
q→∞

Varb(n, h)

qh+1
=
G(1− δ) + o(1)√

πn
,

where the function G(s) is defined in Proposition 1.8.

Corollary 1.9 suggests a conjecture for the integers regarding the number of elements
of S that lie in a short interval. Naively one might think it will suggest a conjecture
regarding the quantity

1

X

∫ 2X

X

( ∑
x≤n≤x+H

b(n)−MX,H

)2

dx, (1.27)
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where H = Xδ with δ ∈ (0, 1) and

MX,H =
1

X

∫ 2X

X

∑
x<n≤x+H

b(n) dx ∼ K
H√

logX
. (1.28)

Here (1.27) is the probabilistic variance of
∑

x<n≤x+H b(n) = B(x+H)−B(x) where

B(x) =
∑
n≤x

b(n) (1.29)

and (1.28) is the probabilistic mean. This is not exactly the right quantity to look at,
owing to the fact that b(n) on average behaves like 1/

√
log n, and the slow change of

this function means that the variance in (1.27) will be much larger than we would like.
Indeed, even the probabilistic variance of

∑
x≤n≤x+H 1/

√
log n is quite large owing to this

change; the probabilistic variance of this sum is

1

X

∫ 2X

X

( ∑
x<n≤x+H

1√
log n

− 1

X

∫ 2X

X

∑
t<n≤t+H

1√
log n

dt
)2

dx,

and with a little work one may see that this is at least of order H2/(logX)3.
Thus instead of (1.27), we consider a variant in which MX,H has been replaced by

a better approximation to
∑

x<n≤x+H b(n) which changes with x; this approximation is
given in terms of an integral of L-functions. Define the function F (s) for <s > 1 by

F (s) =
∞∑
n=1

b(n)

ns
.

Using the fact that n is an element of S if and only if n can be written in the form 2αµν2,
for µ a product of primes congruent to 1 modulo 4 and ν a product of primes congruent
to 3 modulo 4, it may be seen that for <s > 1,

F (s) =
1

1− 2−s

∏
q≡1 mod 4

1

1− q−s
∏

r≡3 mod 4

1

1− r−2s

=
(ζ(s)L(s, χ4)

1− 2−s

)1/2
∞∏
k=1

( ζ(2ks)

L(2ks, χ4)
(1− 2−2ks)

)1/2k+1

,

where χ4 is the non-trivial character modulo 4. The first Euler product here dates at
least back to Landau [Lan08], while the second factorization has in effect been derived
many times (see e.g. [Sha64, FV96]).

The second representation allows one to analytically continue F (s) to the cut disc
E = {s : |s− 1| < 1/2} \ {s : =s = 0,<s ≤ 1}: note that in this region, because neither
ζ(s) nor L(s, χ) have low-lying zeros inside of it (see [LMF18] for a list of zeros), we can
write

F (s) = (s− 1)−1/2f(s), (1.30)

where f(s) is an analytic function and where the principal branch of the function (s −
1)−1/2 is taken. Under RH for ζ(s) and L(s, χ4), it may be shown that (see §6.10 for a
full proof)

B(x) = B(x) +Oε(x
1/2+ε), where B(x) =

1

π

∫ 1

1/2

xs

(1− s)1/2s
f(s) ds
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Thus we approximate B(x+H)−B(x) (the number of elements of S in a short interval
(x, x+H]) by

I(x,H) := B(x+H)−B(x).

We will consider variance defined in the following sense:

Vb(X,H) :=
1

X

∫ 2X

X

(B(x+H)−B(x)− I(x,H))2 dx,

Ramachandra [Ram76] investigated a quantity equivalent to this one and showed that
there is some cancellation over the trivial bound of H2/ logX; namely

Vb(X,H) = O(H2 exp(−(logX)1/6)),

for H > X1/6+ε. Under density hypotheses for the zeros of ζ(s) and L(s, χ4) (see [Ram76,
Eq. (6)]) this is improved to the more complete range H > Xε. Motivated by Corol-
lary 1.9, we conjecture the following

Conjecture 1. Fix δ ∈ (0, 1). As X →∞ with H = Xδ, we have

Vb(X,H) =
(
KG(1− δ) + o(1)

) H√
logX

,

for K as in (1.24) and G(s) as in (1.26).

The proofs of Theorem 1.7 and Proposition 1.8 are detailed in §6. Their are taken
from a joint paper titled “The variance of the number of sums of two squares in Fq[T ]
in short intervals” [GR18] (to appear in AJM), authored by myself and Brad Rodgers.
In the paper we also deal with the variance of the generalized divisor functions dz (z not
necessarily an integer).

In Figure 1 we plot numerical data supporting the conjecture.

1.9.4 Twin primes in the large-q limit

One of the oldest open problems in number theory is the existence of infinitely many
twin primes, that is, primes with distance 2 from one another. This can be expressed as
asking whether ∑

n≤x

Λ(n)Λ(n+ 2)→∞

as x→∞. A heuristic computation based on the circle method led Hardy and Littlewood
to conjecture a quantitative version of the above [HL23]. The Hardy-Littlewood 2-Tuple
Conjecture says that, as x→∞,

1

x

∑
n≤x

Λ(n)Λ(n+ ∆) ∼
∏
p

1− #{0 mod p,∆ mod p}
p

(1− 1
p
)2

for even ∆ ∈ N. Over Fq[T ], the analogous conjecture is

1

#Mn,q

∑
f∈Mn,q

Λq(n)Λq(n+ ∆) ∼
∏
P∈Pq

1− #{0 mod P,∆ mod P}
‖P‖

(1− 1
‖P‖)

2
(1.31)

for all non-zero polynomials ∆, as qn → ∞. When q is fixed while n tends to ∞, two
results are known:
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Figure 1: Numerically produced data compared to the z-measure induced prediction given
in Conjecture 1 for variance in short intervals. Let Vb(X,H) be the variance of counts
of S in random short intervals [x, x + H] for n ≤ X. For X = 108 and H ≤ X, set δ =
δH = log(H)/ log(X). For a selection of H, we plot the points (δ, Vb(X,H)/(H/

√
logX))

under the label data, and the curve (δ,K G(1− δ)) under prediction.

� C. Hall [Hal03, Prop. 19], in his PhD Thesis, proved the existence of infinitely many
twin primes with distance c ∈ F×q . His proof is constructive - he provided an explicit
infinite family of ` ∈ N for which there are β ∈ Fq with T ` − β, T ` − β + c both
irreducible. However, the family of `’s is quite sparse, and contains only perfect
powers.

� Very recently, Sawin and Shusterman proved, for certain q’s, the Hardy Littlewood
2-Tuple Conjecture in Fq[T ] in the large-n limit [SS19]. Specifically, they require
q > 685090p2 where p is the characteristic of Fq.

Here we concentrate on fixed n and growing q. The constant in the right-hand side of
(1.31) is 1 + (a∆ − 1)/q + Odeg(∆)(1/q

2), where a∆ is the number of zeros of ∆ in Fq
(without multiplicities), see [GS20, Eq. (5.4)]. We may consider (1.31) for fixed n, and
ask whether

1

#Mn,q

∑
f∈Mn,q

Λq(n)Λq(n+ ∆) = 1 +
a∆ − 1

q
+On

(
1

q2

)
as q → ∞ (uniformly for ∆ of degree between 0 and n − 1). This question has received
significant attention. Pollack [Pol08, Thm. 2], Bender and Pollack [BP09, Thm. 1.3],
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Bary-Soroker [BS14, Thm. 1.1] and Carmon [Car15, §6] have shown that

1

#Mn,q

∑
f∈Mn,q

Λq(n)Λq(n+ ∆) = 1 +On

(
1
√
q

)
.

Their proof is based on Galois-theoretic methods, which give an implied constant of order
n!2 (see the statement of [BP09, Thm. 1.3]). We concentrate on scalar ∆ and prove the
following.

Theorem 1.10. Fix n ≥ 4. Uniformly for c ∈ F×q , we have∑
f∈Mn,q

Λq(f)Λq(f + c)

#Mn,q

= 1 +O

(
n3

√
q

)
(1.32)

and ∑
f∈Mn,q

Λq(f)Λq(f + c)

#Mn,q

= 1 +On

(
1

q

)
(1.33)

as q →∞.

The first estimate has the same dependence on q as the previous works, but polynomial
dependence on n. Its proof is short and self-contained, taking barely 3 pages. The second
estimate improves the exponent with which q appears, and is optimal, in the sense that
the error term cannot be replaced with On(1/qα), α > 1 (at least if the Hardy-Littlewood
Conjecture is correct).

The main ideas of the proof of Theorem 1.10 are new. We introduce an L-function
formula for the correlation of general arithmetic functions, which relates an average over
polynomials to an average over short interval characters (Proposition 7.1). This falls into
the general framework in analytic number theory where we replace an identity, in this
case f2 = f1 + c, with an average over characters. This case may be surprising because
we are detecting an additive identity using multiplicative Dirichlet characters. However,
using Dirichlet characters ramified at ∞, it is possible to do this. The contribution of a
given character is closely related to the Dirichlet L-function of that character.

We can compose a short interval character with a ring automorphism of Fq[T ] to get
a new character, which will have the same Dirichlet L-function. This gives an additional
symmetry of the average over characters (Proposition 7.2) which we are able to use in
order to derive (1.32), by first summing over compositions of a given character and then
using pointwise estimates for Gauss sums that give a saving of

√
q. To prove (1.33), we

use the fact that we sum over all characters in the family G(Rn), and use L-function
equidistribution results (Theorem 7.4) for a saving of an additional

√
q.

The proof of Theorem 1.10 is detailed in §7. The material of §7 is based on the joint
paper “Correlation of arithmetic functions over Fq[T ]” published in Mathematische An-
nalen [GS20], authored by myself and Will Sawin. In the paper, we extend Theorem 1.10
to general factorization functions. We also study the easier problem where one averages
over the larger space of non-monic polynomials. There one obtains stronger results than
over monics, uncovering an (expected) lower term by relating the problem to a variance
problem in intervals of size q.

23



2 Short interval characters

Here we review the notion of short interval characters in Fq[T ]. These are characters
that can be used to detect whether two polynomials are ‘close’, that is, have a difference
of small degree. These characters are ramified only at the prime at infinity, and are
analogous to the functions n 7→ nit (t ∈ R) in the integers.

More general characters are studied, in an elementary fashion, by Hayes [Hay65], and
in the context of class field theory by Weil [Wei74].

2.1 Equivalence relation

Let ` be a non-negative integer. We define an equivalence relation R` on Mq by say-
ing that A ≡ B mod R` if and only if A and B have the same first ` next-to-leading
coefficients. We adopt throughout the following convention: the j-th next-to-leading
coefficient of a polynomial f(T ) ∈ Mq with j > deg(f) is considered to be 0. It may
be shown that there is a well-defined quotient monoid Mq/R`, where multiplication is
the usual polynomial multiplication. Any element of Mq is invertible modulo R`, and
Mq/R` forms an abelian group, having as identity element the equivalence class of the
polynomial 1. It may be shown that

|Mq/R`| = q`.

2.2 Characters

For every character χ of the finite abelian group Mq/R`, we define χ† with domain Mq

as follows. If c is the equivalence class of A, then χ†(A) = χ(c). We shall abuse language
somewhat and write χ instead of χ† to indicate a character of the relation R` derived
from the character χ of the group Mq/R`. Thus we write χ0 for the character of R`

which is identically 1. We denote by G(R`) the set {χ† : χ ∈ M̂q/R`}.
Elements of G(R`) are called “characters of the relation R`” or “characters modulo

R`”. We also call them “short interval characters of ` coefficients” (short interval char-
acters for short), because for any A ∈ Mq of degree ≥ ` , χ ∈ G(R`) is constant on the
set

{f ∈Mdeg(A),q : f ≡ A mod R`}

which is nothing but the short interval I(A, deg(A)− `− 1).
A character modulo R` is said to be primitive if it does not coincide with a character

modulo R`−1.
A set of polynomials inMq is called a representative set modulo R` if the set contains

one and only one polynomial from each equivalence class of R`. If χ1, χ2 ∈ G(R`), then

1

q`

∑
F

χ1(F )χ2(F ) =

{
0 if χ1 6= χ2,

1 if χ1 = χ2,
(2.1)

F running through a representative set modulo R`. If n ≥ `, then Mn,q is a disjoint
union of qn−` representative sets. Thus, applying (2.1) with χ2 = χ0, we obtain that for
all n ≥ `,

1

qn

∑
F∈Mn,q

χ(F ) =

{
0 if χ 6= χ0,

1 if χ = χ0.
(2.2)
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We also have, for all A,B ∈Mq,

1

q`

∑
χ∈G(R`)

χ(A)χ(B) =

{
1 if A ≡ B mod R`,

0 otherwise.
(2.3)

2.3 L-functions

Let χ ∈ G(R`). The L-function of χ is the following series in u:

L(u, χ) =
∑
f∈Mq

χ(f)udeg(f),

which also admits the Euler product

L(u, χ) =
∏
P∈P

(1− χ(P )udeg(P ))−1. (2.4)

The series converges in |u| < 1/q. If χ is the principal character χ0 of G(R`), then

L(u, χ) =
1

1− qu
.

Otherwise, the orthogonality relation (2.2) implies that L(u, χ) is a polynomial in u of
degree at most

degL(u, χ) ≤ `− 1. (2.5)

The L-function L(u, χ) satisfies a functional equation (originally proved by Witt in the
thirties; see Roquette [Roq18] for an historical account): if χ is a primitive character
modulo R` then

L(u, χ) = (
√
qu)`−1ε(χ)L(

1

qu
, χ) (2.6)

where ε(χ) is a quantity of modulus 1 (sometimes known as ‘root number’). Comparing
coefficients, we obtain that

degL(u, χ) = `− 1

for primitive χ ∈ G(R`), as well as the following equality:∑
f∈Mi,q

χ(f) = ε(χ)qi−
`−1
2

∑
f∈M`−1−i,q

χ(f), (2.7)

for all 0 ≤ i ≤ `− 1.
The first one to realize that Weil’s proof of the Riemann Hypothesis for Function

Fields [Wei74, Thm. 6, p. 134] implies the Riemann Hypothesis for the L-functions of
χ ∈ G(R`) was Rhin [Rhi72, Chapitre 2] in his thesis (cf. [EH91, Thm. 5.6] and the
discussion following it). Hence we know that if we factor L(u, χ) as

L(u, χ) =

degL(u,χ)∏
i=1

(1− γi(χ)u), (2.8)

then for any i,
|γi(χ)| = √q. (2.9)

We note the following standard consequences of (2.9), and include a proof for complete-
ness.
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Lemma 2.1. Let n, ` ∈ N and χ ∈ G(R`). Then∣∣∣∣∣∣
∑

f∈Mn,q

Λq(f)χ(f)

∣∣∣∣∣∣ ≤
{

(`− 1)q
n
2 if χ 6= χ0,

qn if χ = χ0,
(2.10)

and ∣∣∣∣∣∣
∑

P∈Pn,q

χ(P )

∣∣∣∣∣∣ ≤
{

min{ q
n
2

n
(`+ 1), q

n

n
} if χ 6= χ0,

qn

n
otherwise.

Proof. The case χ = χ0 of (2.10) follows from (1.10). For χ 6= χ0, we equate (2.4) with
(2.8) and take logarithmetic derivatives to obtain

∑
f∈Mn,q

Λq(f)χ(f) = −
degL(u,χ)∑

i=1

γi(χ)n. (2.11)

By (2.5), (2.9), (2.11) and the triangle inequality,

|
∑

f∈Mn,q

Λq(f)χ(f)| ≤ (`− 1)q
n
2 . (2.12)

The bound
∣∣∣∑P∈Pn,q χ(P )

∣∣∣ ≤ qn/n follows from the bound |Pn,q| ≤ qn/n [Ros02, Prop. 2.1].

For χ 6= χ0, we obtain the additional bound as follows. We can split (2.12) into the con-
tribution of primes of degree n and proper prime powers:∣∣∣n ∑

f∈Pn,q

χ(f) +
∑

d|n, d 6=1

n

d

∑
f∈Pn

d
,q

χd(f)
∣∣∣ ≤ (`− 1)q

n
2 . (2.13)

As ∣∣∣∣∣∣
∑

d|n, d 6=1

n

d

∑
f∈Pn

d
,q

χd(f)

∣∣∣∣∣∣ ≤
∑

d|n, d 6=1

n

d
|Pn/d,q| ≤

∑
d|n, d 6=1

qn/d ≤ 2q
n
2 ,

we obtain from (2.13) and the triangle inequality that

|n
∑
f∈Pn,q

χ(f)| ≤ (`+ 1)q
n
2 .

After dividing by n, the lemma is established.

2.4 Sums over short intervals and their variance

For an arithmetic function α : Mq → C and n ≥ 1, define

S(n, α) =
∑

f∈Mn,q

α(f). (2.14)

The following lemma expresses sums over short intervals, and the variance of such sums,
as sums over characters in G(R`). A variant of this lemma appeared in a paper of Keating
and Rudnick [KR16].
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Lemma 2.2. Let −1 ≤ h ≤ n− 1 and set ` = n− h− 1. Then the following hold.

1. For any f, g ∈Mn,q,

1g∈I(f,h) =

∑
χ∈G(R`)

χ(A)χ(g)

q`
.

2. For any arithmetic function α : Mq → C and f ∈Mn,q we have∑
g∈I(f,h)

α(g) =

∑
χ∈G(R`)

χ(A)S(n, α · χ)

q`

= qn−`〈α〉Mn,q +

∑
χ0 6=χ∈G(R`)

χ(A)S(n, α · χ)

q`
.

(2.15)

3. For any arithmetic function α : Mq → C, the variance Varα(n, h) of {
∑

g∈I(f,h) α(g)}f∈Mn,q

may be expressed as

Varα(n, h) =

∑
χ0 6=χ∈G(R`)

|S(n, α · χ)|2

q2`
. (2.16)

Proof. The first part of the lemma is a restatement of the orthogonality relation (2.3). For
the second part of the lemma, we observe that

∑
g∈I(f,h) α(g) =

∑
g∈Mn,q

α(g) · 1g∈I(f,h),
and now we apply the first part of the lemma and interchange the order of summation.
Note that

S(n, α · χ0)

q`
= qn−`〈α〉Mn,q . (2.17)

We now prove the last part of the lemma. Given A ∈Mq/R`, write fA for a polynomial
in Mn,q in the equivalence class of A. We use (2.17) and (2.15) as follows:

Varα(n, h) =
1

qn

∑
f∈Mn,q

∣∣∣∣∣∣
∑

g∈I(f,h)

α(g)− qh+1〈α〉Mn,q

∣∣∣∣∣∣
2

=
1

q`

∑
A∈M/R`

∣∣∣∣∣∣
∑

g∈I(fA,h)

α(g)− S(n, α · χ0)

q`

∣∣∣∣∣∣
2

=
1

q`

∑
A∈M/R`

∣∣∣∣∣
∑

χ0 6=χ∈G(R`)
χ(A)S(n, α · χ)

q`

∣∣∣∣∣
2

=
1

q3`

∑
A∈M/R`

∑
χ1,χ2∈G(R`)\{χ0}

χ1(A)S(n, α · χ1)χ2(A)S(n, α · χ2).

Interchanging the order of summation and applying (2.1), we conclude the proof.

3 The variance of divisor function in short intervals

3.1 Moments of d2

Lemma 3.1. ’ We have
〈dq〉Mn,q = n+ 1
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and

〈d2
q〉Mn,q =

(
n+ 3

3

)
− 1

q

(
n+ 1

3

)
. (3.1)

Proof. The first part follows by interchanging the order of summation:

1

qn

∑
f∈Mn,q

dq(f) =
1

qn

∑
f∈Mn,q

∑
d|f

1 =
1

qn

∑
d∈Mq

∑
f∈Mn,q : d|f

1 =
1

qn

∑
d∈Mq ,deg(d)≤n

qn−deg(d)

=
∑

d∈Mq , deg(d)≤n

q− deg(d) = n+ 1.

For the second part, let Z(u) =
∑

f∈Mq
udeg(f) =

∏
P∈Pq(1 − u

deg(P ))−1. Since Z(q−s) =

ζq(s), we have Z(u) = 1/1(1− qu). We use the multiplicativity of dq to write

∑
f∈Mq

d2
q(f)udeg(f) =

∏
P∈Pq

(∑
k≥0

(k + 1)2uk deg(P )

)

=
∏
P∈Pq

1 + udeg(P )

(1− udeg(P ))3

=
∏
P∈Pq

(1− u2 deg(P ))

(1− udeg(P ))4

=
Z(u)4

Z(u2)
=

1− qu2

(1− qu)4
.

By the binomial theorem, (1 − qu)−4 =
∑

n≥0 u
n(−q)n

(−4
n

)
=
∑

n≥0 u
nqn
(
n+3

3

)
, and so∑

f∈Mn,q
d2
q(f) = qn

(
n+3

3

)
− q · qn−2

(
(n−2)+3

3

)
, and dividing through by qn concludes the

proof.

3.2 Correlation sums proof

Lemma 3.2. Let A,B ∈ Mq be coprime polynomials. Let n be a positive integer such
that

n ≥ deg(A) + deg(B).

Let ∆ be a non-zero polynomial of degree < n. Then the number of solutions to the
polynomial equation

Au−Bv = ∆, deg(Au) = deg(Bv) = n, u, v monic

is qn−deg(A)−deg(B).

Proof. The case ∆ = 1 is proven in [ABSR15, Lem. 7.2]. The general case is proved in
the same way.

Lemma 3.3. Let ∆ be a non-zero polynomial of degree < n. Let ai,∆ denote the number
of monic divisors of ∆ of degree i. Then∑

f∈Mn,q
dq(f)dq(f + ∆)

qn
= (n+ 1)2 +

bn
2
c∑

i=1

(n− 2i+ 1)2

qi
(ai,∆ − ai−1,∆).
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Proof. We follow and generalize the proof of [ABSR15, Thm. 7.1]. Fix a positive integer
n. Let α, β, γ, δ be non-negative integers such that α + β = γ + δ = n. Set

S(α, β; γ, δ; ∆) = #{x ∈Mα,q, y ∈Mβ,q, z ∈Mγ,q, u ∈Mδ,q : xy − zu = ∆}.

We have some obvious symmetries from the definition:

S(α, β; γ, δ; ∆) = S(β, α; γ, δ; ∆) = S(α, β; δ, γ; ∆).

Hence, to evaluate S(α, β; γ, δ; ∆) it suffices to assume that

α ≤ β, γ ≤ δ. (3.2)

Assuming (3.2) we write

S(α, β; γ, δ; ∆) =
∑
g|∆

monic

∑
x∈Mα,q

z∈Mγ,q

gcd(x,z)=g

#{y ∈Mβ,q, u ∈Mδ,q : xy − zu = ∆}. (3.3)

If x ∈ Mα,q, z ∈ Mγ,q and gcd(x, z) = g, then x/g, y/g are coprime and deg(g) ≤ α ≤
n/2. Hence

#{y ∈Mβ,q, u ∈Mδ,q : xy− zu = ∆} = #{y ∈Mβ,q, u ∈Mδ,q :
x

g
y− z

g
u =

∆

g
}, (3.4)

and by Lemma 3.2 we have

#{y ∈Mβ,q, u ∈Mδ,q :
x

g
y − z

g
u =

∆

g
} = qn−α−γ+deg(g). (3.5)

Plugging (3.4) and (3.5) in (3.3), we get that

S(α, β; γ, δ; ∆) =
∑

g|∆, monic
deg(g)≤min{α,β,γ,δ}

qn−α−γ+deg g
∑

x∈Mα,q

z∈Mγ,q

gcd(x,z)=g

1. (3.6)

Note that by [ABSR15, Eqs. (7.14-7.17)],

∑
x∈Mα,q

z∈Mγ,q

gcd(x,z)=g

1 =
∑

x′∈Mα−deg(g),q

z′∈Mγ−deg(g),q

gcd(x′,z′)=1

1 = qα−deg(g)+γ−deg(g) ·

{
1 α = deg(g) or γ = deg(g),

1− 1
q

α > deg(g) or γ > deg(g).

(3.7)
Plugging (3.7) in (3.6) we get that

S(α, β; γ, δ; ∆) = qn
∑

g|∆, monic
deg(g)≤min{α,β,γ,δ}

q− deg(g)

(
1− 1

q
· 1min{α,β,γ,δ}>deg(g)

)
. (3.8)

Consider the following sum:∑
f∈Mn,q

dq(f)dq(f+∆) = #{x, y, z, u ∈Mq : xy−zu = ∆, deg(xy) = deg(zu) = n}. (3.9)
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We partition the right-hand side of (3.9) into a sum over variables with fixed degree, that
it ∑

f∈Mn,q

dq(f)dq(f + ∆) =
∑

α+β=γ+δ=n,
α,β,γ,δ≥0

S(α, β; γ, δ; ∆). (3.10)

Plugging (3.8) in (3.10) we get that∑
f∈Mn,q

dq(f)dq(f + ∆)

qn

=
∑

α+β=γ+δ=n,
α,β,γ,δ≥0

∑
g|∆, monic

deg(g)≤min{α,β,γ,δ}

q−deg(g)

(
1− 1

q
· 1min{α,β,γ,δ}>deg(g)

)
.

Interchanging the order of summation we obtain∑
f∈Mn,q

dq(f)dq(f + ∆)

qn
=

∑
g|∆, monic
deg(g)≤n

2

q− deg(g)
∑

α+β=γ+δ=n,
α,β,γ,δ≥0

deg(g)≤min{α,β,γ,δ}

(
1− 1

q
· 1min{α,β,γ,δ}>deg(g)

)

=
∑

g|∆, monic
deg(g)≤n

2

q− deg(g)
(
(n− 2 deg(g) + 1)2

−(n− 2 deg(g)− 1)2

q
· 1deg(g)≤n

2
−1

)

= (n+ 1)2 +

bn
2
c∑

i=1

(n− 2i+ 1)2

qi
(ai,∆ − ai−1,∆),

as claimed.

Lemma 3.4. Let α : Mq → C. For −1 ≤ h ≤ n− 1,

Varα(n, h)

qh+1
=

∑
∆∈Fq [T ],deg(∆)≤h

(
〈α(f)α(f + ∆)〉f∈Mn,q −

∣∣〈α〉Mn,q

∣∣2) ,
where the summation is over (not necessarily monic) polynomials ∆.

Proof. Expanding the square in Varα(n, h), we have

Varα(n, h) =
1

qn

∑
f0∈Mn,q

∑
f,g∈I(f0,h)

α(f)α(g)− q2h+2|〈α〉Mn,q |2.

Letting ∆ := f − g, we see that deg(∆) ≤ h and that α(f)α(f + ∆) appears with weight
qh+1−n (since we may take f0 to be any polynomial in I(f, h)), which concludes the proof
once we divide by qh+1.
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3.2.1 Conclusion

Applying Lemma 3.4 with α = dq, separating the contribution of ∆ = 0 from the rest of
the terms and then using Lemmas 3.3 and 3.1 to evaluate the terms, we obtain

Vardq(n, h)

qh+1
= 〈|dq|2〉Mn,q − |〈dq〉Mn,q |2 +

∑
0≤deg(∆)≤h

bn
2
c∑

i=1

(n− 2i+ 1)2

qi
(ai,∆ − ai−1,∆)

=

(
n+ 3

3

)
− 1

q

(
n+ 1

3

)
− (n+ 1)2 +

bn
2
c∑

i=1

(n− 2i+ 1)2

qi

∑
0≤deg(∆)≤h

(ai,∆ − ai−1,∆).

(3.11)

To evaluate the inner sum, observe that∑
deg(∆)=k

ai,∆ =
∑

d∈Md,q

∑
deg(∆)=k

1d|∆

=
∑

d∈Mi,q

(q − 1)qk−deg(d) · 1k≥deg(d) = qk(q − 1) · 1k≥i. (3.12)

From (3.12), ∑
deg(∆)=k

(ai,∆ − ai−1,∆) = −qk(q − 1) · 1k=i−1. (3.13)

Plugging (3.13) in (3.11), we obtain

Vardq(n, h)

qh+1
=

(
n+ 3

3

)
− 1

q

(
n+ 1

3

)
− (n+ 1)2 − q − 1

q

∑
1≤i≤bn

2
c,h+1

(n− 2i+ 1)2.

Now it is a matter of school algebra to show that the above expression simplifies to
(1− 1/q)

(
n−2h−1

3

)
for h ≤ bn/2c − 1, and vanishes for larger h.

3.3 Functional equation proof

We write [un]f for the coefficient of un in a power series f . Since dq is the Dirichlet
convolution of the constant function 1 with itself, we have

S(n, dq · χ) = [un]L(u, χ)2. (3.14)

From the third part of Lemma 2.2 and from (3.14) we obtain

Vardq(n, h) =
n−h−1∑
k=1

∑
χ∈G(Rk)\G(Rk−1) |[un]L(u, χ)2|2

q2(n−h−1)
. (3.15)

If χ ∈ G(Rk)\G(Rk−1) then degL(u, χ)2 = 2(k−1). Hence, the k’s for which n > 2(k−1)
contribute 0 to the sum in (3.15), so that

Vardq(n, h) =
n−h−1∑
k=dn

2
e+1

∑
χ∈G(Rk)\G(Rk−1) |[un]L(u, χ)2|2

q2(n−h−1)
.
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From the functional equation (2.6) we obtain

Vardq(n, h) =
n−h−1∑
k=dn

2
e+1

∑
χ∈G(Rk)\G(Rk−1)

∣∣∣∣[un]
(
L( 1

qu
, χ)(
√
qu)k−1ε(χ)

)2
∣∣∣∣2

q2(n−h−1)

=
n−h−1∑
k=dn

2
e+1

q2n−2k+2

∑
χ∈G(Rk)\G(Rk−1)

∣∣[u2k−2−n]L(u, χ)2
∣∣2

q2(n−h−1)
.

(3.16)

By (3.14), we may replace [u2k−2−n]L(u, χ)2 with S(2k−2−n, dq ·χ). Doing so, and then
interchanging the order of summation in (3.16), we have

Vardq(n, h) =
n−h−1∑
k=dn

2
e+1

q2n−2k+2

∑
χ∈G(Rk)\G(Rk−1)

∑
f,g∈M2k−2−n,q

dq(f)χ(f)dq(g)χ(g)

q2(n−h−1)

=
n−h−1∑
k=dn

2
e+1

∑
f,g∈M2k−2−n,q

dq(f)dq(g)

q2k−2h−4

∑
χ∈G(Rk)\G(Rk−1)

χ(f)χ(g).

(3.17)

Since 2k − 2− n ≤ k − 1 ≤ k, we have

f ≡ g mod Rk−1 ↔ f ≡ g mod Rk ↔ f = g

for all f, g ∈M2k−2−n,q. Hence, the orthogonality relation (2.3) implies that∑
χ∈G(Rk)\G(Rk−1)

χ(f)χ(g) =
(
qk − qk−1

)
· 1f=g (3.18)

for all f, g ∈M2k−2−n,q. Plugging (3.18) in (3.17), we find that

Vardq(n, h) =

(
1− 1

q

) n−h−1∑
k=dn

2
e+1

qk+2h−n+2〈d2
q〉M2k−2−n,q . (3.19)

From (3.1) and (3.19), we have that

Vardq(n, h) =

(
1− 1

q

) n−h−1∑
k=dn

2
e+1

(
qk+2h−n+2

(
2k + 1− n

3

)
− qk+2h−n+1

(
2k − 1− n

3

))
.

If h ≥ bn/2c − 1, the sum is 0 as it is empty and is 0. Otherwise, it telescopes to(
1− 1

q

)
qh+1

(
n− 2h− 1

3

)
,

as needed.
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4 The variance of squarefree polynomials in short

intervals

4.1 Bounds on character sums and Möbius sums

The following bounds are originally due to Bhowmick, Lê and Liu [BLL17, Thms. 1–2].
They also follow from Theorem 5.1 below.

Lemma 4.1. [BLL17, Thms. 1–2] Let k ≥ 1 and let χ0 6= χ ∈ G(Rk). We have∑
f∈Mi,q

χ(f),
∑

f∈Mi,q

µq(f)χ(f) = O

(
q
i
2 e
Oq
(
i log log(k+2)

log(k+2)
+ k+2

log2(k+2)

))
.

4.2 Proof of Proposition 1.3

We begin by assuming that q is odd. By Lemma 2.2,

Varβm(n, h) =

∑
χ0 6=χ∈G(Rn−h−1)

∣∣∣∑f∈Mn,q
βm(f)χ(f)

∣∣∣2
q2(n−h−1)

. (4.1)

We have

∑
f∈Mn,q

βm(f)χ(f) =
∑

f∈Mn,q

∑
f=d2g

deg(d)>m

µq(d)χ(d2g) =

bn/2c∑
i>m

∑
d∈Mi,q

µq(d)χ2(d)
∑

g∈Mn−2i,q

χ(g).

(4.2)
Observe that we may start the summation over i from i ≥ (h+1)/2, since

∑
g∈Mn−2i,q

χ(g)

vanishes for smaller i. In odd characteristic, if χ is non-trivial then so is χ2 (sinceMq/R`

is of odd order q`). Hence, we may apply Lemma 4.1 with k = n ≥ n − h − 1 and with
both χ and χ2, obtaining∣∣∣∣∣∣

∑
f∈Mn,q

βm(f)χ(f)

∣∣∣∣∣∣ ≤
bn/2c∑

i>m, i≥(h+1)/2

∣∣∣q i2 q n−2i
2 eoq(n)

∣∣∣ ≤ q
n−max{m,h/2}

2 eoq(n). (4.3)

by the triangle inequality. Plugging (4.3) in (4.1), we obtain

Varβm(n, h) ≤ qh−max{m,h/2}eoq(n), (4.4)

as needed. If q is even, there are non-trivial characters χ ∈ G(Rn−h−1) such that χ2 is
trivial. For such characters,∑

d∈Mi,q

µq(d)χ2(d) =
∑

d∈Mi,q

µq(d) = 0

if i > 1, according to (1.10). For i = 0, 1 we have
∑

g∈Mn−2i,q
χ(g) = 0. This implies∑

f∈Mn,q
βm(f)χ(f) = 0. Hence (4.4) holds for all characters and the proof goes through

for even q as well.
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4.3 Proof of Proposition 1.4

By Lemma 2.2,

Varαm(n, h) =

∑
χ0 6=χ∈G(Rn−h−1)

∣∣∣∑f∈Mn,q
αm(f)χ(f)

∣∣∣2
q2(n−h−1)

. (4.5)

As in (4.2), ∑
f∈Mn,q

αm(f)χ(f) =
∑
i≤m

∑
d∈Mi,q

µq(d)χ2(d)
∑

g∈Mn−2i,q

χ(g).

If χ ∈ G(Rk) \G(Rk−1), then
∑

g∈Mn−2i,q
χ(g) = 0 if n− 2i ≥ k. Applying the functional

equation in the form (2.7), we may write∑
f∈Mn,q

αm(f)χ(f) = ε(χ)
∑

i≤m, (n−k)/2

qn−2i− k−1
2

∑
d∈Mi,q

µq(d)χ2(d)
∑

g∈Mk−1−(n−2i),q

χ(g) (4.6)

where |ε(χ)| = 1. Plugging (4.6) in (4.5), we obtain

Varαm(n, h) = q2h+3

n−h−1∑
k=1

∑
χ∈G(Rk)\G(Rk−1)

q−k

×

∣∣∣∣∣∣
∑

i≤m, (n−k)/2

q−2i
∑

d∈Mi,q

µq(d)χ2(d)
∑

g∈Mk−1−(n−2i),q

χ(g)

∣∣∣∣∣∣
2

. (4.7)

The orthogonality relation (2.3) tells us that∑
χ∈G(Rk)\G(Rk−1)

χ(f1)χ(f2) = qk−1
(
q · 1f1≡f2 mod Rk − 1f1≡f2 mod Rk−1

)
. (4.8)

Expanding the square in (4.7), interchanging the order of summation and plugging (4.8)
yields

Varαm(n, h) = q2h+2

n−h−1∑
k=1

∑
i1,i2≤m, (n−k)/2∑

d1∈Mi1,q

d2∈Mi2,q

g1∈Mk−1−(n−2i1),q

g2∈Mk−1−(n−2i2),q

µq(d1)µq(d2)q−2(i1+i2)
(
q · 1d21g2≡d22g1 mod Rk − 1d21g2≡d22g1 mod Rk−1

)
. (4.9)

We have deg(d2
1g2) = deg(d2

2g1) = 2i1 + 2i2 + k − 1 − n ≤ k − 1 since m ≤ n/4. If
f1 ≡ f2 mod Rk−1 or f1 ≡ f2 mod Rk for polynomials f1, f2 of the same degree which is
at most k − 1, then f1 must equal f2. Hence, the only terms that contribute to (4.9) are
those with d2

1g2 = d2
2g1 (‘diagonal terms’), and so

Varαm(n, h) = q2h+2(q − 1)
n−h−1∑
k=1

∑
i1,i2≤m, (n−k)/2

∑
d1∈Mi1,q

d2∈Mi2,q

g1∈Mk−1−(n−2i1),q

g2∈Mk−1−(n−2i2),q

d21g2=d22g1

µq(d1)µq(d2)q−2(i1+i2).
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The condition d2
1g2 = d2

2g1 can be written as(
d1

gcd(d1, d2)

)2

g2 =

(
d2

gcd(d1, d2)

)2

g1,

which is equivalent to

gi =

(
di

gcd(d1, d2)

)2

s

for a monic polynomial s of degree 2 deg gcd(d1, d2) − (n + 1 − k) (of which there exist
q2 deg gcd(d1,d2)−(n+1−k) if deg gcd(d1, d2) ≥ (n + 1 − k)/2, and otherwise there are no such
s). Writing D for deg gcd(d1, d2), we can rewrite the last sum as

Varαm(n, h) = q2h+2(q−1)
n−h−1∑
k=1

∑
i1,i2≤m, (n−k)/2

∑
d1∈Mi1,q

d2∈Mi2,q

µq(d1)µq(d2)

‖d1‖2‖d2‖2
q2D−(n+1−k)·12D≥n+1−k.

Summing first over i1 and i2, we may write

Varαm(n, h) = q2h+2(q − 1)
∑

i1,i2≤m

∑
d1∈Mi1,q

d2∈Mi2,q

µq(d1)µq(d2)

‖d1‖2‖d2‖2

n−h−1∑
k=n+1−2D

q2D−(n+1−k).

The inner sum is q2D−h−2
∑2D−h−2

r=0 q−r = q2D−h−2(1 − q−(2D−h−1))/(1 − q−1) if D ≥
(h+ 2)/2, and is 0 otherwise. All in all, Varαm(n, h) = F (h,m) where

F (h,m) = qh+1
∑

i=1,2: deg(di)≤m, di monic
deg gcd(d1,d2)≥(h+2)/2

µq(d1)µq(d2)

‖d1‖2‖d2‖2
‖ gcd(d1, d2)‖2(1−q−(2 deg gcd(d1,d2)−h−1)).

(4.10)
This concludes the proof.

4.4 Over the integers and far away

In [GMRR20] we prove the following integer analogue of Theorem 1.2.

Theorem 4.2. We have Varµ2(X,H) ∼ CH1/2 as X →∞ in the range H = Oε(X
11/6−ε),

H →∞.

As can be seen, we go slightly beyond the X1/2−ε range! We explain some of the ideas
that go into the proof of Theorem 4.2. The starting point is again a decomposition of µ2:

µ2 = αM + βM , αM(n) =
∑

d2|n, d≤M

µ(d), βM(n) =
∑

d2|n, d>M

µ(d).

4.4.1 On Proposition 1.4 in Z

We want to evaluate

I = VarαM (X,H) =
1

X

∫ X

0

 ∑
d2m∈[x,x+H]

d≤M

µ(d)−H
∑
d≤M

µ(d)

d2


2

dx.
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Here
∑

d≤M µ(d)/d2 is the mean value of αM . In place of the functional equation of L(u, χ)
used originally, we use a Poisson summation argument (which is philosophically the same).
To apply it, we first introduce smoothing. For smooth σ, ρ : R→ R concentrated on [0, 1],
consider the smoothed variance

Ĩ =
1

X

∫ X

0

σ
( x
X

)( ∑
m∈Z, d≤M

µ(d)ρ

(
d2m− x

H

)
− ρ̂(0)H

∑
d≤M

µ(d)

d2

)2

dx. (4.11)

We can now apply Poisson summation to

f(t) =
∑
d≤M

µ(d)ρ

(
d2t− x
H

)
obtaining ∑

m∈Z, d≤M

µ(d)ρ

(
d2m− x

H

)
= H

∑
ν∈Z, d≤M

µ(d)

d2
ρ̂(
Hν

d2
)e−2πiνx/d2 .

The term ρ̂(0)
∑

d≤M µ(d)/d2 cancels with the contribution of ν = 0. Plugging in (4.11),
we have

Ĩ = H2
∑

d1,d2≤M

∑
ν1,ν2∈Z\{0}

µ(d1)µ(d2)

d2
1d

2
2

ρ̂(
Hν1

d2
1

)ρ̂(
Hν2

d2
2

)σ̂(X
(ν1

d2
1

− ν2

d2
2

)
).

We choose σ so that the support of σ̂ is in (−1, 1). If M is small enough, namely M ≤
X1/4, only the ‘diagonal terms’ (i.e. those with ν1/d

2
1 = ν2/d

2
2) survive, since otherwise we

have a lower bound on |X(ν1/d
2
1ν2/d

2
2)| which is outside the support: |X(ν1/d

2
1−ν2/d

2
2)| ≥

X/(d2
1d

2
2) ≥ X/M4 ≥ 1. Hence,

Ĩ = σ̂(0)H2
∑

d1,d2≤M
ν1,ν2∈Z\{0}
ν1d22=ν2d21

µ(d1)µ(d2)

d2
1d

2
2

∣∣∣∣ρ̂(
Hν1

d2
1

)

∣∣∣∣2 .
This expression can either be evaluated directly, or as in Fq[T ], we can evaluate it in-

directly by a bootstrapping-type argument. A useful feature is that Ĩ does not depend
directly on X, but rather on H and M only. Removing the weights σ and ρ is routine,
by taking a limit of weight functions.

In the paper, we are in fact able estimate Ĩ for M larger than X1/4, by studying
some of the non-diagonal terms that arise. That is, terms with ν1/d

2
1 − ν2/d

2
2 small but

non-zero. We bound the contribution of such terms using the theory of quadratic forms.

4.4.2 On Proposition 1.3 in Z

The starting point for Proposition 1.3 is a Plancherel-type formula, namely (2.16). Over
the integers, we do not have such a nice, simple formula available. Fortunately, since we
only want to upper bound

J = VarβM (X,H) =
1

X

∫ X

0

 ∑
d2m∈[x,x+H]

d>M

µ(d)−H
∑
d>M

µ(d)

d2


2

dx,
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we can make some simplifications which allow us to pass to Fourier space. An inequality
of Saffari and Vaughan [SV77, p. 25] tells us (roughly) that J is bounded by

J̃ =
1

X

∫ 2X

0

 ∑
d2m∈[x,x(1+θ)]

d>M

µ(d)− θx
∑
d>M

µ(d)

d2


2

dx

for some θ with θ � H/X (so that the length of the interval [x, x(1+θ)] is of order O(H)).
In this new form, there is Plancherel-type formula, first found by Selberg in his study of
the variance of Λ [Sel43]. We explain his formula. We have, by Perron’s formula,∑

n≤x

Λ(n) =
1

2πi

∫
(c)

ζ ′(s)

ζ(s)

xs

s
ds

for any c > 1 and non-integer x. At least under RH, we can shift the contour to c ∈
(1/2, 1), picking a pole at s = 1:∑

n≤x

Λ(n) = x+
1

2πi

∫
(c)

ζ ′(s)

ζ(s)

xs

s
ds.

Using this with x and x(1 + θ), we find∑
n∈[x,x(1+θ)]

(Λ(n)−1) ≈ 1

2πi

∫
(c)

ζ ′(s)

ζ(s)

xs((1 + θ)s − 1)

s
ds =

1

2π

∫
R

ζ ′(c+ it)

ζ(c+ it)
xit
xc((1 + θ)s − 1)

c+ it
dt.

Writing ex in place of x,∑
n∈[ex,ex(1+θ)](Λ(n)− 1)

exc
≈ 1

2π

∫
R
eixt

ζ ′(c+ it)

ζ(c+ it)

(1 + θ)c+it − 1

c+ it
dt. (4.12)

The function of x in the left-hand side of (4.12) is the Fourier transform of

ζ ′(c+ it)

ζ(c+ it)

(1 + θ)c+it − 1

c+ it
,

and upon applying Plancherel theorem we obtain∫
R
|

∑
n∈[eu,eu(1+θ)]

(Λ(n)− 1)|2 du
e2cu
≈ 2π

∫
R

∣∣∣∣ζ ′(c+ it)

ζ(c+ it)

∣∣∣∣2 ∣∣∣∣(1 + θ)c+it − 1

c+ it

∣∣∣∣2 dt.
(As written, the integrals do not necessarily converge. However, introducing certain
weights solves the issue.) At this point, we can input information on the zeros and
growth of ζ to study the variance of primes.

A similar ‘trick’ can be used to relate J̃ to an integral of a Dirichlet series. In
practice, we dissect the series

∑
n≥1 βm(n)/ns = ζ(s)

∑
d>M µ(d)/d2s into dyadic pieces:

ζ(s)
∑

d∈Ik µ(d)/d2s for Ik = (2kM, 2k+1m]. This is beneficial, since Dirichlet polynomials
are easier to work with than with series (for instance, we may take c = 1/2 without wor-
rying about convergence issues), and more importantly, the contributions of the different
Dirichlet polynomials are different so they should be estimated separately. To summarize,
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the study of J reduces to that of J̃ , and by a dydadic decomposition and an application
of Plancherel, we want to bound∫

R
|ζ(1/2 + it)|2

∣∣∣∣∣∑
d∈Ik

µ(d)

d2it

∣∣∣∣∣
2 ∣∣∣∣(1 + θ)1/2+it − 1

1/2 + it

∣∣∣∣2 dt.
RH gives strong pointwise bounds on

∑
d∈Ik µ(d)/d2it, which allow us to bound the inte-

gral quite easily. However, we can do nicely without RH, by combining standard tools
for handling Dirichlet polynomials. These include Montgomery’s mean value theorem,
Huxley’s large value theorem and subconvexity bounds for ζ. For more details, see
[GMRR20].

5 The variance of factorization functions in short in-

tervals

5.1 Strategy of proof of Theorem 1.5

By Lemma 2.2 and the triangle inequality, we have∣∣∣∣∣∣
∑

f∈I(f0,h)

α(f)− qh+1〈α〉Mn,q

∣∣∣∣∣∣ ≤ max
χ0 6=χ∈G(Rn−h−1)

|
∑

f∈Mn,q

α(f)χ(f)|

and

Varα(n, h) ≤
maxχ0 6=χ∈G(Rn−h−1)

∣∣∣∑f∈Mn,q
α(f)χ(f)

∣∣∣2
qn−h−1

.

Thus, the result follows at once from the following theorem.

Theorem 5.1. Let α : Mq → C be a factorization function, and let χ0 6= χ ∈ G(R`).∣∣∣∣∣∣
∑

f∈Mn,q

α(f)χ(f)

∣∣∣∣∣∣ ≤ max
f∈Mn,q

|α(f)| q
n
2 e

Oq(
n log log(`+2)

log(`+2)
+ `

log2(`+2)
)
. (5.1)

Indeed, if ` = n−h−1 then the exponent of e in (5.1) is O(n log log(n+2)/ log(n+2)).
The rest of this section is dedicated to the proof of Theorem 5.1. We manage to prove
such a theorem, which works for any α, by reducing it to estimating a single character
sum, which we now describe.

Let Ω be the set of finite multisets of elements from N×N, so that ωf , the factorization
type of a polynomial f , is an element of Ω. For an element ω = {(di, ei) : 1 ≤ i ≤ k} ∈ Ω,
we define its size to be |ω| :=

∑k
i=1 diei and its length to be `(ω) := k. For a factorization

function α and a factorization type ω ∈ Ω, we denote by α(ω) the value of α on a
polynomial f with ωf = ω if such a polynomial exists, and otherwise set α(ω) = 0. We
have, by the triangle inequality,∣∣∣∣∣∣

∑
f∈Mn,q

α(f)χ(f)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
ω∈Ω
|ω|=n

α(ω)
∑

f∈Mn,q
ωf=ω

χ(f)

∣∣∣∣∣∣∣∣ ≤ max
f∈Mn,q

|α(f)|
∑
ω∈Ω
|ω|=n

∣∣∣∣∣∣∣∣
∑

f∈Mn,q
ωf=ω

χ(f)

∣∣∣∣∣∣∣∣ . (5.2)
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Thus, it suffices to bound the sum on the right-hand side of (5.2). In order to bound the
character sums ∑

f∈Mn,q :ωf=ω

χ(f),

we relate them to products of monomial symmetric polynomials evaluated at χ(P ) where
P runs over irreducible polynomials of certain degrees, see Lemmas 5.2 and 5.3 below.
We use tools from symmetric function theory in order to be able to use RH efficiently in
bounding these evaluations of symmetric polynomials.

We shall use the notation [un]f(u) for the coefficient of un in a power series f . We
also write exp(•) for e•.

5.2 Preparation for proof of Theorem 5.1

5.2.1 Symmetric function theory

A partition of size n is a finite (possibly empty) non-increasing sequence of positive
integers that sum to n. The length of a partition λ = (λ1, λ2, . . . , λk) is the number of
its elements and is denoted by `(λ) := k. We write λ ` n to indicate that λ sums to n.
The empty partition is of size and length 0. We denote by Y the set of all partitions.

An important class of symmetric polynomials is the monomial symmetric polynomi-
als. Given a partition λ = (λ1, λ2, . . . , λk) and variables X1, . . . , Xk, then the monomial
symmetric polynomial mλ(X1, . . . , Xk) is the symmetric polynomial

mλ(X1, . . . , Xk) :=
∑

∃π∈Sk:(λ′1,...,λ
′
k)=(λπ(1),...,λπ(k))

k∏
i=1

X
λ′i
i ∈ Z[X1, . . . , Xk],

where the sum is over the distinct permutations of λ. It is useful to extend mλ to the
case of a general number of variables X1, . . . , Xn. If n < k we define mλ(Xi : 1 ≤ i ≤ n)
to be zero. If n > k we set λj = 0 for j = k + 1, . . . , n and define

mλ(Xi : 1 ≤ i ≤ n) :=
∑

∃π∈Sn:(λ′1,...,λ
′
n)=(λπ(1),...,λπ(n))

n∏
i=1

X
λ′i
i ∈ Z[X1, . . . , Xn],

where the sum is over the distinct permutations of λ followed by n−k zeros. In particular,
mλ is the elementary symmetric polynomial ek if λ = (1, 1, . . . , 1) with k ones.

Another class of symmetric polynomials is the power sum symmetric polynomials.
Given a positive integer r, the power sum symmetric polynomial pr(Xi : 1 ≤ i ≤ n) is
the symmetric polynomial

pr(Xi : 1 ≤ i ≤ n) :=
n∑
i=1

Xr
i ∈ Z[X1, . . . , Xn].

More generally, given a partition λ = (λ1, λ2, . . . , λk), then the power sum symmetric
polynomial pλ(Xi : 1 ≤ i ≤ n) is the symmetric polynomial

pλ(Xi : 1 ≤ i ≤ n) :=
k∏
i=1

pλi(Xi : 1 ≤ i ≤ n).
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A basic result in symmetric function theory says that whenever m ≥ n, {mλ(Xi : 1 ≤
i ≤ m)}λ`n and {pλ(Xi : 1 ≤ i ≤ m)}λ`n are both bases for homogeneous symmetric
polynomials of degree n with rational coefficients. In particular, mλ(Xi : 1 ≤ i ≤ m)
can be expressed uniquely as a linear combination of the symmetric polynomials pµ for
partitions µ of size n, that is, there are unique coefficients cλ,µ ∈ Q such that

mλ(Xi : 1 ≤ i ≤ m) =
∑
µ`n

cλ,µpµ(Xi : 1 ≤ i ≤ m) (5.3)

for all m ≥ n (cλ,µ are independent of m).

5.2.2 Multiplicativity of character sums

Given d ≥ 1 and a factorization type

ω = {(di, ei) : 1 ≤ i ≤ k} ∈ Ω,

we denote by ω(d) ⊆ ω the factorization type {(di, ei) : 1 ≤ i ≤ k, di = d}. By definition,
ω is the disjoint of union of the ω(d)-s. Let 1ω be the indicator function of polynomials
f with ωf = ω. The following lemma shows that the character sums S(n, χ · 1ω) (recall
(2.14)) enjoy a multiplicative property.

Lemma 5.2. Let ω ∈ Ω with |ω| = n. Let χ be a Hayes character. Then

S(n, χ · 1ω) =
n∏
d=1

S(|ω(d)|, χ · 1ω(d)). (5.4)

Proof. Each f with ωf = ω can be written uniquely as f =
∏n

d=1 fd where fd is divisible
only by primes of degree d. We then have ωfd = ω(d), and the lemma follows by expanding
the right-hand side of (5.4).

5.2.3 Symmetric function theory

The following lemma expresses character sums, of the form appearing in the right-hand
side of (5.4), as an evaluation of a monomial symmetric polynomial.

Lemma 5.3. Let ω = {(d, ei) : 1 ≤ i ≤ k} ∈ Ω. Let λ ∈ Y be the partition whose parts
are {ei}ki=1 in non-increasing order. Let χ be a Hayes character. We have

S(|ω|, χ · 1ω) = mλ(χ(P ) : P ∈ Pd).
Proof. A polynomial f with ωf = ω is necessarily given by a product

∏k
i=1 P

ei
i where Pi

are distinct elements from Pd,q. Equivalently, f may be expressed as
∏

P∈Pd,q P
e(P ) where

the multiset {e(P ) : P ∈ Pd,q} is equal to

E := {ei : 1 ≤ i ≤ k} ∪ {0 : 1 ≤ i ≤ |Pd,q| − k}.
Moreover, by unique factorization, this form is unique. Thus,

S(|ω|, χ · 1ω) =
∑

f∈M|ω|:ωf=ω

χ(f) =
∑

e : Pd,q→N≥0

{e(P ):P∈Pd,q}=E

χ

 ∏
P∈Pd,q

P e(P )


=

∑
e : Pd,q→N≥0

{e(P ):P∈Pd,q}=E

∏
P∈Pd,q

(
χ(P )

)e(P )
,

which is just mλ evaluated at {χ(P ) : P ∈ Pd,q}, as needed.
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T1 T2 T3 T4

T5 T6 T7

Figure 2: (3, 2, 1, 1)-brick tabloids of shape (4, 3)

Eğecioğlu and Remmel [ER91, pp. 107–111] gave a combinatorial interpretation of
cλ,µ in (5.3) which we now describe. We begin with their definition of λ-brick tabloids.

Let λ = (λ1, λ2, . . . , λk), µ = (µ1, µ2, . . . , µr) be two partitions. Recall that the Young
diagram Yµ is the diagram which consists of left justified rows of squares of lengths
µ1, µ2, . . . , µk reading from top to bottom. For instance, if µ = (4, 3) then Yµ is given by

Yµ = .

A λ-brick tabloid T of shape µ is a filling of Yµ with bricks b1, . . . , bk of lengths λ1, . . . , λk,
respectively, such that

1. each brick bi covers exactly λi squares of Yµ all of which lie in a single row of Yµ,

2. no two brick overlap.

For example, if λ = (3, 2, 1, 1) and µ = (4, 3), then we must cover Yµ with the bricks

b1

,
b2

,
b3

,
b4

.

Here, bricks of the same size are indistinguishable. There are in total seven λ-brick
tabloids of shape µ, given in Figure 2.

We let Bλ,µ denote the set of λ-brick tabloids of shape µ. We define a weight w(T )
for each λ-brick tabloid T ∈ Bλ,µ by

w(T ) =
∏
b∈T

wT (b),

where for each brick b in T , |b| denotes the length of b and

wT (b) =

{
1 if b is not at the end of a row in T ,

|b| if b is at the end of a row in T .

Thus w(T ) is the product of the lengths of the rightmost bricks in T . For example, for the
seven (3, 2, 1, 1)-brick tabloids of shape (4, 3) given in Figure 2, the weights are computed
to be w(T1) = 6, w(T2) = 3, w(T3) = 3, w(T4) = 2, w(T5) = 6, w(T6) = 1 and w(T7) = 3.
We let

w(Bλ,µ) :=
∑

T∈Bλ,µ

w(T ).
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Eğecioğlu and Remmel [ER91, p. 111, Rel. (11)] proved that for partitions λ, µ ` n we
have

cλ,µ = (−1)`(λ)−`(µ)w(Bλ,µ)Pµ, (5.5)

where
Pµ := Pπ∈Sn(π has cycle type µ).

Here Pπ∈Sn is the uniform probability measure on the symmetric group Sn, and we say
that π has a cycle type (µ1, µ2, . . . , µr) if the cycle sizes of π are given by µ1, . . . , µr.

Lemma 5.4. Let n and k be positive integers. Let µ ` n. We have

∑
λ`n
`(λ)≤k

w(Bλ,µ) ≤
k∑
i=0

(
n

i

)
. (5.6)

Proof. Write µ as (µ1, . . . , µr). A λ-brick tabloid of shape µ determines the partition λ
uniquely. Indeed, λ can be recovered by reading the lengths of the bricks in each row
of the tabloid. Thus, the set ∪λ`n, `(λ)≤kBλ,µ may be identified with a sequence {bi}ri=1

of positive integers with
∑r

i=1 bi ≤ k, and a double sequence {ai,j}1≤i≤r, 1≤j≤bi of positive

integers with
∑bi

j=1 ai,j = µi for each i as follows. The number bi is set to be the number
of blocks in the i-th topmost row of the tabloid, and the number ai,j is set to be the
length of th j-th leftmost brick in the i-topmost row. Under this identification, w(Bλ,µ)
is given by the product

∏r
i=1 ai,bi , and it follows that for any t ≥ 0 we have

∑
λ`n
`(λ)=t

w(Bλ,µ) =
∑

b1,...,br≥1
b1+...+br=t

∑
∀1≤i≤r:

ai,1,...,ai,bi≥1∑bi
j=1 ai,j=µi

r∏
i=1

ai,bi . (5.7)

Consider the generating function

B(u) :=
∑
λ`n

ω(Bλ,µ)u`(λ).

Letting c(n1, n2, n3) be the number of solutions to x1 + x2 + . . .+ xn1 = n3 with xn1 = n2

and xi ≥ 1, it follows from (5.7) that

B(u) =
∑
∀1≤i≤r:
bi,yi≥1

r∏
i=1

c(bi, yi, µi)yiu
bi =

r∏
i=1

(
∑
bi,yi≥1

c(bi, yi, µi)yiu
bi).

As c(n1, n2, n3) is also the number of solutions to x1 + . . . + xn1−1 = n3 − n2 in positive
integers, a standard combinatorial result says that

c(n1, n2, n3) =


(
n3−n2−1
n1−2

)
if n3 ≥ n2 + n1 − 1, n1 ≥ 2,

1n2=n3 if n1 = 1,

0 otherwise,
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so that

B(u) =
r∏
i=1

(µiu+

µi−1∑
y=1

µi−y+1∑
b=2

(
µi − y − 1

b− 2

)
yub)

=
r∏
i=1

(µiu+

µi−1∑
y=1

yu2(1 + u)µi−y−1)

=
r∏
i=1

((1 + u)µi − 1),

where in the last passage we made use of the identity
∑d

i=1 ix
i = x(dxd+1 − (d + 1)xd +

1)/(x−1)2 with d = µi−1 and x = 1/(1 +u). As the left-hand side of (5.6) is the sum of
the first k+1 coefficients of B(u), and they are bounded from above by the corresponding
coefficients of

∏r
i=1(1 + u)µi = (1 + u)n =

∑n
i=0

(
n
i

)
ui, the proof is concluded.

5.2.4 Permutation statistics

We denote the expectation of a function f : Sn → R with respect to the uniform probabil-
ity measure on Sn by Eπ∈Snf(π). We denote by `(π) the number of cycles in a permutation
π.

Lemma 5.5. Let n ≥ 1, m ≥ 2 be positive integers. Let z1, z2 ∈ C. Define the following
function on Sn:

f(π) =
∏

C∈π,m-|C|

z1

∏
C∈π,m||C|

z2 (5.8)

where the product is over the disjoint cycles of π. Then

Eπ∈Snf(π) = [un](1− u)−z1(1− um)(−z2+z1)/m.

Proof. The exponential formula for permutations [Sta99, Cor. 5.1.9] states the following.
Given a function g : N→ C, we construct a corresponding function on permutations (on
arbitrary number of elements) as follows:

G(π) =
∏
C∈π

g(|C|),

where the product is over the disjoint cycles of π. We then have the following identity of
formal power series:

1 +
∑
i≥1

(Eπ∈SiG(π))ui = exp(
∑
j≥1

g(j)

j
uj).

Applying the ideneity with

g(j) =

{
z1 if m - j,
z2 otherwise,

we find that G(π) = f(π) for every π ∈ Sn, and the lemma follows by a short computation.
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5.2.5 Bounds on certain finite sums

Lemma 5.6. Let x ≥ 2 be a real number and n be a positive integer. Then

1.
∑

d1d2=n 2d1xd2 ≤ 8xn.

2. If furthermore x ≥ 4,
∑

d1d2=n, d2<n
2d1xd2 ≤ 10xn/2.

Proof. We begin with the first part. We may assume n > 1. Consider the function
f(t) = 2

n
t xt on [1, n]. Its derivative is

f ′(t) = f(t)(log x− n log 2

t2
),

so that f is either increasing from 1 to n (if n log 2/ log x ≤ 1), or decreasing from 1 to√
n log 2/ log x and increasing from

√
n log 2/ log x to n (otherwise). As f(1) = 2nx ≤

2xn = f(n), it follows that∑
d1d2=n

2d1xd2 =
∑
d2|n

f(d2) ≤ 4xn + (n− 2) max{f(2), f(n/2)} · 1n not a prime.

If n is a prime, we are done. Otherwise, it suffices to show that (n− 2)22xn/2 ≤ 4xn and
that (n − 2)2n/2x2 ≤ 4xn. For n = 4, 5 these are easy to verify, and for larger n they
follow by induction. This establishes the first part of the lemma. The proof of the second
part follows similar lines and is therefore omitted.

The following variant of Lemma 5.6 is also needed. We omit the similar proof.

Lemma 5.7. Let x ∈ {
√

2,
√

3, 2, 3}. For any positive integer n we have∑
d1d2=n, d1 6=n

2d1xd2 ≤ 7xn.

For x ∈ {2, 3} we also have
∑

d1d2=n, 1<d2<n
2d1xd2 + 1.4nx ≤ 14xn/2.

Lemma 5.8. For any n ≥ 1 we have
∑3

i=0

(
n
i

)
≤ 7 · 1.4n.

Proof. For n ≤ 9 this is checked by a short computation. For n ≥ 10 we have
∑3

i=0

(
n
i

)
=

(n3 + 5n+ 6)/6 ≤ 2n3, and an inductive argument shows that 2n3 ≤ 7 · 1.4n.

5.2.6 Bounds on coefficients of a generating function

The following lemma is based on recent proofs by Bhowmick, Lê and Liu [BLL17,
Thms. 1–2].

Lemma 5.9. Let t, r ≥ 2. Set L := b2 logt rc and

Z(u) := exp
( ∑

1≤k≤L

20tk

k
uk +

∑
k>L

20(r + 1)
t
k
2

k
uk
)
.

Then

|[un]Z(u)| ≤ t
n
2

(
20(r + 1) + n− 1

n

)
(5.9)
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for all n ≥ 1. If r ≥ max{200000, tlog2 t}, we have

|[un]Z(u)| ≤ t
n
2 t

n log log r
log r exp(140

(r + 1)

(log r)2
t) (5.10)

for all n ≥ 1. If r = O(n), we have

|[un]Z(u)| ≤ t
n
2

+Ot(
n log log(n+2)

log(n+2)
). (5.11)

Proof. We work with the modified function

Z̃(u) := Z(u/
√
t),

so that
[un]Z(u) = tn/2[un]Z̃(u).

As tk/2 ≤ r + 1 for k ≤ L, we have∣∣∣[un]Z̃(u)
∣∣∣ ≤ ∣∣∣∣∣[un] exp(

∑
k≥1

20(r + 1)
uk

k
)

∣∣∣∣∣ = [un](1− u)−20(r+1),

which establishes (5.9). As Z̃ has non-negative coefficients and radius of convergence 1,
we have

|[un]Z̃(u)| ≤
∑
i≥0

Ri−n[ui]Z̃(u) =
Z̃(R)

Rn

for every R ∈ (0, 1). If R ∈ (1.2/
√
t, 1), we can bound

∑
1≤k≤L 20tk/2Rk/k from above by∑

1≤k≤L

20tk/2

k
Rk ≤ 20(R

√
t)L

1− 1/(R
√
t)
≤ 120(r + 1)RL,

and the sum
∑

k>L 20(r + 1)Rk/k by∑
k>L

20(r + 1)
Rk

k
≤ 20(r + 1)

L+ 1

RL

1−R
.

Thus, for every R ∈ (1.2/
√
t, 1),

|[un]Z̃(u)| ≤ exp
(

10(r + 1)RL(6 +
1

(L+ 1)(1−R)
)− n logR

)
. (5.12)

Assume r ≥ 200000 and choose R = t−
log log r
log r in (5.12). We then have

−n logR = n
log log r

log r
log t, RL ≤ t−

log log r
log r

(2 logt r−1) =
t
log log r
log r

(log r)2
≤ t

(log r)2
. (5.13)

Assuming further r ≥ tlog2 t, we have log t log log r
log r

∈ (0, 1), which impliesR ≤ 1−log t log log r/(2 log r),
and so

1

(L+ 1)(1−R)
≤ log t

2 log r

2 log r

log t log log r
≤ 1. (5.14)

Plugging (5.13) and (5.14) in (5.12), we obtain (5.10). To prove (5.11), use (5.10) if
r ≥ max{200000, tlog2 t,

√
n}, and otherwise use (5.9) together with the bound

(
n+k
n

)
≤

(n+ k)min{n,k}.
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5.3 Proof of Theorem 5.1

By (5.2), it suffices to bound ∑
ω∈Ω
|ω|=n

|S(n, χ · 1ω)|,

where 1ω is the indicator function of polynomials f with ωf = ω (see (2.14) for the
definition of S). Let

Ωd ⊆ Ω

be the subset of factorization types containing only pairs (x, y) ∈ N2 with x = d. The ele-
ments of Ωd, for each d, may be parametrized by partitions – to each λ = (λ1, λ2, . . . , λk) ∈
Y we associate

ωλ,d := {(d, λ1), . . . , (d, λk)} ∈ Ωd.

Note that |ωλ,d| = d|λ|. By Lemma 5.2,
∑

ω∈Ω, |ω|=n |S(n, χ · 1ω)| is the coefficient of un

in the following power series:

Fχ(u) :=
∏
d≥1

Fd(u
d)

where
Fd(u) :=

∑
λ∈Y

∣∣S(d|λ|, χ · 1ωλ,d)
∣∣u|λ|.

The terms with `(λ) > |Pd,q| do not contribute to Fd(u), as there is no factorization type
with more than |Pd,q| distinct primes of degree d. By Lemma 5.3 and (5.3), for each
λ ∈ Y and d ≥ 1 we have

S(d|λ|, χ · 1ωλ,d) =
∑
µ`|λ|

cλ,µpµ(χ(P ) : P ∈ Pd,q). (5.15)

Let ord(χ) ≥ 2 be the order of χ. Writing µ as (µ1, µ2, . . . , µr), we may bound pµ(χ(P ) :
P ∈ Pd,q) using Lemma 2.1 as follows:

|pµ(χ(P ) : P ∈ Pd,q)| =
r∏
i=1

|pµi(χ(P ) : P ∈ Pd,q)|

≤
∏

1≤i≤r
ord(χ)-µi

(
min{q

d
2

d
(`+ 1),

qd

d
}

) ∏
1≤i≤r

ord(χ)|µi

(
qd

d

)
.

(5.16)

From (5.15), (5.16), (5.8) and (5.5), we have for all n ≥ 1∑
λ`n

`(λ)≤|Pd,q |

∣∣S(d|λ|, χ · 1ωλ,d)
∣∣ ≤ ∑

λ,µ`n

`(λ)≤|Pd,q |

|cλ,µ|
∏

1≤i≤`(µ)
ord(χ)-µi

(
min{q

d
2

d
(`+ 1),

qd

d
}

) ∏
1≤i≤`(µ)
ord(χ)|µi

(
qd

d

)

= Eπ∈Snf(π)
( ∑

λ`n
`(λ)≤|Pd,q |

w(Bλ,µπ)
)
,

(5.17)

where f is defined as in (5.8) with m := ord(χ) and

z1 = z1,d := min{q
d
2

d
(`+ 1),

qd

d
}, z2 = z2,d :=

qd

d
,
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and µπ is the partition of n whose parts are the cycle sizes of π. By Lemma 5.4 and
(5.17), the coefficients of Fd are bounded from above by the coefficients of

Gd(u) := 1 +
∑
n≥1

( |Pd,q |∑
i=0

(
n

i

))
Eπ∈Snf(π)un.

If q ≥ 4, we do the following. Replacing
∑|Pq |

i=0

(
n
i

)
with 2n, we use Lemma 5.5 to bound

the coefficients of Gd from above by the coefficients of

Hd(u) := (1− 2u)−z1,d(1− (2u)ord(χ))(−z2,d+z1,d)/ord(χ),

and so the coefficients of Fχ are bounded from above by the coefficients of

Hχ(u) :=
∏
d≥1

Hd(u
d).

Summarizing,∑
ω∈Ω, |ω|=n

|S(n, χ · 1ω)| = [un]Fχ(u) ≤ [un]Hχ(u)

= [un]
∏
d≥1

(1− 2ud)−z1,d(1− (2u)d ord(χ))(−z2,d+z1,d)/ord(χ).
(5.18)

The logarithm of the power series Hχ is given by

logHχ(u) =
∑
i,d≥1

2iudi

i
z1,d +

∑
i,d≥1

2iord(χ)udi ord(χ)

i

z2,d − z1,d

ord(χ)
,

so that

[uk] logHχ(u) =
1

k

∑
di=k

2i(z1,dd) +
1ord(χ)|k

k
·
∑

di= k
ord(χ)

2iord(χ)i(z2,d − z1,d)d.

Set
L := b2 logq(`+ 1)c.

For d ≤ L, we have z1,d = z2,d = qd/d, so that by the first part of Lemma 5.6 with x = q,

[uk] logHχ(u) ≤ 1

k

∑
di=k

2iqd ≤ 8qk

k
.

for all 1 ≤ k ≤ L. As z2,d − z1,d ≤ qd/d and z1,d ≤ q
d
2 (`+ 1)/d, we also have, by the first

part of Lemma 5.6 with x =
√
q and the second part of the lemma with x = q, that

[uk] logHχ(u) ≤ (`+ 1)

k

∑
di=k

2iq
d
2 +

1ord(χ)|k

k
·
∑

di= k
ord(χ)

2iord(χ)qd

≤ 8(`+ 1)
q
k
2

k
+ 10

q
k
2

k
≤ 10(`+ 2)

q
k
2

k

(5.19)
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for all k ≥ 1. From (5.18) and (5.19), we have∑
ω∈Ω, |ω|=n

|S(n, χ · 1ω)| ≤ [un] exp(
∑

1≤k≤L

10qk

k
uk +

∑
k>L

10(`+ 2)
q
k
2

k
uk),

and by Lemma 5.9 with t = q, r = ` + 1, we establish the theorem for q ≥ 4. We now
suppose q ∈ {2, 3}. We define H̃d := Hd for d ≥ 2, while for d = 1

H̃1(u) := 1 +
∑
n≥1

1.4nEπ∈Snf(π)un = (1− 1.4u)−z1,1(1− (1.4u)ord(χ))(−z2,1+z1,1)/ord(χ),

where in the last passage we used Lemma 5.5. As |P1,q| = q ≤ 3 for q ∈ {2, 3}, it follows

that
∑|P1,q |

i=0

(
n
i

)
≤
∑3

i=0

(
n
i

)
, which is at most 7 ·1.4n by Lemma 5.8. Thus the coefficients

of G1 are bounded from above by those of H̃1 times 7, and so the coefficients of Fχ are
bounded from above by those of

H̃χ(u) :=
∏
d≥1

H̃d(u
d),

times 7. As in the case q ≥ 4, we proceed to upper bound the coefficients of log H̃χ. For
d ≤ L, we have z1,d = z2,d = qd/d, so that by Lemma 5.7 with x = q,

[uk] log H̃χ(u) ≤ 1

k

(
1.4kq +

∑
di=k, d6=1

2iqd
)
≤ 10

qk

k
,

for all 1 ≤ k ≤ L, where we used 1.4 < q ≤ 3. For any k ≥ 1 we have by Lemma 5.7 that

[uk] log H̃χ(u) ≤ (`+ 1)

k

(
1.4kq

1
2 +

∑
di=k, d6=1

2iq
d
2

)
+

1ord(χ)|k

k
·
( ∑
di= k

ord(χ)
, d 6=1

2iord(χ)qd + 1.4kq
)

≤ (`+ 1)

k

(
2 · 1.4k + 7q

k
2

)
+ 14

q
k
2

k
≤ 20(`+ 2)

q
k
2

k
,

From this point we continue as in the case q ≥ 4 and conclude the proof of the theorem.

6 The variance of sums of two squares in short in-

tervals

6.1 Outline of proof

In this section we write [un]f for the coefficient of un in a power series f , and χ2 for the
unique non-principal quadratic Dirichlet character modulo T .

We have discussed short interval characters χ ∈ G(R`) and their L-functions. For
such characters, χ · χ2 is a Dirichlet character ramified at ∞ and at T . Its L-function is
defined as one would expect: L(u, χ · χ2) =

∑
f∈Mq

χ(f)udeg(f). If χ ∈ G(R`) then χ(f)
depends only on the first ` coefficients of f , we find that, for n ≥ `+ 1,∑
f∈Mn,q

χ(f)χ2(f) =
∑
c∈F×q

∑
f∈Mn,q , f(0)=c

χ(f)χ2(T + c) =
∑
c∈F×q

χ2(T + c)
∑

f∈Mn−1,q

χ(f) = 0,
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so that L(u, χ · χ2) is a polynomial of degree at most `. If χ is primitive then the degree
is exactly `. Weil’s RH applied to L(u, χ), L(u, χ · χ2) implies

[un]L(u, χ), [un]L(u, χ · χ2) = On,`(q
n
2 ). (6.1)

Given a short interval character χ, the following lemma relates
∑

f∈Mn,q
b(f)χ(f) to the

L-functions of χ and χ · χ2. It is proved in §6.2.

Lemma 6.1. Let χ ∈ G(R`). Then

∑
f∈Mn,q

b(f)χ(f) = [un]
(√

L(u, χ)L(u, χ · χ2)
∏
i≥1

(
L(u2i , χ2i)

L(u2i , χ2i · χ2)

)2−i−1

× (1− χ(T )u)−1/2
∏
i≥1

(1− χ2i(T )u2i)2−i−1
)
. (6.2)

(The roots in the right-hand side of (6.2) are chosen so that the constant terms remain
1.)

In the large-q limit, this identity can be significantly simplified, as the following lemma
shows, whose proof is given in §6.3.

Lemma 6.2. Let χ0 6= χ ∈ G(R`). Then∑
f∈Mn,q

b(f)χ(f) = [un]
√
L(u, χ)L(u, χ · χ2) +On(q

n
2
− 1

4 ), (6.3)

∑
f∈Mn,q

b(f)χ(f) = On(q
n
2 ). (6.4)

For χ ∈ G(RN)\G(RN−1), we factorize L(u, χ) =
∏N−1

i=1 (1−γi(χ)u) and L(u, χ ·χ2) =∏N
i=1(1− γi(χ ·χ2)u), and define Θχ ∈ U(N − 1) to be a unitary matrix with eigenvalues

γi(χ)/
√
q and Θχ·χ2 ∈ U(N) to be a unitary matrix with eigenvalues γi(χ · χ2)/

√
q. In

the following proposition, proved in §6.4, we express Varb(n, h) in terms of Θχ and Θχ·χ2 .

Proposition 6.3. Let −1 ≤ h ≤ n− 1. We have

Varb(n, h)

qh+1

= q−(n−h−1)
∑

χ∈G(Rn−h−1)\G(Rn−h−2)

∣∣∣∣[un]
√

det(I − uΘχ) · det(I − uΘχ·χ2)

∣∣∣∣2
+On

(
q−

1
4

)
. (6.5)

We are able to evaluate the integral in (6.5) by making use of a recent equidistribution
theorem of Sawin [Saw18]. We adopt the following notation: for a continuous class
function f : U(N − 1) × U(N) → C, where U(n) is the n × n unitary group, we define
the function 〈f〉 : U(1)× U(1)→ C as the unique continuous map such that∫

U(N−1)×U(N)

f(g1, g2)ψ(det g1, det g2) dg1 dg2

=

∫
U(N−1)×U(N)

〈f〉(det g1, det g2)ψ(det g1, det g2) dg1 dg2,
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for all continuous functions ψ : U(1)× U(1)→ C. That is, 〈f〉(c1, c2) is the integral of f
over the coset of SU(N − 1) × SU(N) ≤ U(N − 1) × U(N) consisting of elements with
determinants c1, c2, against the unique SU(N − 1) × SU(N)-invariant measure on that
coset, of total mass 1. We can now state the special case of Sawin’s result that we need.

Theorem 6.4. [Saw18, Thm. 1.2] If f : U(N − 1)×U(N) is a continuous class function
and N ≥ 6, then

lim
q→∞

[
1

qN

∑
χ∈G(RN )\G(RN−1)

f(Θχ,Θχ·χ2)−
1

qN

∑
χ∈G(RN )\G(RN−1)

〈f〉(det Θχ, det Θχ·χ2)

]
= 0

where the limit is taken for q of fixed characteristic.

We introduce the notation, for a unitary matrix g,

Ak,(z)(g) := [uk] det(1− ug)z. (6.6)

Note that Ak,(z)(g) is a symmetric homogeneous polynomial of degree k in the eigenvalues
of g. Because we will make use especially of the case z = 1/2, we introduce the abbrevia-
tion Ak(g) := Ak,(1/2)(g). Theorem 6.4 allows us to deduce the following corollary, proved
in §6.5.

Corollary 6.5. Fix constants −1 ≤ h ≤ n−1 and let N = n−h−1. For n ≤ N(N −1)
and N ≥ 6,

lim
q→∞

q−(n−h−1)
∑

χ∈G(Rn−h−1)\G(Rn−h−2)

∣∣∣[un]
√

det(1− uΘχ) det(1− uΘχ·χ2)
∣∣∣2

=
∑
j+k=n
j,k≥0

∫
U(N−1)

|Aj(g1)|2 dg1

∫
U(N)

|Ak(g2)|2 dg2, (6.7)

with the limit taken along a sequence of q of fixed characteristic.

In order to give a succinct evaluation of the integrals on the right-hand side of Corol-
lary 6.7, we make use of z-measures on partitions, first introduced by Kerov, Olshanski,
and Vershik [KOV93]. We briefly survey them in §6.6. The following theorem evaluates
the random matrix integrals appearing in Corollary 6.5. It is proved in §6.7.

Theorem 6.6. For g ∈ U(N), with An,(z)(g) defined by (6.6), we have∫
U(N)

An,(z)(g)An,(z′)(g
−1) dg =

(zz′)n
n!

P(n)
z,z′(λ1 ≤ N). (6.8)

In §6.8 we quickly prove Theorem 1.7 from Proposition 6.3, Corollary 6.5 and Theo-
rem 6.6. In §6.9 we prove Proposition 1.8 from basic properties of z-measures.

6.2 Proof of Lemma 6.1

The lemma is equivalent to the following formal identity:

∑
f∈Mq

b(f)χ(f)udeg f =
√
L(u, χ)L(u, χ · χ2)

∏
i≥1

(
L(u2i , χ2i)

L(u2i , χ2i · χ2)

)2−i−1

× (1− χ(T )u)−1/2
∏
i≥1

(1− χ2i(T )u2i)2−i−1

.

(6.9)
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We verify (6.9) by comparing the Euler product of both sides. By [BSSW16, Prop. 2.4],
the function b is multiplicative (that is, b(fg) = b(f)b(g) for coprime f, g ∈Mq), and at
prime powers we have

b(P k) =

{
1 if 2 | k or χ2(P ) ∈ {0, 1},
0 otherwise.

(6.10)

Since b · χ is multiplicative, (6.10) implies that the left-hand side of (6.9) factors as∏
P :χ2(P )=1

(1− χ(P )udegP )−1
∏

Q:χ2(Q)=−1

(1− χ(Q2)u2 degQ)−1(1− χ(T )udeg T )−1, (6.11)

where P,Q denote monic irreducible polynomials. We have

L(u, χ) =
∏

P :χ2(P )=1

(1− χ(P )udegP )−1
∏

Q:χ2(Q)=−1

(1− χ(Q)udegQ)−1(1− χ(T )u)−1,

L(u, χ · χ2) =
∏

P :χ2(P )=1

(1− χ(P )udegP )−1
∏

Q:χ2(Q)=−1

(1 + χ(Q)udegQ)−1.

(6.12)

In particular, (6.12) implies that

L(u, χ)

L(u, χ · χ2)
=

∏
Q:χ2(Q)=−1

(1− χ(Q)udegQ)−1

(1 + χ(Q)udegQ)−1
(1− χ(T )u)−1

(6.13)

and that√
L(u, χ)L(u, χ · χ2) =

∏
P :χ2(P )=1

(1− χ(P )udegP )−1
∏

Q:χ2(Q)=−1

(1− χ2(Q)u2 degQ)−1/2

× (1− χ(T )u)−1/2. (6.14)

Using (6.12), (6.13) and (6.14), we find that the right-hand side of (6.9) factors as∏
P :χ2(P )=1

(1− χ(P )udegP )−1 ·
∏

Q:χ2(Q)=−1

(1− χ2(Q)u2 degQ)−1/2

·
∏
i≥1

∏
Q:χ2(Q)=−1

(
(1− χ2i(Q)u2i degQ)−1

(1 + χ2i(Q)u2i degQ)−1

)2−i−1

· (1− χ(T )u)−1/2
∏
i≥1

(1− χ2i(T )u2i)−2−i−1

· (1− χ(T )u)−1/2
∏
i≥1

(1− χ2i(T )u2i)2−i−1

=
∏

P :χ2(P )=1

(1− χ(P )udegP )−1 ·
∏

Q:χ2(Q)=−1

(1− χ2(Q)u2 degQ)−1/2

·
∏
i≥1

∏
Q:χ2(Q)=−1

(
(1− χ2i(Q)u2i degQ)−1

(1 + χ2i(Q)u2i degQ)−1

)2−i−1

(1− χ(T )u)−1.

(6.15)
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It remains to establish equality between the Euler products (6.11) and (6.15). The con-
tribution of the prime T is the same in both, and so is the contribution of primes P
satisfying χ2(P ) = 1. Now let Q be a prime satisfying χ2(Q) = −1. It is sufficient to
prove that the contribution of this prime in both products is the same, that is

(1−χ(Q2)u2 degQ)−1 = (1−χ2(Q)u2 degQ)−1/2
∏
i≥1

(
(1− χ2i(Q)u2i degQ)−1

(1 + χ2i(Q)u2i degQ)−1

)2−i−1

. (6.16)

Letting z = χ2(Q)u2 degQ, the identity (6.16) becomes

(1− z)−1/2 =
∏
i≥1

(
1 + z2i−1

1− z2i−1

)2−i−1

, (6.17)

which follows by noting the telescoping nature of the right-hand side of (6.17):

∏
i≥1

(
1 + z2i−1

1− z2i−1

)2−i−1

=
∏
i≥1

(1− z2i)2−i−1

(1− z2i−1)2−i
= (1− z)−1/2.

6.3 Proof of Lemma 6.2

By Lemma 6.1,∑
f∈Mn,q

b(f)χ(f) = [un]
√
L(u, χ)L(u, χ · χ2)

×
∏
i≥1

(
L(u2i , χ2i)

L(u2i , χ2i · χ2)

)2−i−1

(1− χ(T )u)−1/2
∏
i≥1

(1− χ2i(T )u2i)2−i−1

. (6.18)

Although the products in (6.18) are infinite, we may truncate them because only the
coefficient of un is of interest to us:∑

f∈Mn,q

b(f)χ(f) = [un]
√
L(u, χ)L(u, χ · χ2)

×
n∏
i=1

(
L(u2i , χ2i)

L(u2i , χ2i · χ2)

)2−i−1

(1− χ(T )u)−1/2

n∏
i=1

(1− χ2i(T )u2i)2−i−1

. (6.19)

For any i ≥ 1, the character χ2i is non-trivial, since the order of χ is odd (it divides
|G(R`)| = q`). Hence, by making use of (6.1) with χ2i and χ2i · χ2, we see that the j-th
coefficients of L(u, χ2i) and of L(u, χ2i · χ2) are both of size Oj,n(qj/2). In particular, for
any i ≥ 1,

[uj]L(u2i , χ2i), [uj]L(u2i , χ2i · χ2) = Oj,n(qj/2
i+1

) = Oj,n(qj/4). (6.20)

From (6.20) we deduce that

[uj]
n∏
i=1

(
L(u2i , χ2i)

L(u2i , χ2i · χ2)

)2−i−1

(1− χ(T )u)−1/2

n∏
i=1

(1− χ2i(T )u2i)2−i−1

= Oj,n(qj/4).

(6.21)
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Additionally, from (6.1),

[uj]
√
L(u, χ)L(u, χ · χ2) = Oj,n(qj/2). (6.22)

Plugging the estimates (6.21) and (6.22) in (6.19), we establish (6.3). From (6.3) and
(6.22) with j = n, we obtain (6.4).

6.4 Proof of Proposition 6.3

By Lemma 6.2,∑
f∈Mn,q

b(f)χ(f) = [un]
√
L(u, χ)L(u, χ · χ2) +On(q

n
2
− 1

4 ) = On(q
n
2 ). (6.23)

From (6.23) and (2.16) we obtain

Varb(n, h) =

∑
χ0 6=χ∈G(Rn−h−1)

∣∣∣[un]
√
L(u, χ)L(u, χ · χ2) +On(q

n
2
− 1

4 )
∣∣∣2

q2(n−h−1)
. (6.24)

Since the number of characters in G(Rn−h−1) which are in G(Rn−h−2) as well is O(qn−h−2),
(6.23) and (6.24) imply that

Varb(n, h) =

∑
χ0 6=χ∈G(Rn−h−1)

∣∣∣[un]
√
L(u, χ)L(u, χ · χ2) +On(q

n
2
− 1

4 )
∣∣∣2

q2(n−h−1)
+On(qh)

=

∑
χ0 6=χ∈G(Rn−h−1)\G(Rn−h−2)

∣∣∣[un]
√
L(u, χ)L(u, χ · χ2)

∣∣∣2
q2(n−h−1)

+On(qh−
1
4 ).

We now write L(u, χ) as det(I − u√qΘχ)(1− u) and L(u, χ ·χ2) as det(I − u√qΘχ·χ2) to
obtain

Varb(n, h) =

∑
χ∈G(Rn−h−1)\G(Rn−h−2)

∣∣[un]
√

det(I − u√qΘχ) det(I − u√qΘχ)(1− u)
∣∣2

q2(n−h−1)

+On(qh−
1
4 ). (6.25)

The proof is concluded by writing in (6.25) [un]
√

det(I − u√qΘχ) det(I − u√qΘχ)(1− u) =

qn/2[un]
√

det(I − uΘχ) det(I − uΘχ·χ2) + On(q(n−1)/2) and dividing both sides by qh+1.

6.5 Proof of Corollary 6.5

We begin with the following lemma.

Lemma 6.7. Let f : U(N)→ C be a function such that for g ∈ U(N), f(g) is a symmet-
ric homogeneous Laurent polynomial of degree k in the eigenvalues of g. The following
hold.

1. If k 6≡ 0 mod N , then
〈f〉(z) = 0, for all |z| = 1,
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2. If k = 0, then

〈f〉(z) =

∫
U(N)

f(g) dg, for all |z| = 1.

Proof. Both i) and ii) make use of the following assertion: that if F : U(N) → C is a
symmetric homogeneous polynomial of degree k 6= 0 in the eigenvalues of a matrix from
U(N), then ∫

U(N)

F (g) dg = 0. (6.26)

For, the Haar measure is invariant under scalar multiplication, so for any c ∈ U(1),

0 =

∫
U(N)

F (g) dg −
∫
U(N)

F (cg) dg = (1− ck)
∫
U(N)

F (g) dg.

If k 6= 0, there exists c ∈ U(1) such that (1− ck) 6= 0 and (6.26) follows.
Turning to i), note that this will be proved if we show for k 6≡ 0 mod N that∫

U(N)

f(g)ψ(det g) dg = 0, (6.27)

for all continuous ψ : U(1) → C. In turn by Fourier analysis, since det g ∈ U(1) for all
g ∈ U(N), to establish (6.27) we need only establish it for ψ(z) = z` with ` ∈ Z. But if
f(g) is of degree k in the eigenvalues of g, then

f(g)(det g)`

is of degree k +N`. As k 6≡ 0 mod N , we have k +N` 6= 0, and hence∫
U(N)

f(g)(det g)` dg = 0,

establishing the claim i). For ii), our proof is similar. We must show∫
U(N)

f(g)ψ(det g) dg =

∫
U(N)

f(g) dg

∫
U(N)

ψ(det g) dg. (6.28)

As before it suffices to verify this claim when ψ(z) = z`. For ` = 0 this is clear, and when
` 6= 0, note that ∫

U(N)

(det g)` dg = 0,

so that we establish (6.28) by showing∫
U(N)

f(g)(det g)` dg = 0.

But as f(g)(det g)` is of degree ` 6= 0, this is indeed the case, establishing the claim.

Note that

[un]
√

det(1− uΘχ) det(1− uΘχ·χ2) =
∑
j+k=n
j,k≥0

Aj(Θχ)Ak(Θχ·χ2).

54



Hence the left-hand side of (6.7) is

lim
q→∞

1

qn−h−1

∑
χ∈G(Rn−h−1)\G(Rn−h−2)

∑
j+k=n
j,k≥0

∑
j′+k′=n
j′,k′≥0

Aj(Θχ)Ak(Θχ·χ2)Aj′(Θχ)Ak′(Θχ·χ2).

(6.29)
We will need to evaluate the random matrix coset integral

〈AjAkAj′Ak′〉 = 〈AjAj′〉〈AkAk′〉.

Note that if j = j′, then k = k′ also. Noting that Aj(g)Aj(g) = Aj(g)Aj(g
−1) and

likewise for Ak, one may see that AjAj and AkAk are homogeneous symmetric Laurent
polynomials of degree 0. Thus by Lemma 6.7, we have for all |z| = 1,

〈AjAj〉(z) =

∫
U(N−1)

|Aj(g)|2 dg,

〈AkAk〉(z) =

∫
U(N)

|Ak(g)|2 dg.

Furthermore, in the sum (6.29), if j 6= j′ and k 6= k′, we may reason in the same way to
see that AjAj′ and AkAk′ are homogeneous symmetric Laurent polynomials of non-zero
degrees, say ` and −` respectively, with |`| ≤ n < N(N − 1). As no non-zero number
smaller in magnitude than N(N−1) is divisible by both N and N−1, Lemma 6.7 implies
that one of ∫

U(N−1)

Aj(g)Aj′(g) dg = 0 or

∫
U(N)

Ak(g)Ak′(g) dg = 0

holds, so in particular the product is always 0. From this analysis it follows that for all
matrices Θχ and Θχ·χ2

〈AjAkAj′Ak′〉(det Θχ, det Θχ·χ2) =

{∫
U(N−1)

|Aj(g1)|2dg1 ·
∫
U(N)
|Ak(g2)|2 dg2 if j = j′,

0 otherwise.

Thus using Theorem 6.4, (6.29) simplifies to∑
j+k=n
j,k≥0

∫
U(N−1)

|Aj(g1)|2 dg1

∫
U(N)

|Ak(g2)|2 dg2,

as claimed.

6.6 z-measures on partitions

The z-measures are a two-parameter family of measures on partitions, though it is often
natural to specialize to a one-parameter subfamily. In order to define the z-measures
we make use of standard notation in enumerative combinatorics, along the lines of e.g.
[Sta99, Ch. 7]. We view partitions λ ` n as Young diagrams with n boxes. Recall (from
e.g. [Sta99, Sec. 7.21]) that for a square � in λ with position (i, j) (where 1 ≤ j ≤ λi),
the content c(�) is defined by

c(�) = j − i.
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We let dim(λ) be the dimension of the irreducible representation of Sn associated to the
partition λ; equivalently dim(λ) is equal to the number of standard Young tableaux of

shape λ. The z-measure on partitions of n with parameters z and z′, written M
(n)
z,z′ is the

measure on the set of all partitions λ of n satisfying

M
(n)
z,z′(λ) :=

dim(λ)2

n!(zz′)n

∏
�∈λ

(z + c(�))(z′ + c(�)). (6.30)

Recall that (x)j := (x)(x+ 1) · · · (x+ j − 1) is the Pochhammer symbol. The expression
(6.30) is well-defined for all z, z′ ∈ C with zz′ /∈ Z≤0. Furthermore we use the convention
that ∅ is the sole partition of 0 and for any z, z′,

M
(0)
z,z′(∅) = 1.

For any n and z, z′ ∈ C with zz′ /∈ Z≤0 one has∑
λ`n

M
(n)
z,z′(λ) = 1,

though this fact is not obvious (see e.g. [Oko01] for a proof). It is not always the case that

M
(n)
z,z′(λ) ≥ 0 for all λ (so that in some cases M

(n)
z,z′ must be viewed as a signed measure)

but when, for instance, z′ = z, plainly (6.30) is always non-negative.
Note from the definition (6.30), for fixed n, this measure tends toward the Plancherel

measure as z, z′ →∞. In this sense, z-measures can be thought of as a generalization of
Plancherel measures.

We denote M
(n)
z (λ) := M

(n)
z,z (λ), and moreover for a subset A of the set of all partitions

of n, we use the notations

P(n)
z,z′(λ ∈ A) =

∑
λ∈A

M
(n)
z,z′(λ), and P(n)

z (λ ∈ A) =
∑
λ∈A

M (n)
z (λ).

It is known that there exists a scaling limit of the z-measures as n→∞; these scaling
limits were first investigated as a part of representation theory on the infinite symmetric
group. We do not review the full theory here, instead referring the reader to [Ols03] for
an introduction. The result from this theory that we will make use of is

Theorem 6.8. For any z ∈ C \ Z≤0, there exists a random variable α
(z)
1 lying almost

surely in the interval [0, 1] such that for λ ` n chosen according to the z-measure with
parameters z, z we have

lim
n→∞

P
(λ1

n
≤ x

)
= P(α

(z)
1 ≤ x),

for all real x.
Moreover for z ∈ C \ Z≤1 with z′ = z as above, the function Fz(x) = P(α

(z)
1 ≤ x) is

continuous for all x ∈ R.

We simply take this theorem as our definition of α
(z)
1 – that is, α

(z)
1 is the random

variable with distribution function given by this limit – but we note that there exists a
more sophisticated perspective in which the random variable α

(z)
1 is the largest part of the

z-measure point process with parameters z, z on the Thoma simplex ; see [Bor98] for more
about this latter object and its connection to the infinite symmetric group. We adopt
the notational convention that α1 = α

(1/2)
1 .
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6.7 Proof of Theorem 6.6

We use Schur functions to prove this theorem. For x = (x1, ..., xN) and λ a partition, we
use the notation sλ(x) to denote the Schur function of shape λ (see [Sta99, Ch. 7]).

We will use of the following well-known results:
First, we recall the dual Cauchy identity (see [Sta99, Thm 7.14.3]),∏

i,j

(1 + xiyj) =
∑
λ

sλ(x)sλ′(y), (6.31)

where λ′ is the dual partition to λ.
Second, we recall the following evaluation of Schur functions (proved by combining

[Sta99, Cor 7.21.4] and [Sta99, Cor 7.21.6]),

sλ(1, ..., 1︸ ︷︷ ︸
k

) =
dim(λ)

n!

∏
�∈λ

(k + c(�)), (6.32)

for λ ` n.
Third, we recall the orthogonality relations for Schur functions in eigenvalues of the

unitary group (see e.g. [Bum04]). If g ∈ U(N) has eigenvalues y1, ..., yN and we use the
Schur function notation sλ(g) := sλ(y1, ..., yN), for any two partitions λ and ν,∫

U(N)

sλ(g)sν(g
−1) dg = δλ=ν,`(λ)≤N . (6.33)

We start by specializing to the case where z is a positive integer; later on we will
consider more general z. We make use of the dual Cauchy identity (6.31) in the variables
x1, ..., xz and y1, ..., yN where for all i, xi = −u, and y1, ..., yN are the N eigenvalues of
g ∈ U(N). The dual Cauchy identity tells that

det(1− ug)z =
∑
λ

sλ(−u, ...,−u)sλ′(g) =
∑
λ

(−u)|λ|sλ(1, ..., 1︸ ︷︷ ︸
z

)sλ′(g).

Yet from (6.32), we see we can write this as

det(1− ug)z =
∞∑
n=0

un
(

(−1)n
∑
λ`n

dim(λ)

n!

∏
�∈λ

(z + c(�))sλ′(g)
)
, (6.34)

where we adopt the convention that the coefficient for n = 0 is 1. Note that we have so
far only proved (6.34) for positive integer z.

For |u| < 1, the binomial series tells us that

(1− uyi)z =
∞∑
n=0

un
(

(−yi)n
(z)n
n!

)
,

for all complex z. In particular the coefficients of un in this series are polynomials in z.
Multiplying N such identities, it follows that for |u| < 1 and all complex z,

det(1− ug)z =
N∏
i=1

(1− uyi)z =
∞∑
n=0

unPn,g(z),
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where Pn,g(z) are polynomials in z. From (6.34) we obtain the expression

Pn,g(z) = (−1)n
∑
λ`n

dim(λ)

n!

∏
�∈λ

(z + c(�))sλ′(g), (6.35)

valid for positive integer z. But as both the left and right-hand sides are polynomials in
z equal at all positive integers, it follows that this identity holds for all z ∈ C.

But of course, Pn,g(z) = An,(z)(g), so that using (6.35) and orthogonality relations
(6.33) for Schur functions,∫

U(N)

An,(z)(g)An,(z′)(g
−1) dg =

∑
λ`n

(dimλ)2

(n!)2

∏
�∈λ

(z + c(�))(z′ + c(�))δ`(λ′)≤N

=
(zz′)n
n!

P(n)
z,z′(λ1 ≤ N).

This verifies (6.8).

6.8 Proof of Theorem 1.7

We note from Proposition 6.3 and Corollary 6.5 that for N = n− h− 1,

Varb(n, h) = qh+1
∑
j+k=n
j,k≥0

∫
U(N−1)

|Aj(g1)|2 dg1

∫
U(N)

|Ak(g2)|2 dg2 + o(qh+1),

for n ≤ N(N − 1) and 0 ≤ h ≤ n− 7 (the upper bound restriction comes from requiring
that N ≥ 6 in Corollary 6.5). But then these integrals are evaluated using Theorem 6.6
with z = z′ = 1/2, and the result is Theorem 1.7.

6.9 Proof of Proposition 1.8

By Stirling’s approximation, we have

(1/4)j
j!

=
j−3/4

Γ(1/4)
+ o(j−3/4)

as j →∞. In general,
(1/4)j
j!

= O(j−3/4) for all j ≥ 1. By Theorem 6.8, we have

P(j)
1/2(λ1 ≤ N) = P(α1 ≤ N/j) + o(1)

for j → ∞. This convergence is uniform as N varies (because P(j)
1/2(λ1 ≤ N) = 1 =

P(α1 ≤ N/j) for N ≥ j and otherwise N/j lies in a compact interval). Furthermore, we

have P(j)
1/2(λ1 ≤ N − 1) = O(1) in general. Fix an arbitrary ε ∈ (0, 1), and decompose

T (n;N) =
( ∑
εn≤j≤(1−ε)n

+
∑

j<εn, or
j>(1−ε)n

)(1/4)j(1/4)n−j
j!(n− j)!

P(j)
1/2(λ1 ≤ N − 1)P(n−j)

1/2 (λ1 ≤ N)

=
1

Γ(1/4)2

∑
εn≤j≤(1−ε)n

j−3/4(n− j)−3/4P(α1 ≤
N − 1

j
)P(α1 ≤

N

n− j
)

+ o
( ∑
εn≤j≤(1−ε)n

j−3/4(n− j)−3/4
)

+O
( ∑

0<j<εn, or
n>j>(1−ε)n

j−3/4(n− j)−3/4
)

+O(n−3/4)

(6.36)
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as n → ∞, where the rate at which the error term o(· · · ) tends to zero depends upon
ε, but the constants of other error terms are absolute, with the last error term O(n−3/4)
coming from the terms j = 0 and j = n in the sum. If N/n→ s as n→∞, then

P(α1 ≤
N − 1

j
) = P(α1 ≤

(N − 1)/n

j/n
) = P(α1 ≤

s

j/n
) + o(1),

uniformly for 1 ≤ j ≤ n. (The reason for uniformity is again due to compactness.) Of
course we have

P(α1 ≤
N

n− j
) = P(α1 ≤

s

1− j/n
) + o(1)

as n→∞. Moreover, ∑
0<j<εn, or
n>j>(1−ε)n

j−3/4(n− j)−3/4 = O(ε1/4n−1/2),

and ∑
0<j<n

j−3/4(n− j)−3/4 = O(n−1/2)

Hence we can simplify (6.36) to

(6.36) =
1

Γ(1/4)2

1√
n

∑
εn≤j≤(1−ε)n

1

n
(j/n)−3/4(1− j/n)−3/4P(α1 ≤

s

j/n
)P(α1 ≤

s

1− j/n
)

+O(ε1/4n−1/2) + o(n−1/2)

=
1

Γ(1/4)2

1√
n

∫ 1−ε

ε

t−3/4(1− t)−3/4P(α1 ≤
s

t
)P(α1 ≤

s

1− t
) dt

+O(ε1/4n−1/2) + o(n−1/2),

with the second line following because the sum in the previous line is a Riemann sum.
Completing the integral from the interval [ε, 1−ε] to [0, 1] adds only an error ofO(ε1/4n−1/2).
Hence

T (n;N) =
1

Γ(1/4)2
√
n

∫ 1

0

t−3/4(1− t)−3/4P(α1 ≤
s

t
)P(α1 ≤

s

1− t
) dt+O(ε1/4n−1/2) + o(n−1/2)

=
1√
πn

(∫ 1

0

E1(1− s

α1

≤ t ≤ s

α′1
)
√
πΓ(1/4)−2t−3/4(1− t)−3/4 dt+O(ε1/4) + o(1)

)
=

1√
πn

(
P
(

1− s

α1

≤ Y ≤ s

α′1

)
+O(ε1/4) + o(1)

)
,

where α′1 is an independent copy of α1 and Y ∼ Beta(1/4, 1/4). As ε is arbitrary this
establishes the claim.

6.10 Approximating B(x)

Recall the definitions of B(x) and f , given in (1.29) and (1.30).

Theorem 6.9. On the assumption of RH for ζ(s) and L(s, χ4), for any ε > 0,

B(x) =
1

π

∫ 1

1/2

xs

(1− s)1/2s
f(s) ds+Oε(x

1/2+ε).
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Proof. We have by Perron’s formula (see [MV07, Cor. 5.3]), for T = x100,

B(x) =
1

2πi

∫ 2+iT

2−iT

xs

s
F (s) ds+O(1).

For arbitrary ε > 0, let σ = 1/2 + ε, and let Kδ be a contour from σ− iδ to 1 + δ− iδ to
1+δ+iδ to σ+iδ for δ > 0. On the Riemann Hypothesis the contour from 2−iT to 2+iT
may be shifted to a contour from 2− iT to σ− iT to σ− iδ, followed by Kδ, followed by a
contour from σ + iδ to σ + iT to 2 + iT . The Lindelöf estimates ζ(s), L(s, χ4) = Oε(|s|ε)
for <s ≥ 1/2, |s−1| ≥ 1/10 can be used to bound those contours other than Kδ, yielding

B(x) =
1

2πi

∫
Kδ

xs

s

f(s)

(s− 1)1/2
ds+Oε(x

1/2+10ε).

Letting δ → 0 shows this is

=
1

π

∫ 1

σ

xs

(1− s)1/2s
f(s) ds+Oε(x

1/2+10ε) =
1

π

∫ 1

1/2

xs

(1− s)1/2s
f(s) ds+Oε(x

1/2+10ε),

which yields the claim.

7 Twin primes in the large-q limit

7.1 Fundamental identity

We start by proving an identity, transporting the study of twin primes to Fourier space.

Proposition 7.1. Let α, β : Mq → C be two arithmetic functions. Let n be a positive
integer and let c ∈ F×q . We have∑

f∈Mn,q
α(f)β(f + c)

#Mn,q

=
1

q2n

∑
χ∈G(Rn)

χ(T n + c)S(n, α · χ)S(n, β · χ).

Proof. The orthogonality relation (2.3) implies that for any f ∈Mn,q we have

α(f) =
1

qn

∑
g1∈Mn,q

χ∈G(Rn)

α(g1)χ(g1)χ(f), (7.1)

and similarly we have

β(f + c) =
1

qn

∑
g2∈Mn,q

χ∈G(Rn)

β(g2)χ(g2)χ(f + c). (7.2)

From (7.1) and (7.2) we obtain∑
f∈Mn,q

α(f)β(f + c)

#Mn,q

=
1

q3n

∑
g1,g2∈Mn,q

χ1,χ2∈G(Rn)

(
α(g1)χ1(g1)β(g2)χ2(g2)

∑
f∈Mn,q

χ1(f)χ2(f + c)
)
.

(7.3)
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We have
f + c ≡ (T n + c) · f mod Rn (7.4)

for all f ∈ Mn,q. For any pair of characters χ1, χ2 ∈ G(Rn) we have, by (7.4) and the
orthogonality relation (2.1) with F =Mn,q,∑

f∈Mn,q

χ1(f)χ2(f + c) = χ2(T n + c)
∑

f∈Mn,q

χ1(f)χ2(f)

= χ2(T n + c) · qn · 1χ1=χ2 .

(7.5)

Plugging (7.5) in (7.3), we conclude the proof.

7.2 Hidden symmetry

The following key proposition introduces an action of F×q on G(R`), which preserves
primitivity and L-functions.

Proposition 7.2. Let ` be a positive integer. Let χ ∈ G(R`) be a primitive character.
For any c ∈ F×q , define a function χc : Mq → C by

χc(f) = χ(f(cT )/cdeg f ).

Then χc is well defined on Mq/R` and in fact is a primitive character in G(R`). More-
over,

L(u, χ) = L(u, χc).

Proof. Fix c ∈ F×q . Let f1, f2 ∈ Mq be polynomials such that f1 ≡ f2 mod R`,. Then
f1, f2 have the same first ` next-to-leading coefficients. The i-th next to leading coefficient
of fj(cT )/cdeg fj (j ∈ {1, 2}) is the i-th next-to-leading coefficient of fj(T ), divided by
ci. Thus, f1(cT )/cdeg f1 ≡ f2(cT )/cdeg f2 mod R`,1. This shows that χc can be regarded
as a function of Mq/R`,1. By definition, χc is multiplicative, and it takes 1 to 1, so
χc ∈ G(R`,1).

The coefficients of ui in L(u, χ) and L(u, χc) are given by
∑

f∈Mi,q
χ(f(T )) and∑

f∈Mi,q
χ(f(cT )/ci), respectively. The map f 7→ f(cT )/ci is a permutation of Mi,q,

whose inverse is given by f 7→ f(T/c)ci. Thus, L(u, χ) = L(u, χc). As degL(u, χc) =
degL(u, χ) = `− 1, it follows that χc is a primitive character.

Lemma 7.3. Let ` be a positive integer. Let χ ∈ G(R`,1). Let c ∈ F×q . For any
factorization function α, we have

S(n, α · χ) = S(n, α · χc).

Proof. Since f(T ), f(cT )/cdeg f have the same extended factorization type for any c ∈ F×q ,
and the inverse of f 7→ f(cT )/cdeg f is f 7→ f(T/c)cdeg f , we have

S(n, α · χc) =
∑

f∈Mn,q

α(f)χ(f(cT )/cn) =
∑

f∈Mn,q

α(f(T/c)cn)χ(f)

=
∑

f∈Mn,q

α(f)χ(f) = S(n, α · χ),

as needed.
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7.3 An equidistribution result

Let χ ∈ G(R`)\G(R`−1). By §2.3, L(u, χ) =
∏`−1

i=1(1−γi(χ)u) with |γi(χ)| = √q. We de-
note by Θχ any unitary matrix in U(`−1) whose eigenvalues are γ1(χ)/

√
q, . . . , γ`−1(χ)/

√
q.

The following theorem is proved in Appendix A of [GS20].

Theorem 7.4. [GS20, Thm. 8] Let ` ≥ 4. For any χ ∈ G(R`) and c ∈ F×q , set

A(χ, c) =

∑
λ∈F×q χ(T ` + cλ`)

√
q

.

Let ρ be an irreducible representation of PU(`− 1). Then∑
χ∈G(R`)\G(R`−1) tr(ρ(Θχ))A(χ, c)

|G(R`) \G(R`−1)|
= Oρ

(
1
√
q

)
.

Informally, it says that the zeros of L(u, χ) are do not correlate, in the large-q limit,
with the Gauss sum A(χ, c).

7.4 Conclusion of proof

Applying Proposition 7.1 with α = β = Λq, we find that∑
f∈Mn,q

Λq(f)Λq(f + c)

qn
=

1

q2n

∑
χ∈G(Rn)

χ(T n + c)|S(n,Λq · χ)|2. (7.6)

The term corresponding to χ = χ0 is 1, since 〈Λq〉Mn,q = 1 (1.10). Since S(n,Λq · χ) =
O(nqn/2) by Lemma 2.1, and since there are O(qn−1) non-primitive characters modulo
Rn, we have∑

f∈Mn,q
Λq(f)Λq(f + c)

qn
= 1 +

1

q2n

∑
χ∈G(Rn)/G(Rn−1)

χ(T n + c)|S(n,Λq · χ)|2 +O

(
n2

q

)
.

We claim that the multiset A = {χλ : λ ∈ F×q , χ ∈ G(Rn)} consists of q − 1 copies of
G(Rn). Indeed, the map χ 7→ χλ is a bijection for any λ ∈ F×q . Thus, in (7.6) we may
sum over primitive characters in A and divide by q−1, instead of summing over primitive
characters in G(Rn), and obtain from Lemma 7.3 the following:∑

f∈Mn,q
Λq(f)Λq(f + c)

qn
= 1 + q−2n

∑
χ∈G(Rn)\G(Rn−1)

∑
λ∈F×q χλ(T

n + c)

q − 1
|S(n,Λq · χ)|2

+O

(
n2

q

)
. (7.7)

When χ ∈ G(Rn), ψχ(x) := χ(T n+x) is an additive character of Fq, since (T n+x1)(T n+
x2) ≡ T n + x1 + x2 mod Rn and (T n + x)p ≡ 1 mod Rn. Moreover, we claim that if χ
is primitive then ψχ is non-trivial. Otherwise, whenever f ≡ g mod Rn−1 we may write
f ≡ g · (T n + x) mod Rn for some x ∈ Fq, and then χ(f) = χ(g)χ(T n + x) = χ(g),
implying χ is not primitive, a contradiction. We set

A(χ, c) =

∑
λ∈F×q χλ(T

n + c)
√
q

=

∑
λ∈F×q χ(T n + c

λn
)

√
q

=

∑
λ∈F×q χ(T n + cλn)

√
q

=

∑
λ∈F×q ψχ(cλn)
√
q

.
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We express (7.7) as∑
f∈Mn,q

Λq(f)Λq(f + c)

qn
−1 =

√
q

q − 1

∑
χ∈G(Rn)\G(Rn−1) A(χ, c)|S(n,Λq · χ)|2

q2n
+O

(
n2

q

)
.

To establish the bound (1.32), all we need is S(n,Λq, χ) = O(nqn/2) and Weil’s bound on
additive character sums [Sch76, Thm. 2E], implying |A(χ, c)| ≤ n.

To obtain a better saving in q we proceed as follows. By (2.11), if χ ∈ G(R`)\G(R`−1)
then we may write S(n,Λq · χ) as −qn/2Tr(Θn

χ). Hence it suffices to prove that∑
χ∈G(Rn)\G(Rn−1) |Tr(Θn

χ)|2A(χ, c)

|G(Rn) \G(Rn−1)|
= O

(
1
√
q

)
. (7.8)

We decompose |Tr(U)n|2 as a linear combination of irreducible characters of PU(n− 1),
and apply Theorem 7.4 with ` = n to each character and conclude that (7.8) holds, which
concludes the proof of the theorem.
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[Ols18] G. I. Olshanskĭı. The topological support of z-measures on the Thoma
simplex. Funktsional. Anal. i Prilozhen., 52(4):86–88, 2018.

[Pol08] Paul Pollack. Simultaneous prime specializations of polynomials over finite
fields. Proc. Lond. Math. Soc. (3), 97(3):545–567, 2008.

[Ram76] K. Ramachandra. Some problems of analytic number theory. Acta Arith.,
31(4):313–324, 1976.
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תקציר
אריתמטיות פונקציות של לסכומים נוגעות האנליטית המספרים בתורת הבסיסיות מהבעיות חלק
והקיום מביוס בסכומי ביטול בקטע, ראשוניים של קיום כוללות אלו בעיות קצרים. קטעים פני על

בקטע. חסרי־ריבועים מספרי של
אסימפטוטי קצר קטע פני על שלהן שהממוצע טבעי באופן הצצות מהפונקציות רבות לגבי משוער
במובן שורש, מסוג מביטול יהנו קצר קטע פני על סכומים כי צפוי בנוסף, מלא. בקטע שלהן לממוצע
פתוחות אלו בעיות רימן, השערת תחת אפילו המחוברים. מספר שורש היותר לכל היא שהשגיאה

הפונקציות. למרבית
אז באקראי. קצר קטע בחירת ידי על הבעיה, לתוך אקראיות להכניס הוא ושימושי נפוץ רעיון
זה מקרי סכום של השונות על עליונים חסמים המקרי. הקטע פני על פונקציה של סכום לחקור ניתן

קשות. השערות של כל' 'כמעט לגרסאות מובילים
אנו פונקציות. בשדות אריתמטיות פונקציות של סכומים של השונות את חוקרים אנו זו בתזה
הידועות מאלו חזקות תוצאות להוכיח כדי וגיאומטריים אנליטים קומבינטורים, בכלים משתמשים

הן שלנו המרכזיות התוצאות ארבעת השלמים. מעל

הרבה המגיעה קצרים, קטעים פני על חסרי־ריבועים פולינומים של לשונות אסימפטוטית נוסחה .1
ידי על לאחרונה שנוסחה השערה לטובת ראיות ונותנת (1982) הול ר. ר. של לעבודה מעבר

ורודניק. קיטינג

קצרים. קטעים פני על התפרקות פונקציות של השונות על הדוק עליון חסם .2

q־גדול. של בגבול קצרים, בקטעים ריבועים שני של סכומים של לשונות אסימפטוטית נוסחה .3
שמסכימה השלמים מעל תחזית ומייצרת הנאיבי ההסתברותי מהמודל סוטה שלנו הנוסחה

הנומרי. הדאטא עם היטב

שגיאה עם פולינומים בחוג הראשונים התאומים למספר q־גדול של בגבול אסימפטוטית נוסחה .4
אופטימלית.
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