How many smooth numbers and smooth polynomials are there?
 ViBrANT Seminar, May 2, 2023

Ofir Gorodetsky

1 Definition and motivation

A positive integer n is said to be y-smooth if its primes factors do not exceed $y: p \mid n \Longrightarrow p \leq y$. The talk will be concerned with the counting function

$$
\Psi(x, y):=\#\{n \leq x: n \text { is } y \text {-smooth }\} .
$$

Note $\Psi(x, x)=\lfloor x\rfloor, \Psi(x, 1)=1$ and $\Psi(x, 2)=1+\left\lfloor\log _{2} x\right\rfloor$, and that the indicator function of y-smooth numbers is completely multiplicative.

One can define an analogous quantity in the polynomial setting. A polynomial $f \in \mathbb{F}_{q}[T]$ is said to be m-smooth if its irreducible factors have degrees bounded by m : $P \mid f \Longrightarrow \operatorname{deg}(P) \leq m$. The talk will be focused today mostly on $\Psi(x, y)$.

Smooth numbers play an important role in cryptography. Pomerance, in the 80s, devised his Quadratic Sieve, an algorithm that (heuristically) factors integers in subexponential time, namely n is factored in $\exp \left((\log n)^{1 / 2+o(1)}\right)$ time. We describe it (in a loose way) below.

For $i=1,2, \ldots$ we do the following. We take $x_{i}:=\lfloor\sqrt{n}\rfloor+i$, square it and reduce it modulo n to obtain a number y_{i} in $[0, n-1]$:

$$
x_{i}^{2} \equiv y_{i} \bmod n
$$

We then check whether y_{i} is T-smooth - this can be done in $O(T)$ operations obviously, but happens quite rarely: with probability $(\Psi(N, T) / N)^{-1}$ the number y_{i} will be T-smooth (heuristically). When it is T-smooth, we obtain a relation of the form

$$
x_{i}^{2} \equiv \prod_{p \leq T} p^{e_{i, p}} \bmod n
$$

We want to obtain T such relations, which takes $T^{2} \times(\Psi(N, T) / N)^{-1}$ operations. Then we can perform Gaussian elimination on the T binary vectors $\left\{\left(e_{i, p 2} \bmod 2\right)_{p \leq T}\right\}_{i \in S}$ where S corresponds to y_{i} that are T-smooth. The complexity of Gaussian elimination is T^{3}. It finds subset(s) $S^{\prime} \subseteq S$ such that

$$
\sum_{i \in S^{\prime}}\left(e_{i, p}\right)_{p \leq T} \equiv 0 \bmod 2
$$

as vectors in $\prod_{p \leq T} \mathbb{F}_{2}$. This means

$$
\prod_{i \in S^{\prime}} x_{i}^{2} \equiv \prod_{p \leq T} p^{2 b_{p}} \bmod n
$$

for $b_{p}=\sum_{i \in S^{\prime}} e_{i, p} / 2$. Given a relation $A^{2} \equiv B^{2} \bmod n$ we can compute $\operatorname{gcd}(A-B, n)$ and hope to find one the factors of n.

The complexity of this algorithm is $T^{2} \times(\Psi(N, T) / N)^{-1}+T^{3}$, and is minimized when

$$
T \approx N / \Psi(N, T)
$$

which turn out to be solved for

$$
T=\exp \left((\log N)^{1 / 2+o(1)}\right)
$$

which is also the total complexity.
This uses the relation $\Psi(N, T) \sim N \rho(\log N / \log T)$ which was established in a wide range by Hildebrand, where ρ is the Dickman function, which we discuss next.

2 The Dickman function

The function $\rho:[0, \infty) \rightarrow(0, \infty)$ was introduced by Dickman. It has initial conditions $\rho(u)=1$ for $u \in[0,1]$. For larger u it is defined via delay-differential equation:

$$
\begin{aligned}
u \rho^{\prime}(u)+\rho(u-1) & =0, \text { or } \\
\rho(u) & =u^{-1} \int_{0}^{1} \rho(u-t) d t
\end{aligned}
$$

It is decreasing, and in fact we see it decreases rapidly:

$$
\rho(u) \leq u^{-1} \rho(u-1) \Longrightarrow \rho(u) \leq \Gamma(u+1)^{-1}=u^{-u(1+o(1))} .
$$

Dickman proved (30s) that $\Psi(x, y) \sim x \rho(\log x / \log y)$ for $x \geq y \geq x^{\varepsilon}$.
De Bruijn (50s) worked out precise asymptotics for $\rho(u)$. To explain them we need to introduce the Laplace transform of ρ :

$$
\hat{\rho}(s):=\int_{0}^{\infty} e^{-s t} \rho(t) d t
$$

De Bruijn showed

$$
\hat{\rho}(s)=\exp \left(\gamma+\int_{0}^{-s} \frac{e^{t}-1}{t} d t\right)
$$

A short proof of this follows from differentiating $\hat{\rho}(s)$ under the integral sign:

$$
\begin{aligned}
\hat{\rho}^{\prime}(s) & =-\int_{0}^{\infty} t e^{-s t} \rho(t) d t=-\int_{0}^{1} t e^{-s t} d t-\int_{1}^{\infty}\left(\int_{t-1}^{t} \rho(v) d v\right) e^{-s t} d t \\
& =-\int_{0}^{\infty} \rho(v)\left(\int_{v}^{v+1} e^{-s t} d t\right) d v=\frac{e^{-s}-1}{s} \hat{\rho}(s)
\end{aligned}
$$

(This determines $\hat{\rho}$ up to a multiplicative constant; see de Bruijn's work for working out the constant.) For any $c \in \mathbb{R}$ we have

$$
\rho(u)=\frac{1}{2 \pi i} \int_{(-c)} e^{s u} \hat{\rho}(s) d s
$$

We choose c so that $e^{-c u} \hat{\rho}(-c)$ is minimized, i.e. c is the minimizer of

$$
c \mapsto-c u+\gamma+\int_{0}^{c} \frac{e^{t}-1}{t} d t
$$

Differentiating (with respect to c) we find

$$
-u+\frac{e^{c}-1}{c}=0
$$

So the optimal c is $\xi(u)$ (a function of u) where $\xi(u) \sim \log u$ is defined implicitly via

$$
\frac{e^{\xi}-1}{\xi}=u
$$

Let us write

$$
\rho(u)=\frac{1}{2 \pi i} \int_{(-\xi(u))} e^{s u} \hat{\rho}(s) d s=e^{-\xi(u) u} \hat{\rho}(-\xi(u)) \frac{1}{2 \pi} \int_{\mathbb{R}} G(t) d t
$$

for

$$
G(t)=e^{i t u} \hat{\rho}(-\xi(u)+i t) / \hat{\rho}(-\xi(u))
$$

By construction $G(0)=1$. By definition of $\xi, G^{\prime}(0)=0$. It is not hard to approximate $G(t)$ as $e^{-u t^{2}(1+o(1)) / 2}$ for small t (details omitted; $u(1+o(1))$ arises from $\left.(\log G)^{\prime \prime}(0)\right)$. We expect

$$
\rho(u)=\frac{1}{2 \pi i} \int_{(-\xi(u))} e^{s u} \hat{\rho}(s) d s \sim e^{-\xi(u) u} \hat{\rho}(-\xi(u)) \frac{1}{2 \pi} \int_{\mathbb{R}} e^{-u t^{2} / 2} d t \sim \frac{e^{-\xi(u) u} \hat{\rho}(-\xi(u))}{\sqrt{2 \pi u}}
$$

and this asymptotic relation was established rigorously by de Bruijn. The quantity $-\xi(u)$ is called the saddle point for $\rho(u)$.

3 Hildebrand's work

Let

$$
u=\frac{\log x}{\log y}
$$

Hildebrand (80s) proved the following:

$$
\Psi(x, y)=x \rho(u)\left(1+O\left(\frac{\log (u+1)}{\log y}\right)\right)
$$

holds for $x \geq y \geq \exp \left((\log \log x)^{5 / 3+\varepsilon}\right)$. Under RH he showed that

$$
\begin{equation*}
\Psi(x, y)=x \rho(u) \exp \left(1+O\left(\frac{\log (u+1)}{\log y}\right)\right) \tag{3.1}
\end{equation*}
$$

holds for $y \geq(\log x)^{2+\varepsilon}$. Note this this does not give an asymptotic formula for $y=(\log x)^{C}$.
These two results admit alternative proofs due to Saias (80s). Hildebrand used a physical space argument while Saias used Dirichlet series and complex analysis.

Two questions that were asked:

1. (Hildebrand) Can one show the asymptotic relation (3.1) fails for $y \leq(\log x)^{2-\varepsilon}$?
2. (Pomerance) Is it true that $\Psi(x, y) \geq x \rho(u)$ for all $x / 2 \geq y \geq 2$? (Intuition: there is a lower order term in (3.1), found by de Bruijn, which is positive. Moreover, $x \rho(u) \leq \Psi(x, y)$ for $y \leq \log x$ trivially since $\Psi(x, y) \geq 1, x \rho(u)<1$.)

Theorem 3.1 (G., 2022). Fix $\varepsilon>0$. Unconditionally, there are sequences $x_{n}, y_{n} \rightarrow \infty$ such that

$$
y_{n}=\left(\log x_{n}\right)^{2-\varepsilon+o(1)}
$$

and

$$
\frac{\Psi\left(x_{n}, y_{n}\right)}{x_{n} \rho\left(\log x_{n} / \log y_{n}\right)}=\exp \left(\left(\log x_{n}\right)^{\varepsilon+o(1)}\right)
$$

Theorem 3.2 (G., 2022). Under RH, for $(\log x)^{1+\varepsilon} \leq y \leq(\log x)^{2-\varepsilon}$ we have

$$
\frac{\Psi(x, y)}{x \rho(\log x / \log y)}=\exp \left(\Theta\left(\frac{(\log x)^{2}}{y \log y}\right)\right) .
$$

An analogue of Theorem 3.2 holds unconditionally for polynomials.
Theorem 3.3 (G., 2022). 1. Unconditionally, $\Psi(x, y) \geq x \rho(u)$ holds outside of

$$
y \in\left[\log x \exp \left((\log \log x)^{3 / 5-\varepsilon}\right), \exp \left((\log \log x)^{5 / 3+\varepsilon}\right)\right]
$$

2. Under RH, $\Psi(x, y) \geq x \rho(u)$ holds outside of

$$
y \in\left[(\log x)^{2-\varepsilon},(\log x)^{2+\varepsilon}\right] .
$$

3. Assume RH. If $\psi(y):=\sum_{n \leq y} \Lambda(n) \sim y$ satisfies $\psi(y)-y=o(\sqrt{y} \log y)$ then $\Psi(x, y) \geq x \rho(u)$ holds for $y \in\left[(\log x)^{2-\varepsilon},(\log x)^{2+\varepsilon}\right]$. Some intuition comes from the relation

$$
\Psi(x, y) \sim x \rho(u)(-\zeta(1 / 2) \sqrt{2}) \exp \left(\frac{\psi(y)-y}{\sqrt{y} \log y}\right)
$$

for $y=(1+(\log x) / 2)^{2} \quad($ which holds under RH).
4. If RH fails, and $\Theta>1 / 2$ is the supremum of the real parts of zeros of ζ, then for any $\beta \in(1-\Theta, \Theta)$ there are sequences x_{n}, y_{n} with $y_{n}=\left(\log x_{n}\right)^{1 /(1-\beta)+o(1)}$ such that

$$
\Psi\left(x_{n}, y_{n}\right)<x_{n} \rho\left(\log x_{n} / \log y_{n}\right) \exp \left(-y_{n}^{\Theta-\beta-\varepsilon}\right)
$$

4 First oscillation result

The rest of the talk will concentrate on Theorem 3.1 and the last part of Theorem 3.3 .
Let us start with the last part of Theorem 3.3^{1} Rankin (30s) observed that

$$
\Psi(x, y) \leq x^{c} \zeta(c, y)
$$

for any $c>0$, where $\zeta(c, y)=\prod_{p \leq y}\left(1-p^{-c}\right)^{-1}$ is the partial zeta function. The optimal c, that minimizes the RHS, is denoted $\alpha=\alpha(x, y)$:

$$
\Psi(x, y) \leq x^{\alpha} \zeta(\alpha, y)=\min _{c>0} x^{c} \zeta(c, y)
$$

Recall also that

$$
\rho(u) \sim \frac{e^{-\xi(u) u} \hat{\rho}(-\xi(u))}{\sqrt{2 \pi u}}
$$

Our aim is to 'marry' two classical ideas: saddle point analysis and Landau's Oscillation result (the same result that allows one to deduce $\left.\psi(y)-y=\Omega_{ \pm}\left(y^{\Theta-\varepsilon}\right)\right)$.

We introduce

$$
\beta=\beta(x, y):=1-\xi(u) / \log y
$$

where $u=\log x / \log y$, which allows us to rewrite

$$
x \rho(u) \sim \frac{x^{\beta} \hat{\rho}(\log y(\beta-1))}{\sqrt{2 \pi u}}
$$

Now let's divide $\Psi(x, y)$ by $x \rho(u)$:

$$
\frac{\Psi(x, y)}{x \rho(u)} \ll \sqrt{u} \frac{x^{\alpha} \zeta(\alpha, y)}{x^{\beta} \hat{\rho}(\log y(\beta-1))}
$$

Here is a trivial (but new) observation. Since α minimizes the numerator we trivially have

$$
\frac{\Psi(x, y)}{x \rho(u)} \ll \sqrt{u} \frac{x^{\beta} \zeta(\beta, y)}{x^{\beta} \hat{\rho}(-\xi(u))}=\sqrt{u} \frac{\zeta(\beta, y)}{\hat{\rho}(-\xi(u))}
$$

Letting

$$
F(s, y):=\log \zeta(s, y)-\log \hat{\rho}(\log y(s-1))
$$

we see

$$
\frac{\Psi(x, y)}{x \rho(u)} \ll \sqrt{u} e^{F(\beta, y)}
$$

By an earlier computation,

$$
\log \hat{\rho}(\log y(s-1))=\gamma+I((1-s) \log y)
$$

As for $\log \zeta(s, y)$, we find

$$
\log \zeta(s, y)=\sum_{p \leq y}-\log \left(1-p^{-s}\right)=\sum_{n \leq y} \frac{\Lambda(n)}{n^{s} \log n}+o(1)
$$

if $s \geq 1 / 2+\varepsilon$. The $o(1)$ terms come from proper prime powers. Since $\beta=1-\xi(u) / \log y \approx 1-\log u / \log y$, we certainly have $s \geq 1 / 2+\varepsilon$ if $y \geq(\log x)^{2+\varepsilon}$.

In summary: we want to show

$$
\sum_{n \leq y} \frac{\Lambda(n)}{n^{\beta} \log n}-I((1-\beta) \log y)
$$

[^0]can be 'very' negative if RH fails. Strategy: we fix $\beta \in(1 / 2,1)$, namely require $1-\xi(u) / \log y=\beta$, which is easy to solve:
\[

$$
\begin{aligned}
\xi(u) & =\log y(1-\beta) \Longrightarrow \\
e^{\xi(u)} & =1+u \xi(u)=y^{1-\beta}
\end{aligned}
$$
\]

and

$$
1+u \xi(u)=1+u \log y(1-\beta)
$$

so

$$
1+\log x(1-\beta)=y^{1-\beta}
$$

i.e.

$$
y=(1+\log (1-\beta))^{1 /(1-\beta)}
$$

Given a function $A(x)$ on $x \geq 1$, its Mellin transform is

$$
\mathcal{M} A(s):=\int_{1}^{\infty} A(x) x^{-s} d s
$$

Landau proved the following.
Theorem 4.1. Suppose $A(x)$ is a bounded integrable function on every interval $[1, X]$, which is eventually non-negative. Let σ_{c} be the infimum of σ such that $\mathcal{M} A(\sigma)$ converges. Then $\mathcal{M} A(s)$ is analytic in $\Re(s)>\sigma_{c}$ but not at $s=\sigma_{c}$.

To illustrate, let us revisit the proof that $\psi(x)-x<-x^{\Theta-\varepsilon}$ holds infinitely often, where Θ is as before. Consider $A(x)=\sum_{n \leq x} \Lambda(n)-x+x^{\Theta-\varepsilon}$. Let us suppose $A(x)$ is eventually positive. Not hard to show

$$
\mathcal{M} A(s)=-\frac{\zeta^{\prime}(s-1)}{(s-1) \zeta(s-1)}-\frac{1}{s-2}+\frac{1}{s-1-\Theta+\varepsilon}
$$

This function is analytic for real $s>1+\Theta-\varepsilon$, but is not analytic at $s=1+\Theta-\varepsilon$. Hence, by Landau, $\mathcal{M} A(s)$ is analytic in the half-plane $\Re(s)>1+\Theta-\varepsilon$. But this is false - it is only analytic in $\Re(s)>1+\Theta$ due to zeros with real part $>\Theta-\varepsilon$ for any $\varepsilon>0$; contradiction.

Another example: Diamond and Pintz (2009) showed

$$
\sum_{n \leq x} \frac{\Lambda(n)}{n \log n}-\log \log x-\gamma<-\frac{C}{\sqrt{x} \log x}
$$

holds infinitely often for any given $C>0$, and same with $>C /(\sqrt{x} \log x)$. This shows that $\sqrt{x}\left(\prod_{p \leq x}(1-\right.$ $\left.1 / p)^{-1}-e^{\gamma} \log x\right)$ exhibits arbitrarily large positive and negative values as $x \rightarrow \infty$. They studied the Mellin transform of the LHS.

An almost identical argument works for showing

$$
y \mapsto \sum_{n \leq y} \frac{\Lambda(n)}{n^{\beta} \log n}-I((1-\beta) \log y) \leq-y^{\Theta-\beta-\varepsilon}
$$

holds infinitely often.
We conclude that if RH fails, and $\Theta>1 / 2$ is the supremum of the real parts of zeros of ζ, then for any $\beta \in(1 / 2, \Theta)$ there are sequences x_{n}, y_{n} with $y_{n}=\left(\log x_{n}\right)^{1 /(1-\beta)+o(1)}$ such that

$$
\Psi\left(x_{n}, y_{n}\right)<x_{n} \rho\left(\log x_{n} / \log y_{n}\right) \exp \left(-y_{n}^{\Theta-\beta-\varepsilon}\right)
$$

If RH holds, $\Theta-\beta=1 / 2-\beta<0$ so this is useless.
Remark 4.1. Under $R H$ we can show that $\Psi(x, y) \sim x \rho(u) F(\beta, y)$ holds for $y \geq(\log x)^{3 / 2+\varepsilon}$ and this range is optimal. A similar result holds for polynomials over finite fields, unconditionally.

5 Second oscillation result

Finally, let us turn to Theorem 3.1. We assume $y \leq(\log x)^{2-\varepsilon}$, so that $\beta \leq 1 / 2-\varepsilon$ (and also $\alpha \leq 1 / 2-\varepsilon$: it is known that $\alpha=\beta+O(1 / \log y))$.

We have seen

$$
\frac{\Psi(x, y)}{x \rho(u)} \ll \sqrt{u} \frac{x^{\alpha} \zeta(\alpha, y)}{x^{\beta} \hat{\rho}(-\xi(u))} \ll \sqrt{u} \frac{x^{\beta} \zeta(\beta, y)}{x^{\beta} \hat{\rho}(-\xi(u))}=\sqrt{u} \frac{\zeta(\beta, y)}{\hat{\rho}(-\xi(u))}
$$

This used $\Psi(x, y) \leq x^{\alpha} \zeta(\alpha, y)$. We also have $\Psi(x, y) \gg x^{\alpha} \zeta(\alpha, y) / \sqrt{u}$ (Hildebrand and Tenenbaum, 80s) if $y \geq(\log x)^{1+\varepsilon}$, so

$$
\frac{\Psi(x, y)}{x \rho(u)} \gg \frac{x^{\alpha} \zeta(\alpha, y)}{x^{\beta} \hat{\rho}(-\xi(u))} \geq \frac{x^{\alpha} \zeta(\alpha, y)}{x^{\alpha} \hat{\rho}((1-\alpha) \log y)}=\frac{\zeta(\alpha, y)}{\hat{\rho}((1-\alpha) y \log y)}
$$

The second inequality is trivial (but new): it uses the fact that β minimizes $s \mapsto x^{s} \hat{\rho}((1-s) \log y)$. Recall

$$
F(s, y)=\log \zeta(s, y)-\log \hat{\rho}(\log y(s-1)) .
$$

We have just shown

$$
\frac{\Psi(x, y)}{x \rho(u)} \gg e^{F(\alpha, y)}
$$

Unconditionally, Landau's Theorem shows that, if we fix $\alpha>0$,

$$
y \mapsto \sum_{n \leq y} \frac{\Lambda(n)}{n^{\alpha} \log n}-I((1-\alpha) \log y)
$$

is non-negative. When $y \leq(\log x)^{2-\varepsilon}$ we have that $\log F(\alpha, y)$ is much larger than $\sum_{n \leq y} \frac{\Lambda(n)}{n^{\alpha} \log n}$, leading to large values of $\Psi(x, y) /(x \rho(u))$. Indeed,

$$
\log \zeta(s, y)=\sum_{p \leq y}-\log \left(1-p^{-s}\right)=\sum_{n \leq y} \frac{\Lambda(n)}{n^{s} \log n}+\sum_{k \geq 2} \sum_{y^{1 / k}<p \leq y} p^{-k s} / k
$$

The k-sum can easily be shown to tend to infinity when $s \leq 1 / 2-\varepsilon$ (this uses nothing more than the Prime Number Theorem), which is the case when $s=\alpha$ and $y \leq(\log x)^{2-\varepsilon}$.

[^0]: ${ }^{1}$ For simplicity we shall assume $\sigma \in(1 / 2, \Theta)$ (instead of $\sigma \in(1-\Theta, \Theta)$), and concentrate on $y \geq(\log x)^{2+\varepsilon}$.

