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1 Definition and motivation

A positive integer n is said to be y-smooth if its primes factors do not exceed y: p | n = p <y. The talk
will be concerned with the counting function

U(z,y) := #{n <z :n is y-smooth}.

Note U(z,z) = |z], ¥(x,1) = 1 and ¥(z,2) = 1 + |log, |, and that the indicator function of y-smooth
numbers is completely multiplicative.

One can define an analogous quantity in the polynomial setting. A polynomial f € F,[T] is said to be
m-smooth if its irreducible factors have degrees bounded by m: P | f = deg(P) < m. The talk will be
focused today mostly on ¥(x,y).

Smooth numbers play an important role in cryptography. Pomerance, in the 80s, devised his Quadratic
Sieve, an algorithm that (heuristically) factors integers in subexponential time, namely n is factored in
exp((logn)/2t°(M) time. We describe it (in a loose way) below.

For i =1,2,... we do the following. We take z; := |\/n] + 4, square it and reduce it modulo n to obtain
a number y; in [0,n — 1]:

z? = y; mod n.
We then check whether y; is T-smooth — this can be done in O(T) operations obviously, but happens
quite rarely: with probability (¥(N,T)/N)~! the number y; will be T-smooth (heuristically). When it is
T-smooth, we obtain a relation of the form

r? = H p? mod n.
p<T

We want to obtain 7' such relations, which takes T? x (¥(N,T)/N)~! operations. Then we can perform
Gaussian elimination on the T binary vectors {(e; p2 mod 2),<7}ics where S corresponds to y; that are
T-smooth. The complexity of Gaussian elimination is 7%. It finds subset(s) S’ C S such that

Z(ei,p)pST = 0 mod 2

ies’

as vectors in J[ o Fa. This means
H r? = H p?*» mod n
ies’ p<T

for b, = >, g €ip/2. Given a relation A? = B mod n we can compute ged(A — B, n) and hope to find one
the factors of n.
The complexity of this algorithm is T2 x (¥(N,T)/N)~! + T3, and is minimized when

T~ N/U(N,T)
which turn out to be solved for
T = exp((log N)'/2 o)

which is also the total complexity.
This uses the relation U(N,T) ~ Np(log N/logT) which was established in a wide range by Hildebrand,
where p is the Dickman function, which we discuss next.



2 The Dickman function

The function p: [0, 00) — (0, 00) was introduced by Dickman. It has initial conditions p(u) = 1 for u € [0, 1].
For larger u it is defined via delay-differential equation:

up'(u) + p(u—1) =0, or

It is decreasing, and in fact we see it decreases rapidly:
plu) < u~lp(u—1) = p(u) < Du+1)~" = y~u(+e0),

Dickman proved (30s) that ¥ (z,y) ~ zp(logx/logy) for z >y > x°.
De Bruijn (50s) worked out precise asymptotics for p(u). To explain them we need to introduce the
Laplace transform of p:

p(s) == /000 e ' p(t)dt.

.
p(s) = exp <'y+/ < ; 1dt).
0

A short proof of this follows from differentiating p(s) under the integral sign:

p'(s) =— /OOO te *tp(t)dt = — /01 te”stdt — /loo(/ti1 p(v)dv)e stdt
= [T o[ eranan =g,

v S

De Bruijn showed

(This determines p up to a multiplicative constant; see de Bruijn’s work for working out the constant.) For

any ¢ € R we have
1 su »
plu) = /( e als)ds

T 2mi

cu

We choose ¢ so that e~ j(—c) is minimized, i.e. ¢ is the minimizer of

t

dt.

C
cv—>—cu+’y—|—/
0

Differentiating (with respect to ¢) we find

e“—1

—u + 0

So the optimal ¢ is £(u) (a function of u) where £(u) ~ logu is defined implicitly via

Let us write ! 1
o) =5 [ etpls)ds = (-g();- [ Gl
27 J gy 27 Jm
for _
G(t) = "™ p(=€(u) +it)/p(—€(u)).
By construction G(0) = 1. By definition of £, G’(0) = 0. It is not hard to approximate G(t) as e—ut’ (1+0(1))/2
for small ¢ (details omitted; u(1 + o(1)) arises from (log G)”(0)). We expect

e S p(—€(w))

1 1
pu) = e p(s)ds ~ e~ p(—¢(u)) = / e U2t
2m Jr 2mu

27 J (g (u))

and this asymptotic relation was established rigorously by de Bruijn. The quantity —&(u) is called the saddle
point for p(u).



3 Hildebrand’s work

Let

log
u= .
logy
Hildebrand (80s) proved the following:

W(e,y) = ap(u) (1 ‘o (bg(u+1>>>

logy
holds for z > y > exp((loglog z)°/3*¢). Under RH he showed that

1 1
U(z,y) = zp(u) exp (1 +0 (Ogl(oug-iy-)>> (3.1)
holds for y > (log x)?*¢. Note this this does not give an asymptotic formula for y = (log x)°.

These two results admit alternative proofs due to Saias (80s). Hildebrand used a physical space argument
while Saias used Dirichlet series and complex analysis.
Two questions that were asked:

1. (Hildebrand) Can one show the asymptotic relation (3.1)) fails for y < (logx)?~¢?

2. (Pomerance) Is it true that U(z,y) > xp(u) for all /2 > y > 2?7 (Intuition: there is a lower order
term in (3.1)), found by de Bruijn, which is positive. Moreover, zp(u) < U(x,y) for y < logz trivially
since ¥(z,y) > 1, zp(u) < 1.)

Theorem 3.1 (G., 2022). Fiz e > 0. Unconditionally, there are sequences X, Yy, — 00 such that

Yn = (logl’n)276+o(1)

and
\Ij(zm yn)

znp(log 2/ log yn)
Theorem 3.2 (G., 2022). Under RH, for (logz)'** <y < (logx)?~¢ we have

An analogue of Theorem holds unconditionally for polynomials.
Theorem 3.3 (G., 2022). 1. Unconditionally, V(x,y) > xp(u) holds outside of

= exp((log z,)sT°M).

y € [log z exp((loglog 2)%/°~¢), exp((log log )*/3+%)].

2. Under RH, V(z,y) > xzp(u) holds outside of

y € [(logz)>¢, (log z)**].

3. Assume RH. If Y(y) == >_, o, A(n) ~y satisfies Y(y) —y = o(\/ylogy) then ¥(x,y) > xp(u) holds for
y € [(log )27¢, (log 2)2T¢]. Some intuition comes from the relation
(o)~ o) (/2D exp ( SE D)

fory = (1+ (logx)/2)? (which holds under RH).
4. If RH fails, and © > 1/2 is the supremum of the real parts of zeros of ¢, then for any 8 € (1 —©,0)
there are sequences Ty, Yn with y, = (logxy,)Y1=A+oW) sych that

U (20, yn) < zpp(log z,/ log yn) exp(—y—F~¢).



4 First oscillation result

The rest of the talk will concentrate on Theorem and the last part of Theorem [3.3
Let us start with the last part of Theorem [3.3['| Rankin (30s) observed that

U(z,y) <z°(c,y)

for any ¢ > 0, where ((c,y) = Hp<y(1 —p~¢)~ ! is the partial zeta function. The optimal ¢, that minimizes
the RHS, is denoted a = a(z,y):

V(z,y) <z%C(a,y) = min z°C(c, y)-

Recall also that
V2Tu '
Our aim is to ‘marry’ two classical ideas: saddle point analysis and Landau’s Oscillation result (the same
result that allows one to deduce ¥(y) —y = Q4 (y©~9)).
We introduce

p(u) ~

B=PB(z,y):=1-¢&u)/logy

where u = log z/log y, which allows us to rewrite

z?p(logy(B — 1))

wp(w) ~ oru
Now let’s divide ¥(x,y) by zp(u):
Y(y) o o 27Cay)
zp(u) zPp(logy(B— 1))

Here is a trivial (but new) observation. Since o minimizes the numerator we trivially have

(z,y) 27(By) - ((By)

o) < VUepe(w) Y Ae(u)
Letting

F(s,y) :=log((s,y) —log p(logy(s — 1)),

we see

U(z,y) < el By,
zp(u)

By an earlier computation,

log p(logy(s — 1)) =7+ I((1 — s) logy).
As for log ((s,y), we find
A(n)

nslogn

log((s,y) = Y —log(l—p~*) =) _ +o(1)

p<y n<y

if s >1/24 €. The o(1) terms come from proper prime powers. Since f =1 —¢(u)/logy = 1 —logu/logy,
we certainly have s > 1/2 + ¢ if y > (log z)**®.
In summary: we want to show

S A1 8 legy)

B
n logn

LFor simplicity we shall assume o € (1/2,0) (instead of o € (1 — ©,©)), and concentrate on y > (logx)2+=.



can be ‘very’ negative if RH fails. Strategy: we fix 8 € (1/2,1), namely require 1 — £(u)/logy = 8, which is
easy to solve:

§(u) =logy(l—p) =

e =1 +ug(u) =y’

and
1+ u(u) = 1+ ulogy(1 - §)
SO
1+logz(l—p) =y
ie.

y=(1+log(1— B)Y/0-9),

Given a function A(z) on x > 1, its Mellin transform is
MA(s) == / A(x)z™ds.
1

Landau proved the following.

Theorem 4.1. Suppose A(x) is a bounded integrable function on every interval [1, X], which is eventually
non-negative. Let o. be the infimum of o such that MA(o) converges. Then MA(s) is analytic in R(s) > o
but not at s = o..

To illustrate, let us revisit the proof that ¢(z) — < —2®7¢ holds infinitely often, where © is as before.
Consider A(z) =Y. __ A(n) —x + 2®7¢. Let us suppose A(x) is eventually positive. Not hard to show

n<x

-y 1
MA(S)__(S_l)C(S_l)_5_2—’_3—1—@4—6.

This function is analytic for real s > 1+ © — ¢, but is not analytic at s = 1 + © — . Hence, by Landau,
MA(s) is analytic in the half-plane R(s) > 1 4+ © — . But this is false — it is only analytic in £(s) > 1+ ©
due to zeros with real part > © — ¢ for any € > 0; contradiction.

Another example: Diamond and Pintz (2009) showed

ZM_IO log 7 — <_L
n 8708 K Valogx

holds infinitely often for any given C' > 0, and same with > C/(y/xlogz). This shows that /z(]] ., (1 —

1/p)~! — ¥ log x) exhibits arbitrarily large positive and negative values as  — co. They studied the Mellin
transform of the LHS.
An almost identical argument works for showing

p<z

A(n) P
s —I((1 - B)logy) < —y°OB=
y n§<y Plogn (1—=p)logy) < —y

holds infinitely often.
We conclude that if RH fails, and © > 1/2 is the supremum of the real parts of zeros of {, then for any
B € (1/2,0) there are sequences &, y, with y, = (logz, )"/ =A+e() such that

\I/(J;n, yn) < J?np(log J}n/ log yn) eXp(—yS_ﬁ_s)_

If RH holds, ©® — 8 =1/2 — 3 < 0 so this is useless.

Remark 4.1. Under RH we can show that V(x,y) ~ xp(u)F(B,y) holds for y > (logx)*/**¢ and this range
is optimal. A similar result holds for polynomials over finite fields, unconditionally.



5 Second oscillation result

Finally, let us turn to Theorem We assume y < (logz)?~¢, so that 8 < 1/2 —¢ (and also o < 1/2 — &:
it is known that o = 84+ O(1/logy)).
We have seen

Y(z,y) z%¢(a, y) 27CBy) By

won) <V eTp(eu) <V Hpew) Y HEw)’
This used ¥(x,y) < 2*C(a,y). We also have ¥(z,y) > x*((a,y)/+/u (Hildebrand and Tenenbaum, 80s) if
y > (logx)1*e, so

Vay) o aay) | o%ay) ()

zp(u) — 2Pp(=E(u)) T 22p((1—a)logy)  p((1 —a)ylogy)

The second inequality is trivial (but new): it uses the fact that S minimizes s — z°5((1 — s) logy). Recall

F(s,y) =log((s,y) — log p(logy(s — 1)).

We have just shown

M > eF(a,y).
zp(u)

Unconditionally, Landau’s Theorem shows that, if we fix a > 0,

yor A1 a)logy)

n®logn

n<y

A(n)

n<y n%logn’

is non-negative. When y < (log z)?~¢ we have that log F/(a, y) is much larger than leading to

large values of U(x,y)/(xp(u)). Indeed,

log((s,y) = D —log(1—p™") = nAl(:g)n > D vk

p<y n<y k>2 yl/k <p<y

The k-sum can easily be shown to tend to infinity when s < 1/2 — ¢ (this uses nothing more than the Prime
Number Theorem), which is the case when s = o and y < (logz)?~=.
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