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Abstract. We correct some minor issues in our paper An inverse theorem

for the Gowers Us+1[N ]-norm, Ann. Math 176 (2012), 1231–1372.

1. Introduction

In this erratum we correct some minor issues in [2]. These have come to light on
account of the close study of [2] made by James Leng, Ashwin Sah and Mehtaab
Sawhney in the course of preparing their work [3]. We are very grateful to James,
Ashwin and Mehtaab for drawing these issues to our attention and for discussions
relating to them.

To keep the erratum relatively short we assume familiarity with the concepts
and notation of [2]. The primary issues in [2] are (with references here being to
that paper):

• Insufficient care was taken with the top groups in various filtrations, for example
we allow filtrations G0 ⊃ G1 ⊇ . . . with G0 6= G1, but this is best avoided for
several reasons. One is that the equidistribution results of [1], cited in Appendix
D, are stated with the condition G0 = G1. This turns out to be a minor issue, in
that the main statements of [1] continue to hold without this condition. However,
somewhat more annoying problems arise with top-order Taylor coefficients (for
instance in the display after (12.7) on page 1310), with final groups in such
filtrations not necessarily being central (for instance on page 1311, or Example
6.10) and with the fact that the degree of the filtration does not control the
nilpotency class of G0 (an issue in Appendix C).

• The proof of Proposition 8.3 is incorrect, and this proposition does not hold as
stated. The problem is with the deduction of (8.4). When π(g0(n)∗Γ) ∈ B, one
can express g0(n) = ι(xn)tnγn for some xn ∈ B, tn ∈ G(1,0), and γn ∈ Γ, and
then

g(n, h) = ι(xn)tnγng1(n)h = ι(xn)tn(γng1(n)γ−1n )hγn,

which when combined with (8.3) gives

χ̃k,k′(n) = e(hξ(γng1(n)γ−1n mod Γ(1,0)))F̃k,k′(g0(n)∗Γ)

rather than

χ̃k,k′(n) = e(hξ(g1(n) mod Γ(1,0)))F̃k,k′(g0(n)∗Γ)

as claimed.
• Some minor issues in Sections 9–12 and Appendix E of the paper, at least one of

which rises above the level of a mere typo.
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These three bullet points are addressed in Sections 2, 3 and 4 respectively, with
the middle one of these being the most substantial. We note that all issues are also
fixed in [3]; in particular, we remark that the authors of that paper independently
found a fix for the second issue which is related to the one we shall present, though
a little different in the details.

2. Filtrations

To fix the issues with filtrations, one should introduce some additional assump-
tions about the top order groups in the three main types of filtrations occurring in
[2] (see page 1260). Specifically,

• When talking about a degree filtration on G, one should insist that G0 = G1;
• When talking about a degree-rank filtration on G, one should insist that G(0,0) =
G(1,0) (in addition to the conditions G(d,0) = G(d,1) already imposed in [2, Defi-
nition 6.9]);

• When talking about a multidegree filtration on G, one should insist that G~0 is
generated by the groups G~ei .

Note that these notions are consistent with [3, Definition 2.4]. For the purposes of
this section we call filtrations satisfying these additional conditions taut.

One now needs to check that all the filtrations introduced in [2] are taut, or else
can be modified so that they are, and one also needs to confirm that the issues
mentioned in the introduction cease to be issues when filtrations are assumed to be
taut. We leave the latter to the reader.

Regarding the former, the problematic points are mostly various (closely related)
places where equivalence of certain nilcharacters is proven: Lemma 12.1, and the
proofs of Lemma E. 8 (iv) and (v), and the proof of Proposition E.9. In these
places, the given constructions are not taut.

The way to fix this in each case is to use a trick introduced in [1] (in the degree
filtration case) to show that any nilsequence in the sense of [2] can be rewritten as
a nilsequence in which the underlying filtration is taut. In particular the notion
of equivalence of nilcharacters χ, χ′ in [2, Definition 6.22] is the same as the a
priori stronger one in which one insists on tautness in the filtration underlying the
nilsequence χ⊗ χ′.

For simplicity we illustrate this trick with standard nilsequences but the ex-
tension to the limit formulation used in [2] is routine. In the degree filtration
case, given F (g(n)Γ) one writes it as F ′(g′(n)Γ) where F ′(x) = F ({g(0)}x) and
g′(n) = {g(0)}−1(g(n)g(0)−1){g(0)}, where here {g(0)}Γ = g(0)Γ but {g(0)} is
bounded, noting that F ′ is still Lipschitz, but g′ now takes values in G1. Thus one
may replace the filtration (Gi)i>0 by (G′i)i>0, where G′0 := G1 and G′i = Gi for
i > 1, noting that this filtration is now taut. For more details (and a discussion of
the other filtrations, which may be handled in the same way) see [3, Appendix D].

The issue in Appendix C (which, in any case, is somewhat orthogonal to the main
paper) is very slightly different in that it does not involve the notion of equivalence
of nilcharacters, but it could be resolved in exactly the same way. However, it is
best to simply remove the problem by insisting on the tautness condition G0 = G1

as part of the definition of filtered nilmanifold ([2, Definition 4.1]).
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3. A revised version of [2, Proposition 8.3]

Let χ ∈ Ξ
(1,s−1)
Multi (∗Z2). The claim of [2, Proposition 8.3] is that we can approxi-

mate χ in the uniform norm by χs which are ‘linearised’, the definition here being
[2, Definition 8.1]. In [2], Proposition 8.3 is only used in the proof of Proposition
7.3. An inspection of the argument shows that the only consequence of the defi-
nition of [2, Definition 8.1] that we use is that, if χ is linearised, then one has a
factorization

χ(h1, n)⊗ χ(h2, n+ h1 − h4)⊗ χ̄(h3, n)⊗ χ̄(h4, n+ h1 − h4)

= ψ(n)⊗ ψ(n+ h1 + h4)⊗ ψ̄(n)⊗ ψ̄(n+ h1 − h4)ch1,h2,h3,h4
(n) (3.1)

for all n ∈ Z, where ψ ∈ L∞(Z→ C̄ω) is a limit function and ch1,h2,h3,h4
∈ L∞(Z→

C) is a degree 6 s− 2 nilsequence.
In this erratum, we do not establish (3.1), but rather the following related state-

ment, which (by a minor modification of the arguments in [2, Section 8]) still suffices
for the deduction of [2, Proposition 7.3].

Proposition 3.1. Fix h, k. Then each component of χ(h + k, n) ⊗ χ(h, n) can be
approximated, up to arbitrarily small error in L∞, by a finite sum of functions of
the form ψk(n)ψ′k,h(n), where ψk ∈ Ξs−1(∗Z) and ψ′k,h(n) is a degree at most (s−2)

nilsequence in n, and the functions ψk and ψ′k,h as well as the number of terms K
in the sum behave in a limit fashion on h, k.

Proof. We first apply [2, Lemma E.8 (iv)] with H = Z2 having the multidegree
filtration, and taking the shift h in that statement to be (k, 0) ∈ ∗Z2. Note that
(k, 0) ∈ (∗Z2)(1,0) (see [2, Definition 6.17]) and that (1, 0) � (0, 0), so [2, Lemma E.8
(iv)] applies, and we conclude that χ and χ(·+(k, 0)) are equivalent in the sense of [2,
Definition 6.22], that is to say χ(h+k, n)⊗χ(h, n) is a nilsequence of degree strictly
less than (1, s − 1) in the multidegree ordering. The set of elements of N2

0 which
are strictly less than (1, s− 1) in the multidegree ordering is J ∪ J ′, where J is the
elements of degree � (0, s−1), and J ′ the elements of degree � (1, s−2). Therefore
(with notation as in [2, Definition 6.19], and with C denoting the bounded elements
of the nonstandard complex numbers C∗, as in [2, Appendix A]), each component

of χ(h+ k, n)⊗ χ(h, n) lies in Nil⊂J∪J
′
(∗Z2 → C).

Now we apply the splitting lemma [2, Lemma E.4] to this situation. This tells
us that, up to an arbitrarily small error in L∞, each component of χ(h + k, n) ⊗
χ(h, n) can be written as a finite linear combination of expressions of the form

ψk(h, n)ψ′k(h, n), where ψk(h, n) ∈ Nil⊂J(∗Z2 → C) and ψ′k(h, n) ∈ Nil⊂J
′
(∗Z2 →

C). Note in particular that ψk(h, n) does not depend on h and ψk(n) := ψk(h, n)
lies in Nils−1(∗Z → C). By a vertical Fourier expansion (Lemma [2, E.5]) we may
further assume that each ψk(n) is a nilcharacter in Ξs−1(∗Z). Finally, note that for
fixed h, ψ′k(h, n) (considered as a function of n only) lies in Nils−2(∗Z→ C).

That ψk and ψ′k,h depend in a limit fashion on k, h follows from [2, Lemma A.11]

(or one can proceed by inspection of the proof of Stone-Weierstrass). �

The deduction of [2, Proposition 7.3] from (the incorrect) [2, Proposition 8.3]
is given in [2, Section 8], from the bottom of page 1275 to the top of page 1277.
By fairly minor modifications of the argument, we now deduce [2, Proposition 7.3]
using Proposition 3.1.
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We start in the same way, that is to say by noting that, by hypothesis, for each
h ∈ H we can find a scalar nilsequence ch of degree 6 s− 2 such that

|En∈[N ]∆hf(n)χ(h, n)⊗ χh(n)ch(n)| � 1,

where here recall the convention (in force from page 1251 onwards in [2]) that N is
a fixed unbounded limit integer, and H is a dense subset of [[N ]] := [−N,N ] (see
[2, Appendix A] for the definitions here). By [2, Corollary A.12], we may ensure
that ψh varies in a limit fashion on h, Applying [2, Corollary A.6], this lower bound
is uniform in h.

It is convenient to write cparams(n) for a scalar degree 6 (s − 2) nilsequence
depending in a limit fashion on the parameters, which will vary over limit intervals
such as [N ]; different instances of c may denote different nilsequences.

Therefore there is some b ∈ L∞[[N ]] such that

|Eh∈[[N ]]En∈[N ]b(h)f(n+ h)f(n)χ(h, n)⊗ χh(n)ch(n)| � 1.

We may absorb b into ch. Applying Cauchy–Schwarz, we conclude

|Eh,h′∈[[N ]]En∈[N ]f(n+ h)f(n+ h′)χ(h, n)⊗χ(h′, n)⊗χh(n)⊗χh′(n)ch,h′(n)| � 1

Setting h′ = h+k (and approximating the cutoff 1h,h+k∈[[N ]] by a 1-step nilsequence,
which may be absorbed into the c() term since s > 3) we obtain

|Eh,k∈[[2N ]];n∈[N ]f(n+ h)f(n+ h+ k)(χ(h, n)⊗ χ(h+ k, n))

⊗ χh(n)⊗ χh+k(n)ch,k(n)| � 1.

Therefore there is some component (χ(h, n)⊗ χ(h+ k, n))i such that

|Eh,k∈[[2N ]];n∈[N ]f(n+ h)f(n+ h+ k)(χ(h, n)⊗ χ(h+ k, n))i

χh(n)⊗ χh+k(n)ch,k(n)| � 1. (3.2)

Now we decompose the term (χ(h, n) ⊗ χ(h+ k, n))i as in Proposition 3.1.
From this decomposition, (3.2), and the pigeonhole principle there are scalar ψk ∈
Ξs−1(∗Z) and ψ′k ∈ Nil(1,s−2)(∗Z2), varying in a limit fashion in k, such that

|Eh,k∈[[2N ]];n∈[N ]f(n+ h)f(n+ h+ k)ψk(n)ψ′k(h, n)χh(n)⊗ χh+k(n)ch,k(n)| � 1.

Since, for fixed h, ψ′k(h, n) is degree 6 (s − 2) in n, the ψ′k(h, n) factor can be
absorbed into the c() term, thus

|Eh,k∈[[2N ]];n∈[N ]f(n+ h)f(n+ h+ k)ψk(n)χh(n)⊗ χh+k(n)ch,k(n)| � 1.

Now we have ψk(n) = ∆hψk(n)ψk(n+h), and by [2, Lemma E. 8 (iv)], ∆hψk(n)
is a degree 6 (s − 2) nilsequence in n for each fixed h, k, and so may be absorbed
into the c()-term. Thus we obtain

|Eh,k∈[[2N ]];n∈[N ]f(n+ h)f(n+ h+ k)ψk(n+ h)χh(n)⊗ χh+k(n)ch,k(n)| � 1

Making the change of variables m = n+h (and extending f by zero outside of [N ],
we obtain)

|Eh,k∈[[2N ]];m∈[[3N ]]f(m)f(m+ k)ψk(m)⊗χh(m−h)⊗χh+k(m− h)ch,k(m−h)| � 1.
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Applying Cauchy–Schwarz again to eliminate the f and ψk factors, we conclude

|Eh,h′,k∈[[2N ]];m∈[[3N ]]χh(m− h)⊗ χh+k(m− h)

⊗ χh′(m− h′)⊗ χh′+k(m− h′)ch,h′,k(m)| � 1.

Making the substitution h1 := h, n := m − h, h2 := h′ + k, h3 := h + k, h4 := h′

and rearranging the tensor product slightly, we obtain

|Eh1,h2,h3,h4∈[[4N ]]:h1+h2=h3+h4
En∈[[5N ]]

χh1
(n)⊗ χh2

(n+ h1 − h4)⊗ χh3
(n)⊗ χh4

(n+ h1 − h4)ch1,h2,h3,h4
(n)| � 1,

where again we have approximated a cutoff (in this instance 1n+h∈[[3N ]]) by a 1-step
nilsequence and absorbed this into the c()-term.

Note that the inner average vanishes unless h1, h2, h3, h4 lie in H. We thus
conclude that for many additive quadruples (h1, h2, h3, h4) in H, that χh1(n) ⊗
χh2

(n + h1 − h4) ⊗ χh3(n) ⊗ χh4(n+ h1 − h4) is (s − 2)-biased, which is what we
were required to prove.

4. Minor issues in Sections 9–12

References in this section are all to [2]. The most serious issue here concerns the
group G∗ in Section 12.

The second paragraph after the bullets on page 1309 states

Let G∗ be the subgroup of G
~D∗+~D′ generated by (m−1)-fold iterated commuta-

tors ẽi1,j1 , . . . , ẽim,jm with i1 + · · ·+ im = s− 1 in which j` > D∗,i` for at least two
values of `, or j` > D∗,i` +D′lini`

for at least one value of `. Then G∗ is a subgroup

of the central group G
~D∗+~D′

(s−1,r∗) of G
~D∗+~D′ and G̃ is isomorphic to the quotient of

G
~D∗+~D′ by G∗. We let φ̃ : G

~D∗+~D′ → G̃ denote the quotient map. From Theorem

11.1, the character η : G
~D∗+~D′

(s−1,r∗) → R annihilates G∗ and thus descends to a vertical

character η̃ : G̃(s−1,r∗) → R.

This is mildly incorrect in a rather confusing way, and should read

Let G∗ be the subgroup of G
~D∗+~D′ generated by (m − 1)-fold iterated com-

mutators ẽi1,j1 , . . . , ẽim,jm in which j` > D∗,i` for at least two values of `, or

j` > D∗,i` + D′lini`
for at least one value of `. Let φ̃ : G

~D∗+~D′ → G̃ denote

the natural map with φ̃(ei,j) := ẽi,j . Then ker φ̃ = G∗, and so G∗ is normal

in G
~D∗+~D′ and G̃ is isomorphic to the quotient of G

~D∗+~D′ by G∗. From The-

orem 11.1, the character η : G
~D∗+~D′

(s−1,r∗) → R is trivial on G∗ ∩ G~D∗+~D′

(s−1,r∗) and

thus, since G̃(s−1,r∗) = G
~D∗+~D′

(s−1,r)/(G
∗ ∩ G~D∗+~D′

(s−1,r∗)), descends to a vertical charac-

ter η̃ : G̃(s−1,r∗) → R.

Note that we have used the letter m as a dummy variable here, instead of r as
in [2], which may have been the source of the confusion.

Finally, we record the following further minor but potentially confusing typos in
Sections 9–12 and Appendix E of the paper.

• p1279, Definition 9.1, second bullet: r should be r∗.



6 BEN GREEN, TERENCE TAO, AND TAMAR ZIEGLER

• p1279, line 14: n should be m.
• Theorem 11.1 options (iii) and (iv) are (somewhat strangely!) redundant, being

simply repeats of (i) and (ii), and not subsequently referenced.

• p1297, Lemma 10.8: G
~D′

s−1 here should be G
~D′

(s−1,r∗).

• In Definition 9.11 and the proof of Lemma 9.12, Gi = G(i,0).

• In the definition of the degree-rank filtration on G̃ on page 1309, we should include
all commutators with i1 + · · ·+ ir′ > d, without the additional restriction r′ > r
in this case. Then the definition is compatible with the degree-rank filtration on

G
~D+ ~D′ (see page 1279) in the sense that

G̃(d,r) = G(d,r)/(G(d,r) ∩G∗).

• p1359, two instances after the fourth displayed equation: F⊗F̃ should be F⊗d!⊗
F̃ . Similarly in equation (E.3) on the same page, χ(n)⊗ χ̃(n, . . . , n) should read

χ(n)⊗d! ⊗ χ̃(n, . . . , n).

References

[1] B. J. Green and T. Tao, The quantitative behaviour of polynomial orbits on nilmanifolds,
Ann. Math. 175 (2012), no. 2, 465–540.

[2] B. J. Green, T. Tao and T. Ziegler, An inverse theorem for the Gowers Us+1[N ]-norm, ANn.

Math. 176 (2012), 1231–1372.
[3] J. Leng, A. Sah and M. Sawhney, Quasipolynomial bounds on the inverse theorem for the

Gowers Us+1[N ]-norm, manuscript.

Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG,

England
Email address: ben.green@maths.ox.ac.uk

Department of Mathematics, UCLA, Los Angeles, CA 90095, USA
Email address: tao@math.ucla.edu

Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem,
Israel 91904

Email address: tamarz@math.huji.ac.il


