
CHAPTER 8

The sum-product phenomenon in C

In this section we give some extremely elegant and (in retrospect!) simple arguments
of Solymosi establishing sum-product phenomena in fields with a metric structure.
We focus on R and C.

Theorem 8.1 (Solymosi). Suppose that A is a finite set of complex numbers. Then

|A+A|+ |A ·A| > c|A|5/4.

Essentially the only property of the field C that is relevant for Solymosi’s argument
is the so-called Besicovitch property.

Definition 8.1 (Besicovitch constant). Suppose that (X, d) is a metric space. The
Besicovitch constant of X (if it is defined) is the largest k such that there exist balls
Bi = B(xi, ri), i = 1, . . . , k with the property that xi is never in the interior of Bj

if i 6= j, and such that
⋂k

i=1
Bi is nonempty.

Lemma 8.1 (Besicovitch constant of C). The Besicovitch constant of C is 6.

Proof. This is simple Euclidean geometry exercise. Suppose that Bi = B(xi, ri), i =
1, . . . , 7, are balls intersecting in some point z. Suppose that the centres x1, . . . , x7

are arranged in order, radially about z. The angles x1zx2, x2zx3, . . . , x7zx1 must
be at least π/3 since the distance |xi−xi+1| is greater than or equal to both |xi−z|
and |xi+1 − z|. This is obviously a contradiction.

Proof of Theorem 8.1. Suppose that A ⊆ C is a finite set and that the additive
doubling σ+[A] and the multiplicative doubling σ×[A] are both at most K. Our
aim is to show that K > c|A|1/4.

To each point a ∈ A associate the nearest neighbour a∗ of a in A \ {a}, making an
arbitrary choice if there are ties to be broken. To motivate the proof, suppose that
the following (false) assumption held: for any triple (a1, a2, a3) ∈ A × A × A the
unique nearest neighbour to a1 + a2 in A + A is a∗1 + a2, and the unique nearest
neighbour to a1a3 in A ·A is a∗1a3. We could then consider the map

ψ : A×A×A→ (A+A)× (A+A)× (A ·A)× (A ·A)

defined by φ(a1, a2, a3) = (a1 + a2, a
∗
1 + a2, a1a3, a

∗
1a3). Now it is an easy algebraic

exercise to see that this map is injective. Furthermore, by our false assumption,
knowledge of a1 + a2 and a1a3 tells us the values of a∗1 + a2 and a∗1a3, which means
that im(φ) 6 |A + A||A · A|. We would then have |A + A||A · A| > |A|3, a much
stronger result than the one we have claimed.

73



74 8. THE SUM-PRODUCT PHENOMENON IN C

The problem, of course, is our false assumption. It turns out that something a little
weaker is true: for many triples (a1, a2, a3) there are not many points of A + A
closer to a1+a2 than a∗1 +a2, and not many points of A ·A closer to a1a3 than a∗1a3.
More precisely we will examine well-behaved triples (a1, a2, a3) for which a∗1 + a2 is
“almost ” the nearest neighbour of a1 + a2 in A+A in the sense that

(8.1) Ua1,a2
:= |{u ∈ A+A : |a∗1 + a2 − u| 6 |(a∗1 + a2)− (a1 + a2)|}| 6 100K

and for which a∗1a3 is “almost” the nearest neighbour of a1a3 in the sense that

(8.2) V (a1, a3) := |{v ∈ A ·A : |a∗1a3 − v| 6 |a∗1a3 − a1a3|}| 6 100K.

It is not obvious that there are such triples, but we claim that this good behaviour
is quite generic: there are at least |A|3/2 such triples.

Examining (8.1) in the first instance, fix a2. Then the balls B|a∗

1
−a1|(a1 + a2),

a1 ∈ A, have Besicovitch’s intersection property. It follows that no u can lie in 7 of
them. It follows that ∑

a1

Ua1,a2
6 6|A+A| 6 6K|A|.

An essentially identical argument using (8.2) implies that
∑

a1

Va1,a3
6 6K|A|.

The number of pairs (a1, a2) for which Ua1,a2
> 100K is thus at most |A|2/10, as

is the number of pairs (a1, a3) for which Va1,a3
> 100K. The claim follows.

Now suppose that x = a1 + a2, y = a∗1 + a2, z = a1a3 and w = a∗1a3 are known.
The same simple algebraic exercise as before confirms that a1, a

∗
1, a2 and a3 may be

recovered from knowledge of x, y, z and w, and hence by the claim just proved the
number of choices for the quadruple (x, y, z, w) such that (a1, a2, a3) constitute a
well-behaved triple is at least |A|3/2. Now there are |A+A| ways to specify x and
|A ·A| ways to specify z. Suppose these have been chosen, and consider the possible
choices of y. Single out one y corresponding to a well-behaved triple (a1, a2, a3)
with |x− y| = |a∗1 − a1| maximal. Then for all permissible y we have

|a1 + a2 − y| = |x− y| 6 |x− y| = |a∗1 − a1|.

By the definition of well-behaved triple, and specifically in view of (8.1), there are
at most 100K choices for y. Similarly there are at most 100K choices for w. It
follows that

|A|3/2 6 |A+A| · |A ·A| · (100K)2 6 104K4|A|2,

from which the result follows immediately.


