
A BRIEF PRIMER ON CONDITIONAL EXPECTATION

Conditional expectation is a topic that I found somewhat obscure as a student. How-
ever there is really nothing to be afraid of.

Let (X,F , µ) be a probability space (I have emphasised the σ-algebra F , as it plays
an important rôle in the discussion). Let F ′ ⊆ F be a sub σ-algebra of F . One may
define a conditional expectation operator E( · |F ′) : L1(X,F) → L1(X,F ′); we denote
the image of a function f under this map by E(f |F ′).

We will give the definition and some basic properties of this map in a moment. But
what does it mean? I find it easiest to visualise the construction in the case that X is a
finite set and µ is the counting measure, normalised so that µ(X) = 1. In this case the
σ-algebras F and F ′ define partitions of X into basic cells which we may call atoms.
Since F ′ ⊆ F , the partition into the atoms of F is a refinement of that into the atoms
of F ′.

What is L1(X,F)? In this finite setting it (and all the other spaces Lp(X,F)) are
just the space of F -measurable functions, that is to say functions which are constant
on atoms of F . Suppose that f ∈ L1(X,F). To get a function in L1(X,F ′), we replace
f by its average over each atom defined by F ′.

Think of f as a random variable (which is, after all, just another name for a real-
valued function on a probability space). Suppose that g ∈ L1(X,F) is another random
variable. We may use g to define a σ-algebra F ′, by dividing X into atoms on which g
is constant. Then E(f |F ′) : X → R, more normally written in this context as E(f |g),
may be thought of as follows: E(f |g)(x) is the expected value of f conditioned upon the
event that {x′ : g(x′) = g(x)}, where conditioning here is in the sense of IA Probability.

Hopefully this gives some intuition. When the space X is infinite, as is generally the
case in this course, the picture is more complicated than the finite case suggests and
it does not make sense to think in terms of a partition into atoms. My favourite way
to define the conditional expectation operator E(·|F ′) : L1(X,F) → L1(X,F ′) is by
first defining it on L2(X,F) ⊆ L1(X,F). In this setting we have Hilbert space theory
available to us, and indeed it is very natural to define

E( · |F ′) : L2(X,F) → L2(X,F ′)

to be simply the projection onto the closed subspace L2(X,F ′). Suppose that f also
lies in L1(X,F). Then sgn(E(f |F ′)) lies in L2(X,F ′) and so

〈f − E(f |F ′), sgn(E(f |F ′))〉 = 0.

Thus we have the inequality

‖E(f |F ′)‖1 =

∫
f sgn(E(f |F ′)) dµ 6 ‖f‖1. (0.1)

for all f ∈ L1(X,F) ∩ L2(X,F). Since L1 is dense in L2, it is not hard to see that
we may define a unique extension of E( · |F ′) to a linear operator from L1(X,F) to
L1(X,F ′) such that (0.1) is still satisfied (that is, the operator norm is 1).
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Another way to define the conditional expectation is to invoke the Radon-Nikodym
theorem. (By this point students will be aware of my distaste for bringing out big
theorems when this is unnecessary. This issue is slightly compounded here by the fact
the proof of Radon-Nikodym in Rudin’s book actually uses Hilbert space techniques
similar to those we discussed above.) The Radon-Nikodym theorem is an important
result in measure theory, so one should probably be aware of the statement. It involves
two measures µ1, µ2 on a space X equipped with a σ-algebra F . We say that µ2 is
absolutely continuous with respect to µ1 if µ2(E) > 0 implies that µ1(E) > 0.

Theorem 0.1 (Radon-Nikodym). Suppose that µ2 is absolutely continuous with respect
to µ1. Then there is a (unique) function g ∈ L1(X,F , µ1) such that µ2(E) =

∫
g1E dµ1

for all E ∈ F .

The function f is called the Radon-Nikodym derivative of µ2 with respect to µ1 and
is usually denoted dµ2/dµ1.

Now suppose that f ∈ L1(X,F). Then we may define a measure µ′ on (X,F ′)
by setting µ′(E) :=

∫
f1E dµ for all E ∈ F ′. The measure µ may be restricted to

a measure on (X,F ′), which we also denote by µ′. As measures on (X,F ′), µ′ is
absolutely continuous with respect to µ. Indeed if µ(E) = 0 then it is easy to see that∫

f1E dµ = 0, say by approximating f by an increasing sequence of step functions. By
the Radon-Nikodym theorem there is some g ∈ L1(X,F ′) such that∫

f1E dµ = µ′(E) =

∫
g1E dµ (0.2)

for all E ∈ F ′, and we define g := E(f |F ′).

The two definitions we have given coincide: to see this, use (0.2) to show that if
f ∈ L2(X,F) then g ∈ L2(X,F ′), then use it again to see that f−E(f |F ′) is orthogonal
to all functions in L2(X,F ′). Now check that with the second definition the map
f 7→ E(f |F ′) is a bounded linear functional, and hence conclude that it must be the
same object as before.

We conclude by listing some properties of the conditional expectation map. When
thinking about these and other properties of the conditional expectation operators, I
always keep the example of a finite measure space in mind.

Theorem 0.2 (Basic properties of conditional expectation). Suppose that (X, µ,F) is
a probability space and that F ′′ ⊆ F ′ ⊆ F are σ-algebras. Let f ∈ L1(X,F). Then

(i) If g ∈ L∞(X,F ′) then multiplication by g commutes with E( · |F ′).
(ii) If f > 0 for a.e. x then E(f |F ′) > 0 for a.e. x.
(iii) E( · |F ′′) ◦ E( · |F ′) = E( · |F ′′).
(iv) E( · |F ′) is a contraction in Lp for all 1 6 p 6 ∞.
(v) Suppose that T : X → X is measurable and that F ′ is the σ-algebra of T -

invariant sets. Then E(f ◦ T |F ′) = E(f |F ′).

Sketch Proof. I use the first (Hilbert space) definition. To check (i), suppose that
f ∈ L2(X,F) and that h ∈ L2(X,F ′). Then gh ∈ L2(X,F ′), and so

〈gf − gE(f |F ′), h〉 = 〈f − E(f |F ′), gh〉 = 0.
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It follows that gE(f |F ′) = E(gf |F ′) for all such f , and the same is true for all f ∈
L1(X,F) by a limiting argument.

(ii) If not then max(E(f |F ′), 0) is a function in L2(X,F ′) which is closer to f than
E(f |F ′), contrary to the definition.

(iii) is immediate for f ∈ L2(X,F), and again we can extend to f ∈ L1(X,F) by
limiting arguments.

(iv) It follows easily from (ii) and the linearity of conditional expectation that

‖E(f |F ′)‖∞ 6 ‖f‖∞.

The fact that E( · |F ′) is a contraction in Lp follows from the fact that it is a contraction
in L1 and the Riesz-Thorin interpolation theorem. We may also argue directly. Suppose
that f ∈ L∞(X,F), so that E(f |F ′) ∈ L∞(X,F ′). Then, since every function in sight
is bounded and hence in L2, we have

〈f − E(f |F ′), |E(f |F ′)|p−1 sgn(E(f |F ′))〉 = 0,

and therefore by Hölder’s inequality

‖E(f |F ′)‖p
p = 〈f, |E(f |F ′)|p−1 sgn(E(f |F ′))〉

6 ‖f‖p‖|E(f |F ′)|p−1 sgn(E(f |F ′))‖q

= ‖f‖p‖E(f |F ′)‖p/q
p

where, of course, 1/p + 1/q = 1. It follows that conditional expectation is an Lp-
contraction when restricted to functions in L∞(X,F). However these functions are
dense in Lp(X,F) and so the result follows.

(v) Suppose that f ∈ L2(X,F) and that g ∈ L2(X,F ′), that is to say g is a T -invariant
function or in other words UT g = g, where UT is the Koopman operator associated to
T . Recall from the proof of the von Neumann ergodic theorem that U∗

T g = g. It follows
that

〈f ◦ T − E(f |F ′), g〉 = 〈UT f, g〉 − 〈E(f |F ′), g〉
= 〈f, U∗

T g〉 − 〈E(f |F ′), g〉
= 〈f, g〉 − 〈E(f |F ′), g〉
= 〈f − E(f |F ′), g〉 = 0.

It follows that E(f ◦ T |F ′) = E(f |F ′) for all f ∈ L2(X,F). As usual, the same is true
for f in L1 by a limiting argument.


