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Preface

These are notes for an advanced undergraduate course on ergodic theory. The

first draft was written for a 24-hour course in Part III of the Mathematical Tripos

in Cambridge in 2008. Those notes were then substantially revised in preparation

for a 16-lecture advanced undergraduate course in Oxford in 2014.

The aim is to cover some topics in ergodic theory motivated by applications

to number theory: normal numbers, continued fraction expansions, recurrence of

polynomials, and Szemerédi’s theorem on arithmetic progressions.

I wanted to get away, as far as possible, from the typical style of many texts on

ergodic theory in which one first develops or recalls results from measure theory and

functional analysis at length. I take the view that a student does not really need to

be completely on top of measure theory to derive benefit from a course on ergodic

theory. Indeed, such a course can help consolidate or refresh knowledge of measure

theory, or act as motivation to go and learn about it. A particular point is that

one really does not need to know very much about the construction of measures to

benefit from this course.

The style of these notes, then, is to “recall” the measure theory we need as we

go along. The first several chapters require only very basic notions, and it is only

in Chapter ?? (which may well not make it into a typical 16-lecture course) that

we require more serious material.

Similar remarks apply to topics in Fourier Analysis and Functional Analysis.

Everything we need about the former is summarised (with proofs and further ref-

erences) in Appendix B, but we would recommend the reader plunge straight into

the course without first reading that appendix. Concerning the latter, for much

of the course we have tried to minimise the use of anything other than very basic

facts. Thus we do require some very simple properties of Hilbert space (projections

to closed subspaces and existence of adjoints) but deeper topics such as the Riesz

representation theorem are confined to optional parts of the course.
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viii PREFACE

The focus of this book is on applications to number theory and simplicity of

exposition. As such, it has been necessary to sacrifice generality. Very often we

will make statements which are in fact valid in far greater generality than we state

them. We will say nothing about actions of groups other than Z, and we will restrict

attention to relatively benign settings (measure-preserving systems on compact

metric spaces) when it suit us.

Finally a word on the word ergodic, the etymology of which is less than obvious.

Apparently the term was coined by Boltzmann and derives from the Greek words

έργoν (ergon: “work”) and oδóζ (odos: ”path” or ”way”).



CHAPTER 1

Introduction and some examples

Let X be a set, and let T : X → X be a map. This course is about what

happens when the map T is applied repeatedly. If one takes a point x and applies

T repeatedly, the resulting set {x, Tx, T 2x, . . . } is called an orbit. In this course

we will be concerned with variants of the following basic question:

Is the orbit x, Tx, T 2x, . . . equidistributed in X?

It is not even obvious what this question means – how should we define equidis-

tributed? We will turn to this question later, but let us begin by considering some

examples of the sorts of systems we will be looking at.

Circle rotations. Let X = R/Z, and define the transformation T : X → X by

Tx = x+ α(mod 1).

Torus rotations. A similar example works in higher dimensions: let X =

[0, 1)d, write α = (α1, . . . , αd), and define T : X → X by Tx = x+ α.

Doubling map. Let X = [0, 1), and define the transformation T : X → X by

Tx = 2x(mod 1). Similarly, if k ∈ N, we may define the map Tx = kx(mod 1).

Bernouilli shift. Let X be the set of two sided 0-1 sequences ~x = (xn)n∈Z, and

define T : X → X by (T~x)n = xn+1. We may also consider the one-sided variant

of this in which X is not the space of 0-1 sequences (xn)∞n=0 and we define T in the

same way, thus T (x0, x1, x2, . . . ) = (x1, x2, . . . ).

The Gauss map. Let X = [0, 1]. If x ∈ (0, 1] then define Tx := 1
x−b

1
xc, where

btc denotes the integer part of t. Define T (0) = 0 (the inclusion of the point 0 is

just to make the underlying space compact). The map T and its iterates map be

used to compute the continued fraction expansion of x ∈ (0, 1). Indeed if a1, a2, . . .

are natural numbers and

x =
1

a1 + 1
a2+ 1

a3
+...

then Tx =
1

a2 + 1
a3+ 1

a4
+...

1



2 1. INTRODUCTION AND SOME EXAMPLES

and so the nth partial quotient an can be recovered as an = b1/Tn−1xc. Note that,

in contrast to the earlier examples, the map T is not continuous with respect to

the natural topology on [0, 1) (it has dramatic discontinuities at x = 1
2 ,

1
3 , . . . ).

As a warm-up for the rest of the course, and to introduce some techniques we

will use later, we begin by studying the first example, circle rotations, from first

principles in a little more detail. In the case X = R/Z, there is a natural definition

of what we should mean by saying that the orbit (Tnx)∞n=0 is equidistributed.

Definition 1.1. We say that the orbit (Tnx)∞n=0 is equidistributed in intervals

if

lim
N→∞

1

N
#{n ∈ {0, 1, . . . , N − 1} : Tnx ∈ I} → length(I)

for all intervals I ⊂ R/Z.

Let us say for the sake of argument that our intervals are closed, but this is

of no consequence later on. Here is the basic theorem about circle rotations and

equidistribution in intervals.

Theorem 1.1. Suppose that Tx = x+ α(mod 1) is a circle rotation. Then

• If α ∈ Q then (Tnx)∞n=0 is not equidistributed in intervals for any x;

• If α /∈ Q then (Tnx)∞n=0 is equidistributed in intervals for every x.

Proof. The first part is quite obvious: if α = a
q then Tnx = x + an

q and so

the orbit (Tnx)∞n=0 consists of at most q points, separated by at least 1/q. Thus

there are intervals of length 1/2q (say) which are never visited by this orbit, which

cannot therefore be equidistributed in intervals.

The second part is much less obvious. Suppose that α /∈ Q. A slightly fancier

way of writing what it means for (Tnx)∞n=0 to be equidistributed in intervals is as

follows: for all x ∈ R/Z and for all functions f of the form f = 1I (defined by

f(x) = 1 if x ∈ I and 0 otherwise) we have

lim
N→∞

1

N

N−1∑
n=0

f(Tnx)→
∫ 1

0

f(t)dt.

More succinctly,

(1.1) SNf(x)→
∫ 1

0

f(t)dt,

where

SNf(x) :=
1

N

N−1∑
n=0

f(Tnx).



1. INTRODUCTION AND SOME EXAMPLES 3

If this holds with the convergence of SNf(x) to
∫ 1

0
f(t)dt being uniform in x we

say that the function f = 1I has the “time averages = space averages” property

(TASA1).

It turns out that the indicator functions f = 1I are not the easiest functions

for proving TASA. It is much easier to prove that the exponential functions f(x) =

e2πikx, k ∈ Z, are TASA. The proof goes by summing a geometric progression, first

noting that the case k = 0 is trivial. If k 6= 0 then we have

SNf(x) =
1

N

N−1∑
n=0

e2πik(x+nα) =
e2πikx

N

1− e2πikNα

1− e2πikα
.

Here we used the fact that α is irrational: this guarantees that kα /∈ Z and hence

that the denominator here is not zero. Therefore

|SNf(x)| 6 2

N

1

|1− e2πikα|
,

a quantity which tends to 0 as N →∞ uniformly in x. Since∫ 1

0

f(t)dt =

∫ 1

0

e2πiktdt = 0,

we have SNf(x)→
∫ 1

0
f(t)dt uniformly in x, and so the exponential functions have

TASA.

1This is not standard terminology.
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If f1, f2 have TASA then it is very easy to see that c1f1 + c2f2 does also, and so

any finite sum of exponentials or trigonometric polynomial has the TASA property.

Next we prove that the set of functions with the TASA property is closed under

uniform convergence: that is, if f1, f2, f3, . . . is a sequence of functions with TASA

for which supx∈R/Z |fj(x)− f(x)| → 0 then f is also TASA.

To see this, let ε > 0. Then there is some i such that we have

(1.2) sup
t
|fi(t)− f(t)| < ε/3.

Since fi has TASA, for N large enough we have

|SNfi(x)−
∫ 1

0

fi(t)dt| < ε/3

for all x ∈ R/Z. However (1.2) and the triangle inequality easily implies that

|SNfi(x)− SNf(x)| < ε/3

for all x, and it also implies that

|
∫ 1

0

fi(t)dt−
∫ 1

0

f(t)dt| < ε/3.

Therefore by the triangle inequality we have

|SNf(x)−
∫ 1

0

f(t)dt| < ε.

Since ε was arbitrary, it follows that SNf(x)→
∫ 1

0
f(t)dt, or in other words that f

has TASA.

It is a well-known fact that the trigonometric polynomials are dense in the space

C(X) of continuous functions on X, with the topology induced by the uniform

norm, or in other words that every continuous f : X → R may be uniformly ap-

proximated by trigonometric polynomials. This follows from the Stone-Weierstrass

theorem, or it may be proven directly: see Appendix B for a direct argument. Thus,

by the above comments, every continuous function on R/Z is TASA.

Unfortunately, the characteristic functions f(t) = 1I(t) are not continuous.

However, for any ε > 0 we may find continuous functions χ−ε , χ
+
ε such that χ−ε (t) 6

1I(t) 6 χ+
ε (t) pointwise for all t ∈ R/Z and such that∫ 1

0

χ−ε (t)dt > length(I)− ε

and ∫ 1

0

χ+
ε (t)dt < length(I) + ε.

For example, we could take χ+
ε to look like this:
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χ+
ε

and χ−ε to be this function:

χ−ε

Hence, if N is large enough, for all x ∈ R/Z we have

SNf(x) 6 SNχ
+
ε (x) 6 ε+

∫ 1

0

χ+
ε (t)dt < 2ε+ length(I)

and

SNf(x) > SNχ
−
ε (x) > −ε+

∫ 1

0

χ+
ε (t)dt > −2ε+ length(I).

Since ε > 0 was arbitrary, the result follows. �

Time averages SNf . We wish to highlight a piece of notation introduced in this

proof which will reappear throughout the course: namely the definition

SNf(x) :=
1

N

N−1∑
n=0

f(Tnx)

to describe the “time averages” of f along the orbit (Tnx)∞n=0 starting from x.

To conclude this section we wish to highlight, for future reference, a key result

established in the course of the proof of Theorem 1.1.

Proposition 1.1. Suppose that X = R/Z and that T : X → X is the circle

rotation given by Tx = x + α(mod 1). Suppose that α /∈ Q. Let f : R/Z → C be a

continuous function. Then

SNf(x)→
∫ 1

0

f(t)dt

as N →∞, this convergence being uniform in x ∈ R/Z for each fixed f .

In the course of the proof of Theorem 1.1 this was the property that we described

by saying that “every continuous f has TASA”, but we will not use this nonstandard

nomenclature in later chapters.





CHAPTER 2

Measure-preserving systems

2.1. Probability spaces

In the introduction we discussed the circle rotation system in which X = R/Z
and T : X → X is given by Tx = x + α(mod 1). We proved a result about when

orbits (Tnx)∞n=0 are equidistributed. We did not look in any detail at the other

examples, and in some cases (for example the Bernouilli shift) it is less obvious

what it should even mean for an orbit to be equidistributed.

One can easily guess a rough form for the definition.

Rough Definition. An orbit (Tnx)∞n=0 is equidistributed if

lim
N→∞

1

N
#{n ∈ {0, 1, . . . , N − 1} : Tnx ∈ E} = vol(E)

for all “nice” sets E ⊂ X.

In the circle rotation example, we took the nice sets to be intervals, and then

it was obvious how to define their volume: the volume vol(E) of an interval E is

length(E).

The right framework for understanding these concepts in much greater generality

is measure theory. In this course, all the spaces X we will be studying will be

probability spaces. A probability space is a set X together with a collection B of

subsets of X which we know the volume, or measure, of, and this measure will

always lie in [0, 1]. We write µ : B → [0, 1] for the function which assigns to a set

A ∈ B its measure. The function µ is itself called a measure.

The collection B is required to be a σ-algebra, which means that it contains

the empty set ∅ and X, and it is closed under complements, countable intersections

and countable unions. To spell it out:

• We have ∅, X ∈ B;

• If A ∈ B then X \A ∈ B;

• If A1, A2, · · · ∈ B then
⋂∞
n=1An ∈ B;

• If A1, A2, · · · ∈ B then
⋃∞
n=1An ∈ B.

The measure µ is required to interact with B in a pleasant way. Specifically, for µ

to qualify as a probability measure we must have, whenever A,A′, A1, . . . , An ∈ B:

• We have µ(∅) = 0 and µ(X) = 1;

7



8 2. MEASURE-PRESERVING SYSTEMS

• (Additivity) If A,A′ are disjoint then µ(A ∪A′) = µ(A) + µ(A′);

• (Limits) If A1 ⊂ A2 ⊂ A3 ⊂ . . . then µ(
⋃∞
n=1An) = limn→∞An and if

A1 ⊃ A2 ⊃ A3 ⊃ . . . then µ(
⋂∞
n=1An) = limn→∞ µ(An).

In fact, each of the two limit conditions is easily seen to imply the other on taking

complements. Often, the limit condition is phrased differently as a condition called

“countable additivity”: if E1, E2, . . . are disjoint subsets of B then µ(
⋃∞
n=1En) =∑∞

n=1 µ(En). This corresponds exactly to the first limit condition, taking A1 = E1,

A2 = E1∪E2, A3 = E1∪E2∪E3, or in the other direction E1 = A1, E2 = A2 \A1,

E3 = A3 \A2, and so on.

The standard convention, which we will follow in this course, is to write (X,B, µ)

for a probability space together with its associated σ-algebra B and measure µ :

B → [0, 1].

How does this fit with the discussion of the previous chapter? Let us consider

first of all the circle rotation on X = R/Z, or the doubling map on the same space.

Here µ((a, b)) = b − a for every open interval (a, b). What is the σ-algebra B?

It is not simply the set of all intervals (a, b), since this is not closed under taking

countable complements or unions. To be closed under these operations, B must

also contain all open subsets of [0, 1], and then all countable intersections of these

sets (the so-called Fσ-sets), then all countable unions of these sets, and so on. For

the purposes of this course, it is best not to think too explicitly about it.

Definition 2.1. The Borel algebra B on R/Z is the smallest σ-algebra con-

taining the open intervals, or in other words the σ-algebra generated by the open

intervals. More generally, if X is a metric space then the Borel algebra is the

smallest σ-algebra containing the open balls {y : d(x, y) < ε}.

The Borel σ-algebra on R/Z (or on any metric space) does exist, because the

intersection of any two σ-algebras is again a σ-algebra. Thus we may define it to

be the intersection of all σ-algebras containing the open intervals.

In the introduction, we only considered the measure µ of intervals. However, a

remarkable fact is that µ extends to a measure on all of B. This measure is known

as Lebesgue measure, and it can be defined by first defining the measure µ(U) of

an open set U by setting

µ(U) =

∞∑
j=1

µ(Ij),

where
⋃∞
j=1 Ij is the decomposition of U as a disjoint union of countably many

open intervals (you may wish to recall why there is such a decomposition, or see

Appendix A). Then for an arbitrary Borel set E we define

µ(E) = inf
U⊃E

µ(U),
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where the infimum is taken over all open sets U containing E. We will not really

need to know any of the details of the proof that this definition works, which are

given in the Part A course Integration. For the most part, in this course, we hardly

need to know the definition. We do make repeated use of one important consequence

of it, namely the following statement that “every Borel set is almost an open set”.

Lemma 2.1 (Regularity of Lebesgue measure). Let E be a Borel set and let

ε > 0. Then there is an open set U ⊃ E such that µ(U \ E) < ε.

This allows one to approximate measurable sets E by “simple” sets such as finite

unions of intervals in various ways. For a general statement of this type see Lemma

A.2.

What about a different example, such as the one-sided Bernouilli shift? Here,

we took X = {0, 1}N. This space X is one that we are less used to dealing with,

but it does seem intuitively reasonable that the measure µ(E) of any cylinder set

E of the form

(2.1) E = {(x1, x2, . . . ) : xi1 = ε1, . . . , xik = εk}

(that is to say, the set of sequences with k fixed digits) should be 2−k.

The collection of cylinder sets is not a σ-algebra, but again there is some smallest

σ-algebra B containing the cylinder sets. Once again, the measure µ extends to a

measure on B.

Both this fact and the existence of Lebesgue measure are consequences of a

general result from measure theory called the Carathéodory Extension Theorem.

We will state it in Appendix A, though for this course you do not really need

to know either the statement or the proof. Note that there is some confusion in

the literature about exactly what this theorem states – for example in the 2014

notes from Part A integration [2] this term is used for a more specific result about

Lebesgue measure (though the general result is very closely related).

2.2. Measure-preserving transformations

We have talked in some generality about spaces X and measures on them. In

the examples of the introduction we also had maps T : X → X. What kind of

maps were these? They were not always continuous with respect to some natural

topology – for example the Gauss map is discontinuous at infinitely many points.

These were examples of measure-preserving maps.

Definition 2.2. Suppose that (X1,B1, µ1) and (X2,B2, µ2) are two probability

spaces. If T : X1 → X2 is a map, we say that T is measurable if T−1A ∈ B1 for all

A ∈ B2.
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Here, T−1A denotes the set of all x1 ∈ X1 for which Tx1 ∈ A. The definition of

measurable should be compared to the definition of continuity in a topological space

(note, however, that probability spaces do not automatically come with a topolog-

ical structure and so it does not necessarily make sense to talk about continuous

functions in this context). This notion was also covered in the Part A course on

integration.

Definition 2.3. Suppose that (X1,B1, µ1) and (X2,B2, µ2) are two probability

spaces and that T : X1 → X2 is a map. Then we say that T is measure-preserving

if it is measurable and if µ1(T−1A) = µ2(A) for all A ∈ B2.

The main object of study in this course will be measure-preserving maps from a

probability space (X,B, µ) to itself. The quadruple (X,B, µ, T ) is called a measure-

preserving system.

In the next section we revisit the examples from the introduction and see that

they are indeed measure-preserving systems. In order to do this, we need to be able

to check whether a map T : X → X is measure-preserving. Thankfully, to decide

whether this is so we do not have to look at T−1(A) for an arbitrary A ∈ B, as the

following lemma shows.

Lemma 2.2. Suppose that (X1,B1, µ1), (X2,B2, µ2) are probability spaces and

that T : X1 → X2 is a map. Suppose that B2 is generated, as a σ-algebra, by

a collection A ⊂ B2. Suppose that for all A ∈ A we have T−1A ∈ B1 and

µ1(T−1A) = µ2(A). Then T is measure-preserving.

Proof. The set of all E ⊂ B2 for which T−1E ∈ B1 and µ1(T−1E) = µ2(E)

is closed under countable unions, intersections and complementation. Since we

know this is true for all E ∈ A , it also holds for all E in the σ-algebra generated

by A , that is to say B2. �

2.3. Examples

Let us revisit the examples of the introduction and explain why they are measure-

preserving systems.

Circle rotations. Take X = R/Z, define T : X → X by Tx = x + α(mod 1),

take B to be the σ-algebra of Borel sets and let µ be Lebesgue measure. Then

(X,µ,B, T ) is a measure-preserving system. By Lemma 2.2, all we need check is

that T−1((a, b)) is measurable and has measure b− a; this, however, is obvious.

Doubling map. Let X,µ and B be as in the above example, but now take

Tx = 2x(mod 1). We have T−1((a, b)) = (a2 ,
b
2 ) ∪ ( 1

2 + a
2 ,

1
2 + b

2 ), a union of two

intervals with total measure b− a. (Here, the meaning of a
2 is ambiguous: we can
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take it to mean the unique element in [0, 1
2 ) for which 2 · a2 ≡ a(mod 1).) Since the

open intervals generate B, it follows from Lemma 2.2 that T is measure-preserving.

Let us draw attention to an important point: in the case of the doubling map,

we do not have µ(TE) = µ(E) for all measurable E. Indeed, if E = [0, 1
2 ] then

TE = [0, 1] and so µ(TE) = 2µ(E).

Bernouilli shift. Consider the one-sided Bernouilli shift, with X = {0, 1}N

and (T~x)n = xn+1 where ~x = (xn)∞n=1. Let B be the σ-algebra on X generated by

the cylinder sets. If

E = {(x1, x2, . . . ) : xi1 = ε1, . . . , xik = εk}

is such a set then

T−1E = {(x1, x2, . . . ) : xi1+1 = ε1, . . . , xik+1 = εk}.

By definition of the measure µ on X, both of these sets have measure 2−k. Thus

µ(E) = µ(T−1E) for all cylinder sets E, and by Lemma 2.2 we see that T is

measure-preserving.

Gauss map. Set X = [0, 1]. Recall that the Gauss map T : X → X is defined

by T (x) = {1/x} if x 6= 0 and T (0) = 0, where {t} denotes the fractional part of t.

The point 0 is only included to make the underlying space X compact, and plays

no role in what follows. The Gauss map T is not measure-preserving with respect

to the Lebesgue measure µ. Indeed,

T−1([0,
1

2
]) =

∞⋃
n=1

[
2

2n+ 1
,

1

n
],

and so

µ(T−1([0,
1

2
]) = 2(

1

2
− 1

3
+

1

4
− 1

5
+ . . . ) = 2− 2 log 2 6= 1

2
.

It turns out, however, that T is measure-preserving with respect to a different

measure ν, the so-called Gauss measure. This is defined by1

ν(E) :=
1

log 2

∫
E

dµ(x)

1 + x
.

Lemma 2.3 (Gauss map preserves the Gauss measure). Let X = [0, 1], B be

the Borel σ-algebra, T : X → X the Gauss map and ν the Gauss measure. Then

(X, ν,B, T ) is a measure-preserving system.

Proof. By Lemma 2.2 it suffices to prove that ν(T−1(a, b)) = ν((a, b)) for all

0 < a < b < 1. This is just simple calculus, combined with a small amount of

1The integral here is a Lebesgue integral. We remind the reader what this means in the next

chapter. In the case E = (a, b) this is simply the Riemann integral
∫ b
a

dx
1+x

.
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thought. Indeed the inverse image T−1((a, b)) is the union
⋃∞
n=1

(
1

n+b ,
1

n+a

)
and

so we have

log 2 · ν(T−1(a, b)) =

∞∑
n=1

∫ 1/(n+a)

1/(n+b)

dx

1 + x

=

∞∑
n=1

(
log
( 1

n+ a
+ 1
)
− log

( 1

n+ b
+ 1
))

= lim
N→∞

N∑
n=1

(
log(

n+ a+ 1

n+ a
− log(

n+ b+ 1

n+ b
)
)

= lim
N→∞

(
log(1 + b)− log(1 + a) + log(

N + a+ 1

N + b+ 1
)
)

= log(1 + b)− log(1 + a)

= log 2 · ν((a, b)).

�

2.4. Invariant measures

In what we have said so far, we have largely taken the view that the probability

space (X,µ,B) has been fixed and we have been interested in transformations

T : X → X that are measure-preserving, leading to the measure-preserving system

(X,µ,B, T ). It is very useful to consider an alternate perspective, in which X,

T and the σ-algebra B are fixed and we are at liberty to choose the probability

measure µ : B → [0, 1] so that T is a measure-preserving transformation with

respect to µ. We saw this point of view when we discussed the Gauss map T :

[0, 1] → [0, 1], which was not measure-preserving for the Lebesgue measure, but

was measure-preserving for a different measure (the Gauss measure).

When looking at things this way around, we say that µ is an invariant probability

measure for T . If X is a metric space and B the σ-algebra of Borel sets, we say

that µ is an invariant Borel probability measure.

There may well not be a unique choice of an invariant probability measure µ:

some examples are presented on the first exercise sheet.

2.5. Poincáre recurrence theorem

We conclude this chapter by proving a basic theorem about measure-preserving

systems in general, the Poincaré recurrence theorem.

We begin by with some remarks on the terms almost all and measure zero. A

set of measure zero is a set A ∈ B for which µ(A) = 0. Note that this absolutely

does not imply that A is empty. For example, if X = [0, 1] with Lebesgue measure

then all singletons {x} have measure zero, as do all countable sets and even some



2.5. POINCÁRE RECURRENCE THEOREM 13

uncountable sets (such as the Cantor set). We say that some property P of points

of X holds for almost every x if the set {x ∈ X : ¬P (x)} is measurable and has

measure zero.

Theorem 2.1 (Poincáre Recurrence Theorem). Let (X,B, µ, T ) be a measure-

preserving system. Let A ∈ B and let A′ ⊂ A be the set of x ∈ A for which there

are infinitely many n > 1 with Tnx ∈ A. Then µ(A \ A′) = 0, or in other words

almost all points in A recur back to A.

Proof. Write

SN :=
⋃
n>N

T−nA

for the set of x ∈ X for which Tnx ∈ A for some n > N , and

S :=
⋂
N

SN

for the set of x for which Tnx ∈ A for infinitely many n. Note that S is measurable.

Then A′ = A ∩ S. Now we have the nesting S0 ⊃ S1 ⊃ . . . , and by the measure-

preserving nature of T we have µ(SN+1) = µ(T−1SN ) = µ(SN ). By the limit

principle it follows that µ(S) = limN→∞ µ(SN ) = µ(S0), and so µ(S0 \S) = 0. But

A ⊂ S0, and therefore µ(A \ S) is zero as well. �

Another consequence of the Poincaré Recurrence Theorem is as follows: for any

A ∈ B,

µ(A \
∞⋃
n=1

T−nA) = 0.





CHAPTER 3

Ergodic transformations

In the last chapter we introduced the notion of a measure-preserving system

(X,B, µ, T ). In this chapter we will take a look a specific property that such a sys-

tem may enjoy: that of ergodicity. Ergodic transformations are, roughly speaking,

those for which the orbit (Tnx)∞n=0 is almost always equidistributed on X.

3.1. The definition of ergodicity

To understand this more precisely, we need to know what “equidistributed”

means. In the case X = R/Z, we said that this was so if

lim
N→∞

1

N
#{n ∈ {0, 1, . . . , N − 1} : Tnx ∈ I} → length(I)

for all (closed) intervals I ⊂ R/Z.

In the more general setting of measure-preserving systems, there are no sets

playing the distinguished role of intervals – we have only the sets E in B.

Definition 3.1. Let (X,B, µ, T ) be a measure-preserving system, and let E ∈
B. Then we say that the orbit (Tnx)∞n=0 equidistributes in E if

lim
N→∞

1

N
#{n ∈ {0, 1, . . . , N − 1} : Tnx ∈ E} → µ(E)

With this notion in hand, we may make the following further definition.

Definition 3.2. Let (X,B, µ, T ) be a measure-preserving system. Then we say

that T is equidistributing if, for every E ∈ B, the orbit (Tnx)∞n=0 equidistributes

in E for almost every x ∈ X.

Note that the order of the quantifiers here is important: we are not asserting

that for almost every x ∈ X it is the case that (Tnx)∞n=0 equidistributes in E for all

E ∈ B. In fact, this could never be the case in any of the examples considered in

Chapter 2: for any x, we can take E = {x, Tx, T 2x, . . . }, and if we assume that the

orbit (Tnx)∞n−0 equidistributes in E then µ(E) = 1. However, in all the examples

the measure of any point was 0 and so, by countable additivity, µ(E) = 0.

The notion of a transformation T being equidistributing is not standard. Trans-

formations with this property are usually called ergodic. The usual definition of

ergodic, however, looks rather different.

15
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Definition 3.3 (Ergodicity). Let (X,B, µ, T ) be a measure-preserving system.

By an invariant set we mean a set E ∈ B with the property that T−1E and E

differ in a set of measure 0. We say that T is ergodic if all invariant sets have

measure either 0 or 1.

Many texts say that T is ergodic all strictly invariant sets E, that is to say sets

with T−1E = E, have measure 0 or 1. Ostensibly this is a weaker notion, but in

fact the two notions are equivalent. This is not quite trivial – see Examples 1, Ex.

9. In this course we will allow T−1E = E to differ in a set of measure zero, as all

the tools we use work most naturally up to a.e. equivalence.

Another way to express the invariance of E is to say that 1E(x) = 1E(Tx) for

a.e. x. It is an easy exercise to show that if E is invariant then, for every n > 1, the

sets T−nE and E differ in a set of measure 0, and that 1E(x) = 1E(Tnx) for almost

every x. Moreover, since a countable union of sets of measure zero has measure

zero, we can assert that in fact for a.e. x we have 1E(x) = 1E(Tnx) for all n, and

that we have

(3.1) E =

∞⋃
n=1

T−nE =

∞⋂
n=1

T−nE

up to measure 0. (Note that these facts would be completely trivial if invariance

were replaced by strict invariance.)

Here is a simple lemma about the relationship between ergodic and equidis-

tributing transformations.

Lemma 3.1. Let (X,B, µ, T ) be a measure-preserving system. If T is equidis-

tributing, then it is also ergodic.

Proof. Suppose that T is equidistributing. Let E ∈ B be an invariant set,

and suppose that µ(E) > 0. Set

SE := {x ∈ X : (Tnx)∞n=0 equidistributes in E}.

By assumption, µ(SE) = 1. Since µ(E) > 0, it follows from (3.1) that

µ(

∞⋂
n=1

T−nE) > 0,

and therefore SE and
⋂∞
n=1 T

−nE intersect. Let x be a point in the intersection.

The fact that x ∈
⋂∞
n=1 T

−nE implies that x, Tx, T 2x, T 3x, · · · ∈ E, and therefore

1

N
#{n ∈ {0, 1, . . . , N − 1} : Tnx ∈ E} = 1.

On the other hand, since x ∈ SE we have

1

N
#{n ∈ {0, 1, . . . , N − 1} : Tnx ∈ E} = µ(E).
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Therefore µ(E) = 1. �

A way to think about this lemma is as follows: a relatively obvious obstruction

to T being equidistributing is the existence of a nontrivial invariant set E, where

nontrivial means that µ(E) 6= 0, 1.

It is a remarkable fact that this is the only obstruction: that is, an ergodic

transformation is also equidistributing. Thus being equidistributing and being er-

godic are one and the same concept (which is why the term equidistributing is not

standard). This is known as the Birkhoff ergodic theorem, and we will prove it in

the next chapter.

Whether or not a map T : X → X is ergodic is not an intrinsic property of

T , but also depends on the measure µ and the σ-algebra B (see, for example,

Examples 1, Ex. 8). Thus, in a sense, it is an abuse of nomenclature to say that

T is ergodic. The word ergodic is also used for the whole system (X,µ,B, T ), this

system being said to be ergodic if T is ergodic with respect to µ. As with the notion

of invariance discussed in the last chapter, we often switch the emphasis from T to

µ. Thus a measure µ is said to be ergodic (for a transformation T : X → X) if µ

is T -invariant and if the system (X,µ,B, T ) is ergodic.

3.2. Ergodicity and recurrence

Let (X,µ,B, T ) be a measure-preserving system. To get a feel for what it means

for this system to be ergodic, we prove a lemma giving a property about recurrence

which is equivalent to ergodicity.

Lemma 3.2. A system is ergodic if and only if the following is true: For every

measurable set A with µ(A) > 0, for almost every x there is some n such that

Tnx ∈ A. In particular if µ(B) > 0 then there is some b ∈ B such that Tnb ∈ A
for some n > 1.

Proof. Suppose that the system is ergodic. We claim that the set A+ :=⋃∞
n=1 T

−nA of points x for which some Tnx lies in A is T -invariant. Certainly

T−1A+ ⊂ A+, and the difference between these two sets, T−1A \ (T−2A∪ T−3A∪
. . . ), has measure zero by the Poincaré Recurrence Theorem (in the form given

after the proof of that result at the end of Chapter 2). Since T is ergodic, we have

µ(A+) = 0 or 1. The first possibility is absurd since A+ ⊂ T−1A and µ(T−1A) =

µ(A) > 0, and therefore µ(A+) = 1, that is to say almost every point of X lies in

A+.

Conversely, suppose that the recurrence condition holds and that E is T -invariant,

thus T−1E = E up to measure zero. Then E+ = E up to measure zero. However,

we are assuming that if if µ(E) > 0 then µ(E+) = 1. Therefore µ(E) = 0 or 1.

�



18 3. ERGODIC TRANSFORMATIONS

3.3. A very quick refresher on integration and L1

From now on in the course we will use a little more measure theory, specifically

some notions of integration. Familiarity with the proofs of the statements we require

is not important.

If (X,B, µ) is a probability space and if f : X → R is a function then we say that

f is measurable if f−1((a, b)) ∈ B for every open interval (a, b) ⊂ R. This notion

may be extended to complex-valued functions by taking real and imaginary parts,

and it has good closure properties: if f1, f2 are measurable then so are c1f1 + c2f2

and |fi|, for example. If f is real-valued and non-negative we may define
∫
X
fdµ

by approximating f by simple measurable functions, that is to say functions of

the form g =
∑
i∈I ci1Ei with I finite and the Ei disjoint, in which case we define∫

X
gdµ to be the “obvious” quantity

∑
i ciµ(Ei). We discuss this a little more

carefully in Appendix A.

The integral
∫
X
fdµ may take the value ∞, but we distinguish the space

L1(X,B, µ) := {f : X → C : f measurable,

∫
X

|f |dµ <∞}

of integrable functions. This space is called L1 because it is a special case of a

more general construction of Lp-spaces; we will see the case p = 2 later on. If

f ∈ L1(X,B, µ) then we may define the integral
∫
X
fdµ by splitting f = (<f)+ −

(<f)− + i(=f)+ − i(=f)− and appealing to the definition of the integral in the

non-negative case. This integral will always be finite if f ∈ L1(X,B, µ). The map

f 7→
∫
X
fdµ is a linear map from L1(X,B, µ) to C and has various pleasant limit

properties such as the monotone and dominated convergence theorems; we will not

make explicit use of these in this course. If X = R/Z or [0, 1] and f is continuous

then
∫
X
fdµ is equal to the Riemann integral of f .

Usually, functions in L1(X,B, µ) which agree outside of a set of measure 0 are

regarded as the same. With this quotienting convention in force,

‖f‖1 :=

∫
X

|f |dµ

defines a norm on L1(X,B, µ). (The point about quotienting is that for ‖ · ‖1 to

qualify as a norm we must have ‖f‖1 = 0 if and only if f = 0, but this is only true

up to a set of measure 0.)

One sometimes calls the functions f in L1(X,B, µ) “integrable”. A useful

fact for us will be the following statement about the behaviour of integrals un-

der measure-preserving transformations.
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Lemma 3.3. Suppose that (X,µ,B, T ) is a measure-preserving system and that

f ∈ L1(X,B, µ). Then ∫
X

fdµ =

∫
X

(f ◦ T )dµ,

that is to say ∫
X

f(x)dµ(x) =

∫
X

f(Tx)dµ(x).

Proof. *Since every f ∈ L1(X,B, µ) can be approximated arbitrarily closely

(in the ‖ · ‖1 norm) by simple measurable functions, it suffices check this statement

when f is simple-measurable. This quickly reduces to checking the case f = 1E , E

measurable. However ∫
X

1Edµ = µ(E),

whilst ∫
X

(1E ◦ T )dµ =

∫
X

1E(Tx)dµ(x) = µ(T−1E).

The result now follows from the fact that T is measure-preserving. �

We remark that this lemma is “the reason” why the notion of measure-preserving

is defined using T−1 rather than T .

To conclude this section we formally record, in the language of this section, a

fact that we already used in the proof of Theorem 1.1.

Lemma 3.4. The time averages map SN is a contraction on L1(X,B, µ). That

is, if f ∈ L1(X,B, µ) then ‖SNf‖1 6 ‖f‖1.

Proof. This is simply the triangle inequality:

‖SNf‖ =
1

N
‖
N−1∑
n=0

f ◦ Tn‖ 6 1

N

N−1∑
n=0

‖f ◦ Tn‖1 = ‖f‖1.

�

3.4. Irrational rotations are ergodic

We are going to give three proofs that irrational circle rotations are ergodic,

that is to say of the following theorem.

Proposition 3.1 (Irrational circle rotations are ergodic). Let X = R/Z, B

the Borel σ-algebra, µ the Lebesgue measure and T : X → X the rotation Tx =

x+ α(mod 1). Suppose that α is irrational. Then T is ergodic.

The first two proofs are somewhat similar and should be thought of as “L1”

proofs. The third proof is more “L2” and will be given later. Both of the first two

proofs rely on the following fact.



20 3. ERGODIC TRANSFORMATIONS

Lemma 3.5. Let E ⊂ R/Z be measurable (with respect to the Borel σ-algebra).

Suppose that E ∈ B is a measurable set. Then for every ε > 0 there is a continuous

function f : R/Z→ [0, 1] such that ‖f − 1E‖1 6 ε.

Proof. By the regularity property of Lebesgue measure there is an open set

U with E ⊂ U and µ(U \ E) 6 ε/3. Now U is a countable union of disjoint open

intervals
⋃∞
j=1 Ij . By the limit property of measures we have limJ→∞

⋃J
j=1 Ij =

µ(U), and so there is a set U ′ ⊂ U with U ′ a finite union of open intervals and

µ(U \ U ′) 6 ε/3. Note that µ(E4U ′) 6 2ε/3, and so ‖1E − 1U ′‖1 6 2ε/3. Finally,

we can find a continuous function f : R/Z → [0, 1] such that ‖f − 1U ′‖1 6 ε/3

by adapting the contruction used in the proof of Theorem 1.1 to approximate

characteristic functions of intervals by continuous functions. In fact, if U ′ =
⋃J
j=1 Ij

then we can take, in the notation of that theorem, f =
∑J
j=1 χ

+
Ij ,ε/J

. �

We remark that a small elaboration of this allows one to prove that the con-

tinuous functions are dense in L1(X,B, µ): see Appendix A for further comment.

First proof of Proposition 3.1. Suppose that E is an invariant set, that is to say

T−1E = E up to measure 0. Then, as remarked above, 1E(Tnx) = 1E(x) for all n

and for a.e. x. Let ε > 0, and choose some continuous function f : R/Z → [0, 1]

such that ‖f − 1E‖1 6 ε. We showed in Chapter 1 that all continuous functions

have TASA, by which we meant that

SNf(x)→
∫ 1

0

f(t)dt

as N →∞, uniformly in x. In particular if N is big enough then

‖SNf −
∫ 1

0

f(t)dt‖1 6 ε.

Since SN is a contraction in L1 we have

‖SNf − SN1E‖1 6 ‖f − 1E‖1 6 ε,

and therefore

‖SN1E − µ(E)‖1 6 3ε.

However, the fact that 1E(Tnx) = 1E(x) for a.e. x implies that SN1E(x) = 1E(x)

for a.e. x, and thus

‖1E − µ(E)‖1 6 3ε.

Since ε > 0 was arbitrary, it follows that ‖1E − µ(E)‖1 = 0, and so 1E(x) = µ(E)

for a.e. x. This forces µ(E) = 0 or 1.
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Second proof of Proposition 3.1. This is quite similar to the first, but is uses less

information. Rather than the fact that continuous functions are TASA, we just use

the fact that the orbit (αn)∞n=1 is dense in R/Z. Whilst this is a straightforward

consequence of the main result of Chapter 1, it may also be proven in a more

elementary fashion. See Exercise sheet 1. We begin as before. Suppose that E

is an invariant set, and note that 1E(Tnx) = 1E(x) for all n and for a.e. x. Let

ε > 0, and choose a continuous function f such that ‖1E − f‖1 6 ε. Since Tn is

measure-preserving we have

‖(1E − f) ◦ Tn‖1 6 ε.

Since 1E = 1E ◦ Tn a.e., this implies that

‖1E − f ◦ Tn‖1 6 ε.

By the triangle inequality, it follows that

‖f − f ◦ Tn‖1 6 2ε,

or, written out in full, ∫ 1

0

|f(x)− f(x+ nα)|dx 6 2ε

for all n ∈ N. Now since (nα)∞n=1 is dense in R/Z, for any t ∈ R/Z we may choose a

sequence ni of integers with niα→ t(mod 1). It follows from this and the continuity

of f that in fact ∫ 1

0

|f(x)− f(x+ t)|dx 6 2ε

for all t ∈ R/Z. From this it follows that

‖f −
∫
f‖1 =

∫ ∣∣f(x)−
∫
f(x+ t) dµ(t)

∣∣ dµ(x)

6
∫
|f(x)− f(x+ t)| dµ(t)dµ(x)

6 2ε.

Thus we have ‖1E −
∫
f‖1 6 3ε. This implies that

|µ(E)−
∫
f | =

∣∣ ∫ (1E −
∫
f) dµ

∣∣ 6 3ε,

and hence by the triangle inequality ‖1E − µ(E)‖1 6 6ε. However ε > 0 was

arbitrary, and so ‖1E−µ(E)‖1 = 0 which implies that 1E(x) = µ(E) a.e. It follows

that µ(E) = 0 or 1.
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Remark: we did not really use much about integration and L1 in either of these

proofs. All of the functions we were integrating in these two arguments were linear

combinations of continuous functions and characteristic functions of sets.

3.5. A very quick refresher on L2

The space L2(X,B, µ) is defined by

L2(X,B, µ) = {f : X → C : f measurable,

∫
X

|f |2dµ <∞}.

As with L1, we identify functions which differ only in a set of measure zero, and

then ‖f‖2 := (
∫
X
|f |2dµ)1/2 becomes a norm. The most important fact about L2

is that it is a Hilbert space, that is to say a complete inner product space. We will

need very little of the general theory of Hilbert spaces in this course: what we do

need is summarised in Section 4.1

Theorem 3.1. L2(X,B, µ) is a Hilbert space, that is to say a complete inner

product space when endowed with the inner product 〈f, g〉 =
∫
X
fgdµ.

Proof. * That L2(X,B, µ) is a complex vector space, and that 〈f, g〉 is well-

defined if f, g ∈ L2(X,B, µ), are both consequences of the Cauchy-Schwarz inequal-

ity. The deep part of this theorem is the assertion that L2(X,B, µ) is complete,

which is sometimes called the Riesz-Fischer theorem. This will have been discussed

in Part A Integration in the case X = [0, 1]. The proof in the general case –

involving the monotone convergence theorem – is essentially the same. �

It follows from Lemma 3.3 that if f ∈ L2(X,B, µ), and if T : X → X is measure-

preserving, then f ◦T ∈ L2(X,B, µ). We introduce the special notation UT for the

map which sends f to f ◦ T : that is to say, UT f(x) = f(Tx). We only use this

notation when working in L2. This map1 UT is an isometry that is, ‖UT f‖2 = ‖f‖2
for all f , and more generally

〈UT f, UT g〉 =

∫
X

f(Tx)g(Tx)dµ(x) =

∫
X

f(x)g(x)dµ(x) = 〈f, g〉.

Finally, we note that if X is a probability space then, by the Cauchy-Schwarz

inequality, ∫
X

|f | 6 (

∫
X

1)1/2(

∫
X

|f |2)1/2 = (

∫
X

|f |2)1/2,

or in other words ‖f‖1 6 ‖f‖2. In particular,

L2(X,B, µ) ⊂ L1(X,B, µ).

1The letter U stands for unitary: a unitary map on a Hilbert space is an invertible isometry.
Note that UT will not always be unitary if T is not invertible. For example, if T : R/Z→ R/Z is

the doubling map Tx = 2x(mod 1) then UT maps L2(R/Z) into the space of functions satisfying

f(x) = f(x + 1
2

), which is certainly a proper subspace of L2(R/Z).
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3.6. Irrational rotations are ergodic: an L2 proof

We now give our third proof of Proposition 3.1, which may be thought of as a

“Hilbert space” or L2 proof of the proposition, though we use rather little about

Hilbert spaces, and most of what we do use is embedded in the proofs of facts about

Fourier series, for which see Appendix B. We use the notation UT for the isometry

on L2(X,B, µ) induced by T , introduced in the last section.

Given f ∈ L2 and r ∈ Z, we define the Fourier coefficient

f̂(r) := 〈f, er〉 =

∫ 1

0

f(x)er(x) dx,

where er(x) := e2πirx. This is well-defined since if f ∈ L2 then certainly f ∈ L1, as

remarked at the end of the last section. Now we have

ÛT f(r) =

∫ 1

0

f(x+ α)e−2πirxdx = e2πirα

∫ 1

0

f(x+ α)e−2πir(x+α)dx = e2πirαf̂(r).

Suppose that E is T -invariant. Then 1E = UT 1E a.e., and so 1̂E(r) = ÛT 1E(r) for

all r ∈ Z. By the preceding computation, this implies that

1̂E(r) = e2πirα1̂E(r)

for all r ∈ Z. Since α /∈ Q, we have e2πirα 6= 1 when r 6= 0, and so 1̂E(r) = 0

whenever r 6= 0. It follows that f := 1E − µ(E) has f̂(r) = 0 for all integers

r. By a standard fact from Fourier analysis (uniqueness of Fourier coefficients, see

Appendix B) this implies that f = 0 a.e., and hence 1E(x) = µ(E) a.e. This implies

that µ(E) = 0 or 1, and so T is indeed ergodic.

3.7. The doubling map is ergodic

We have given three proofs that irrational circle rotations are ergodic, but in

a sense we have learned little more than we knew already in the first chapter.

However, we have acquired some techniques, and we now use these to prove that

the doubling map is ergodic and then, in the next section, to show that the Gauss

map is ergodic.

Proposition 3.2 (Doubling map is ergodic). The doubling map T : R/Z→ R/Z
is ergodic with respect to the Lebesgue measure µ.

We give two proofs, an “L1-style proof” and an “L2-style proof”.

L1 proof. Let Da,n be a “standard dyadic interval at scale n”, that is to say

an interval of type ( a
2n ,

a+1
2n ), a ∈ Z. If E is any measurable set then it is not

hard to check that µ(T−nE ∩Da,n) = 2−nµ(E). Thus if E is T -invariant, so that

T−nE = E for all n, then µ(E ∩Da,n) = 2−nµ(E) (or in other words the relative
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density of E on Da,n is µ(E)). It follows that if Ũ is any finite union of standard

dyadic intervals then µ(E ∩ Ũ) = µ(E)µ(Ũ). Now by the regularity of Lebesgue

measure, for any ε > 0 there is an open set U with E ⊂ U and µ(U \ E) 6 ε. For

each n write Un for the union of all the standard dyadic intervals at scale n which

are contained in U . We clearly have U1 ⊂ U2 ⊂ . . . , and since U is open we have⋃
n Un = U . By the limit principle for measures we therefore have

µ(E) = µ(E ∩ U) = lim
n→∞

µ(E ∩ Un) = µ(E) lim
n→∞

µ(Un) = µ(E)µ(U).

Thus if µ(E) 6= 0 then µ(U) = 1, and hence µ(E) > µ(U)− ε = 1− ε. Since ε was

arbitrary we must have µ(E) = 1.

One could also have appealed to Lemma A.2, taking Un,i = [ i−1
2n ,

i
2n ].

L2 proof. Suppose that E ⊂ R/Z is measurable and T -invariant, thus T−1E = E

up to measure 0. Equivalently, UT 1E(x) = 1E(x) for a.e x. Using Fourier analysis,

with the same notation as before, we have for any function f ∈ L2(X) that

f̂(r) =

∫ 1

0

f(x)er(x)dx =

∫ 1

0

f(2x)er(2x)dx = ÛT f(2r)

for all integers r. Taking f = 1E , it follows that 1̂E(r) = 1̂E(2r) for all r. By the

Riemann-Lebesgue lemma (see Appendix B), which states that limr→∞ f̂(r) = 0

for all f ∈ L2(R/Z), we are forced to conclude that 1̂E(r) = 0 whenever r 6= 0. As

before, this implies that µ(E) = 0 or 1.

3.8. The Gauss map is ergodic

This is a little harder than the previous two arguments.

Proposition 3.3. The Gauss map T is ergodic with respect to the Gauss mea-

sure ν.

Proof. In a sense, this proof is similar in structure to the proof that the

×2 map is ergodic. The details are, however, rather more difficult. Rather than

work with the Gauss measure ν, we work with the Lebesgue measure µ. We have

µ(E) = 0 if and only if ν(E) = 0, so the notion of T -invariant set does not depend

on which of these measures we use. Recall, however, that we do not in general have

µ(T−1A) = µ(A); this will not be a problem in the argument that follows.

For any choice of integers k1, . . . , kn > 1 define the map ψkn,...,k1 : (0, 1]→ (0, 1]

by

ψkn,...,k1(x) :=
1

kn + 1
kn−1+···+ 1

k1+x

,

that is to say

ψkn,...,k1 = φkn ◦ · · · ◦ φk1
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where φk(x) := 1
k+x . Note that Tn ◦ψkn,...,k1 is the identity map, and indeed every

preimage of x under Tn is of the form ψkn,...,k1(x) for some choice of the ki.

Write Ukn,...,k1 := ψkn,...,k1((0, 1)) = φkn ◦ · · · ◦ φk1((0, 1)). Ukn,...,k1 is easily

seen to be an interval. Furthermore, for any 0 < a < b 6 1 and for any k ∈ N we

have

φk(a)− φk(b) =
b− a

(k + a)(k + b)
6 b− a,

and so

1 > µ(Uk1) > µ(Uk2,k1) > µ(Uk3,k2,k1) > . . .

We claim that, for any choice of k1, k2, . . . ,

(3.2) µ(Ukn+2,kn+1,kn,...,k1) 6
1

2
µ(Ukn,kn−1,...,k1).

To prove this set k := kn+1, k
′ := kn+2 and suppose that Ukn,kn−1,...,k1 = (a, b),

Ukn+1,...,k1 = (a′, b′) and Ukn+2,...,k1 = (a′′, b′′) . Then

|b′ − a′| = |φk(a)− φk(b)| = | b− a
(k + a)(k + b)

|.

This is 6 1
2 (b − a) if k > 2, and so the claim follows in this case. If k = 1 then

a′ = 1
1+b , b

′ = 1
1+a and so a′, b′ > 1

2 . But then

|b′′− a′′| = |φk′(a′)−φk′(b′)| = |
b′ − a′

(k′ + a′)(k′ + b′)
| 6 |b′− a′| 1

(k′ + 1
2 )2
6

1

2
|b′− a′|.

This establishes the claim (3.2).

It follows from (3.2) and a simple induction that

(3.3) µ(Ukn,...,k1) 6 2−bn/2c.

If [a, b] and F : [a, b] → R is a function which never vanishes, we define the

variation of var[a,b] F on [a, b] to be supx,y∈[a,b] |
F (x)
F (y) |. Our next claim is that the

variation of the derivative ψ′kn,...,k1 is bounded by an absolute constant, indepen-

dently of n and the choice of kn, . . . , k1. This means that the map ψkn,...,k1 from

X to Ukn,...,k1 is “almost affine” in a weak sense.

To see this, we use the chain rule to conclude that

var[0,1] ψ
′
kn,...,k1 6 var[0,1] ψ

′
kn−1,...,k1 · varψkn−1,...,k1

((0,1]) φ
′
kn .

By (3.3) the right hand quantity is bounded by maxI varI φ
′
kn

, the maximum being

taken over all intervals I of length at most 2−bn/2c. However

var[a,b] φ
′
k = | k + b

k + a
|2 6 | 1 + b

1 + a
|2 6 |1 + b− a|2 6 1 + 3(b− a).
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It follows that

var[0,1] ψ
′
kn,...,k1 6

∞∏
n=1

(1 + 3 · 2−bn/2c) 6 e3
∑∞

n=1 2−bn/2c
<∞.

We call any interval Ukn,...,k1 a standard interval at level n (compare with the

notion of a standard dyadic interval at scale n that we encountered in our discussion

of the doubling map). Let E ⊂ [0, 1] be measurable. Fix k1, . . . , kn and set ψ =

ψkn,kn−1,...,k1 . Then the map ψ : E → ψ(E) is a bijection. Hence by change of

variables we have

µ(ψ(E)) =

∫
1ψ(E)(x) dµ(x) =

∫
1E(y)ψ′(y) dµ(y).

By the fact that var[0,1] ψ
′ is bounded this lies between M1µ(E) and M2µ(E) where

the ratio M2/M1 is bounded independently of E and of k1, . . . , kn. Noting that

when E = [0, 1] we have ψ(E) = Ukn,...,k1 , we see that

µ(ψ(E)) > cµ(E)µ(Ukn,...,k1)

for some absolute constant c > 0 (there is a similar upper bound, but we do not

require it). Now ψ(E) = T−nE ∩ Ukn,kn−1,...,k1 , and thus

µ(T−nE ∩ Ukn,...,k1) > cµ(E)µ(Ukn,...,k1).

At last, we reach the main argument. Suppose that E is T -invariant. Then T−nE =

E up to measure zero, and so we see that

µ(E ∩ Ũ) > cµ(E)µ(Ũ)

for all sets Ũ which are finite unions of standard intervals at level n. Call such sets

Ũ standard at level n.

Now the union of all the standard intervals at level n consists of all of (0, 1)

except for some numbers with finite continued fraction expansion (numbers of the

form ψkn,...,k1(0) or ψkn,...,k1(1)). All of these are rational, and so the union of all

the standard intervals at level n has measure 1. We showed above that the length

of any standard interval of level n is at most 2−bn/2c, which of course tends to 0

with n. We may therefore apply Lemma A.2 to conclude that every measurable set

can be approximated arbitrarily well by standard sets at some level. It follows that

µ(E ∩ E′) > cµ(E)µ(E′)

for all measurable E′ ∈ B.

Taking E′ = [0, 1]\E we immediately obtain µ(E) = 0 or 1. This concludes the

proof that the Gauss map is ergodic. �



CHAPTER 4

The mean ergodic theorem

In this chapter we will develop some aspects of the “L2-theory” of ergodic trans-

formations, and in particular prove our first ergodic theorem, the mean ergodic

theorem. It is stated in Section 4.3 below.

An ergodic theorem is a theorem in the opposite direction to the rather trivial

Lemma 3.1, asserting that ergodic transformations have equidistributing properties.

More accurately, an ergodic theorem is any result stating that the time averages

SNf := 1
N

∑N−1
n=0 f(Tnx) converge to the space average

∫
f dµ. There are various

notions of convergence of functions we might consider, some stronger than others.

In this chapter we will consider the case of convergence in L2. In the next chapter

we will consider the rather harder question of pointwise convergence.

4.1. L2(X) as a Hilbert space

If (X,µ,B, T ) is a measure-preserving system we will make much use of the

Hilbert space L2(X) = L2(X,B, µ) and of the associated isometry UT : L2(X) →
L2(X) given by UT f(x) = f(Tx). We introduced these objects in the last chapter,

but made no real use of the fact that L2(X) is a Hilbert space.

We do not wish to assume that students have taken a course in Hilbert spaces,

although many will have done. Here we will use two basic facts: the existence of

projection operators to closed subspaces, and the existence of adjoints of bounded

linear operators on Hilbert space. Students do not need to know the proofs of

these results, though they are not difficult. Here is a very brief refresher on their

statements.

Definition 4.1. A (complex) Hilbert space H is a real or complex vector space

which is endowed with an inner product 〈, 〉 : H×H → C with the property that H

is complete with respect to the norm ‖x‖ :=
√
〈x, x〉 induced by this inner product.

For the rest of this chapter

Lemma 4.1 (Projections). Let H be a Hilbert space. Suppose that V ⊂ H is

a closed subspace of H. Then we have a direct sum decomposition H = V ⊕ V ⊥.

Hence there is a unique linear projection operator

π : H → V

27
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such that

(i) π|V is the identity on V ;

(ii) π|V ⊥ is identically zero;

(iii) For all x ∈ H, x − π(x) ∈ V ⊥, that is to say 〈x, v〉 = 〈π(x), v〉 for all

v ∈ V .

If H is a Hilbert space, then a bounded linear operator is a linear map φ : H → H

such that ‖φ(x)‖ 6 C‖x‖ for all x ∈ H and for some constant C. The infimum of

all such C is called the norm of φ and is written ‖φ‖.

Lemma 4.2 (Adjoints). Let H be a Hilbert space and suppose that φ : H → H

is a bounded linear operator. Then φ has an adjoint φ∗, which is a bounded linear

map φ∗ : H → H with ‖φ‖ = ‖φ∗‖ and 〈φ(x), y〉 = 〈x, φ∗(y)〉 for all x, y ∈ H.

4.2. The space of invariant functions.

Suppose that (X,µ, T ) is a measure-preserving system, not necessarily ergodic.

Then we consider1 the space

IT := {f ∈ L2(X) : f(x) = f(Tx) a.e.}

of invariant functions on L2(X). Alternatively, recalling that UT : L2(X)→ L2(X)

is the isometry given by UT f(x) = f(Tx), we have

IT = {f ∈ L2(X) : f = UT f} = ker(id−UT ).

It is easy to see that IT is a closed subspace of L2(X).

The following fact is fairly straightforward.

Lemma 4.3. The transformation T is ergodic if and only if the space IT of

invariant functions consists of just the functions which are constant a.e.

Proof. The “if” direction is trivial: suppose that E ⊂ B is T -invariant, so

T−1E = E up to measure zero. Alternatively, 1E = UT 1E a.e., and so 1E ∈ IT .

Hence, by assumption, 1E is constant a.e., and this implies that µ(E) = 0 or 1.

The “only if” direction is not much harder. Suppose that T is ergodic. Suppose

that f ∈ IT , that is to say f = UT f . In other words, f(x) = f(Tx) a.e. Then the

level sets

Ea,b := {x ∈ X : a 6 |f(x)| < b}

are T -invariant, that is to say x ∈ Ea,b if and only if Tx ∈ Ea,b, outside a set of

measure 0. All these sets are measurable and hence must have measure 0 or 1, and

this implies that f is constant a.e. You are asked to supply a detailed proof in

Example Sheet 2, Q2. �

1Note that the space of strictly invariant functions, those with f(x) = f(Tx) for all x, is not really
well-defined since functions in L2(X) are only defined almost everywhere.
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Since IT is a closed linear subspace of a Hilbert space, it follows from Lemma

4.1 that there is a projection operator

πT : L2(X)→ IT

to this space of invariant functions.

Let us note a few simple but useful facts about how πT interacts with UT .

Lemma 4.4. We have the following.

(i) If f ∈ IT then U∗T f = f .

(ii) If T is ergodic then πT f =
∫
fdµ.

Proof. (i) Let y ∈ H be arbitrary, and let φ : H → H be any isometry. Then

we have

〈y, x− φ∗(x)〉 = 〈y, x〉 − 〈y, φ∗(x)〉

= 〈φ(y), φ(x)〉 − 〈φ(y), x〉

= 〈φ(y), φ(x)− x〉 = 0.

Taking y = x − φ∗(x) tells us that ‖x − φ∗(x)‖ = 0, and the result follows. (We

remark that the assumption that φ is an isometry is not really necessary, and can

be replaced with the weaker condition that ‖φ‖ 6 1, but it slightly simplifies the

proof.)

(ii) We know that IT consists of just the constant functions when T is ergodic.

Now it is clear that

〈
∫
fdµ, 1〉 = 〈f, 1〉 (=

∫
fdµ),

i.e.

〈f −
∫
fdµ, 1〉 = 0.

Therefore the map sending f to
∫
fdµ is precisely the orthogonal projection to the

space IT . �

4.3. Von Neumann’s mean ergodic theorem

Theorem 4.1. Suppose that (X,µ, T ) is an ergodic m.p.s. Then for any f ∈
L2(X) we have SNf →

∫
fdµ in L2.

There is, in fact, a version of the theorem for measure-preserving transformations

which are not necessarily ergodic.

Theorem 4.2. Suppose that (X,µ, T ) is a m.p.s. Then for any f ∈ L2(X) we

have ‖SNf − πT (f)‖2 → 0 as N →∞.
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It is immediate that Theorem 4.1 follows from 4.2 using Lemma 4.4 (ii), so we

will prove only Theorem 4.2.

Proof. The key idea of the proof is to identify the orthogonal complement

I⊥T of IT , the space of T -invariant functions, as the closed subspace spanned by

cocycles. If g ∈ L2(X) we write ∂g = g − UT g: this is called a cocycle. Let M be

the closed subspace of L2(X) spanned by all cocycles ∂g. It is clear that IT ⊂M⊥,

since (by Lemma 4.4 (i)) if f is UT -invariant then it is also U∗T -invariant and we

have

〈∂g, f〉 = 〈g − UT g, f〉 = 〈g, f〉 − 〈g, U∗T f〉 = 0.

Suppose, conversely, that f ∈ L2(X) is orthogonal to all cocycles. Then in

particular we have 〈f, ∂f〉 = 0. It follows that

‖f − UT f‖2 = 〈f, f − UT f〉+ 〈f − UT f, f〉 − ‖f‖2 + ‖UT f‖2

= −‖f‖2 + ‖UT f‖2

= 0.

Thus f = UT f a.e., that is to say f ∈ IT .

Now by the standard facts about Hilbert spaces mentioned in Section ?? we

have

L2(X) = IT ⊕ I⊥T .

Now that we know that I⊥T is the closure of the space of cocycles, so we have the

following statement. We state it as a separate lemma as we will use it in the next

chapter.

Lemma 4.5. Let f ∈ L2(X) be arbitrary. Then for any ε > 0 we may write

f = πT (f) + ∂g + h

where ‖h‖ 6 ε. In particular if T is ergodic we have

f =

∫
X

f + ∂g + h

where ‖h‖ 6 ε.

Taking time averages, and using the fact that SN (πT f) = πT f since πT f ∈ IT ,

we thus have

(4.1) ‖SNf − πT (f)‖ 6 ‖SN (∂g)‖+ ‖SNh‖.

Now SN : L2(X)→ L2(X) is easily seen to be a contraction (the proof is the same

as for L1(X)) and so

‖SNh‖ 6 ε.



4.3. VON NEUMANN’S MEAN ERGODIC THEOREM 31

Now by telescoping the sum we see that

SN (∂g) =
1

N
(g − UNT g),

and so

‖SN (∂g)‖ 6 2

N
‖g‖.

Comparing with (4.1) we see that

‖SNf − πT (f)‖ 6 2

N
‖g‖+ ε,

which is less than 2ε if N is big enough. Since ε > 0 was arbitrary, the result

follows. �





CHAPTER 5

The pointwise ergodic theorem

Our aim in this chapter is to prove the following result, asserting that “time

averages converge to space averages” in a rather strong sense.

Theorem 5.1 (Birkhoff’s almost-everywhere ergodic theorem). Suppose that

(X,µ,B, T ) is an ergodic measure-preserving system, and suppose that f ∈ L1(X).

Then SNf →
∫
X
fdµ pointwise almost everywhere. That is, for all x ∈ X outside

of a set of measure zero,

lim
N→∞

SNf(x)→
∫
X

fdµ.

The proof of this is somewhat tricky. An important ingredient of it is a kind

of special case known (essentially) as the maximal ergodic theorem. This is an

assertion to the effect that if the “space average” ‖f‖1 =
∫
X
|f(x)|dµ(x) is small

then so are many of the time averages.

5.1. The maximal ergodic theorem

Before stating and proving the maximal ergodic theorem, we isolate a simple

lemma (a special case of the Vitali covering lemma) from its proof.

Lemma 5.1. Let {Im}m∈S be a collection of intervals of form Im = [m,m +

`(m)) ⊂ Z. Then there is a disjoint subcollection {Im}m∈S′ whose union has length

at least 1
2 |S|.

Proof. First of all pass to a minimal subcollection {Im : m ∈ S∗} with the

property that
⋃
m∈S∗ Im =

⋃
m∈S Im. By a simple inspection this subcollection

has the property that no point y lies in three of the Im. Writing S∗ = {m1 <

m2 < · · · < mk}, it may now be seen that the two collections Im1
∪ Im3

∪ . . .
and Im2

∪ Im4
∪ . . . consist of disjoint intervals. Furthermore the union of these

two collections is
⋃
m∈S Im and hence contains S. Thus at least one of these two

collections has union of size at least 1
2 |S|, and the lemma follows. �

Proposition 5.1 (Maximal ergodic theorem). Suppose that (X,µ,B, T ) is a

measure-preserving system. Suppose that f ∈ L1(X) is a function with ‖f‖1 =∫
X
|f(x)|dµ(x) 6 ε. Let E ⊂ X be the set of all x ∈ X for which some time

average SNf(x), N = 1, 2, 3, . . . has magnitude at least δ. Then µ(E) 6 2ε/δ.

33
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Note that we do not need to assume that T is ergodic here.

Proof. By replacing f by |f |, we may assume that f > 0 everywhere. For

integer N0, Write E(N0) ⊂ X for the set of all x ∈ X for which some time average

SNf(x) with N 6 N0 has magnitude at least δ. Then E(N0) ↗ E as N0 → ∞.

By the limit principle it is therefore enough to show that µ(E(N0)) 6 2ε/δ. For

notational brevity, let us replace E(N0) by E in what follows.

If x ∈ E then, by definition, there is some N(x) 6 N0 such that

|SN(x)f(x)| > δ,

or in other words

(5.1) E06n<N(x)f(Tnx) > δ.

Here we have used the convenient notation Ex∈X = 1
|X|
∑
x∈X to denote averaging

over a set X. Thus, since E is large, many averages such as (5.1) are large. We

wish to use this fact to show that ‖f‖1 is also large. The first trick is to shift

(5.1) around to get many further large averages. Indeed by an obvious change of

variables we have, for any positive integer m,

(5.2) Em6n<m+N(x)f(Tn−mx) > δ

and so

(5.3) Em6n<m+N(Tmx′)f(Tnx′) > δ

for all x′ ∈ T−mE.

Let N1 be a quantity to be specified later, much larger than N0. For x ∈ X, let

A(x) be the set of all return times of x to E before time N1, that is to say the set

of all m ∈ [0, N1) such that x ∈ T−mE. Thus if x ∈ X and if m ∈ A(x) then we

have

(5.4) Em6n<m+N(Tmx)f(Tnx) > δ,

Note that N(Tmx) ∈ [0, N0).

Now we have

(5.5)

∫
X

|A(x)|dµ(x) =
∑

06m<N1

µ(T−mE) = µ(E)N1,

since T is measure-preserving.

For each x ∈ X, consider the collection of intervals {Im}m∈A(x), where Im =

[m,m+N(Tmx)). In general these intervals will overlap, but by Lemma 5.1 there
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is a disjoint subcollection {Im}m∈A′(x) with∑
m∈A′(x)

|Im| >
1

2
|A(x)|.

Since all these intervals are contained in [0, N0 +N1) we have∑
06n<N0+N1

f(Tnx) >
∑

m∈A′(x)

∑
n∈Im

f(Tnx)

> δ
∑

m∈A′(x)

|Im|

>
1

2
δ|A(x)|.

Now we integrate both sides over all x ∈ X. Since T is measure-preserving, we

have
∫
X
f ◦ Tndµ =

∫
X
fdµ for all n. Using (5.5), it follows that

(N0 +N1)‖f‖1 = (N0 +N1)

∫
X

fdµ

=

∫
X

( ∑
06n<N0+N1

f(Tnx)
)
dµ(x)

>
1

2
δ

∫
X

|A(x)|dµ(x)

=
1

2
δµ(E)N1.

It follows that

µ(E) 6
2

δ

N0 +N1

N1
‖f‖1.

Letting N1 →∞, we obtain

µ(E) 6
2

δ
‖f‖1 6

2ε

δ
.

This completes the proof. �

5.2. Time averages, space averages and limits

Suppose that (X,µ,B, T ) is an ergodic measure-preserving system. In Chapter

1 we talked about continuous functions having the time averages - space averages

property (TASA). As we remarked, this nomenclature was slightly nonstandard.

Here, we require a very similar notion for functions in L1(X).

Given a function f ∈ L1(X), we say that f has TASA if

(5.6) lim
N→∞

SNf(x) =

∫
X

fdµ
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for a.e. x. Note that now we do not require the convergence to be uniform in x,

so this notion of TASA is not the same as the one in Chapter 1. We will only be

using this terminology during the proof of the pointwise ergodic theorem.

In this section we use the maximal ergodic theorem to establish a pleasant

closure property of the set of all f ∈ L1(X) with TASA.

Lemma 5.2. Suppose that a sequence of functions f1, f2, · · · ∈ L1(X) all have

TASA, and that fj → f in L1(X) (that is, limj→∞ ‖fj − f‖1 = 0). Then f also

has TASA.

Proof. Let ε > 0, and suppose that 0 < δ < 1
3 . Choose j so large that

‖fj − f‖1 6 1
12δε, thus

|
∫
X

fjdµ−
∫
X

fdµ| 6 1

12
δε.

Write AM for the set of all x ∈ X for which |SNfj(x) −
∫
X
fjdµ| > 1

3ε for some

N >M . Then
⋂∞
M=1AM is contained in the set of x for which SNfj(x) 9

∫
X
fjdµ,

and hence has measure 0. Noting that we have the nesting A1 ⊃ A2 ⊃ . . . it follows

from the limit property of µ that µ(AM ) ↘ 0, and so there is some M∗ such that

µ(AM∗) 6
1
2δ. Thus

|SNfj(x)−
∫
X

fjdµ| 6
1

3
ε

for all N >M∗ and all x /∈ AM∗ .
Also if B is the set of all x ∈ X for which we do not have

|SNfj(x)− SNf(x)| 6 1

3
ε

for all N = 1, 2, 3, . . . then, by the maximal ergodic theorem, µ(B) 6 1
2δ. If

x /∈ AM∗ ∪ B, a set of measure at most δ, then by combining the three displayed

equations and using the triangle inequality we have

|SNf(x)−
∫
X

fdµ| 6 ε

for all N >M∗, that is to say

lim sup
N→∞

|SNf(x)−
∫
X

fdµ| 6 ε.

This is true for all x outside a set of measure at most δ, but δ was arbitrary:

therefore it is true for a.e. x. Take a sequence ε1 > ε2 > ε3 > . . . with εi → 0. For

each i and for a.e. x we have

lim sup
N→∞

|SNf(x)−
∫
X

fdµ| 6 εi.
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Since a countable union of sets of measure zero has measure zero, this is true, for

a.e. x, for all i simultaneously. For these x we of course have

lim sup
N→∞

|SNf(x)−
∫
X

fdµ| = 0,

and this concludes the proof. �

5.3. Proof of the pointwise ergodic theorem

Proof of the pointwise ergodic theorem. We now wish to prove the pointwise

ergodic theorem, namely that in an ergodic measure-preserving system (X,µ,B, T )

every function f ∈ L1(X) has the TASA property in the sense defined in the last

section.

Motivated by the proof of the mean ergodic theorem in the last chapter, let us

begin by noting that there is a class of functions for which the property is quite

easy to prove, namely the “constants plus bounded cocycles”. Indeed suppose that

f = c+∂g for some constant c and some g ∈ L∞(X), where here ∂g = g(x)−g(Tx)

and L∞(X) denotes the space of measurable functions for which |g(x)| 6 M for

a.e. x, for some finite M . Then by telescoping the sum we have

SNf(x) = c+
1

N
(g(x)− g(Tn−1x)).

Since

| 1

N
(g(x)− g(Tn−1x))| 6 2

N
M → 0

for a.e. x., it follows that SNf(x)→ c for a.e. x. On the other hand,∫
X

∂gdµ =

∫
X

fdµ−
∫
X

f ◦ T = 0,

using the fact that T is measure-preserving.

By this observation and the main result of the last section, it is therefore enough

to prove the following lemma.

Lemma 5.3. Suppose that (X,µ,B, T ) is an ergodic measure-preserving system.

Then the constant-plus-bounded-cocycle functions are dense in L1(X).

Proof. In the proof of the von Neumann ergodic theorem we proved a super-

ficially similar result, Lemma 4.5. We will use this fact to establish Lemma 5.3.

The appeal to this lemma is in fact the only place in this section that we need the

assumption that T is ergodic. We will also make two appeals to Lemma A.4, which

states that the simple measurable functions f =
∑
i∈I ci1Ei are dense in L1(X).

Let f be such a simple measurable function. Then f certainly lies in L2(X). By

Lemma 4.5, there is some g ∈ L2(X) with

‖f −
∫
X

fdµ− ∂g‖2 6
1

9
ε2
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and hence, by the Cauchy-Schwarz inequality,

‖f −
∫
X

fdµ− ∂g‖1 6
1

3
ε.

This is almost what we want, except that there is no guarantee that g is bounded.

However, since g lies in L2(X) it also lies in L1(X), and so by Lemma A.4 it may

be approximated arbitrarily closely by simple measurable functions, all of which

lie in L∞(X). In particular we may find g̃ ∈ L∞(X) with ‖g − g̃‖1 6 1
3ε. By the

triangle inequality we then have ‖∂g̃ − ∂g‖1 6 2
3ε and so

‖f −
∫
X

fdµ− ∂g̃‖1 6 ε.

Since ε > 0 was arbitrary, we have shown that f may be approximated arbitrarily

well in L1 by constant-plus-bounded-cocycle functions.

However, the simple measurable functions like f are dense in L1(X), and the

result follows. �

5.4. Normal numbers.

Let x ∈ [0, 1], and write x = 0.a1a2a3 . . . in base k (thus each ai lies in the set

{0, 1, . . . , k − 1}). For each sequence b1 . . . bj of digits, look at those n for which

an+1 = b1, . . . , an+j = bj . We say that x is normal in base k if

(5.7) lim
N→∞

1

N
#{n 6 N : an+1 = b1, . . . , an+j = bj} = k−j

for all j and for all choices of b1, . . . , bj , that is to say the number of occurrences of

the pattern b1 . . . bj amongst the base k digits of x is what one expects it to be.

The normality of a number may be interpreted in terms of the ×k maps Tk on

the circle R/Z. Indeed an+1 = b1, . . . , an+j = bj if, and only if, Tnk x lies in the

interval

I :=
b1
k

+ · · ·+ bj
kj

+ [0,
1

kj
).

Since the maps Tk are ergodic (we only proved this for k = 2, but the proof for

general k is the same) it follows from the pointwise ergodic theorem that

lim
N→∞

1

N
#{n 6 N : an+1 = b1, . . . , an+j = bj} = lim

N→∞

1

N

N∑
n=1

1I(T
n
k x) = µ(I) = k−j

for a.e. x. There are only countable many choices for j and b1, . . . , bj , so in fact

the above holds for all such choices for a.e. x, that is to say almost all x ∈ [0, 1] are

normal in base k.

It follows immediately that almost all x ∈ [0, 1] are normal to all bases; such

numbers are called absolutely normal.
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5.5. The continued fraction expansion of a typical number

Let us derive a corollary about the partial quotients of a “typical” number in

(0, 1). In this section we will write X = [0, 1], T : X → X will be the Gauss map,

and ν(E) = 1
log 2

∫
X
dµ(x)
1+x will be Gauss measure. As we showed in Chapter 3, T is

ergodic with respect to ν.

Recall our observation that if

x =
1

a1 + 1
a2+ 1

a3+...

then an = b1/Tn−1xc. Writing f : (0, 1] → R for the function defined by f(t) :=

log(b1/tc) it is not hard to check that f ∈ L1([0, 1],B, ν). It follows from the

pointwise ergodic theorem that for ν-a.e. x (and hence for µ-a.e. x) we have

1

N

N∑
n=1

log an = SNf(x)→
∫
f dν =

1

log 2

∫ 1

0

log(b1/tc)
1 + t

dt.

Splitting the integral into the ranges (1/(k + 1), 1/k) and making the substitution

u = 1/t− k, we see that the right hand side is

1

log 2

∞∑
k=1

log k

∫ 1

0

1

(u+ k)(u+ k + 1)
du.

The integration is easily accomplished using the obvious partial fraction expansion,

and we see that the above is

1

log 2

∞∑
k=1

log k · log
(k + 1)2

k(k + 2)
.

Thus for almost all x the partial quotients satisfy

lim
N→∞

(a1 . . . aN )1/N =

∞∏
k=1

(
(k + 1)2

k(k + 2)

)log k/ log 2

.

The constant here is called Khintchine’s constant, and its numerical value is ap-

proximately 2.685452...

More applications of ergodic theory to the study of continued fractions may be

found on the third example sheet.





CHAPTER 6

Combinatorial number theory and the

correspondence principle

6.1. Szemerédi’s theorem

A beautiful application of ergodic theory, due to Furstenberg, is to give a proof

of a famous theorem of Szemerédi in combinatorial number theory. Here, and in

the rest of the chapter, [N ] := {1, . . . , N}.

Theorem 6.1. Let k ∈ N be an integer and suppose that δ > 0. Let A ⊂ [N ] be

a set with density |A|/N at least δ. Then, provided N is large enough, A contains

k distinct elements in arithmetic progression.

To prove this theorem, we relate it to a result about multiple recurrence on

certain types of system. The systems we will consider to begin with are called

Cantor systems (this is not standard terminology).

6.2. Cantor systems

Definition 6.1 (Cantor system). A Cantor system is a quadruple (X,R, µ, T )

where

• X = {0, 1}Z is the space of doubly-infinite sequences ~x = (xn)n∈Z;

• R is the ring of clopen sets 1 which consists of all finite unions of cylinder

sets, that is to say sets obtained by fixing some finite number of coordi-

nates of x (for example the set R ⊂ X given by R = {~x ∈ X : x−3 =

0, x2 = 1, x7 = 0};
• T : X → X is the right shift map defined by (T~x)n = xn+1;

• µ : R → [0, 1] is a probability measure which is invariant with respect to

the shift: µ(T−1R) = µ(R) for all R ∈ R.

A Cantor system is not a priori a measure-preserving system, because R is only

a ring of sets, and not a σ-algebra (it is not closed under countable unions).

1clopen stands for “closed and open”. We never need the fact that all clopen sets are finite unions
of cylinder sets, though this is true and not hard to prove.

41
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The definition of probability measure on R is almost identical to that of a

probability measure on a σ-algebra B, but with one slight change: the countable

additivity axiom now becomes

• If Ai ∈ R, if A1 ⊂ A2 ⊂ . . . and if
⋃∞
n=1An ∈ R then µ(

⋃∞
n=1An) =∑∞

n=1 µ(An).

The only difference here is that it is not automatic that
⋃∞
n=1An ∈ R.

In the specific case we are discussing here, the ring of clopen sets on the Cantor

space, the countable additivity axiom follows from the weaker finite additivity axiom

µ(A ∪ A′) = µ(A) + µ(A′) if A,A′ ∈ R are disjoint. This is because X = {0, 1}Z

(with the natural topology – see Examples Sheet 1, Q10) is compact and all elements

of R are closed (and hence compact), so if
⋃∞
n=1An ∈ R then in fact

⋃k
n=1An =⋃∞

n=1An for some finite k.

6.3. The correspondence principle

In this section we show that Szemerédi’s theorem is a consequence of the fol-

lowing multiple recurrence result for Cantor systems.

Theorem 6.2. Suppose that (X,R, µ, T ) is a Cantor system. Let R ∈ R be a

set with µ(R) > 0. Then there is some d > 1 such that µ(R ∩ T−dR ∩ T−2dR · · · ∩
T−(k−1)dR) > 0.

Here is the deduction, which is known as Furstenberg’s correspondence principle.

If Szemerédi’s theorem is false, we may find an infinite sequence (Aj)
∞
j=1 of finite

sets with Aj ⊂ [Nj ], Nj →∞, with |Aj |/Nj > δ for all j, but with no Aj containing

k distinct elements in arithmetic progression.

Consider the Cantor space X = {0, 1}Z. Note that X can be identified with the

power set P(Z) of subsets of Z, via the identification which maps A ⊂ Z to ~xA

where

(~xA)n =

{
1 n ∈ A
0 n /∈ A.

Consider the shift map T : X → X defined by (T~x)n = xn+1. To any A ⊂ [N ] we

also associate2 a probability measure µA on X = {0, 1}Z by setting

µA(S) =
1

N
#{n ∈ [N ] : Tn~xA ∈ S}.

That any such µA is a probability measure is easily verified: remember that it

suffices to check finite additivity.

2Technically this depends on N as well as on A, but we suppress explicit mention of this depen-
dence.
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The measure µA captures various statistics of A. Consider, for example, the

cylinder sets S(a1, . . . , ak) ∈ R given by

S(a1, a2, . . . , ak) := {~x ∈ X : xa1 = · · · = xak = 1}.

In particular if S = S(0) = {~x : x0 = 1} then, since (Tn~xA)0 = (~xA)n = 1 if n ∈ A
and 0 otherwise, we see that

µA(S(0)) =
1

N
#{n ∈ [N ] : n ∈ A}.

That is to say, µA(S(0)) is precisely the density of A as a subset of [N ]. Similarly

µA(S(3, 7, 12)) =
1

N
#{n ∈ [N ] : n+ 3, n+ 7, n+ 12 ∈ A},

a certain “triple correlation density of A” and so on.

Define µj := µAj . Now we come to a key idea: because the collection R of clopen

sets is countable, we may apply a diagonal argument to pass to a subsequence of

the µj which converges “weakly”, that is to say such that µj(R) converges for

all R ∈ R. Indeed, if R = {R1, R2, R3, . . . } then first pass to a subsequence

{j1,1, j1,2, . . . } ⊂ N such that µj1,i(R1) converges as i→∞. Next pass to a further

subsequence {j2,1, j2,2, . . . } ⊂ {j1,1, j1,2, . . . } such that µj2,i(R2) converges, and so

on. Finally consider the diagonal subsequence {j1,1, j2,2, j3,3, . . . }: by construction

the sequence µji,i(Rr) converges as i→∞, for every fixed r.

For simplicity of notation, let us assume that the sequence µj itself converges

weakly, and define a function µ : R → [0, 1] by µ(R) := limj→∞ µj(R). It is easy

to check that µ inherits the prooperty of finite additivity from the µj , and hence µ

is a probability measure on (X,R, µ, T ).

Lemma 6.1. The probability measure µ is T -invariant, and so (X,R, µ, T ) is a

Cantor system.

Proof. The idea here is that, while the approximating measures µj are not

T -invariant, they are almost so and become truly invariant in the limit.

Indeed for any clopen set S ∈ R we have

µj(T
−1S) =

1

Nj
#{n ∈ [Nj ] : Tn~xA ∈ T−1S}

=
1

Nj
#{n ∈ [Nj ] : Tn+1~xA ∈ S}

=
1

Nj
#{n ∈ [Nj ]− 1 : Tn~xA ∈ S}.

Since

µj(S) =
1

Nj
#{n ∈ [Nj ] : Tn~xA ∈ S},
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it follows that

|µj(S)− µj(T−1S)| 6 2

Nj
→ 0

as j →∞, and therefore µ(S) = µ(T−1S), as required. �

Lemma 6.2. We have µ(S(0)) > 0.

Proof. We have µj(S(0)) = N−1
j |Aj | > δ. Since S(0) is clopen, we have

µ(S(0)) = limj→∞ µj(S(0)) > δ and the result follows. �

Now apply the multiple recurrence theorem for Cantor systems, Theorem 6.2,

with R = S(0). We obtain the existence of some d > 0 such that

µ(S(0) ∩ T−d(S(0)) ∩ T−2d(S(0)) ∩ · · · ∩ T−(k−1)d(S(0))) > 0.

Note that

S(0) ∩ T−d(S(0)) ∩ T−2d(S(0)) ∩ · · · ∩ T−(k−1)d(S(0)) = S(0, d, . . . , (k − 1)d)

is another clopen set. It follows that

lim
j→∞

µj(S(0, d, . . . , (k − 1)d) > 0,

and in particular

µj(S(0, d, . . . , (k − 1)d)) > 0

for j sufficiently large. However, µj(S(0, d, . . . , (k − 1)d)) is precisely

1

Nj
#{n ∈ [Nj ] : n, n+ d, . . . , n+ (k − 1)d ∈ Aj}.

This instantly implies that Aj contains at least one k-term arithmetic progression

with common difference d, for all sufficiently large j, contrary to assumption.

6.4. Cantor systems and ergodic theory

The name Cantor system is not standard terminology. The reason for this is

that every Cantor system in fact has the structure of a measure-preserving system.

Proposition 6.1. Suppose that (X,R, µ, T ) is a Cantor system. Let B be

the σ-algebra generated by R. Then we may extend µ to a (countably additive)

measure on B, and thereby regard the Cantor system as the restriction of a measure-

preserving system (X,B, µ, T ).

The proof of this proposition is an instance of the Carathéodory Extension

Theorem, discussed in Appendix A (it is not examinable in this course). The σ-

algebra B is usually called the Borel σ-algebra, because when a natural metric

topology is placed on X this does indeed consist of the Borel sets (see Exercises 1,

Q10).
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It turns out that the analogue of Theorem 6.2 holds in this measure-preserving

system too.

Theorem 6.3 (Furstenberg). Consider the measure-preserving system (X,B, µ, T ),

where X = {0, 1}Z and B is the Borel σ-algebra. Let E ∈ B be a set with µ(E) > 0.

Then there is some d > 1 such that µ(E ∩ T−dE ∩ · · · ∩ T−(k−1)dE) > 0.

In fact the same holds in any measure-preserving system, in a slightly stronger

form.

Theorem 6.4. Suppose that (X,B, µ, T ) is an arbitrary measure-preserving

system. Then for any f ∈ L∞(X) with f > 0 and f not equal to 0 a.e. we have

lim inf
N→∞

1

N

∑
06n<N

∫
X

f(x)f(Tnx) · · · f(T (k−1)nx)dµ(x) > 0.

Note that if f = 1E then∫
X

f(x)f(T dx) · · · f(T (k−1)dx)dµ = µ(E ∩ T−dE ∩ · · · ∩ T−(k−1)dE).

Thus Theorem 6.4 implies Theorem 6.3, and in fact implies rather more: a positive

proportion of all integers d satisfy the conclusion of that theorem.

It is convenient to give a name to the property being demanded in Theorem 6.4.

Definition 6.2 (The SZ property). We say that a m.p.s. (X,B, µ, T ) has the

SZ-property at level k if, for any function f ∈ L∞(X) with f > 0 and f not equal

to zero almost everywhere we have

lim inf
N→∞

1

N

∑
06n<N

∫
f(x)f(Tnx) · · · f(T (k−1)nx)dµ(x) > 0.

Equivalently, writing U = UT for the Koopman operator Uf(x) := f(Tx), we have

lim inf
N→∞

1

N

∑
06n<N

∫
fUnf . . . U (k−1)nfdµ > 0.

Thus Theorem 6.4 may be recast in the following form.

Theorem 6.5. Every measure-preserving system (X,B, µ, T ) has the SZ prop-

erty at level k.

We will discuss some aspects of the proof of this theorem in the rest of the

course, taking the time to develop some interesting notions (such as weak-mixing)

which come up, and proving the theorem for particular types of system. The broad

structure of (one possible) proof of the general case is to isolate some chain of

T -invariant sub-σ-algebras

{0} ⊂ B1 ⊂ B2 ⊂ · · · ⊂ BM = B,
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and then to prove, by induction on i, the statement that Theorem 6.4 holds for

(X,µ,Bi, T ).

The crucial point to note is that these sub σ-algebras are not necessarily gener-

ated by subrings of the ring R of clopen sets, and to see these vital structures one

must work in the setting of measure-preserving systems.



CHAPTER 7

Weak-mixing transformations

In this chapter we introduce a property that may be enjoyed by measure-

preserving systems (X,B, µ, T ) called weak-mixing. This is an important class

of measure-preserving systems in its own right, but our particular aim is to prove

that all such systems have the SZ property, introduced in the last chapter.

In this chapter L2(X) always refers to the Hilbert space of complex square

integrable functions. We adopt the convention that n < N means n ∈ {0, 1, . . . , N−
1}, and write En<N for 1

N

∑
n<N . Occasionally we will write o(1) for a quantity

tending to 0 as N →∞.

7.1. Weak-mixing systems and their basic properties

Definition 7.1 (Weak-mixing systems). Suppose that (X,B, µ, T ) is a m.p.s.

We say that this system is weak-mixing if, for all measurable sets A,B ⊂ X, we

have

lim
N→∞

En<N |µ(T−nA ∩B)− µ(A)µ(B)| = 0.

To give a little intuition, let us remark that weak-mixing implies ergodicity.

Indeed if A is invariant, that is to say if T−1A = A up to measure zero, then the

weak-mixing condition clearly implies that µ(A∩B) = µ(A)µ(B) for all measurable

B. Taking B = A, we see that µ(A) = 0 or 1. Weak-mixing is a much stronger

assumption than ergodicity, however. Our basic example of an ergodic system,

the irrational circle rotation, fails to be weak-mixing as can be seen by taking

A = B = I for a suitable interval I (to establish this rigorously, for all irrational

circle rotations, is on Sheet 4).

On the other hand the doubling map Tx = 2x(mod 1) is weakly-mixing. In fact

it has a strong property called mixing (or sometimes strongly mixing :

lim
n→∞

µ(T−nA ∩B) = µ(A)µ(B)

for all measurable A,B. This essentially follows from the “L1-style” proof that the

doubling map is ergodic, given in Section 3.7. There, we showed that µ(T−n
′
A ∩

B) = µ(A)µ(B) whenever n′ > n, if B is a union of dyadic intervals at level n.

The claim now follows by approximating an arbitrary measurable B using unions

of dyadic intervals, as done in Section 3.7 (and see also Lemma A.2).
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It is traditional, and I think rather pleasant, to supply a list of properties that

are equivalent to weak-mixing. Here, U = UT denotes the Koopman operator,

namely Uf(x) := f(Tx).

Proposition 7.1 (Equivalent notions of weak-mixing). Suppose that (X,µ,B, T )

is a measure-preserving system. Then the following are equivalent.

(i) T is weak-mixing;

(ii) Every f ∈ L2(X) with
∫
fdµ = 0 satisfies limN→∞ En<N |〈f, Unf〉| = 0;

(iii) limN→∞ En<N |〈f, Ung〉 −
∫
fdµ

∫
gdµ| = 0 for all f, g ∈ L2(X);

(iv) T × T is weakly-mixing;

(v) T × T̃ is ergodic on X × X̃ for any ergodic m.p.s. (X̃, µ̃, B̃, T̃ );

(vi) T × T is ergodic.

Proof. Evidently (iii) implies (ii). Conversely (ii) implies (iii) in the case∫
fdµ =

∫
gdµ = 0 by using the “depolarization identity”

〈f, Ung〉 =
1

4

3∑
m=0

〈g + imf, Un(g + imf)〉i−m.

The general case then follows straightforwardly from the observation that

〈f −
∫
fdµ, Un(g −

∫
gdµ)〉 = 〈f, Ung〉 −

∫
fdµ

∫
gdµ.

Statement (iii) obviously implies (i), and conversely (i) implies (iii) by approxi-

mating f and g by simple-measurable functions in the usual way.

To see that (i) implies (iv), suppose that T is weak-mixing. We want to show

that T × T is also weak-mixing, and so we must show that if E,F ∈ B ×B then

En<N (µ× µ)((T × T )−nE ∩ F )→ 0.

Suppose first that E = A× C, F = B ×D with A,B,C,D ∈ B. Then we have

En<N (µ× µ)((T × T )−nE ∩ F )

En<N |(µ× µ)((T × T )−n(A× C) ∩ (B ×D)− µ(A)µ(B)µ(C)µ(D)|

= En<N |µ(T−nA ∩B)µ(T−nC ∩D)− µ(A)µ(B)µ(C)µ(D)|

= En<N
∣∣(µ(T−nA ∩B)− µ(A)µ(B)

)
µ(T−nC ∩D) + µ(A)µ(B)

(
µ(T−nC ∩D)− µ(C)µ(D)

)∣∣
6 En<N

∣∣µ(T−nA ∩B)− µ(A)µ(B)
∣∣+ En<N

∣∣µ(T−nC ∩D)− µ(C)µ(D)
∣∣

→ 0.

The case of general E,F now follows by approximating each of these sets with a

finite union of product sets A× C, B ×D: see Appendix A.

That (iv) implies (i) is very straightforward and is left to the reader.
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To see that (i) implies (v), suppose that T is weak-mixing and that T̃ is ergodic.

We want to show that T × T̃ is ergodic, to which end it suffices (and is necessary)

to show that

En<N (µ× µ̃)((T × T̃ )−nE ∩ F )→ (µ× µ̃)(E)(µ× µ̃)(F )

for all measurable E,F ∈ B× B̃. (Then take E = F to be some (T × T̃ )-invariant

set and conclude that (µ × µ̃)(E) = 0 or 1.) One again we show this first in the

special case E = A × C and F = B × D, where A,B ∈ B and C,D ∈ B̃. The

general case again follows by an approximation argument.

The special case we need to prove is the following statement:

(7.1) En<N (µ× µ̃)((T × T̃ )−n(A× C) ∩ (B ×D))→ µ(A)µ(B)µ̃(C)µ̃(D).

The left-hand side minus the right is simply

En<N
(
µ(T−nA ∩B)µ̃(T̃−nC ∩D)− µ(A)µ(B)µ̃(C)µ̃(D)),

which equals

En<N (µ(T−nA ∩B)− µ(A)µ(B))µ̃(T̃−nC ∩D)

+ µ(A)µ(B)(µ̃(T̃−nC ∩D)− µ̃(C)µ̃(D)).

This is bounded by

En<N |µ(T−nA ∩B)− µ(A)µ(B)|+
∣∣E06n<N (µ̃(T̃−nC ∩D)− µ̃(C)µ̃(D))

∣∣
(note carefully the position of the modulus signs). Now since T is weak-mixing the

first term tends to zero. The second term is

〈S̃N1C −
∫

1Cdµ̃, 1D〉,

which by the Cauchy-Schwarz inequality is bounded by ‖S̃N1C −
∫

1Cdµ̃‖2. By the

mean ergodic theorem and the fact that T̃ is ergodic, this tends to 0 as N →∞.

To see that (v) implies (vi), first take (X̃, µ̃, B̃, T̃ ) to be the trivial one-point

system to conclude that T itself is ergodic. Then, taking T̃ = T , we see that T ×T
is ergodic.

Finally we must show that (vi) implies (i), to which end it suffices (by Cauchy-

Schwarz) to show that

En<N |µ(T−nA ∩B)− µ(A)µ(B)|2 → 0.
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Expanding out the square, this may (with a little effort) be rewritten as

En<N (µ× µ)((T × T )−n(A×A) ∩ (B ×B))−

2µ(A)µ(B)En<N (µ× µ)((T × T )−n(A×X) ∩ (B ×X))

+ µ(A)2µ(B)2.

Writing S×N for the time averages with respect to T × T , this may be written as

〈S×N1A×A, 1B×B〉 − 2µ(A)µ(B)〈S×N1A×X , 1B×X〉+ µ(A)2µ(B)2,

where the inner products are on X ×X. By two applications of the mean ergodic

theorem applied to T × T (which tells us that S×N1A×A → µ(A)2 and S×N1A×X →
µ(A) in L2) and the Cauchy-Schwarz inequality, this does indeed tend to zero. �

Remark. In the above argument we applied the mean ergodic theorem three

times. A close inspection reveals that all we needed was the fact that SNf →
∫
fdµ

in weak L2, which means that 〈SNf −
∫
fdµ, g〉 = 0 for all g ∈ L2(X). This

statement admits of a much “softer” proof than the mean ergodic theorem, at least

if one knows a little functional analysis: see Exercise sheet 4.

An important fact is that weak-mixing is equivalent to a further property: that

the Koopman operator U has no non-constant eigenfunctions. That is, if f ∈ L2(X)

and if f(Tx) = λf(x) for a.e. x then λ = 1 and f is constant a.e. We will not

require this fact in these notes; the proof is not difficult, but does require a small

amount of machinery in the form of the Bochner-Herglotz spectral theorem. For

comparison note that T is ergodic if and only if the only eigenfunctions with λ = 1

are the constants.

7.2. Multiple recurrence properties for weak-mixing systems

Our aim now is to establish that weakly-mixing systems have the SZ property.

Theorem 7.1. Let (X,B, µ, T ) be an invertible weakly-mixing m.p.s. Then this

system has the SZ property at level k for every k.

We will in fact establish the following result.

Proposition 7.2. Let r > 1. Let (X,B, µ, T ) be a weak-mixing m.p.s. Then

lim
N→∞

En<NUnf1 . . . U
rnfr →

r∏
i=1

(

∫
fidµ)

in L2(X), for every choice of f1, . . . , fr ∈ L∞(X). The existence of the limit on

the left is part of the claim.
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The deduction of the SZ property at level k from the case r = k − 1 of this

proposition is a straightforward application of Cauchy-Schwarz. Indeed, taking

f1 = f2 = · · · = fk−1 = g in the proposition we have

En<N
∫
fUnf . . . U (k−1)nfdµ− (

∫
f)k = 〈f,En<NUnf . . . U (k−1)nf − (

∫
f)k−1〉

6 ‖f‖2‖En<NUnf . . . U (k−1)nf − (

∫
f)k−1‖2

→ 0

as N →∞. In particular if f > 0 and f is not 0 a.e. then

lim inf
N→∞

En<N
∫
fUnf . . . U (k−1)nfdµ = (

∫
f)k > 0,

which is precisely the SZ property at level k.

The key ingredient in the proof of Proposition 7.2 is a result called the van der

Corput lemma.

Proposition 7.3. Suppose that (xn)n∈N is a sequence of vectors in some Hilbert

space V , and that ‖xn‖ 6 1 for all n. Then

lim sup
N→∞

‖En<Nxn‖2 6 lim sup
H→∞

Eh<H | lim sup
N→∞

En<N 〈xn, xn+h〉|.

Proof. If H is some paranmeter, we write oH;N→∞(1) for a quantity tending

to 0 (in the norm on V ), the rate of convergence depending only on H. Different

instances of the notation may indicate different quantities.

Fix H for the moment and suppose that h < H. Then we have the “shifting

principle”

(7.2) En<Nxn = En<Nxn+h + oH;N→∞(1).

Indeed,

‖En<Nxn − En<Nxn+h‖ = ‖ 1

N
(x0 + · · ·+ xh−1 − xN − · · · − xN+h−1)‖ < 2H

N
.

Taking averages over h < H yields

En<Nxn = En<NEh<Hxn+h + oH;N→∞(1)

and so

(7.3) ‖En<Nxn‖2 = ‖En<NEh<Hxn+h‖2 + oH;N→∞(1).

(Indeed if v = v′ + w with ‖v‖, ‖v′‖ 6 1 then ‖v‖2 − ‖v′‖2 = 2〈v′, w〉+ ‖w‖2, and

|〈v′, w〉| 6 ‖w‖ by the Cauchy-Schwarz inequality, so
∣∣‖v‖2−‖v′‖2∣∣ 6 2‖w‖+‖w‖2.)
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By the Cauchy-Schwarz inequality it follows from (7.3) that

‖En<Nxn‖2 6 En<N‖Eh<Hxn+h‖2 + oH;N→∞(1).

Expanding out the square and swapping the order of summation gives

(7.4) ‖En<Nxn‖2 6 Eh1,h2<H |En<N 〈xn+h1
, xn+h2

〉|+ oH;N→∞(1).

Note that by another application of the shifting principle

(7.5) En<N 〈xn+h1
, xn+h2

〉 = En<N 〈xn, xn+h2−h1
〉+ oH;N→∞(1),

and also that

En<N 〈xn+h1 , xn+h2〉 = En<N 〈xn+h1−h2 , xn〉+ oH;N→∞(1)

= En<N 〈xn, xn+h1−h2〉+ oH;N→∞(1).(7.6)

Substituting into (7.4) (using (7.5) when h2 > h1 and (7.6) when h2 < h1) we

obtain

(7.7) ‖En<Nxn‖2 6
1

H2

∑
h<H

w(h)|En<N 〈xn, xn+h〉|+ oH;N→∞(1),

where w(h) is the number of ways of writing h = h1 − h2 or h = h2 − h1 with

h1, h2 < H, thus

w(h) =

{
H h = 0

2(H − h) 1 6 h 6 H − 1.

Taking limsups as N →∞ in (7.7), the o(1) terms disappear and we obtain

(7.8) lim sup
N→∞

‖En<Nxn‖2 6
1

H2

∑
h<H

w(h) lim sup
N→∞

|En<N 〈xn, xn+h〉|.

Finally, we must take limsups as H → ∞. We claim that for any bounded

sequence (yh) we have

(7.9) lim sup
H→∞

1

H2

∑
h<H

w(h)yh 6 lim sup
H→∞

Eh<Hyh.

Proposition 7.3 follows immediately from this claim and (7.8) upon taking yh =

lim supN→∞ |En<N 〈xn, xn+h〉|.
It remains to prove the claim. To do this, note the identity

(7.10)
∑
h<H

w(h)yh = −Hy0 + 2

H∑
H′=1

∑
h<H′

yh.

Suppose that Eh<Hyh 6 C for all H > H0. Then from (7.10) we have
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1

H2

∑
h<H

w(h)yh = −y0

H
+ 2

H0−1∑
H′=1

∑
h<H′

yh + 2

H∑
H′=H0

∑
h<H′

yh

6
1

H
+ 2

H2
0

H2
+

2

H2

H∑
H′=H0

CH ′

→ C

as H →∞.

The claim follows. �

Proof of Proposition 7.2. We proceed by induction on r. The case r = 1

is simply the mean ergodic theorem; note that T , being weak-mixing, is certainly

ergodic. Suppose now that r > 2. The case in which fr is constant reduces to the

case r−1. Hence, replacing fr by fr−
∫
frdµ, we may suppose in what follows that∫

frdµ = 0. We may also assume without loss of generality that ‖fi‖∞ 6 1 for all

i = 1, . . . , r. In what follows we will consider various “derivatives” ∆hfi := fiUhfi.

Note that ‖∆hfi‖∞ 6 1 and hence ‖∆hfi‖2 6 1 for all h, i; note that this might

not be the case if we assumed, in the statement of Proposition 7.2, only a bound

on ‖fi‖2.

Our task is to show that

En<NUnf1 . . . U
rnfr → 0

in L2.

Taking xn := Unf1 . . . U
rnfr in the van der Corput lemma, and noting that

〈xn, xn+h〉 =

∫
(Un∆hf1) · · · (Urn∆rhfr)dµ,

it is enough to show that

(7.11) lim sup
H→∞

Eh<H lim sup
N→∞

|En<N
∫

(Un∆hf1) · · · (Urn∆rhfr)dµ| = 0.

Now by the T -invariance of µ (and the fact that T is invertible) we have∫
(Un∆hf1) · · · (Urn∆rhfr)dµ

=

∫
(∆hf1)(Un∆2hf2) · · · (U (r−1)n∆rhfr)dµ,
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and hence by Cauchy-Schwarz

|En<N
∫

(Un∆hf1) · · · (Urn∆rhfr)dµ|

= |
∫

(∆hf1)En<N (Un∆2hf2) · · · (U (r−1)n∆rhfr)dµ|

6 ‖En<N (Un∆2hf2) · · · (U (r−1)n∆rhfr)‖2.

Taking limits as N →∞, and using the induction hypothesis, we have

lim sup
N→∞

|En<N
∫

(Un∆hf1) · · · (Urn∆rhfr)dµ|

6 |
r∏
j=2

(

∫
∆jhfj)| 6 |

∫
∆rhfr| = |〈fr, Urhfr〉|.

To establish the desired statement (7.11), then, we need only show that

(7.12) lim sup
H→∞

Eh<H |〈fr, Urhfr〉| = 0.

However, fr has integral zero and hence satisfies item (ii) of Proposition 7.1: this

means that

lim sup
H′→∞

Eh′<H′ |〈fr, Uh
′
fr〉| = 0,

from which (7.12) follows immediately upon taking H ′ = rH and ignoring those h′

which are not divisible by r. �



CHAPTER 8

Compact systems

8.1. Almost-periodic functions and compact systems

In the last set of notes we discussed weak-mixing systems. We begin this set

of notes by introducing a very different class of system, the compact systems. We

begin by defining the notion of an almost periodic function. Here, as in previous

chapters, (X,B, µ, T ) will always be a measure-preserving system and U = UT :

L2(X)→ L2(X) is the Koopman operator defined by Uf(x) := f(Tx).

Definition 8.1 (Almost periodic functions). Let (X,B, µ, T ) be an measure-

preserving system and suppose that f ∈ L2(X). Then we say that f is almost

periodic if the forward orbit (Unf)n>0 is precompact in L2(X), that is to say has

compact closure.

To begin to get a handle on this definition, note first that L2(X) itself will

usually not be compact. For example, the functions fn(x) = e2πinx all lie in

L2(R/Z), but since ‖fn − fm‖2 =
√

2 whenever n 6= m, this sequence of functions

has no convergent subsequence. Since L2(X) is a complete metric space, it follows

from basic material in analysis that a set S ⊂ L2(X) being precompact is equivalent

to that set being totally bounded : for every ε > 0 there exists a finite collection

g1, . . . , gJ ∈ S such that for every f ∈ S there is a j such that ‖f − gj‖2 6 ε.

Definition 8.2 (Compact systems). Let (X,B, µ, T ) be a measure-preserving

system. Then we say that this system is compact if every function in L2(X) is

almost periodic.

The archetypal example of a compact system is a circle rotation, as we shall

see in Lemma 8.2 below. Before establishing this, however, let us prove some basic

properties of almost periodic functions.

8.2. Basic properties of almost-periodic functions

In this section we collect together some basic properties of almost periodic func-

tions, and then use this information to conclude that circle rotations are compact.

Lemma 8.1. Write AP(X) for the collection of almost periodic functions in

L2(X). Then

55
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(i) AP(X) is a T -invariant;

(ii) AP(X) is closed in the L2-norm;

(iii) AP(X) is a vector subspace of L2(X);

(iv) If f ∈ AP(X) then f+ := max(f, 0) ∈ AP(X).

Proof. (i) It is clear that AP(X) is T -invariant since the forward orbit of Uf

is contained in that of f .

(ii) Suppose that fm, m = 1, 2, . . . are in AP(X) and that fm → f in L2. Let

ε > 0. Then there is some m such that ‖fm − f‖2 6 ε/3. Since the forward orbit

(Unfm)n>0 is precompact there is some J = J(ε) such that, for any n > 0, there is

an n′ 6 J(ε) for which ‖Unfm − Un
′
fm‖2 6 ε/3. Since U is an isometry, we have

‖Unf − Unfm‖2 6 ε/3 and ‖Un′f − Un′fm‖2 6 ε/3. By the triangle inequality it

follows that ‖Unf−Un′f‖2 6 ε. Since ε was arbitrary, this means that f ∈ AP(X),

and so AP(X) is indeed topologically closed.

(iii) Closure under scalar multiplication is obvious, so we just prove closure

under addition. Suppose, then, that f, g ∈ AP(X). Take functions fi, gj ∈ L2(X),

1 6 i, j 6 k, with the property that for any n there are i, j such that ‖Unf −
fi‖2, ‖Ung − gj‖2 6 ε/4. Thus for any n there are i, j such that

(8.1) ‖Un(f + g)− (fi + gj)‖2 6 ε/2.

For each i, j take nij to be the smallest n corresponding to a given i, j, if such an

n exists. Then if (8.1) holds we have

‖Un(f + g)− Unij (f + g)‖2 6 ε,

and so indeed f + g ∈ AP(X).

(iv) This is straightforward. Suppose that f ∈ AP(X). Then there is J(ε) such

that for any n there is n′ 6 J(ε) for which ‖Unf − Un′f‖2 6 ε. But then, noting

that (U if)+ = U i(f+), we see that ‖Unf+ − Un
′
f+‖2 6 ε as well. �

Lemma 8.2. Let (X,B, µ, T ) be a circle rotation. That is, suppose that X =

R/Z, that B is the Borel σ-algebra, that µ is Lebesgue measure and that T : X → X

for the map x 7→ x + α(mod 1) for some α ∈ R. Then the system (X,B, µ, T ) is

compact.

Proof. By the previous lemma we need only exhibit a collection of almost

periodic functions which are dense in L2(X). A suitable set of such functions is the

set of trigonometric polynomials. Since AP(X) is a vector subspace, it is enough

to check that each exponential function f(x) = e2πiαmx is almost-periodic. This is

clear when α ∈ Q, so suppose that α is irrational. Then we have

‖Unf − Un
′
f‖2 = |e2πiαm(n−n′) − 1| 6 10‖αm(n− n′)‖R/Z,
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where ‖t‖R/Z denotes the distance from t to the nearest integer. Now the points

(αmn′)n′∈N are dense in R/Z, and so for fixed ε there is some J = J(ε) such that the

points (αmn′)n′=1,...,J come within ε/10 of every point in R/Z. Therefore for any

n there is some n′ 6 J such that ‖Unf − Un′f‖2 6 ε. This proves the lemma. �

8.3. Multiple recurrence for compact systems

Proposition 8.1. Suppose that (X,B, µ, T ) is a measure-preserving system.

Let f ∈ L∞(X) be almost-periodic, and suppose that f > 0 and that f is not 0 a.e.

Then

lim inf
N→∞

En<N
∫
f · Unf · · · · · U (k−1)nfdµ > 0.

In particular if (X,B, µ, T ) is a compact system then it satisfies the SZ property at

level k for every k > 2.

Proof. Suppose that f ∈ L∞(X) is a function with f > 0 and f not zero a.e.

Without loss of generality we may suppose that ‖f‖∞ = 1. Set ε := 1
2

∫
fkdµ; then

ε > 0. Set ε′ := ε/k2k.

Now since f is almost periodic the closure of the forward orbit (Unf)n∈N is

compact, and so there is some J = J(ε) such that, for every n ∈ N, there is

some n′ 6 J such that ‖Unf − Un′f‖2 6 ε. Since U is an isometry, this means

that ‖Un−n′f − f‖2 6 ε′. In other words, the maximum gap between consecutive

elements of the set R := {n ∈ N : ‖Unf − f‖2 6 ε′} is bounded by J , a property

known as R being syndetic.

Let n ∈ R. Since U is an isometry we have ‖U jnf − U (j+1)nf‖2 6 ε′ for all

positive integers j, and hence by the triangle inequality that ‖f −U jnf‖2 6 kε′ for

j = 1, . . . , k − 1. Write gj := f − U jnf ; then we have∫
f · Unf · · ·U (k−1)nf dµ =

∫
f(f − g1) . . . (f − gk−1) dµ.

This may be split as
∫
fk dµ plus a sum of at most 2k other terms, each of the

form 〈gj , F 〉 for some function F with ‖F‖∞ 6 1. Each such term is bounded by

ε. Therefore ∫
f · Unf · · ·U (k−1)nf dµ >

∫
fk dµ− ε =

1

2

∫
fkdµ.

Since this is true for all n ∈ R, a syndetic set, the result follows. �





CHAPTER 9

The case k = 3 of Szemerédi’s theorem

9.1. Weak mixing vs compactness

It is not the case that every system is either weak-mixing or compact (the 2-

dimensional skew torus is an example: see Sheet 4). However, it turns out that a

system which fails to be weakly mixing does at least have a small piece of compact-

ness.

Theorem 9.1. Suppose that (X,B, µ, T ) is not weakly mixing. Then there is a

non-constant almost periodic function in L2(X).

One way of proving this is to show that if (X,B, µ, T ) is not weakly-mixing

then the Koopman operator U = UT has a non-trivial eigenfunction: that is, there

is some f ∈ L2(X) and a λ such that Uf = λf , i.e. f(Tx) = λf(x) for a.e. x.

An eigenfunction for the Koopman operator is necessarily almost-periodic: every

iterate Unf comes within ε in the L2-norm of one of the functions e2πij/Mf(x) ,

j = 1, . . . ,M , provided M = M(ε) is sufficiently large. Unfortunately the proof

that there is an eigenfunction in the non weak-mixing case does require a basic

result in spectral theory, the Bochner-Hergoltz spectral theorem. While this is, in a

sense, just a kind of limiting version of the Fourier analysis results of Appendix B,

it falls outside the scope of this course. The following more elementary proposition

does not give an eigenfunction, but it does yield an almost-periodic function.

Proposition 9.1. Suppose that (X,B, µ, T ) is a measure-preserving system.

Suppose that f ∈ L2(X) is not weak-mixing. Then there is an almost periodic

function φ ∈ L2(X) such that 〈f, φ〉 6= 0.

Proof. Note that this proposition has little content when
∫
f 6= 0, as in that

case we may take φ = 1. Suppose, then, that
∫
f = 0. Without loss of generality

we may normalise so that ‖f‖2 6 1.

Define a function K ∈ L2(X ×X) by

K(x, y) = lim
N→∞

En<NUnf(x)Unf(y).

The limit exists by the L2-ergodic theorem in (X×X,B×B, µ×µ, T×T ): in fact K

is the orthogonal projection of f ⊗f ∈ L2(X×X) to the space of (T ×T )-invariant

functions. In particular, K is (T × T )-invariant.

59
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Now define

φ(x) :=

∫
K(x, y)f(y)dµ(y).

We have

〈f, φ〉 =

∫
f(x)

( ∫
lim
N→∞

En<NUnf(x)Unf(y)
)
f(y)dµ(y)

)
dµ(x)

= lim
N→∞

En<N
( ∫

f(x)Unf(x)dµ(x)
)( ∫

f(y)Unf(y)dµ(y)
)

= lim
N→∞

En<N |〈f, Unf〉|2.

Since f is not a weak-mixing function, the right hand side is not zero.

To conclude the proof, we must show that φ is almost periodic. To do this, first

note that

Unφ(x) =

∫
K(Tnx, y)f(y)dµ(y)

=

∫
K(Tnx, Tny)Unf(y)dµ(y)

=

∫
K(x, y)Unf(y)dµ(y),

where the last step follows from the fact that K is (T ×T )-invariant. Therefore the

orbit (Unφ)n∈N is contained in the set

(9.1) {
∫
K(x, y)g(y)dµ(y) : ‖g‖2 6 1.}

We are required to show that the set on the left has compact closure in L2(X).

This is a well-known type of statement from Hilbert space theory: the operator

ΨK : L2(X)→ L2(X) defined by ΨKg(y) :=
∫
K(x, y)g(y)dµ(y) is Hilbert-Schmidt

and hence compact. However, for our purposes here we need essentially no general

theory since the definition of ΨK makes it clear that it is a limit of finite rank

operators. Let us turn to the details.

We note that if L ∈ L2(X ×X) then

‖ΨLg‖2 6 ‖L‖2‖g‖2.

Indeed,

‖ΨLg‖22 =

∫
|
∫
L(x, y)g(y)dy|2dx

6
∫ ( ∫

|L(x, y)|2dy
)( ∫

|g(y)|2dy
)
dx

= ‖L‖22‖g‖22

by the Cauchy-Schwarz inequality. Now KN → K in L2(X ×X), where

KN (x, y) := En<NUnf(x)Unf(y).
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Choosing N so large that ‖K −KN‖2 6 ε, it follows that if ‖g‖2 6 1 then

‖ΨKN
g −ΨKg‖2 6 ε

whenever ‖g‖2 6 1. Thus every point of the set (9.1) lies within ε of a point of the

set

{
∫
KN (x, y)g(y)dµ(y) : ‖g‖∞ 6 1}.

However, ∫
KN (x, y)g(y)dµ(y) = En<NcnUnf(x),

where cn = 〈Unf, g〉, so this function lies in the convex unit ball spanned by the

finite collection of functions (Unf)n<N , a compact subset of L2(X). (In other

words, ΨKN
is a finite rank operator.)

It follows that (9.1) is covered by finitely many balls of radius ε, thereby con-

cluding the proof. �

9.2. A decomposition theorem

A slight modification of the van der Corput lemma. In what follows, we need

the van der Corput lemma, Lemma ??. Although the lemma was only stated for

functions bn satisfying |bn(x)| 6 1 pointwise, it turns out that almost the same

argument gives the same conclusion under the weaker assumption ‖bn‖2 6 1 (see

Exercise sheet 4. Admittedly I should have done this earlier in the course; this

modification is not examinable.) Here is the restated lemma.

Lemma 9.1. Suppose that (X,B, µ) is a probability space and that (bn)n>0 is a

sequence of functions in the unit ball of L2(X). Suppose that

lim sup
H→∞

Eh<H lim sup
n<N

|En<N 〈bn, bn+h〉| = 0.

Then En<Nbn → 0 in L2.

In Proposition 7.1 (ii) we looked at functions f ∈ L2(X) with the property that∫
fdµ = 0 and limN→∞ En<N |〈f, Unf〉| = 0. In that proposition, (X,B, µ, T ) was

a weak-mixing system, and the conclusion was that all functions f with integral

zero have this property. Following Tao, we shall call these “weak-mixing functions”,

and write WM(X) for the set of all weak-mixing functions.

Lemma 9.2. Suppose that f ∈ WM(X), and let g ∈ L2(X) be arbitrary. Then

En<N |〈g, Unf〉| → 0 as N →∞.

Proof. By the Cauchy-Schwarz inequality, it is enough to prove that

(9.2) En<N |〈g, Unf〉|2 → 0
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(which is a new fact for us even when g = f). Since

En<N |〈g, Unf〉|2 = 〈g,En<NUnf〈g, Unf〉〉,

it is enough to show that

En<NUnf〈g, Unf〉 → 0

in L2. For this we can use van der Corput’s lemma with bn = Unf〈g, Unf〉. The

lemma tells us that it is enough to prove that

(9.3) lim sup
H→∞

Eh<H lim sup
N→∞

|En<N 〈bn, bn+h〉| = 0.

However,

〈bn, bn+h〉 = 〈Unf, Un+hf〉〈g, Unf〉〈g, Un+hf〉

= 〈f, Uhf〉〈g, Unf〉〈g, Un+hf〉,

and so

|〈bn, bn+h〉| 6 |〈f, Uhf〉|

uniformly in n. Therefore establishing (9.3) reduces to establishing that

lim sup
h<H

Eh<H |〈f, Uhf〉| = 0,

which is precisely the statement that f ∈WM(X). �

Corollary 9.1. We have WM(X) = AP(X)⊥, and so L2(X) = WM(X) +

AP(X). Furthermore, if π : L2(X)→ AP(X) denotes projection onto the space of

almost periodic functions then π preserves non-negativity: if f(x) > 0 a.e. then

π(f)(x) > 0 a.e. More generally if a 6 f(x) 6 b for a.e. x then a 6 π(f)(x) 6 b

for a.e. x, and
∫
fdµ =

∫
π(f)dµ.

Proof. Suppose f ∈ AP(X)⊥. Then, by Proposition ??, f is weak-mixing,

f ∈ WM(X). Conversely we must show that if f ∈ WM(X) then f ∈ AP(X)⊥.

Suppose that g ∈ AP(X). Let ε > 0, and let K = K(ε) be such that for all n there

is some k(n) 6 K with ‖Ung − Uk(n)g‖2 6 ε. Then we have

|〈f, g〉| = |En<N 〈Unf, Ung〉|

6 ε+ |En<N 〈Unf, Uk(n)g〉|

6 ε+ sup
k6K
|En<N 〈Unf, Ukg〉|.

By Lemma 9.2 the expression on the right tends to 0 as N → ∞, so |〈f, g〉| 6 ε.

Since ε > 0 was arbitrary, we in fact have 〈f, g〉 = 0.

Now we show that projection onto AP(X) preserves non-negativity. This follows

from the (Hilbert space) fact that π(f) is the unique closest almost-periodic function
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to f , in the L2-norm. If f > 0 a.e. then ‖f − π(f)‖2 6 ‖f − π(f)+‖2. Since

π(f)+ ∈ AP(X), it follows that π(f) = π(f)+ a.e., or in other words π(f) is non-

negative (a.e.). That π preserves the property a 6 f 6 b follows quickly from

this.

Finally, f−π(f) is orthogonal to all almost-periodic functions, and that includes

the constant function 1. This implies that
∫
fdµ =

∫
π(f)dµ. �

A consequence of this corollary is that WM(X) is closed in the L2 topology and

also closed under addition. However, the first of these facts is easy to show directly,

and the second is a striaghtforward consequence of Lemma 9.2.

9.3. The SZ property at level 3

In this final section of the course we almost prove that all measure-preserving

systems (X,B, µ, T ) have the SZ property at level 3. We must in fact make two

assumptions: that T is invertible (and T−1 is measure-preserving), and that T is

ergodic. The first assumption is not very serious at all, and in fact the systems

generated by the correspondence principle in Chapter ?? will automatically be in-

vertible. The assumption of ergodicity is a little more serious, but it too may be

circumvented using the machinery of ergodic decomposition. Whilst this is unfor-

tunately outside the scope of this course, we make some remarks on it in the last

section.

Theorem 9.2. Suppose that (X,B, µ, T ) is ergodic and invertible. Then it has

the SZ property at level 3.

Proof. We use the decomposition L2(X) = WM(X)⊕AP(X) just established.

Let π : L2(X) → AP(X) be the orthogonal projection. Suppose that f ∈ L∞(X)

has f > 0 a.e. We need to show that

Sz3(f, f, f) > 0,

where here for any three functions g0, g1, g2 ∈ L∞(X) we set

Sz3(g0, g1, g2) := lim inf
N→∞

En<N
∫
g0U

ng1U
2ng2.

It follows from Proposition 8.1 (together with the basic facts in Corollary 9.1)

that

Sz3(π(f), π(f), π(f)) > 0.

Using the fact that Sz3 is trilinear, we have

Sz3(f, f, f) = Sz3(π(f), π(f), π(f)) + Sz3(f − π(f), π(f), π(f))

+ Sz3(f, f − π(f), π(f)) + Sz3(f, f, f − π(f)).
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We claim that the second, third and fourth terms are all zero, which is enough to

prove the theorem. The second term is

〈f − π(f),En<NUnπ(f)U2nπ(f)〉.

Since AP(X) is closed under U and is a subspace, this is the inner product of

f − π(f) with an almost-periodic function, and hence is identically zero.

We prove that the fourth term Sz3(f, f, f − π(f)) is zero; the argument for the

third term is very similar and is left as an exercise for the reader (See Sheet 4 – this

is where the invertibility of T is used). For ease of notation write g := f − π(f).

We proceed exactly as in the proof of Proposition 7.2. The application of van der

Corput shows that it is enough to prove that

lim sup
H→∞

Eh<H lim sup
N→∞

‖En<NUn∆2hg‖2 = 0.

However, since T is ergodic we have, by the L2 ergodic theorem,

lim
N→∞

‖En<NUn∆2hg‖2 = |
∫

∆2hg| = |〈g, U2hg〉|,

and so all we must do is show that

lim sup
H→∞

Eh<H |〈g, U2hg〉| = 0.

This, however, follows from the fact that g ∈WM(X). �

9.4. Further reading

I mentioned at the end of the last lecture that the assumption that T is ergodic

is not very serious in this result, because one can reduce the general case to the

ergodic case by the technique of ergodic decomposition, in which an arbitrary T -

invariant measure µ is written as a “convex combination” of ergodic T -invariant

measures. Further discussion is outside the scope of the course, but students may

wish to read up on this in (for example) Einsiedler and Ward.



APPENDIX A

Measure theory

In this chapter we collect some facts about measure theory used in the main

part of the course. Let’s begin by recalling the definition of σ-algebra.

The collection B is required to be a σ-algebra, which means that it contains

the empty set ∅ and X, and it is closed under complements, countable intersections

and countable unions. To spell it out:

• We have ∅, X ∈ B;

• If A ∈ B then X \A ∈ B;

• If A1, A2, · · · ∈ B then
⋂∞
n=1An ∈ B;

• If A1, A2, · · · ∈ B then
⋃∞
n=1An ∈ B.

Next, we recall the definition of a probability measure µ. This satisfies the

following properties whenever A,A′, A1, A2, A3, . . . :

• We have µ(∅) = 0 and µ(X) = 1;

• (Additivity) If A,A′ are disjoint then µ(A ∪A′) = µ(A) + µ(A′);

• (Limits) If A1 ⊂ A2 ⊂ A3 ⊂ . . . then µ(
⋃∞
n=1An) = limn→∞An

Note that the these conditions imply the descending version of the limit property,

namely

• If A1 ⊃ A2 ⊃ A3 ⊃ . . . then µ(
⋂∞
n=1An) = limn→∞ µ(An).

A.1. Construction of measures

We used the fact that Lebesgue measure exists without proof in several places,

and we also used the fact that there is a natural Cantor measure on the Bernouilli

space {0, 1}N. Both of these facts are consequences of the Carathéodory extension

theorem. The Carathéodory extension theorem concerns probability measures de-

fined on rings of sets. A ring R of sets is a weaker concept than a σ-algebra, in

that we only require closure under finite unions. Thus

• We have ∅, X ∈ R;

• If A ∈ R then X \A ∈ R;

• If A1, A2, . . . , Ak ∈ R then
⋂k
n=1An ∈ R;

• If A1, A2, . . . , Ak ∈ R then
⋃k
n=1An ∈ R.

65
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To define what is meant by a probability measure on a ring R, we need to tweak

the definition for σ-algebras very slightly. The definition is the same, except the

limit condition becomes

• (Limits) If A1 ⊂ A2 ⊂ A3 ⊂ . . . are in R and
⋃∞
n=1An ∈ R then

µ(
⋃∞
n=1An) = limn→∞ µ(An).

Here is the Carathéodory extension theorem.

Theorem A.1 (Carathéodory). Suppose that R is a ring which generates B as

a σ-algebra. Then any probability measure µ : R → [0, 1] has a unique extension to

a probability measure on B.

The most pleasant setting in which to apply this result is probably that of the

Cantor space X = {0, 1}N. Here we take R to be the ring generated by cylinder

sets, that is to say sets of the form {~x ∈ X : xi1 = εi1 , . . . , xik = εik}, with the

measure µ of such a set being defined to be 2−k and extended to R using additivity.

It must be checked that µ is a probability measure, and to do that we must show

that if A1 ⊂ A2 ⊂ · · · ∈ R and
⋃∞
n=1An ∈ R then µ(

⋃∞
n=1An) = limn→∞ µ(An).

A key observation here is that, with the product topology on X, every set in R is

both open and closed and X is compact. Therefore any union
⋃∞
n=1An is a covering

of a compact set (itself) by open sets, and hence is in fact equal to a finite subcover⋃k
n=1An, and so in this case the limit property is a consequence of additivity.

The existence of Cantor measure, as used in the course, now follows from the

Carathéodory extension theorem.

A.2. Littlewood’s first principle. Approximation arguments

Littlewood’s three basic principles are a very useful guide to dealing with mea-

sure theory in practice. It is interesting that they were formulated (by J. E. Lit-

tlewood) at a time when heuristic reasoning and “conceptual” explanations were

perhaps not so much to the fore as they are in contemporary mathematical expo-

sition. Littlewood’s three principles are:

(i) A measurable set is nearly an open set;

(ii) A measurable function is nearly a continuous function;

(iii) A convergent sequence of functions is nearly uniformly convergent.

Rigorous versions of these principles apply to any Borel probability measure µ

on a compact metric space X.

In this section we’ll discuss the first Littlewood principle. Invocations of rigorous

versions of this are referred to in the main text as “approximation arguments”. The

most basic type of approximation argument is the following.
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Lemma A.1. Suppose that R is a ring of subsets of an underlying set X, and

that µ : R → [0, 1] is a probability measure. Let B be the σ-algebra generated by

R, and let µ : B → [0, 1] be the probability measure whose existence is guaranteed

by the Carathéodory extension theorem. Then elements of B are well-approximated

by elements of R in the following sense: if B ∈ B and ε > 0 then there is some

R ∈ R with µ(B4R) < ε.

Proof. (Sketch) Define B0 to be the set of all B ∈ B with the stated property.

Obviously R ⊂ B0. We claim that B0 is a σ-algebra, which is enough to conclude

the stated claim. To see that B0 is closed under countable unions, it is clearly

enough to consider countable nested unions
⋃∞
n=1Bn with B1 ⊂ B2 ⊂ . . . lying in

B0. For each n there is some Rn ∈ R such that µ(Bn4Rn) < ε/2. Furthermore,

by the limit property of measures, we have limn→∞ µ(Bn) = µ(B). Choosing n so

large that |µ(B)−µ(Bn)| < ε/2, we obviously have µ(B4Rn) < ε. This concludes

the proof. �

We turn now to approximation arguments specific to the setting in which X is a

compact metric space such as [0, 1] or R/Z. These satisfy a strong type of approx-

imation principle known as regularity, which means that if E ⊂ X is measurable

and if ε > 0 then there is an open set U ⊃ E with µ(U \ E) < ε. In the main text

we only ever need the weaker property that µ(E4U) < ε, which of course follows

from this.

In the case of Lebesgue measure on X = R/Z or [0, 1] this property is in fact

built in to the standard construction given in Chapter 2, that is to say

µ(E) = inf{
∞∑
j=1

µ(Ij) : E ⊂
∞⋃
j=1

Ij , Ij open intervals}.

Note that by applying this principle to Ec (and changing ε to ε/2) we see that if

E ⊂ X is measurable and if ε > 0 then there are sets K,U with K compact, U

open, K ⊂ E ⊂ U and µ(K \ U) < ε. One will usually see the existence of such

K and U given as the definition of what it means for a measure µ to be regular,

but in the case that X is a compact metric space it is equivalent to the one-sided

condition involving only U .

To prove that all Borel probability measures on a compact metric space X are

regular, the key idea is consider the set of all E for which K,U as above exist

for all ε > 0. One checks that open sets E have this property, and then that

having the property is a condition closed under complements, countable unions

and intersections. Hence all Borel sets have the property.

Here is a fairly general result on the interval [0, 1] (or on R/Z) which covers

most of the approximation arguments we needed in the main part of the course.
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Lemma A.2. Suppose that we have collections of open intervals (Un,i)i=1,2,...,

n = 1, 2, . . . such that

(i) supi µ(Un,i)→ 0 as n→∞;

(ii) For fixed n, the Un,i are disjointl

(iii) [0, 1] \
⋃
i Un,i has measure 0.

The any Borel set E can be approximated arbitrarily well by finite unions of these

intervals, all with the same n. In fact for any ε > 0, for all n sufficiently large

there is a set Σn ⊂ N such that, if we write U :=
⋃
i∈Σn

Un,i, then µ(E4U) < ε.

Proof. Since µ is regular, there is some open set U ⊂ [0, 1] such that E ⊂ U

and µ(U \E) < ε/3. The set U , like every open subset of [0, 1], is a countable union⋃∞
j=1 Ij of open intervals (proof: define an equivalence relation on U by setting

x ∼ y iff (min(x, y),max(x, y)) ⊂ U : the equivalence classes are open intervals, and

each contains a rational point so there are only countably many), and so by the

limit property of µ there is some finite J such that µ(U \
⋃J
j=1 Ij) < ε. Hence,

µ(E4
⋃J
j=1 Ij) < 2ε/3. Now choose n so large that the longest length of any Un,i

is at most ε/6J . Then, taking Σn = {i : Un,i∩Ij 6= 0 for some j = 1, . . . , J}, we see

that
⋃
i∈Σn

Un,i ⊃
⋃
j∈J Ij and µ(

⋃
i∈Σn

Un,i \
⋃
j∈J Ij) < ε/3. Putting everything

together, the result follows. �

A straightforward consequence of this lemma is the Lebesgue density theorem.

We used this in one of our proofs that the irrational circle rotation is ergodic.

Lemma A.3 (Lebesgue density theorem). Let µ be Lebesgue measure on [0, 1]

and suppose that E ⊂ [0, 1] is measurable and has µ(E) > 0. Then for every ε > 0

there is an open interval I ⊂ [0, 1] such that the density of E on I, µ(E ∩ I)/µ(I),

is at least 1− ε.

Proof. Take (Un,i)i=0,...,n−1 to be the standard intervals of length 1/n. Let

ε′ > 0 be a quantity to be selected later. By the last lemma, for all n sufficiently

large there is a (finite) union
⋃
i∈Σn

Un,i whose symmetric difference with E has

measure at most ε′. Suppose that the density of E on each Un,i is less than 1− ε.
Then we have

µ(E) 6 (1− ε)
∑
i∈Σn

µ(Un,i) + ε′

6 (1− ε)(µ(E) + ε′) + ε′.

If ε′ > 0 is sufficiently small, this is a contradiction. �
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A.3. On integration

We did not make very heavy use of integration in the course, but we did talk

about L1(X) and L2(X), in particular using the fact that when X = [0, 1] the

continuous functions are dense in both these spaces, and also using the fact that

L2(X) is complete (and hence a Hilbert space).

Let (X,B, µ) be a probability space, and let f : X → R be a function. We say

that f is measurable if f−1(a, b) is measurable for every half-open interval (a, b).

We only try to make sense of the integral of measurable functions. In the first

instance, suppose that f(x) > 0 for a.e. x. Then for each n we may define

fn(x) :=

n2n∑
i=1

(i− 1)2−n1(i−1)2−n6f(x)<i2−n(x).

Each such function fn is an example of a simple measurable function, that is to

say a linear combination of characteristic functions 1E with E measurable, and it

is clear that we “should” define
∫
X
fndµ by∫

X

fndµ :=

n2n∑
i=1

(i− 1)2−nµ({x : (i− 1)2−n 6 f(x) < i2−n}).

Note that we have the nesting f1(x) 6 f2(x) 6 . . . > f(x), and so∫
X

f1dµ 6
∫
X

f2dµ 6 . . . .

Also the fn approximate f increasingly well in a certain sense, namely we have

|fn(x)− f(x)| 6 2−n if |f(x)| 6 n. All this means that it makes sense to define∫
X

fdµ = lim
n→∞

∫
X

fndµ,

defining this to be ∞ if the integrals
∫
X
fndµ grow without bound.

Suppose now that f : X → R is an arbitrary measurable function, not necessarily

a non-negative one. Then we write f = f+ − f− with f+, f− > 0 everywhere. If

both of the integrals
∫
f+dµ and

∫
f−dµ are finite then we say that f ∈ L1(X),

and define
∫
fdµ :=

∫
f+dµ−

∫
f−dµ. Finally we handle complex-valued functions

f : X → C by splitting into real and imaginary parts.

In the main text we used the fact that if f : [0, 1] → R is continuous then the

Lebesgue integral
∫
X
fdµ coincides with the usual Riemann integral of f from 0 to

1. This is more-or-less obvious from the definition.

A.4. Littlewood’s second principle

(Almost) built into the definition of the integral we just gave is the following

statement, used at several points in the main text.
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Lemma A.4. The simple measurable functions are dense in L1(X). That is, if

f ∈ L1(X) and if ε > 0 then there is a simple measurable function f̃ such that∫
|f − f̃ |dµ < ε.

Focussing on the specific case X = [0, 1] and µ equal to Lebesgue measure, it

follows straightforwardly from Lemma A.4 and Lemma A.2 (with any permissible

choice of the Un,i, for example the standard intervals ( i−1
n , in )) that the functions

of the form f =
∑K
j=1 cj1Ij , where Ij ⊂ [0, 1] is an open interval, are dense in

L1(X). Finally one may use the construction discussed in Chapter 1 to approximate

1I arbitrarily well in L1(X) by continuous functions, and thereby conclude the

following result.

Proposition A.1. Let X = [0, 1] with Lebesgue measure µ. Then the continu-

ous functions C(X) are dense in L1(X).

In fact the same holds for (X,B, µ) with X any compact metric space, B the

Borel σ-algebra and µ : B → [0, 1] a Borel probability measure. To construct

a continuous function f approximating the characteristic function 1E of a Borel

set, first use the regularity of µ to locate an open set U and a compact set K

with K ⊂ E ⊂ U and µ(U \ K) < ε. Then consider the continuous function

f(x) = dist(x,Uc)
dist(x,Uc)+dist(x,K) , which satisfies 0 6 f(x) 6 1, f(x) = 1 for x ∈ K and

f(x) = 0 for x /∈ U , and thus satisfies ‖1E − f‖1 6 ε.

A.5. On product measures

In various places in the main text we talked about product measures. For ex-

ample, we talked about the skew torus system, in which the underlying space is

R/Z × R/Z. Then, in Chapter 7, we considered more general products of proba-

bility spaces (X,B, µ) and (X̃, B̃, µ̃). Here we give a few remarks concerning the

construction of the product space (X × X̃,B ×B′, µ × µ̃). Giving all the details

of this construction is rather tedious, and we do not.

The first key point to make is that B× B̃ does not mean the set {E × Ẽ : E ∈
B, Ẽ ∈ B}, but rather the σ-algebra generated by this set. Thus, for example,

it contains all countable unions
⋃∞
n=1(En × Ẽn) with En, Ẽn ∈ B. Inside this

product σ-algebra we distinguish the ring R of sets which are finite unions of this

type. It is easy to see that any such set S may be written as a disjoint finite union⋃k
n=1(En × Ẽn), in which case we define (µ × µ̃)(S) :=

∑k
n=1 µ(En)µ̃(Ẽn). One

may then verify that this map µ × µ̃ : R → [0, 1] is a probability measure on R,

and it then follows from the Carathéodory extension theorem that µ × µ̃ may be

extended to a probability measure on B × B̃.

A fact we used in several places in Chapter 7 was the following assertion.
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Lemma A.5. Suppose that E ∈ B×B̃. Then E may be approximated arbitrarily

closely by disjoint finite unions of products A×B, with A ∈ B and B ∈ B̃.

This lemma is an immediate consequence of Lemma A.1.

A.6. Littlewood’s third principle

The third of Littlewood’s principles refers to Egorov’s theorem: If (fn) is a

sequence of measurable functions which converge pointwise on X, and if ε > 0,

then there is a measurable set X ′ ⊂ X, µ(X \X ′) 6 ε, such that the fn converge

uniformly on X ′. We did not make any use of Egorov’s theorem in this course.

A.7. Further reading.

I rather like the introduction to Lebesgue measure on R in the book of Stein

and Shakarchi, Real analysis: measure theory, integration and Hilbert spaces. For

a comprehensive introduction to the more general setting that we need here one

might consult Rudin’s “red” book, Real and complex analysis. He works with

locally compact Hausdorff spaces X rather than simply compact metric spaces as

we discuss here.





APPENDIX B

Basic facts about Fourier analysis on the circle

In this appendix we gather together some statements about Fourier analysis of

functions f : R/Z → C. We give just what was needed in the main text, together

with a tiny bit of extra context here and there. The reader interested in a more

leisurely discussion should consult [].

Throughout this section we write

er(x) := e2πirx

for r ∈ Z.

Suppose that f ∈ L1(R/Z). Then we may define the Fourier coefficients

f̂(r) := 〈f, er〉 =

∫ 1

0

f(x)e−2πirxdx

for r ∈ Z. The Fourier series of f is then the (purely formal at this stage) sum∑
r

f̂(r)er(x).

Much of the elementary theory of Fourier series on the circle is concerned with the

question of whether this formal sum makes any sense and, if so, in what sense it can

be thought to “represent” f . In studying this question it is natural to introduce

the partial sums

σMf(x) :=
∑
|r|6M

f̂(r)er(x).

It also turns out to be expedient to introduce the Cesaro sums

σ̃Mf(x) :=
∑
|r|6M

(1− |r|
M

)f̂(r)er(x) =
∑
r

(1− |r|
M

)+f̂(r)er(x).

The Cesaro sums should be thought of as a “smoothed” method of Fourier sum-

mation.

Here are the key facts from basic Fourier analysis relevant to the main text.

Theorem B.1. We have the following statements.

(i) (Bessel) We have
∑
r∈Z |f̂(r)|2 6 ‖f‖22.

(ii) (Riemann–Lebesgue) If f ∈ L2(R/Z) then f̂(r)→ 0 as r →∞.
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(iii) If f is continuous then we have σ̃Mf(x) → f(x) uniformly in x ∈ R/Z.

In particular, the trigonometric polynomials are dense in C(X) with the

L∞(X) norm.

(iv) We do have σMf → f in L2 for every f ∈ L2(R/Z), that is to say

‖σMf − f‖2 → 0.

(v) (Uniqueness) If f ∈ L2(R/Z) and if f̂(r) = 0 for all r then f = 0 a.e.

(vi) (Plancherel) We in fact have equality in Bessel’s inequality.

(vii) There exist continuous f with σMf(0) 9 f(0).

Part (vii) was not needed in the main text but are included as context and

general culture (in particular, (iii) would be false if σ̃M were replaced by σM ).

Proof. (i) Fix f ∈ L2(R/Z). Now L2(R/Z) is a Hilbert space, and inside it we

consider the closed linear subspace VM of all trigonometric polynomials of degree at

most M . We claim that σM : L2(R/Z)→ VM is the orthogonal projection onto this

subspace. To see this, it is enough to check that σMf is the orthogonal projection

of f to VM , that is to say f − σMf ⊥ VM and σMf = f if f ∈ VM . However one

may check that

〈σMf, er〉 = f̂(r) = 〈f, er〉

for all |r| 6M , and so the assertion follows. A particular consequence of this (and

Pythagoras theorem) is that

‖σMf‖22 = ‖f‖22 − ‖f − σMf‖22 6 ‖f‖22.

However, by direct calculation we have

‖σMf‖22 =

∫ 1

0

|
∑
|r|6M

f̂(r)er(x)|2dx

=
∑

|r1|,|r2|6M

f̂(r1)f̂(r2)

∫ 1

0

er1(x)er2(x)dx

=
∑
|r|6M

|f̂(r)|2.

Bessel’s inequality follows.

(ii) This follows immediately from Bessel’s inequality.

Parts (iv), (v) and (vi) of the theorem require the “completeness” of the trigono-

metric system {er}r∈Z in L2(R/Z), that is to say the fact that trigonometric poly-

nomials (finite weighted sums of the er) are dense in L2. One way to establish

this is via (iii), which is the deepest part of the theorem. We prove this now. The
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crucial point here is that there is an expression

(B.1) σ̃Mf(x) =

∫ 1

0

f(x− y)KM (y)dy = f ∗KM (x)

for a certain “kernel” KM , the Fejér kernel. One can guess that this should be the

case by taking the Fourier transform of both sides: on the one hand we have

̂̃σM (r′) =
∑
|r

(1− |r|
M

)+f̂(r)

∫ 1

0

er(x)er′(x)dx = (1− |r
′|
M

)+f̂(r′),

whilst on the other hand

̂f ∗KM (r′) =

∫ 1

0

∫ 1

0

f(x− y)er′(x− y)KM (y)er′(y)dydx = K̂M (r′)f̂(r′).

Thus we think to choose KM so that

K̂M (r′) = (1− |r
′|
M

)+

for all r′. It is easy to find a function KM with this property, namely

(B.2) KM (x) :=
∑
r

(1− |r|
M

)+er(x).

(We leave the easy proof as an exercise.) These last few lines, leading to the idea

that we should define KM as in (B.2), have just been for motivation. Now that we

have a definition of KM , we may check directly that (B.1) holds:

f ∗KM (x) =
∑
r

(1− |r|
M

)+

∫ 1

0

f(x− y)er(y)dx

=
∑
r

(1− |r|
M

)+

∫ 1

0

f(x− y)er(x− y)er(x)

=
∑
r

(1− |r|
M

)+f̂(r)er(x) = σ̃Mf(x).

To make use of these observations, we note a different formula for the Fejér kernel

KM , namely

(B.3) KM (x) =
1

M
|
M−1∑
r=0

er(x)|2 =
1

M

∣∣1− e2πirxM

1− e2πirx

∣∣2 =
1

M

∣∣ sinπrxM
sinπrx

∣∣2.
The first equality may be verified directly using (B.2), the second follows by sum-

ming the geometric progression, and the third uses the relation |1−eiθ| = 2| sin 1
2θ|.

Using this, we note the following facts:

(1) KM is symmetric: KM (t) = KM (−t);
(2) KM (t) > 0 and

∫ 1

0
|KM (t)|dt =

∫ 1

0
KM (t)dt = 1.

(3) For any fixed δ > 0, limM→∞
∫
|t|>δKM (t)dt = 0;
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(1) and the first part of (2) are obvious. The second part of (2) is immediate from

(B.2). To prove (3), we use the inequalities 1 > | sin t| > c|t| to conclude that

|KM (x)| � 1
M |x|2 , from which the result follows easily.

We are now ready to show that σ̃Mf(0) → f(0). The proof may be easily

modified to establish that σ̃Mf(x)→ f(x) uniformly in x, and hence to prove (iv).

Using (1) and (2), it is easy to see that we have

σ̃M (f)(0)− f(0) =

∫ 1

0

(f(t)− f(0))KM (t)dt.

Now let δ > 0 be arbitrary, and split the range of integration into the two parts

|t| 6 δ and |t| > δ. On the first part we have

|
∫
|t|6δ

(f(t)− f(0))KM (t)dt| 6 sup
|t|6δ
|f(t)− f(0)|,

by (2). Since f is continuous, this tends to zero as δ → 0. On the second part we

have

|
∫
|t|>δ

(f(t)− f(0))KM (t)dt| 6 2‖f‖∞
∫
|t|>δ

KM (t)dt.

For fixed δ, this tends to zero as M →∞ by (3). The result follows.

Now we turn to (iv). In the proof of this we will use a key consequence of

(iii): the trigonometric polynomials are dense in L2(R/Z). Indeed we showed in

(iii) that the trigonometric polynomials are dense in C(R/Z) with the L∞(R/Z)

norm, and hence also with the L2(R/Z) norm. But C(R/Z) is dense in L2(R/Z).

It follows that, for any fixed f ∈ L2(R/Z), the L2-distance of f to the space VM

spanned by trigonometric functions er(x), |r| 6M , tends to zero. However we have

already seen that σMf is the orthogonal projection of f on to this space, and so

‖f − σMf‖2 → 0, as required.

Part (v) is an immediate consequence of (iv): if f̂(r) = 0 for all r ∈ Z then

σMf(x) = 0 for all x and for all M . But σMf → f in L2, and thus f = 0 a.e.

Part (vi) is immediate from (iv) and the fact that ‖σMf‖22 =
∑
|r|6M |f̂(r)|2,

established above.

As we stated, part (vii) was not important in the main part of the book, so we

simply offer some brief comments. As a point of departure, we can try to see where

the proof in (iii) that σ̃Mf(0) → f(0) would go wrong if we tried to adapt it to

prove that σMf(0) → f(0). It turns out that there are formulae to parallel (B.1),

(B.2) and (B.3): namely,

σMf(x) = f ∗DM (x),
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where

DM (x) =
∑
|r|6M

er(x) = e−2πiMx
∣∣1− e2πi(2m+1)rx

1− e2πirx

∣∣.
Unfortunately, this kernel DM (a variant of the Dirichlet kernel) does not enjoy all

of the nice properties (1), (2), (3). Specifically, we do not have DM (t) > 0, and it

is not too hard to show that (2) fails somewhat dramatically:∫ 1

0

|DM (t)|dt� logM.

This means that the norm of the functional φM : C(R/Z)→ C defined by φMf :=

σMf(0) =
∫ 1

0
f(t)DM (t)dt is � logM (take f(t) to be a continuous approximation

to sgn(DM (t))). By the uniform boundedness principle of functional analysis []

there is some f ∈ C(R/Z) for which σMf(0)→∞. �

To conclude this section we remark that the completeness of the trigonomet-

ric system {er}r∈Z may be established in other ways, for example via the Stone-

Weierstrass theorem, or by showing pointwise convergence σMf → f when f is

sufficiently smooth, then appealing to the fact that smooth functions are dense in

L2(R/Z). Items (iv), (v) and (vi) may then be proven in the same manner as we

did above.
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