
The Hahn-Banach Theorem BJG October 2011

Conspicuous by its absence from this course (Cambridge Mathematical Tripos Part

II, Linear Analysis) is the Hahn-Banach theorem. A simple version of it is as follows.

Theorem 1 (Hahn-Banach). Let V, Ṽ be normed spaces with V ⊆ Ṽ . Let φ : V → R
be a bounded linear functional. Then there is a bounded linear functional φ̃ : Ṽ → R
which extends φ in the sense that φ̃|V = φ, and for which ‖φ̃‖ = ‖φ‖.

Proof. Roughly speaking, the idea is to extend φ to φ̃ “one dimension at a time”.

Suppose, then, that Ṽ = V + 〈w〉, where w /∈ V . By rescaling we may assume, without

loss of generality, that ‖φ‖ = 1. We are forced to define

φ̃(v + w) = φ(v) + tλ

for all v ∈ V and t ∈ R, where λ must not depend on v or on t. A map φ̃ defined in this

way will always be a linear functional, but our task is to show that by judicious choice

of λ we may ensure that ‖φ̃‖ 6 1. For this we require that

|φ(v) + tλ| 6 ‖v + tw‖

for all v ∈ V and t ∈ R. By replacing v by v/t and using linearity of φ, it suffices to

establish this in the case t = 1; that is to say, we must show that there is λ ∈ R such

that

|φ(v) + λ| 6 ‖v + w‖

for all v ∈ V . Equivalently,

−‖v + w‖ − φ(v) 6 λ 6 ‖v + w‖ − φ(v).

There will be such a λ if, and only if,

−‖v + w‖ − φ(v) 6 ‖v′ + w‖ − φ(v′)

for all v, v′ ∈ V . Indeed, we could then take any λ ∈ [m,M ] with

m := sup
v∈V

−‖v + w‖ − φ(v), M := inf
v′∈V

‖v′ + w‖ − φ(v′).

Rearranging, the inequality we are required to prove is

φ(v′)− φ(v) 6 ‖v′ + w‖+ ‖v + w‖

for all v, v′ ∈ V . However the left-hand side is φ(v′ − v) which, since ‖φ‖ = 1, has

magnitude at most ‖v′− v‖. The result is now a consequence of the triangle inequality.

We have proved the Hahn-Banach theorem when Ṽ is obtained from V by the addition

of one vector. This is already enough to prove the whole theorem when Ṽ is finite-

dimensional (by incrementing the dimension of V one step at a time). Essentially the
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same argument works in the infinite-dimensional case, too, although Zorn’s lemma is

needed to make this rigorous.

Consider the set of all extensions of φ, that is to say pairs (V ′, φ′) where V ⊆ V ′ ⊆ Ṽ ,

φ′|V = φ, and ‖φ′‖ 6 ‖φ‖. There is an obvious partial order on this set: namely, say

that (V1, φ1) � (V2, φ2) if and only if V1 ⊆ V2 and φ2|V1 = φ1. Every chain in this partial

order has an upper bound. Indeed if (Vi, φi)i∈I is a chain, then an upper bound for it is

(V ′, φ′), where V ′ =
⋃

i∈I Vi and φ′ equals φi on Vi, for all i. By Zorn’s lemma, there is

a maximal element (V0, φ0). However by the special case of the theorem proved above,

we could extend φ0 to V0 + 〈w〉 for any w /∈ V0. The only possible conclusion is that

there is no w /∈ V0, or in other words V0 = Ṽ and φ0 is defined on all of Ṽ .

Remark. Zorn’s lemma is equivalent to the axiom of choice, and so we have used

the axiom of choice in proving Hahn-Banach. It is known that Hahn-Banach is strictly

weaker than the axiom of choice, but cannot be proven in ZF.

Let us derive some consequences of the theorem. The main point is that, without it,

we are essentially powerless to construct a good supply of bounded linear functionals

on a typical normed space X. With it, however, we immediately see that X∗ is quite

rich; indeed for any x ∈ X there is some φ ∈ X∗ such that φ(x) 6= 0. More specifically,

there is some φ ∈ X∗ with ‖φ‖ = 1 such that φ(x) = ‖x‖. To see these facts, simply

take V to be the subspace spanned by 〈x〉 and Ṽ := X, and extend the linear functional

φ0 : V → R defined by φ0(tx) = t‖x‖.
One may think of this geometrically in terms of convex bodies admitting supporting

hyperplanes. Consider the unit ball B := {x ∈ X : ‖x‖ 6 1} (which is the most

general form of a convex set) and let x0 ∈ B have norm 1. As just remarked, there is

a linear functional φ : X → R with φ(x0) = 1 and ‖φ‖ 6 1. Consider the hyperplane

H := {x ∈ X : φ(x) = 1}. Then H meets B at x0 (and possibly at other points).

However if x ∈ B then φ(x) 6 ‖φ‖‖x‖ 6 1, and so all of B lies in the half-space

{x ∈ X : φ(x) 6 1}. H is called a supporting hyperplane for B.

The following interesting fact is little more than a rephrasing of the above.

Theorem 2. Let X be a normed space. Then the natural map from X to X∗∗ is an

isometry.

Proof. The natural map in question associates to x ∈ X the functional x̂ on X∗ defined

by x̂(φ) := φ(x). It is easy to see that ‖x̂‖ 6 ‖x‖. To get an inequality in the other

direction, choose φ as described above. Then |x̂(φ)| = |φ(x)| = ‖x‖ = ‖x‖‖φ‖, and so

indeed ‖x̂‖ > ‖x‖.

A slightly more complicated observation in the same vein is the following.
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Theorem 3. Let X, Y be normed spaces, and suppose that T : X → Y is a bounded

linear map. Let T ∗ : Y ∗ → X∗ be its dual. Then ‖T ∗‖ = ‖T‖.

Proof. We remark that it is very easy to see that ‖T ∗‖ 6 ‖T‖; indeed we already

remarked on this in the main part of the course. Let ε > 0 be arbitrary. By definition

of ‖T‖, there is some x ∈ X, x 6= 0, with ‖Tx‖ > (‖T‖ − ε)‖x‖. Using the remark

above, choose a linear functional φ ∈ X∗ with ‖φ‖ = 1 and φ(Tx) = ‖Tx‖. Then

T ∗φ(x) = φ(Tx) = ‖Tx‖ > (‖T‖ − ε)‖x‖,

which certainly means that

‖T ∗φ‖ > ‖T‖ − ε = (‖T‖ − ε)‖φ‖.

It follows that

‖T ∗‖ > ‖T‖ − ε.

Since ε > 0 was arbitrary, the result follows.

Here is another fact we were unable to establish in the course proper.

Theorem 4. The dual of `∞ is strictly bigger than `1.

Proof. Certainly the dual (`∞)∗ contains `1, since if (bi)i∈N ∈ `1 then the map

(ai)i∈N 7→
∑

i aibi is a bounded linear functional. Note that any functional of this

type is determined by its values on `∞0 , the closed subspace of `∞ consisting of se-

quences which tend to zero. This is obviously a proper subspace of `∞, and so the

quotient space `∞/`∞0 is a nontrivial normed space. By Hahn-Banach we may find a

nontrivial bounded linear functional ψ on it. This pulls back under the quotient map

π : `∞ → `∞/`∞0 to give a nontrivial functional φ ∈ (`∞)∗ defined by φ(x) := ψ(π(x)).

Since φ is trivial on `∞0 , it does not come from `1.

The applications we have given so far are perhaps not very “surprising”. The next

one is rather more so.

Theorem 5 (Finitely additive measure on Z). Write P(Z) for the set of all subsets of

Z. Then there is a “measure” µ : P(Z) → [0, 1] which is normalised so that µ(Z) = 1,

is shift-invariant in the sense that µ(A+1) = µ(A), and is finitely-additive in the sense

that µ(A1 ∪ · · · ∪Ak) = µ(A1) + µ(A2) + · · ·+ µ(Ak) whenever A1, . . . , Ak are disjoint.

Proof. For the purposes of this proof write `∞ for the Banach space of bounded

sequences (xn)n∈Z indexed by Z. We will in fact construct a linear functional φ ∈ (`∞)∗

which is shift-invariant in the sense that φ((xn)n∈Z) = φ((xn+1)n∈Z), positive in the

sense that φ((xn)n∈Z) > 0 whenever xn > 0 for all n, and normalised so that φ(1) = 1,

where 1 is the constant sequence of 1s.
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Clearly such a φ gives rise to a finitely additive measure on Z by defining µ(A) :=

φ(xA), where (xA)n = 1 if n ∈ A and 0 otherwise.

Let V be the subspace of `∞ spanned by the constant sequence 1 and the space V0

of sequences of the form (xn+1 − xn)n∈Z. It is trivial to check that 1 is not in V0, so we

may unambiguously define

φ0((xn+1 − xn + c)n∈Z) := c

on V . For any ε > 0 there must be some n such that xn+1 − xn > −ε, and so if c > 0

we certainly have ‖(xn+1 − xn − c)n∈Z‖ = supn |xn+1 − xn + c| > |c| − ε. Since ε was

arbitrary, we actually have ‖(xn+1 − xn + c)n∈Z‖ > |c|. The same conclusion holds if

c 6 0, and therefore ‖φ0‖ 6 1. By the Hahn-Banach theorem there is an extension of

φ0 to a linear functional φ on all of `∞ such that ‖φ‖ 6 1. This is obviously normalised

so that φ(1) = 1, and φ is pretty clearly shift-invariant since (xn)n∈Z and the shifted

sequence (xn+1)n∈Z differ by an element of V0, on which φ0 is defined and equal to zero.

It remains to confirm that φ is positive, and for this we may suppose without loss of

generality that ‖x‖ = 1, so that 0 6 xn 6 1 for all n. Then ‖1− x‖ 6 1, and so

1− φ(x) = φ(1− x) 6 ‖1− x‖ 6 1,

which obviously means that φ(x) > 0 as required.


