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Mathematical model of active/inactive nematics in a shallow channel

What are the steady distortion/flow modes?

Which modes are stable?

How are these modes affected by an applied pressure gradient?
How are these modes affected by surface preferred orientations?

Can we design pressure gradient/surface orientations to select
modes?
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Isotropic liquids flow through external influences (i.e. shear, pressure, gravity)

“Inactive” liquid crystals (standard molecular liquid crystals) can induce flow,
but only when out of equlibrium (i.e. backflow).

Active liquid crystals consist of objects (i.e. living organisms not molecules) which
form a nematic phase and also have the ability to produce energy internally.

This normally means they can “swim” and induce flow in the surrounding fluid.

bacteria phytoplankton zooplankton
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Continuum hydrodynamic models based on liquid crystal
theory have been used to describe active nematics. *

.. <€ >
These systems swim in patterns that suggest long-range
collective ordering.

extensile (pushers)

The activity in these systems relies on continuous energy
production (and expenditure) by the individual particles. J L

They then generate forces on each other and/or the
surrounding fluid.

contractile (pullers)
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We think of the “swimming” organisms as either “pushers” or “pullers”

A [V‘
C <0 J L C >0
extensile (pushers)ﬁ F contractile (pullers)
\ 4 Ht/'\‘

The simplest model uses the Ericksen-Leslie theory with just one extra
term in the stress tensor

The stress tensor is writtenas 7 = Ty, +|C (n ®n)

activity
We consider flow aligning organisms (similar states occur in tumbling
regimes).
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 flow in the x-direction only

AN

e director in plane of shallow channel

e speed and director angle depend
on the cross-channel coordinate, z

flow speed v(t,z) e fixed director orientation at the
channel sides

| / / \ \ | e Wwe may impose a pressure gradient
in the x-direction and director tilt at

director angle 6 (t,z) the sides
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Governing equations are,

v10; = (K1 cos® 0 + K3sin? 0)0.. + (K3 — K1) sinfcos0(0.)* — m(0)v..

pv = (g(0)v. +m(0)0; + (cosOsind).

where,

m(0) = as cos® 0 — ay sin? 0,

1
g(0) = 5 ((M + (a5 — a2) sin? 0 + (a3 + o) cos? 9) + vy sin® 0 cos® 6.
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director director-flow
rotation elastic terms coupling
Y10¢|=|(K1 cos® 0 + K3sin? 0)0.. + (K3 — K1) sinfcos0(0.)*|—m(0)v.,

pve|=(g(0)v. +m(0)0; +|C cosOsin ).

flow inertia fluid viscosity director-flow activity
coupling

where,

m(6) = a3 cos® § — az sin? 6,

1
g(0) = 5 (a4 + (a5 — a2) sin? 0 + (a3 + o) cos? 9) + vy sin® 0 cos® 6.
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director director-flow
rotation elastic terms coupling
Y10¢|=|(K1 cos® 0 + K3sin? 0)0.. + (K3 — K1) sinfcos0(0.)*|—m(0)v.,

pve|=1(g(@)v. Hm(0)0; +| cosOsinh).|— p,.

flow inertia fluid viscosity director-flow activity
coupling

where,

m(6) = a3 cos® § — az sin? 6,

1
g(0) = 5 (a4 + (a5 — a2) sin? 0 + (a3 + o) cos? 9) + vy sin® 0 cos® 6.
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Decoupling of these two equations is possible...

v10; = (K1 cos® 0 + K3sin? 0)0.. + (K3 — K1) sinfcos0(0.)* — m(0)v..

pve = (g(0)v. +m(0)0; + (cosOsinb). — P,
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Decoupling of these two equations is possible...

2(6 ‘
(’\/1 — W;(é)))& = (K cos” 0 + Kgsin® 0)0.. + (K3 — K1) sinf cos0(6.)*

m(0)A  (m(0) , C
+ cosfsinfd — o — — 1.
9(0)B " g(6) © B
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Decoupling of these two equations is possible...

director rotation
(modified viscosity) elastic terms

2(6
(“/1 _m ( ))Qt =|( K, cos® 0 + K5 sin® 0)0.. + (K3 — K1) sin 6 cos 9(92)2

g(0)
m(0)A| | ¢m(0) , C
- $0sind — Ky — — |
7008 - 70 COs 0 sin 2= 3|
director-flow ..
coupling activity
where Cm(0) (K1 cos? + Kssin? 0)6.. + (K3 — K1) sin 6 cos6(6.)?]
.y | "
0 Y19(0) —m (‘9)
d COSQSHI
B = /0 “/19 — m2 0 dz, Ko = /0 ——dz=.
¢ ) cos 9 sin /'d mg(
C = dz — K
/0 g(0 “/19 —m20) "y 9(0)(ag(0) - mQ(Q))
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The activity term is similar to a magnetic/electric field term...

| b
G, ~ ... (msﬁ'sm{-}'/ ——/ A—cmﬂsinﬂd;c)
o C 1 Q(g) —19'[5'}

...but a non-local version

Positive and negative values of ( will have different effects
(help or hinder backflow/kickback, orient the director in different directions)

This term has also introduced the possibility that the solution
# = 0 could be unstable.
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Constant/trivial solution...

2(6 ‘
(’7‘1 _m ))Qt = (Kicos? 0 + K3sin®0)f.. + (K3 — K1) sin6 cos0(6.)*

g(0)
m(#)A  (m(0) _ C
— + cosfsintd — Ko — — 1.
g(0)B ~ g(9) B
is a solution of this equation, (and leadstov = 0 )

flow speed v(t,z)=0

director angle
d(t,z)=0
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e Considering the stability of the state # = 0 we see there are modes of
instability

2 d
Mode 1:6(2,1) =© [cos (; (Z — 2)) — COS q] exp(at).

2nmz

Mode 2 : 6(z,t) = Osin ( y ) exp(at),

which both lead to instability when, elastic constant

4:@ 2 Ky
N 3 dg — viscosity

channel width
wscosity

mode number
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Stability of & = (

dn*m2 Ko

Equivalent to a Freedericksz transition (electric field induced)
but is “polarity” dependent
and the critical parameter now involves viscosities

and, particularly, depends on the sign of (v3

— rod-like pushers will undergo a Freedericksz-like transition
— disc-like pullers will undergo a Freedericksz-like transition
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g x107° | 0 2107
. -
symmetric Q
flow =
" 3
antisymmetric

6(z) (rad)

6(z) (rad)

director
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flow s B
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z (m) %1072 z (m) %107
symmetric = =
director s =
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L[ g \ /
= /o =
k \ |1 J
[ AR \
= \ |/ =
/ NS \ L[5z Gaa)

—d




Equilibrium solutions

We can map trajectories of the system in terms of two measures Glasgow

.

saddle point ——
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\ = = == Saddle points
4 m—— Stable nodes x 103
x 10 ¢
= == == (Jnstable node
2 - — Stable node a 3
£,
= 14 L B
—~
g 00 0.5 1
—g} 0. z (m) «107%
- a O ><'|D-3
%
- |3 T E |
=2
22 T
0.05 N '
0 05 1
z (m) 107

-12

stable solutions have
0.05 -18 + or - mass flux

é /dg d (rad) (but which one is chosen?)



Equilibrium solutions

e What about for >0

* Are there non-trivial solutions? (Yes...we find lots of solutions)

(we already know that # = 0 is stable)

-3 -4
o] —— =
SRR
symmetric ‘éi é
flow — 2] —
= N
= Al =
5t
1 0 05 1
x 107 z (m) «1078
15
T
. ) = ¢ o NN
antisymmetric £ f 1Y £ ,{.-‘,/ ~ VA
. — ; — :l K ., \'.'\
) : 0 Ieos s
director o ,’4 < o]l - .\
oo . y
Ly ! \a
S 0 B
1 0 05 1
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director
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* What about for ( >0 (we already know that # = 0 is stable) JEEEY

* Are there non-trivial solutions? (Yes...we find lots of solutions)

x 1™ | —
symmetric ‘é éi antisymmetric
flow = p o = M |flow
0 X
=] =

= =
antisymmetric £ £ symmetric
director ;tj: g director




Equilibrium solutions

For pullers (( >0) the non-trivial solutions are not connected to

the trivial branch
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trivial solution is
global minimiser

v(z) (m/s)
o o
F"v
;o
3

T i
5t
0 0.5 1
z (m) «107°
1.5
L Sy RS
I s T
g2 |- Vi
sosfl; B
b At
Dg - q
0 0.5 1
¥4 (111) ><1D_5

stable solution has
zero mass flux




Designing active flows &
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Can we chose a particular stable state?

%107
2 ~

= = = Saddle points
e Stable nodes
= == == [Jnstable node

Stable node

4 %107
3
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"
0
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X
= 45l
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0 0.5 1
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stable solution have
+ or - mass flux

(but which one is chosen?)
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Yes we can...we apply a pressure gradient and one of the states Glasgow

is preferred...

4
\ = = = Saddle points

-4 — Stable nodes -
x10 = == == [Jnstable node g )

2 Stable node
1
0
0 0.5 1
z (m) 1078
0% 103
— -1
=2
X
e _3.
4t .
0 0.5 1
z (m) 107

stable solution have
+ or - mass flux

(but which one is chosen?)
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Yes we can...we apply a pressure gradient and one of the states Glasgow

is preferred...

107 p. = —1 x 10* Pa/m 4 x10°
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What about pullers ((>0)... can we access the metastable state?
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trivial solution is
global minimiser
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* Yes...with pretilt and an external orienting field
trivial solution is

Electirc field switched on Electric field swtiched off glo ba I m I n I m Ise r
5t 1 155 1
al 1 Laf 1 x107
3t ] 1.3F ] '
2t 1 1.2t 1 S |
at 1 11f 1 .
1t 1 1t 1 =
=I R Y
g oo 15 oo 1 RAY S —
= osf 12 ogf 1 D T 1
g o7 18 ot ] El
0.6F 1 0.6- . H 1
] o field is turned off _ 5|
Z':: 2'27 1 0 0.5 1
. EL ] 5
i . . | o | z (m) «10
field is turned on I -
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Could we access the saddle point solutions (even though they are

unstable)?
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v(z) (m/s)
o o
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Could we access the saddle point solutions (even though they are

unstable)?
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jet flow

[~

-
- < g
-
\-—
- - -
- - -
- -
- -
- - - -
-
I’ - - q
-
— Stable nodes
= = = Saddle points
—— Stable node
= == == (nstable nodes
6
-1 4 ¢ (Pa)




Designing active flows

Universityof N&

: : Strathclyde
 Could we access the saddle point solutions (even though they are KT

unstable)?

e Yes...again with pretilt and an external orienting field

d)

B(z.t) (ra

field is

field is
turned on

I turned off

0.8
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 We can map trajectories of the system in terms of two measures Glasgow

saddle point




Designing active flows

e What does an applied pressure do to our puller solutions ((>0)?
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What does an applied pressure do to our puller solutions ((>0)? Glasgow
p, = 0 Pa/m
0.06 . l . .
0.055 -
0.05
£« 0.045 |
0.04
> solutions
0.035
003 | | | | | | | | |
0 1 2 3 4 5 6




0.06

0.055

0.05

Pa s)

= 0.045

Tett

0.04

0.035

0.03

pr = —7.5 x 10* Pa/m

Designing active flows

i
i !
[

L ]
.
L]

’ -

applied pressure|
of the two sym
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What does an applied pressure do to our puller solutions ((>0)? Glasgow

breaks symmetry
metric solutions

7 8 9 10
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-sgn(p,) x logip(abs(p,)) (Pa/m)

there are non-trivial
branches at zero activity
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Inactive flows in an electric field &=
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Classic Freedericksz cell: an applied pressure gradient can perturb JREERET
the system and lead to non-trivial solutions at zero electric field

no applied pressure:
classic Freedericksz transition

E=0

intermediate pressure:
perturbed pitchfork bifurcation

E =50

distortion
|
Il
oo
4
1
I
1
1

20 > 3 4 5 6 o 1+ 2 3 4 5 6
£ =100
voltage 5 , | | voltage
c 1}
o / ———— .
B o —e-——ee- e high pressure:
S =l IR, non-trivial branches at V=0
s 1
_2 : -
o 1 2 3 4 5 6
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 The “one-drop-filling” method is regularly used by device manufacturers

[T L

substrate substrate

e But causes misalignment at the surface, leading to defects
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e The “one-drop-filling” method is regularly used by device manufacturers

e But causes misalignment at the surface, leading to defects
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e The “one-drop-filling” method is regularly used by device manufacturers

spreading
nematic

I I I I I Pl layer

substrate

1111 |—

e But causes misalignment at the surface, leading to defects
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e Shear gradients at the substrates lead to the surface director being

misaligned...and surface dissipation could play a role

z
+

!
- time t
\
/"‘ |
/ h
7/ 0.2F V
/’ [
/’
l”’ ] [
. EE— EE— $1.0
-1.0 -0.5 0.0 0.5 1.0
Do o6 . . .
e = K— — Asin (20¢)
Dt 0z
N—— N ~
surface dissipation classical weak anchoring terms
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Active liquid crystals: R \nh_,_” JJ
— symmetric/antisymmetric solution branches, jet-like flow solutions “52 V ‘
— applied pressure breaks symmetry and prefers specific modes ®

i Zﬂ(-jl} x 10'51
. . . £ =100

Inactive liquid crystals: o

— applied pressure can produce non-trivial states without extra _ 0/ oo
forcing R T

Squeeze-film flows:

— high shear leads to damage to substrate orientation

g
’
,
s
#
—d
-~

-1.0 =05

2-dimensions:

— how will various streamwise modes interact with cross —sectional
structures?
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