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Abstract. When a fluid carrying a passive solute flows quickly through porous media, three key macroscale4
transport mechanisms occur. These mechanisms are diffusion, advection and dispersion, all of which depend on5
the microstructure of the porous medium; however, this dependence remains poorly understood. For idealised mi-6
crostructures, one can use the mathematical framework of homogenisation to examine this dependence, but hetero-7
geneous materials are more challenging. Here, we consider sorption of a solute by a two-dimensional microstructure8
comprising an array of adsorbent obstacles of smooth but arbitrary shape, the size and spacing of which can vary9
along the length of the porous medium. We use homogenisation via the method of multiple scales to systematically10
upscale a microscale problem involving non-periodic cells of varying area to obtain effective continuum equations for11
macroscale transport and sorption. The equations are characterised by the local porosity, an effective local adsorption12
rate and an effective local anisotropic solute diffusivity. All of these macroscale properties depend nontrivially on13
the two degrees of microstructural geometric freedom in our problem; obstacle size and obstacle spacing. Further,14
the coefficient of effective diffusivity comprises the molecular diffusivity, the suppressive effect of the presence of15
obstacles and the enhancing effect of dispersion. To illustrate the mathematical model, we focus on a simple example16
geometry comprising circular obstacles on a hexagonal lattice, for which we numerically determine the macroscale17
permeability and effective diffusivity. We find a power law for the dispersive component of solute transport, consis-18
tent with classical Taylor dispersion.19
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1. Introduction. Solute transport through porous materials is a fundamental process23
in many applications within biology, hydrogeology and environmental challenges such as24
contaminant transport and filtration (e.g., [15, 18, 20, 24, 26, 30]). The majority of naturally25
occurring porous materials are intrinsically heterogeneous and/or anisotropic at the pore-scale26
and the macroscopic flow and transport are known to depend critically on the pore structure,27
localised fluid–solid interactions and the connectivity of the fluid region [6, 32]. For exam-28
ple, Rosti et al. [28] found that microstructural changes resulting from deformation of the29
solid phase of the porous material can cause a breakdown of Darcy’s law. Despite the crucial30
role that microstructure plays in macroscale flow and solute transport, the significance of mi-31
croscale geometry on these macroscale properties is often overlooked with most models that32
systematically link microscale structure with macroscale transport relying on a periodic mi-33
croscale structure. Heterogeneous microstructures can be grouped as either locally periodic34
— that is, weakly disordered media where the heterogeneity results from intrinsic regular-35
ity — or moderately to strongly disordered media where there is no intrinsic pattern to the36
heterogeneity [16, 25]. Here, we consider the impact of locally periodic microscale hetero-37
geneity on macroscale dispersion. We previously formally derived a homogenised model to38
study the impact of slowly varying pore structure on macroscopic flow, transport and sorp-39
tion within a porous medium [5]. Specifically, in Auton et al. [5] we considered solute40
transport through a heterogeneous, two-dimensional porous material comprising an array of41
solid obstacles, where we allowed for slow but arbitrary longitudinal variations in the size42
and spacing of obstacles. The key difference between that work and the work here is that in43
Auton et al. [5] diffusion dominates on the microscale so that no dispersive effects arise over44
the macroscale. In this manuscript, we are specifically interested in understanding emergent45
dispersive effects, and so advection becomes important on the microscale. Here, we develop a46
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homogenised modelfor dispersive transport through the same heterogeneous porous material.47
The Péclet number is defined as the ratio of advective transport to diffusive transport and48

thus its size determines which transport mechanisms dominate. There are two Péclet num-49
bers of particular interest: the local Péclet number Pel, based on the pore size, and the global50
Péclet number Peg , based on the size of the solute pulse. Dispersion arises at the macroscale51
in the limit where advection and diffusion balance at the microscale (Pel = O(1)), so that, at52
the macroscale, advection dominates (Peg � 1). This limit is crucial for many environmental53
and industrial applications for example in the formation and functioning of wetland systems,54
bacteria or virus transport in ground water, water injection into oil reserves, and industrial55
filtration (e.g., [3, 22]). The limit of strong sorption (uptake) has been considered in previ-56
ous work. Chernyavsky et. al [9] show that classic homogenisation approaches can fail for57
uptake (sorption) dominated regions. Specifically, such cases only exhibit weak convergence58
of the homogenisation approximation to the exact solution or, for stronger uptake, the ho-59
mogenisation fails entirely. Dalwadi et. al [13, 12] showed how an approach that accounted60
for leading-order microscale variation could be used to understand the case of strong sorption61
in the no-advection limit. They show that that sub-linear and linear pointwise uptake leads62
to effective uptakes that are always bounded above by calculated functional forms, whereas63
super-linear pointwise uptake can lead to a variety of behaviours. Here, we consider the dis-64
tinguished limit where advection dominates and macroscale sorption scales with macroscale65
diffusion.66

The first investigations into dispersion were conducted in the 1950s by Taylor [31] and67
Aris [4]. Taylor and Aris investigated solute transport through a tube (Poiseuille flow) and68
derived an asymptotic equation for the average cross-sectional concentration in the tube, find-69
ing that the dispersive component of transport is asymptotically proportional to the square of70
the Péclet number. Experimentally, a range of power laws have been found relating Péclet71
number and dispersion; Dronfield & Silliman [19] find that for smooth parallel plates this72
power law is obtained but for rougher surfaces the exponent decreases, as the boundary ef-73
fects become more dominant and different dispersion mechanisms dominate.74

Macroscale dispersion in the case of homogeneous porous materials (i.e., porous ma-75
terials which comprise a periodic, repeating microstructure) has previously been obtained76
using homogenisation via the method of multiple scales (MMS). Salles et al. [29] compare77
different methods for theoretically deriving the dispersion tensor: the method of moments,78
homogenisation via the MMS, using both multiple spatial and temporal scales, and a purely79
numerical approach based on random walks. An alternative homogenisation approach em-80
ploys a drift transformation conducted simultaneously with the homogenisation [1, 2]. Drift81
transformations have been used within formal asymptotic investigations into Taylor disper-82
sion [21]. Davit et al. [14] give a comparison of the different upscaling methodologies:83
homogenisation via the method of multiple scale and volume averaging. For strongly disor-84
dered porous materials, a leading-order homogenisation approximation alone is insufficient85
to accurately predict macroscalebehaviour [9, 17, 25, 33]. Often the homogenisation is con-86
ducted over a representative elementary volume (REV) which must be chosen over a scale on87
which the macroscopic properties such as porosity are uniquely defined in a statistical sense88
— that is, the homogenisation is, in essence, conducted on the Darcy scale [17]. Strictly, to89
use homogenisation in a strongly disordered media, the cell problem must be solved for every90
different REV geometry. Alternatively, a leading order homogenisation may be conducted on91
a single cell/ REV with the microscale heterogeneity being accounted for by using a moment-92
expansion method or a shape-sensitivities-based method [25, 33]. Here, we focus on locally93
periodic heterogeneous porous materials taking advantage of the slowly varying nature of the94
heterogeneity to conduct a formal homogenisation for dispersive transport via the MMS.95

We expect to see a rich transport behaviour when the dispersive component dominates,96
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which corresponds to high Pel. Liu et al. [23] note non-monotonicity of dispersion in a com-97
pressed spherical packing of elastic spheres, with respect to varying particle Péclet number.98
Further, Liu et al. [23] explain that as the Péclet number varies the macroscale dispersion99
is dominated by different dispersion and diffusion mechanisms: molecular diffusion, which100
dominates at small Pel, hold-up dispersion (areas of no/slow flow), shear (Taylor) dispersion101
caused by non-uniform velocity profiles within pores or throats, and mechanical dispersion102
that results from the repeated separation and merging of flow passages at the junctions of the103
pore space. This competition amongst the different mechanisms leads to a rich and varied104
behaviour.105

Here, we investigate the effect of a slowly varying microstructure on dispersive trans-106
port of a solute pulse. In particular, we formally derive a homogenised model for dispersive107
transport through a heterogeneous porous material comprising an array of arbitrarily shaped108
obstacles with two degrees of microstructural freedom. Firstly, we allow for the obstacle size109
to vary isotropically — that is, the obstacle shape remains fixed while the size is allowed to110
change — along the length of the porous material and, additionally, we allow for the spac-111
ing between obstacles vary along the length of the porous material. We derive the transport112
results for a flow field under fairly general assumptions (incompressible flow subject to no-113
slip and no-penetration conditions on the obstacle surfaces), and subsequently we explicitly114
calculate the flow field and its effect on dispersion for the example of Stokes flow. To focus115
on the effects of dispersion we consider transient advection and diffusion with removal via116
adsorption on the solid surfaces such that advection dominates on the macroscale (§2). The117
variation in the spacing between obstacles means standard homogenisation techniques cannot118
be applied to this problem and thus we present a novel, modified, homogenisation to accom-119
modate this microscale heterogeneity. Following the homogenisation methodology laid out120
in Salles et al., [29] we introduce a second, fast timescale that balances with the dominant121
advective term. We exploit the local periodicity of the pore geometry to formally homogenise122
the pore-scale problem via the MMS [10, 11, 7]. Subsequently, we perform a drift transfor-123
mation to separate the leading-order effect of the solute pulse advecting with the flow from124
the spreading around this moving frame of reference (§3). The homogenisation method pro-125
vides macroscale equations that are uniformly valid over the entire porous medium. For a126
particular cell geometry the effective diffusivity tensor, which comprises components due to127
molecular diffusion, a reduction in spreading due to the presence of obstacles, and dispersion,128
must be determined numerically. To demonstrate the general approach, we choose a particu-129
lar example geometry comprising a hexagonal array of circular obstacles, and determine the130
effective diffusivity tensor for individual cells with a wide range of obstacle size and spacing131
(§4). For this example geometry, the dispersion is shown to depend on the square of the Péclet132
number [4, 14, 31]. Finally, we discuss the merits and limitations of the model (§5).133

2. Model Problem. We consider a porous material with the same microstructural free-134
dom as the porous media developed in Auton et al. [5], but now with flows that are suitably135
fast that dispersive transport is non-negligible at the macroscale. In particular, we consider136
the steady flow of fluid carrying a passive solute through a rigid porous medium in two di-137
mensions. The solute advects, diffuses, disperses and is removed via adsorption to the solid138
structure. The spatial coordinate is x̃ := x̃1e1 + x̃2e2, with x̃1 and x̃2 the dimensional longi-139
tudinal and transverse coordinates, respectively, and e1 and e2 the longitudinal and transverse140
unit vectors, respectively. The porous material is of infinite extent, in both the x̃1 and x̃2 di-141
rections. We consider a solute pulse of initial length L̃ being advected along the length of the142
porous material. At time t̃ = 0, we fix the x̃1-origin, defined by x̃1 = 0, to the centre of the143
solute pulse.144

The entire domain of the porous medium, denoted Ω̃, comprises both the fluid and the145
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FIG. 1. We consider the flow of fluid carrying solute through a heterogeneous porous filter in two dimensions.
The porous medium is formed of an array of obstacles whose size depends only on a scale factor λ̃(x̃1), located
within each rectangular cell of constant transverse height h̃, and longitudinal width ã(x̃1)h̃. The porous medium is
thus uniform in the transverse (x̃2) direction but heterogeneous in the longitudinal (x̃1) direction. We assume that
the spacing between obstacles is small relative to the initial length of solute pulse, L̃, contained within the porous
medium — that is, ε := h̃/L̃� 1. We isolate one cell with an pink rectangle; a dimensionless version of this cell is
shown in detail in Figure 2.

solid structure of the domain. The latter constitutes an array of solid obstacles, as discussed146
in more detail below. We assume that the solute particles are negligibly small relative to the147
solid obstacles, and we measure the local density of solute (amount of solute per volume of148
fluid in kg/m3) via the concentration field c̃(x̃, t̃). This concentration field is defined within149
the fluid phase of the porous medium, denoted Ω̃f .150

Note that we do not track solute once it has adsorbed to the solid surface, and we neglect151
any impact of this adsorption on the size of the obstacles. The latter point is justified by152
our assumption that the solute particles are negligible in size relative to the obstacles, and153
also because we are interested in macroscopic diffusive and advective timescales, which are154
typically far shorter than those of solute accumulation and blocking.155

The porous medium can be partitioned into an array of rectangular cells of fixed height156
h̃ and varying width ã(x̃1), where ã is the aspect ratio of a given cell and where x̃1 is taken157
be the centre of each cell. Each cell contains fixed and rigid obstacles of smooth but arbi-158
trary shape. The shape of each obstacle is fixed and each obstacle can only grow or shrink159
isotropically about their respective centre of mass according to a scale factor λ̃(x̃1). The solid160
domain is the union of these obstacles, and is denoted Ω̃s := Ω̃ \ Ω̃f . This construction leads161
to a porous medium whose properties vary in the longitudinal direction but not in the trans-162
verse direction (see Figure 1). We further assume that the length of the initial solute pulse163
is much greater than the height of each cell comprising the porous medium, which requires164
ε� 1 where we define ε := h̃/L̃. This formulation allows the porous medium to have O(1)165
variations in microstructure over an O(1) variation in x̃.166

We model solute transport and adsorption via the standard advection–diffusion equation167
with a linear, partially adsorbing condition at the fluid–solid interface:168

∂c̃

∂t̃
= ∇̃ ·

(
D̃∇̃c̃− ṽc̃

)
, x̃ ∈ Ω̃f ,(2.1a)169

−γ̃ĉ = ñs ·
(
D̃∇̃c̃− ṽc̃

)
, x̃ ∈ ∂Ω̃s,(2.1b)170

171

where D̃ is the coefficient of molecular diffusion, ṽ is the given fluid velocity (e.g., see172
§2.3), ñs is the outward-facing unit normal to ∂Ω̃s, and γ̃ ≥ 0 is the constant adsorption173
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coefficient. Further, we note that γ̃ = 0 corresponds to no adsorption and γ̃ →∞ corresponds174
to instantaneous adsorption, where the latter is equivalent to imposing c̃ = 0 on ∂Ω̃s.175

To deal with the boundaries during the upscaling, it is helpful to define a function f̃s(x̃)176
such that on the fluid–solid interface ∂Ω̃s177

(2.2) f̃s(x̃) = 0.178

We also define f̃s(x̃) > 0 inside the solid phase. Then,179

(2.3) ñs(x̃) :=
∇̃f̃s∣∣∣∇̃f̃s

∣∣∣ ,180

is the outward-facing normal to the fluid domain.181

2.1. Dimensionless Equations. We make Equations (2.1) dimensionless via the scal-182
ings183

(2.4) x̃ = L̃x̂, ṽ = Ṽ v̂, c̃ = C̃ĉ, and t̃ =

(
L̃2

D̃

)
t̂,184

where Ṽ and C̃ are the average inlet velocity and the average inlet concentration, respec-185
tively; x̂ and t̂ denote the dimensionless spatial and temporal coordinates, respectively; and186
v̂ = v̂(x̂) and ĉ = ĉ(x̂, t̂) denote the dimensionless velocity and concentrations fields, re-187
spectively.188

Employing the scalings in Equation (2.4), the transport problem (Eqs. 2.1) becomes189

∂ĉ

∂t̂
= ∇̂ ·

(
∇̂ĉ− Pel

v̂ĉ

ε

)
, x̂ ∈ Ω̂f ,(2.5a)190

−εγĉ = n̂s ·
(
∇̂ĉ− Pel

v̂ĉ

ε

)
, x̂ ∈ ∂Ω̂s.(2.5b)191

192

Here, ∇̂ is the gradient operator with respect to the spatial coordinate x̂, n̂s(x̂) is the193
outward-facing normal to Ω̂f , the dimensionless adsorption rate γ := γ̃L̃/(εD̃) = O(1)194
(to obtain a distinguished limit), measures the rate of adsorption relative to that of diffusive195
transport, and thelocal Péclet number196

(2.6) Pel := h̃Ṽ /D̃ ≡ εPeg,197

where the local Péclet number measures the rate of advective transport relative to that of198
diffusive transport across each cell while the global Péclet number Peg := L̃Ṽ /D̃ measures199
the rate of advective transport relative to that of diffusive transport across an O(1) section200
of the filter. Note that dispersive effects appear in the leading-order macroscale transport201
equation when the global Péclet number is of O(1/ε), so that Pel = O(1).202

Finally, the dimensionless fluid–solid interface becomes f̂s(x̂) = 0 and Equation (2.3)203
becomes204

(2.7) n̂s(x̂) :=
∇̂f̂s∣∣∣∇̂f̂s

∣∣∣ .205
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FIG. 2. An arbitrary cell within the porous medium (pink rectangle in Figure 1) represented in (a) transformed
microscale coordinates and (b) physical microscale coordinates. We map the physical microscale coordinates Y1
and Y2 to transformed microscale coordinates y1 and y2 according to Equations (2.10) and (2.11) to scale the slow
variation in cell width a out of the cell problem, such that each physical rectangular cell is transformed into a square.
Note that ∂ω := ∂ω||∪∂ω=, where ∂ω|| and ∂ω= denote the vertical and horizontal cell boundaries, respectively,
and that the domains and boundaries in the (physical) rectangular Y -cell will be denoted as in the square y-cell,
but with the addition of a superscript ?.

2.2. Method of multiple scales. Following the method of multiple scales (MMS), we206
isolate and solve the solute transport problem in an individual cell, which is characterised by207
its aspect ratio208

(2.8) â(x̂1) = ã(x̃1),209

and obstacle scale factor210

(2.9) λ̂(x̂1) = λ̃(x̃1).211

We then construct a model for macroscopic flow and transport through the entire porous212
medium from the solution to these individual cell problems via local averaging. The result is213
a system of equations that are uniformly valid for all x̂ ∈ Ω̂.214

2.2.1. Spatial transform. A consequence of the obstacle size and spacing varying in215
the x̂1 direction is that the period of the fast scale varies over the slow scale, thus, we cannot216
use standard homogenisation techniques here. Instead, we follow the approach from Auton217
et al. [5], based on previous methodology developed in Chapman and McBurnie [8], and218
Richardson and Chapman [27] and define both a transformed microscale coordinate y =219
(y1, y2) given by220

(2.10) y1 :=
1

ε

∫ x̂1 ds

â(s)
and y2 :=

x̂2
ε
,221

for which each cell is of unit volume, and a physical microscale coordinate Y = (Y1, Y2)222
given by223

(2.11) Y =
x̂

ε
224

for which the total cell volume is â(x1) and where the shape of the obstacles remains un-225
changed. The benefit of introducing y is that the microscale cell size does not change over226
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the macroscale in this coordinate. Therefore, we may safely perform a homogenisation in227
y. Note that although â(x̂1) and λ̂(x̂1) can be treated as constant within a cell, they do vary228
over the macroscale — that is, we treat â(x̂1) as a continuous step function that is constant229
within cells and changes between cells1. For further discussion of the choice of the mapping230
in Equation (2.10), we refer the reader to §3.1 of Auton et al. [5]. We will switch to Y to231
calculate specific integrals that arise during the homogenisation procedure as this domain is232
more straightforward to work with numerically.233

Following the MMS, we define a macroscale spatial coordinate x := x̂ and we take x234
and y to be independent spatial parameters. Thus spatial derivatives become235

∂

∂x̂i
=

∂

∂xi
+
σij
ε

∂

∂yj
,(2.12a)236

237

for i, j = 1, 2, and where σij := (σ)ij and238

(2.12b) σ =

 1

â(x1)
0

0 1

 .239

Alternatively, in vector form, the spatial derivatives become240

∇̂ := ∇x +
1

ε
∇a
y(2.12c)241

242

where ∇x is the gradient operator with respect to the coordinate x and where243

(2.12d) ∇a
y :=

(
1

â

∂

∂y1
,
∂

∂y2

)ᵀ
,244

is the gradient operator associated with the y-coordinate transform.245

2.2.2. Temporal scales. For a porous material with a fixed microstructure, classically246
one would conduct the homogenisation in a frame that advects with the flow (cf. [1, 2]).247
However due to the slowly varying microscale geometry in this problem, it is preferable to248
introduce two timescales: a fast advective timescale, τ = t̂/ε, which tells us which frame to249
move into, and a slower diffusive/dispersive timescale, t = t̂, which allows us to quantify and250
characterise the dispersive effects in which we are interested. This approach is motivated by251
Salles et al. [29]. Thus the time derivatives become252

(2.13)
∂

∂t̂
=

∂

∂t
+

1

ε

∂

∂τ
.253

We therefore rewrite all functions of x̂ and t̂ as functions of x and y, and t and τ ,254
respectively: v̂(x̂) := v(x,y), and ĉ(x̂, t̂) := c(x,y, t, τ). If we are referring to functions255
of Y in lieu of y, we adorn each function with a superscript ?. We define the domains for the256
microscale cells as in Figure 2, and the solid-fluid boundary as ∂ωs in the square y-cell and257
as ∂ω?s in the (physical) rectangular Y -cell.258

2.3. Flow assumptions. Our focus in this work is deriving the dispersive contaminant259
transport through heterogeneous porous media. Since our derivation allows for a general flow260
field under fairly minimal assumptions, we lean into this generality and derive the transport261
results for a flow field under the following minimal assumptions:262

1Equivalently, we may interpret the integral (Eq. 2.10) as integrating over delta functions between cells.
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1. The flow is steady and v̂ is bounded within each cell.263
2. The fluid is incompressible — that is:264

(2.14a) ∇̂ · v̂ = 0, x̂ ∈ Ω̂f265

3. On the boundary of the solid obstacles, we have a no-slip and no-penetration condi-266
tion:267

(2.14b) v̂ = 0, x̂ ∈ ∂Ω̂s.268

4. The periodic microscale results in the flow being locally periodic over the microscale269
(cf. [1, 2, 5]).270

In essence the flow field can come from any type of incompressible flow [1, 2]. For Stokes271
flow, the homogenisation of the flow problem with this general microscale geometry is con-272
sidered in Auton et al. [5]. We will also explicitly calculate the flow field and its effect on273
dispersion later for the example of Stokes flow, in §4.274

Note that Equation (2.14b) can be used to reduce Equation (2.5b) to275

(2.15) − εγĉ = n̂s ·
(
∇̂ĉ
)
, x̂ ∈ ∂Ω̂s;276

however, we opt not to use this form of the boundary condition as it complicates the algebraic277
manipulation in §3.2.2.278

2.4. Averaging. For a given quantity Z(x,y, t, τ) = Z?(x,Y , t, τ), there are two dif-279
ferent averages of interest: the intrinsic (fluid) average280

281

(2.16) 〈Z〉(x, t, τ) :=
1

|ωf (x1)|

∫
ωf (x1)

Z(x,y, t, τ) dSy ≡282

1

|ω?f (x1)|

∫
ω?

f (x1)

Z?(x,Y , t, τ) dSY = 〈Z?〉(x, t, τ),283

284

where the total fluid area in the transformed cell |ωf | (or physical cell |ω?f |) is a function of285
â(x1) and λ(x1); and the volumetric average286

(2.17)
1

|ω(x1)|

∫
ω(x1)

Z(x,y, t, τ) dSy ≡
1

|ω?(x1)|

∫
ω?(x1)

Z?(x,Y , t, , τ) dSY ,287

where |ω| = 1 and |ω?| = â. Here, dSy := dy1dy2 is an area element of the transformed288
microscale fluid region, dSY := dY1dY2 is an area element of the physical microscale fluid289
region and the porosity φ̂ is290

(2.18) φ̂(x1) =
|ωf (x1)|
|ω(x1)|

≡ |ωf (x1)|
(

=
|ω?f (x1)|
|ω?(x1)|

)
,291

since |ω(x1)| ≡ 1 by construction. Thus, the intrinsic average 〈c〉 is the amount of solute per292

unit fluid area within the porous medium, while φ̂〈c〉, the volumetric average of the concen-293
tration, is the amount of solute per unit total area. We will use the intrinsic average (Eq. 2.16)294
in the work that follows.295

3. Homogenisation.296
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3.1. Incompressible flow. Here, we use incompressibility of flow and its boundary con-297
dition to determine some micro- and macroscale flow expressions. In particular, we expand298
the fluid velocity field as follows:299

(3.1) v(x,y) = v(0)(x,y) + εv(1)(x,y) + ε2v(2)(x,y) + · · · as ε→ 0.300

Using the assumptions detailed in §2.3, we apply the multiple spatial scales ansatz (Eq. 2.12)301
and the expansion (Eq. 3.1) to Equations (2.14) and compare orders of ε yielding a cascade302
of equations in orders of ε:303

∇a
y · v(0) = 0, y ∈ ωf ,(3.2a)304

∇x · v(r) = −∇a
y · v(r+1), y ∈ ωf , for r ∈ N≥0,(3.2b)305

v(r) = 0, y ∈ ∂ωs for r ∈ N≥0,(3.2c)306307

where Equation (3.2a) tells us that the leading-order microscale velocity is incompressible308
on the microscale and Equation (3.2c) yields a no-slip and no-penetration condition on the309
solid obstacles at all orders. The Dirichlet (no slip) boundary condition means that the full310
transformation machinery is not required for this part of the analysis. Further, using flow311
assumption 4 (periodicity of v over the microscale; see §2.3) and expansion (Eq. 3.1), we312
determine313

(3.2d) v
(r)
i , periodic on y ∈ ∂ω=(x1) and ∂ω||(x1), for r ∈ N≥0 and i ∈ {1, 2}.314

We consider the intrinsic average (Eq. 2.16) of Equation (3.2b);315

316

(3.3)
1

|ωf (x1)|

∫
ωf (x1)

∇x · v(r) dSy =317

− 1

|ωf (x1)|

∫
ωf (x1)

∇a
y · v(r+1)dSy, y ∈ ωf , for r ∈ N≥0,318

319

To manipulate the first term on the right-hand side of Equation (3.3) we use the transport320
theorem321

(3.4a)
∫
ωf

∇x · z dSy = ∇x ·
∫
ωf

z dSy +

∫
∂ωs

N · z dsy,322

where the macroscale perturbation to the normalN = Niei is defined as323

(3.4b) N :=
∇xfs
|∇yfs|

.324

The transport theorem (Eq. 3.4a) is derived in Appendix A of Auton et al. [5].325
Thus, we apply the transport theorem (Eq. 3.4a) to the left-hand side of Equation (3.3)326

and use the no-slip and no-penetration conditions at the ith order (Eq. 3.2c) so that Equa-327
tion (3.3) becomes328

329

(3.5)
1

|ωf (x1)|
∇x ·

∫
ωf (x1)

v(r) dSy =330

− 1

|ωf (x1)|

∫
ωf (x1)

∇a
y · v(r+1)dSy, y ∈ ωf , for r ∈ N≥0,331

332

This manuscript is for review purposes only.



10 L.C. AUTON, M. P. DALWADI, AND I. M. GRIFFITHS

Applying the divergence theorem to the right-hand side of Equation (3.5) combined with the333
solid boundary condition (Eq. 3.2c), periodicity (Eq. 3.2d) and the definition of the intrinsic334
average (Eq. 3.3) yields335

336

(3.6)
1

|ωf (x1)|
∇x ·

∫
ωf (x1)

v(r) dSy ≡337

1

|ωf (x1)|
∇x · 〈φ̂v(r)〉 = 0, y ∈ ωf , for r ∈ N≥0.338

339

Equation (3.6) corresponds to incompressibility over the macroscale all asymptotic orders.340
Note that Equations (3.2) and (3.6) are not sufficient to define the flow field, however they do341
give us relations on both the micro- and macroscales, which we will use for the homogenisa-342
tion of the solute transport problem.343

3.2. Solute transport with dispersion. We now homogenise the solute transport prob-344
lem (2.5). While the setup is similar to that of §3.3 of Auton et al. [5], the key difference is the345
importance of dispersive effects. Among other technical differences, this also requires the in-346
troduction of a second temporal scale to allow for the systematic derivation of the macroscale347
solute-transport equation with dispersive effects. In particular, we first determine a fast evo-348
lution equation for the solute due to advection; then we consider higher-order equations in349
the concentration problem to determine a transport equation that balances all transport mech-350
anisms. Finally we combine these results to obtain an advection–diffusion equation which351
accounts for the emergent dispersion.352

3.2.1. Treatment of the normal to the solid. Under the multiple scales framework, the353
unit normal to the solid interface is written as a function of both the macro- and microscales:354
n̂s(x̂) = ns(x,y), and similarly for the function f̂s(x̂) = fs(x,y), which vanishes on the355
solid interface. As in Auton et al. [5], to determine the correct form of ns(x,y) we must356
apply the multiple-scales transformations (Eqs. 2.12) consistently to Equation (2.3) which357
yields358

ns =

(
σijn

y
j + εNi

)
ei

[σklσkmn
y
l n

y
m]

1/2
+ O(ε)

,(3.7a)359

360

where the geometric normal to the transformed solid obstacles ny = nyi ei is given by361

ny :=
∇yfs
|∇yfs|

=

∂fs
∂yi

ei[
∂fs
∂yj

∂fs
∂yj

]1/2 .(3.7b)362

363

Note that in Equation (3.7b), and in subsequent calculations, we invoke the summation364
convention. It is also helpful to define the leading-order physical microscale unit normal365
nY = nYi ei as follows366

(3.7c) nY =

σij
∂fs
∂yj

ei[
σklσkm

∂fs
∂yl

∂fs
∂ym

]1/2 ,367

such that ns ∼ nY as ε → 0. Importantly, the transformed unit normal we work with in the368
homogenisation (3.7c) is not equal to the geometric normal (3.7b) in general.369
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Thus using Equation (3.7), Equations (2.5) become370

(3.8a)
∂c

∂τ
+ ε

∂c

∂t
=

(
ε
∂

∂xi
+ σij

∂

∂yj

)[
∂c

∂xi
+
σik
ε

∂c

∂yk
− Pel

vic

ε

]
, y ∈ ωf (x1),371

372
373

(3.8b) − εγc [σklσkmn
y
l n

y
m]

1/2
+ O(ε2) =374 (

εNi + σijn
y
j

) [ ∂c
∂xi

+
σik
ε

∂c

∂yk
− Pel

vic

ε

]
, y ∈ ∂ωs(x1),375

376

with377

(3.8c) vi, c, periodic on y ∈ ∂ω=(x1) and ∂ω||(x1),378

writing v = viei. Note that, for clarity of presentation in what follows, we have multiplied379
by ε when deriving Equation (3.8a) from Equation (2.5a).380

3.2.2. The dispersive homogenisation. As for the flow problem, we consider an as-381
ymptotic expansion of the concentration field of the form382
(3.9a)
c(x,y, t, τ) = c(0)(x,y, t, τ) + εc(1)(x,y, t, τ) + ε2c(2)(x,y, t, τ) + · · · as ε→ 0.383

Equations (3.8) at leading order, O(1/ε), give384

(3.10a) 0 = σij
∂

∂yj

(
σik

∂c(0)

∂yk
− Pel v

(0)
i c(0)

)
, y ∈ ωf (x1),385

386

(3.10b) 0 = σijn
y
j

(
σik

∂c(0)

∂yk
− Pel v

(0)
i c(0)

)
, y ∈ ∂ωs(x1),387

and388

(3.10c) v
(0)
i , c(0), periodic on y ∈ ∂ω=(x1) and ∂ω||(x1).389

As shown in §SM1 of the Supplementary Materials, the general solution to the system of390
Equations (Eqs. 3.10) is that c(0) is independent of y. This implies ∂c(0)/∂yi ≡ 0, for391
i = 1, 2, and hence that 〈c(0)〉 ≡ c(0).392

Proceeding to the next order, O(1), in Equation (3.8) yields393

∂c(0)

∂τ
= − ∂

∂xi

(
Pel v

(0)
i c(0)

)
+ σij

∂Ai
∂yj

, y ∈ ωf ,(3.11a)394

0 = σijn
y
jAi, y ∈ ∂ωs,(3.11b)395396

with397

(3.11c) v
(1)
i , c(1), periodic on y ∈ ∂ω=(x1) and ∂ω||(x1),398

where399

(3.11d) Ai :=
∂c(0)

∂xi
+ σik

∂c(1)

∂yk
− Pel

(
v
(0)
i c(1) + v

(1)
i c(0)

)
,400
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and where we have used ∂c(0)/∂yi = 0 and the no-slip and no-penetration boundary con-401
ditions on the solid surface (Eq. 3.2c). Integrating Equation (3.11a) over the transformed402
microscale fluid domain ωf gives403

(3.12a) |ωf |
∂c(0)

∂τ
= −Pel

∫
ωf

∂

∂xi

(
v
(0)
i c(0)

)
dSy +

∫
ωf

∂ (σijAi)
∂yj

dSy404

where we have noted that σij is independent of yk for all i, j, k = 1, 2. On application of the405
divergence theorem to the last term of Equation (3.12a) we find406

(3.12b)
∫
ωf

∂ (σijAj)
∂yj

dSy =

∫
∂ωs

σijAjnyjdsy +

∫
∂ω

n�j σijAi dsy ≡ 0407

where dsy signifies an element of a scalar line integral, and n� = n�i ei is the outward-408
facing unit normal to the external square boundary ∂ω. Both terms on the right-hand side409
of Equation (3.12b) vanish; the first term due to the boundary condition (Eq. 3.11b) and the410
second term as σijAi is periodic on ∂ω.411

Thus, applying the transport theorem (Eq. 3.4a) to Equation (3.12a) leads to412

(3.13)
∂c(0)

∂τ
= − Pel
|ωf |

[
∂

∂xi

(∫
ωf

v
(0)
i c(0) dSy

)
+

∫
∂ωs

Niv
(0)
i c(0) dsy

]
, y ∈ ωf .413

The last term on the right-hand side of Equation (3.13) vanishes due to the no-slip and no-414
penetration condition (Eq. 3.2c) on ∂ωs, hence Equation (3.13) becomes415

(3.14)
∂c(0)

∂τ
= −Pel

φ̂
∇x ·

(
φ̂〈v(0)〉c(0)

)
= −Pel〈v(0)〉 ·∇xc

(0), y ∈ ωf416

where we have use the definition of porosity (Eq. 2.18) and macroscale incompressibility417
(Eq. 3.6; with r = 0). Equation (3.14) governs the leading-order fast-time evolution of con-418
centration due to advection — that is, the leading-order effect is that the solute pulse advects419
according to the fast time scale. This result is consistent with previous dispersion works420
(e.g., [21]). However, recall that goal of this analysis remains to determine a macroscale421
equation for the concentration that balances all transport mechanisms: advection, diffusion,422
dispersion and removal. Since Equation (3.14) does not yield any information on how the423
solute spreads as it is advected, we must continue until we determine an equation for how the424
concentration varies relative to the slower timescale. To do this, we must proceed to a higher425
asymptotic order; the first step of this is to determine a closed system of equations for c(1).426

With this goal in mind we use the relationship determined in Equation (3.14) to eliminate427
the fast-time derivative in Equation (3.11a), leading to428

429

(3.15) σij
∂

∂yj

(
∂c(0)

∂xi
+ σik

∂c(1)

∂yk

)
=430

Pel

[
−〈v(0)i 〉

∂c(0)

∂xi
+

∂

∂xi

(
v
(0)
i c(0)

)
+ σij

∂

∂yj

(
v
(0)
i c(1) + v

(1)
i c(0)

)]
, y ∈ ωf .431

432

Using Equations (3.2a) and (3.2b; with r = 0) and that c(0) is independent of the mi-433
croscale, Equation (3.15) becomes434
(3.16a)

σij

[
Pel v

(0)
i

∂c(1)

∂yj
− ∂

∂yj

(
∂c(0)

∂xi
+ σik

∂c(1)

∂yk

)]
= Pel

(
〈v(0)i 〉 − v

(0)
i

) ∂c(0)
∂xi

, y ∈ ωf ,435
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subject to436

(3.16b) σijn
y
j

(
∂c(0)

∂xi
+ σik

∂c(1)

∂yk

)
= 0, y ∈ ∂ωs.437

The form of Equations (3.16) suggest that we can scale ∂c(0)/∂xi out of the problem via438
the substitution439

(3.17) c(1)(x,y, t, τ) = −Γn(x,y)
∂

∂xn

[
c(0)(x, t, τ)

]
+ C̆(1)(x, t, τ),440

where C̆(1) is a scalar function and Γ = Γnen is a vector function, such that 〈Γ〉 = 0.441
Substituting Equation (3.17) into Equation (3.16), we obtain a system of equations for Γk:442

σij

[
Pe v

(0)
i

∂Γn
∂yj
− ∂

∂yj

(
σik

∂Γn
∂yk

)]
= −Pel

(
〈v(0)n 〉 − v(0)n

)
, y ∈ ωf ,

(3.18a)

443

σijn
y
j

(
δin − σik

∂Γn
∂yk

)
= 0, y ∈ ∂ωs(3.18b)444

Γn periodic on y ∈ ∂ω= and ∂ω||.(3.18c)445446

Our overarching goal remains to derive the macroscale dispersion equation. To achieve447
this, we must consider one final asymptotic order. Equation (3.8) at O(ε) gives448

∂c(0)

∂t
+
∂c(1)

∂τ
= σij

∂Bi
∂yj

+
∂Ai
∂xi

, y ∈ ωf ,(3.19a)449

−εγc(0) [σklσkmn
y
l n

y
m]

1/2
= σijn

y
jBi +NiAi, y ∈ ∂ωs,(3.19b)450451

where452

(3.19c) Bi :=
∂c(1)

∂xi
+ σik

∂c(2)

∂yk
− Pel

(
v
(2)
i c(0) + v

(1)
i c(1) + v

(0)
i c(2)

)
.453

Integrating Equation (3.19a) over the transformed microscale fluid domain ωf and using454
the transport theorem (Eq. 3.4a) we obtain455
(3.20)

|ωf |
∂c(0)

∂t
+

∂

∂τ

(∫
ωf

c(1) dSy

)
=

∫
ωf

σij
∂Bi
∂yj

dSy +
∂

∂xi

∫
ωf

Ai dSy +

∫
∂ωs

NiAi dsy.456

We deal with the first term on the right-hand side of Equation (3.20) by noting σij is inde-457
pendent of y and applying the divergence theorem to σijBi. Then, applying periodicity on458
the cell boundary and Equation (3.19b), we determine that459

(3.21)
∫
ωf

σij
∂Bi
∂yj

dSy = −γc(0)
∫
∂ωs

[σklσkmn
y
l n

y
m]

1/2
dsy −

∫
∂ωs

NiAi dsy.460

Substituting Equation (3.21) into Equation (3.20), we obtain461
(3.22)

|ωf |
∂c(0)

∂t
+

∂

∂τ

(∫
ωf

c(1) dSy

)
=

∂

∂xi

∫
ωf

Ai dSy − γc(0)
∫
∂ωs

[σklσkmn
y
l n

y
m]

1/2
dsy.462
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Using Equation (3.17) and the fact that 〈Γ〉 ≡ 0 by definition, Equation (3.22) can be ex-463
pressed as464

465

(3.23a) |ωf |
∂c(0)

∂t
+

∂

∂τ

(∫
ωf

C̆(1) dSy

)
=466

∇x ·

{
φ̂D̂ ·∇xc

(0) − φ̂Pel

[
〈v(0)〉C̆(1) +

(
1

φ̂

∫
ωf

v(1)dSy

)
c(0)

]}
− F̂ (φ̂, â)c(0),467

468

where469

(3.23b) F̂ (φ̂, â) :=
γ

|ωf |

∫
∂ωs

[
σjσjn

y
jn

y
j

]1/2
dsy,470

and where471

(3.23c) D̂(φ̂, â) := I − D̂obst + D̂disp,472

such that473 (
D̂obst

)
ij

:=
1

|ωf |

∫
ωf

σik
∂Γj
∂yk

dSy,(3.23d)474

(
D̂disp

)
ij

:= − Pel
|ωf |

(∫
ωf (x1)

v
(0)
i ΓjdSy

)
.(3.23e)475

476

We introduce the macroscale intrinsic averaged concentration and fluid velocity fields477
accurate up to and including the first-order asymptotic correction: Ĉ and V̂ , respectively. In478
particular, Ĉ is defined by479

Ĉ := 〈c(0)〉+ ε〈c(1)〉,(3.24a)480

≡ C(0) − ε∇̂C(0) · 〈Γ〉+ εC̆(1),(3.24b)481

≡ C(0) + εC̆(1),(3.24c)482483

since Γ is constructed such that 〈Γ〉 ≡ 0 and c(0) is independent of the microscale so that484

C(0) := 〈c(0)〉 ≡ c(0). Similarly, V̂ is defined485

(3.24d) V̂ := V (0) + εV (1),486

where487

(3.24e) V (r) := 〈v(r)〉488

for r ∈ {0, 1}. Note that Ĉ ∼ C(0) and V̂ ∼ V (0).489
As previously discussed, the dispersive effects characterised via Equation (3.23) occur490

over a slower timescale than the advective effects characterised via Equation (3.14). We can491
combine these into a single equation by collapsing our two timescales back into the physical492
single timescale using the relation between t̂, t and τ given in Equation (2.13)— that is,493
we sum Equation (3.14) and ε times Equation (3.23) and then recombine the timescales to494
eliminate t and τ in lieu of t̂. This procedure yields495

(3.25)
∂Ĉ
∂t̂

=
1

φ̂
∇̂ ·

(
φ̂D̂ · ∇̂Ĉ − φ̂PegV̂ Ĉ

)
− F̂ (φ̂, â)Ĉ, x̂ ∈ Ω̂,496
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where we have additionally used the definition of Peg (Eq. 2.6), and have replaced ∇x with ∇̂497
since Equation (3.25) depends only on x = x̂ and t̂. Note that this rearrangement is easily498
verified by considering the expansion of Equation (3.25) subject to Equation (3.24), retaining499
leading-order and first-order corrections only.500

3.2.3. Transforming to the physical microscale coordinate. To interpret the rate501
F (φ̂, â) physically, it is helpful to map its definition Equation (3.23b) to the physical mi-502
croscale coordinate Y , defined in Equation (2.11). This integral coordinate transform is503
shown in detail in §3.3.1 of Auton et al. [5] and leads to504

(3.26) F̂ (φ̂, â) =
γ|∂ω?s |
|ωf ||ω?|

≡ γ|∂ω?s |
|ω?f |

≡ γ|∂ω?s |
âφ̂

,505

where we have used Equations (2.17), (2.18) and (3.7); F̂ is just the product of the dimen-506
sionless adsorption rate and ratio of surface area of solid to fluid fraction in a transformed507
cell.508

Similarly, we map the physical microscale coordinate Y , defined in Equation (2.11).509
This mapping transforms the cell problem (Eqs. 3.18) to510

−Pel v
(0)?

i

∂Γ?n
∂Yi

+
∂

∂Yi

(
∂Γ?n
∂Yi

)
= Pel

(
V (0)?

n − v(0)
?

n

)
, Y ∈ ω?f ,(3.27a)511

nY
?

i

∂Γ?n
∂Yi

= nY
?

n , Y ∈ ∂ω?s(3.27b)512

Γ?n periodic on Y ∈ ∂ω?= and ∂ω?||,(3.27c)513514

with515

(3.27d) 〈Γn?〉 = 0,516

such that Equations (3.23d) and (3.23e) become517

(3.28a)
(
D̂obst

)
ij

:=
1

|ω?f |

∫
ω?

f

∂Γ?j
∂Yi

dSY ≡
1

âφ̂

∫
ω?

f

∂Γ?j
∂Yi

dSY518

and519

(3.28b)
(
D̂disp

)
ij

:= − Pel
|ω?f |

(∫
ω?

f (x1)

v
(0)
i ΓjdSY

)
≡ −Pel

âφ̂

(∫
ω?

f (x1)

v
(0)
i ΓjdSY

)
.520

To evaluate D̂, we solve the transformed cell problem, (Eqs. 4.7), numerically in COM-521

SOL Multiphysics®, where v(0)i is in general determined via the solution to another cell prob-522
lem, the details of which depend on the prescribed flow. In §4, we prescribe Stokes flow and523
specify the appropriate cell problems. While Stokes flow is typically associated with slow524
flow, and dispersion with fast flow, we note that both are consistent when D̃ � Ṽ h̃ � ν̃,525
where ν̃ is the kinematic viscosity of the fluid; this gives the local Reynolds number Rel :=526
Ṽ L̃/ν̃ � 1 and Pel ≡ Ṽ h̃/D̃ � 1.527

Using the definition of V̂ (Eq. 3.24d) and the incompressibility of v(0) and v(1) (Eq. 3.6),528
we find that V̂ is also incompressible — that is,529

(3.29) ∇̂ · V̂ = 0530
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Hence, Equation (3.25) becomes531

(3.30a)
∂Ĉ
∂t̂

=
1

φ̂
∇̂ ·

(
φ̂D̂ · ∇̂Ĉ

)
− PegV̂ · ∇̂Ĉ − γ

|∂ω?s |
âφ̂
Ĉ, x̂ ∈ Ω̂,532

with533

(3.30b) D̂ = I − D̂obst + D̂disp534

such that D̂obst and D̂disp are defined in Equation (3.28). Recalling that Peg = O(1/ε), it535
might appear as though the second term on the right-hand side of Equation (3.30a). This536
is a consequence of the advective effects being important over a faster timescale than the537
dispersive effects, as also occurs in classic dispersion analyses. To understand the leading-538
order importance of the dispersive effects we now perform a drift transformation into the539
advective frame.540

3.3. Rescaled Dispersion Equation. In this section we rescale the dispersion equation541
(Eq. 3.30) to derive a leading-order equation for the removal, diffusion and dispersion of a542
solute. As previously mentioned, the leading-order effect of the flow on the solute is the543
solute pulse advects with the flow. Here, we separate these effects — we take the leading-544
order velocity of the advection of the solute pulse and then investigate the leading order545
spreading around the pulse. Since the fast flow is governed by the global Péclet number such546
that Peg = O(1/ε), we first rescale the spatial domain via547

(3.31a) x̂ =
X

ε
548

so that Equation (3.30a) becomes549

(3.31b)
∂C
∂t̂
− ε2

φ
∇X · (φD ·∇XC) + Pel (V ·∇X) C = −γ |∂ω

?
s |

aφ
C,550

where we denote functions ofX (independent of x̂) without a hat.551
To investigate the diffusive and dispersive solute transport, we then rescale around a pulse552

of solute, which advects with the flow:553

X = X0(T ) + εξ,(3.32a)554

t̂ = T,(3.32b)555

dX0

dT
= PelV(X0) = Pel

(
V (0)(X0) + εV (1)(X0)

)
,(3.32c)556

557

with558

(3.32d) X0(0) = 0,559

so that560
561

(3.32e) ∇ξ = ε∇X and562

∂

∂T
=

∂

∂t̂
+ PelV(X0) ·∇X =

∂

∂t̂
+ Pel

(
V (0)(X0)

ε
+ V (1)(X0)

)
·∇ξ.563

564
565
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FIG. 3. We consider the evolution of a pulse of solute at some later time t̂ = T = T1 subject to fast fluid flow
(Peg = O(1/ε)). Advection dominates the propagation of the solute and thus to see the diffusive and dispersive
effects, we define a drift transformation (Eqs. 3.32) that advects with the flow, the speed of which is shown on the
schematic. The centre of the pulse is given by the dimensionless co-ordinate X0(T ) such that X0(0) = 0 and
the ξ-axis moves with the pulse enabling investigating relative to the dominant advective transport. ]Note that ξ is
scaled so that the pulse isO(1) relative to ξ.

This transformation places the origin of the ξ-axes at the centre of the solute pulse, which566
travels with velocity PelV(X0) (see Figure 3). ]This allows us to understand the evolution567
of the spread of the solute from its initial pulse of unit dimensionless length (relative to ξ).568
Under this scaling, O(1) variations in the solute concentration will be characterised by O(1)569
variations in ξ; thus we enforce570

(3.33) C
(
X, t̂

)
= C(ξ, T ).571

As the solute pulse propagates along the length of the filter (X), the microstructure of the572
filter, characterised by φ and a, varies. This variation tells us that V = V(X), D = D(X),573
φ = φ(X) and a = a(X) which are locally574

V(X = X0 + εξ) = V(X0) + ε (ξ ·∇X) V |X=X0
+ · · ·(3.34a)575

D(X = X0 + εξ, T ) = D(X0, T ) + ε (ξ ·∇X) D|X=X0
+ · · ·(3.34b)576

φ(X = X0 + εξ, T ) = φ(X0, T ) + ε (ξ ·∇X) φ|X=X0
+ · · · .(3.34c)577578

Using Equations (3.32) and (3.34a), Equation (3.31b) becomes579

(3.35)
∂C
∂T

= (D)ij |X=X0

∂2C
∂ξi∂ξj

− Pelξi
∂C
∂ξj

∂Vj
∂Xi

∣∣∣∣
X=X0

− γ |∂ω
?
s |

aφ
C,580

where the drift transformation accounts for the leading-order advective transport of C. Note581
that the second term on the right-hand side of Equation (3.35) gives an O(1) correction for582
advection.583

Finally, although there is no explicit dependence on φ or a except in the removal term,584
the position X0 travels through the porous media and thus the effects of the varying micro-585
structure are reflected in the effective diffusivity and flow gradients.586

4. Illustrative Example. In this section, we prescribe a Stokes flow and examine a587
specific pore structure where the solid domain constitutes an array of solid circular obstacles588
in a hexagonal array. This could model, for example, the microscale geometry of a granular589
material.590

This manuscript is for review purposes only.



18 L.C. AUTON, M. P. DALWADI, AND I. M. GRIFFITHS

4.1. Stokes flow. Dimensionless Stokes flow is given by591

(4.1) − ∇̂p̂+ ε2∇̂2v̂ = 0592

where p̂ is the dimensionless pressure, which has been scaled to balance macroscopic pressure593
gradient with viscous dissipation at the pore scale. The full homogenisation of Stokes flow for594
a material subject to the same two degrees of microstructural freedom is given in Auton et al.595
[5]. Here, for completeness, we briefly recap the relevant results of the flow homogenisation596
in Auton et al. [5]. In particular, we present the flow cell-problem which we subsequently597
solve numerically using COMSOL Multiphysics®. The flow homogenisation leads to a set of598
equations for the microscale velocity and pressure:599

v(0) = −K(x,y) ·∇xp
(0), y ∈ ωf ,(4.2a)600

p(1) = −Π(x,y) ·∇xp
(0) + p̆(x), y ∈ ωf ,(4.2b)601602

where p(i) is the ith-order microscale pressure, p̆(x) is a scalar function which remains un-603
determined but is not important to our analysis, and where K(x,y) is a tensor function and604
Π(x,y) is a vector function, both of which are numerically determined via solution of the605
flow cell-problem606

I −∇a
y ⊗Π + (∇aY )

2 K = 0, y ∈ ωf (x1),(4.3a)607

∇a
y ·K = 0, y ∈ ωf (x1),(4.3b)608

K = 0, y ∈ ∂ωs(x1),(4.3c)609610

with611

(4.3d) Kij := (K)ij and Πi := (Π)i periodic on y ∈ ∂ω= and ∂ω||,612

where613

(4.3e)
(
∇a
y ⊗Π

)
ij

=
∂Πj

∂yi
and (∇a

y ·K)i =
∂Kji
∂yj

.614

In the physical microscale coordinate Y , Equations (4.3) becomes615

I −∇Y ⊗Π? +∇2
YK

? = 0, Y ∈ ω?f (x1),(4.4a)616

∇Y ·K? = 0, Y ∈ ω?f (x1),(4.4b)617

K? = 0, Y ∈ ∂ω?s (x1),(4.4c)618619

with620

(4.4d) K?ij := (K?)ij and Π?
i := (Π?)i periodic on Y ∈ ∂ω?= and ∂ω?||.621

On taking the intrinsic average of Equation (4.2a), we determine the homogenised flow622
equation, essentially equivalent to Darcy’s equation:623

(4.5) V (0) = −〈K?(x,Y )〉 ·∇xP̂ ,624

where P̂ (x̂1) is the macroscale leading-order pressure, and the macroscale permeability ten-625
sor626

(4.6) K̂(x) := 〈K?(x,Y )〉 ≡ 〈K(x,y)〉627
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FIG. 4. We consider the flow of fluid carrying solute through a heterogeneous porous material in two di-
mensions for a specific illustrative example. Here, the porous medium is formed of an array of circular obstacles of
dimensionless radius R̂(x̂1), located in both the centre and at the corners of a rectangular cell of transverse height
ε� 1 and longitudinal width εâ(x̂1).

is the intrinsic average of K? over the physical microscale, or equivalently is the intrinsic628
average of K over the transformed microscale.629

Using the velocity decomposition given in Equation (4.2a), the transport cell-problem630
(Eqs. 3.27) becomes631

632

(4.7a) − PelK?ij
∂P̂

∂xj

∂Γ?n
∂Yi
− ∂

∂Yi

(
∂Γ?n
∂Yi

)
=633

− Pel

(
1

|ω?f |

∫
ω?

f

−K?nj dSY +K?nj

)
∂P̂

∂xj
, Y ∈ ω?f ,634

635
636

nY
?

i

∂Γ?n
∂Yi

= nY
?

n , Y ∈ ∂ω?s(4.7b)637

Γ?n periodic on Y ∈ ∂ω?= and ∂ω?||,(4.7c)638639

with640

(4.7d) 〈Γn?〉 = 0,641

and Equation (3.28b) becomes642

(4.7e)
(
D̂disp

)
ij

:= −Pe

âφ̂

(∫
ω?

f (x1)

KikΓjdSY

)
∂P̂

∂xk
.643

4.2. Filter geometry. Here, we consider a specific pore structure which has a solid do-644
main comprising solid circular obstacles in a hexagonal array. Specifically, each rectangular645
cell contains a fixed, rigid circular obstacle of dimensionless radius R̂(x̂1) at its centre and646
quarter circles of radius R̂(x̂1) at each corner (see Figure 4). Since R̂(x̂1) controls the obsta-647

cle size over the length of the medium, we take the scale factor λ̂(x̂1) = R̂(x̂1). The height648
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of each cell is fixed, thus, the maximum possible value of R̂ is 1/2. To prevent the obsta-649
cles from overlapping, we must enforce conditions on â for a given R̂— that is, we define a650
minimum value of â that depends on the value of R̂:651

(4.8a) âmin(R̂) :=

{
â = 2R̂, if 0 < R̂ < R̂crit

â =
√

16R̂2 − 1, if R̂crit ≤ R̂ ≤ 1/2.
652

where653

(4.8b) R̂crit :=
1

2
√

3
,654

and with corresponding minimum porosity φ̂min(R̂). We enforce that â ≥ âmin(R̂) and,655

consequently, φ ≥ φ̂min(R̂). When 0 < R̂ ≤ R̂crit and â = âmin(R̂) we lose transverse656
connectivity of the domain (Figure 5; dotted line). When R̂crit ≤ R̂ ≤ 1/2 and â = âmin(R)657
we lose both the transverse and longitudinal directions (Figure 5; dashed line). Further, when658
R̂ = 1/2 and â = âmin(R) ≡

√
3 then there is connectivity in the transverse direction but no659

connectivity in the longitudinal direction (Figure 5; yellow line). The boundary on the right660
of the domain corresponds to the limit φ̂→ 1, which occurs when R̂→ 0 and when â→∞.661
These constraints define the attainable region of the â, R̂ and φ̂ parameter space (Figure 5;662
shaded grey).663

This construction leads to a porous medium whose properties vary in the longitudinal664
direction but not in the transverse direction (Figure 4). The microstructure depends on â, φ̂665
and R̂, any two of which are independent and the third prescribed by the geometric relation666

(4.9) φ̂(x̂1) =
|ωf (x̂1)|
|ω(x̂1)|

=
|ω?f (x̂1)|
|ω?(x̂1)|

≡ 1− 2πR̂(x̂1)2

â(x̂1)
,667

where we have used |ω?| = â and |ω?f | = â− 2πR̂2.668

For this geometry, we may explicitly evaluate the effective adsorption rate F̂ (φ̂, â) in669
Equation (3.23b) using the formulation from Equation (3.26), giving670

(4.10) F̂ (φ̂, â) =
γ|∂ω?s |
|ω?f |

=
γ|∂ω?s |
âφ̂

=
4γπR̂

âφ̂
=

2γ
(

1− φ̂
)

R̂φ̂
.671

In Figure 6, we investigate the effect of microscale geometry on the macroscale solute672
removal via a numerical analysis of Equation (4.10). The partially absorbing boundary condi-673
tion on the microscale (cf. Equation (2.1b)) leads to an effective sink term F in the macroscale674
transport problem given by Equation (4.10); F̂ is the product of the dimensionless adsorp-675
tion rate γ and the ratio of the perimeter of an obstacle (4πR̂) to the fluid area within a676
cell (âφ̂) for a hexagonal array of circular obstacles. Hence, the strength of the sink term677
is proportional to γ and depends strongly on the microscale geometry of the problem. We678
consider F̂ /γ to isolate the effects of microstructure. The attainable region of the φ̂-F̂ /γ679
plane (Figure 6, left; shaded grey) is bounded by the constraints â ≥ âmin and 0 < R̂ ≤ 1/2;680
the boundaries have the same line styles and colours as the corresponding boundaries in681
Figure 5. Fixing R̂ ∈ {0.1, 0.2, Rcrit, 0.4, 0.49} (Figure 6a) where R̂crit is defined in Equa-682
tion (4.8b), we see that the maximum removal for a given R̂ is achieved when â = âmin.683
Further, the global maximal removal is achieved for R̂ = R̂crit and amin = 2Rcrit. Fixing684
φ̂ ∈ {0.15, 0.2, 0.3, 0.45, 0.6, 0.75, 0.85, 0.95} (Figure 6b) we see that the maximum removal685

for a given φ̂ is also achieved when â = âmin. Note that F̂ /γ decreases as φ̂ increases at fixed686
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FIG. 5. The porosity φ̂ of a hexagonal cell increases with aspect ratio a and de-
creases with obstacle radius R̂ according to Equation (4.9). We show â versus φ̂ for
R̂ ∈ {0.025, 0.075, 0.125, 0.175, 0.225, 1/(2

√
3), 0.35, 0.4, 0.45, 0.5} (coloured lines, dark to light).

The attainable region of the φ̂-â plane (shaded grey) is defined by â ≥ âmin(R̂) (Eq. 4.8a), for 0 < R̂ ≤ 1/2

with the φ̂–â–R̂ relationship defined in Equation (4.9). In particular, when 0 < R̂ < R̂crit, âmin ≡ 2R̂ so that
the lower bound (dotted line) is defined by φ̂ = 1 − πâ/2, with â ∈ (0, 2R̂crit); along this boundary we lose
transverse connectivity but maintain longitudinal connectivity. When R̂crit ≤ R̂ < 1/2, âmin ≡

√
16R̂2 − 1 so

that the left-hand bound (dashed line) is defined by φ̂ = 1 − π(â2 + 1)/(8â), with â ∈ [1/
√
3,
√
3); along this

boundary we lose connectivity in both the longitudinal and transverse directions. The upper bound (yellow line)
is attained when R̂ = 1/2 and is parameterised by φ̂ = 1 − π/(2â), for â ∈ [

√
3,∞); along this boundary we

lose longitudinal connectivity but retain transverse connectivity. Note that the smallest attainable φ̂ for any R̂, â
combination is φ̂min = 1− π/(2

√
3) which is achieved for with two distinct combinations of â and R̂: â = 1/

√
3,

R̂ = 1/(2
√
3) and â =

√
3, R̂ = 1/2.

FIG. 6. The effective adsorption rate F̂ normalised with γ against (a) φ for R̂ ∈ {0.1, 0.2, R̂crit, 0.4, 0.49}
(blue to yellow) and (b) R̂ for fixed values of φ̂ ∈ {0.15, 0.2, 0.3, 0.45, 0.6, 0.75, 0.85, 0.95} (dark to light). The
attainable region of the φ̂-F̂ /γ plane (shaded grey) is bounded by the constraints that â ≥ âmin for 0 < R̂ ≤ 1/2,
with the line styles of the boundary the same as in Figure 5. In all cases, F̂ is as defined in Equation (4.10).
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R̂, as should be expected, but also as R̂ increases at fixed φ̂; the latter occurs because an687
increase in obstacle size requires a correspondingly larger increase in cell size to keep φ̂ con-688
stant. Recall that the minimum attainable porosity is achieved for two distinct values of R̂:689
R̂ = R̂crit and R̂ = 1/2, and with â = âmin and although in that limit the porosity is equal,690
the maximum removal is nearly double in the case that R̂ = R̂crit instead of the case where691
R̂ = 1/2, highlighting the crucial role of microscale geometry in macroscopic transport and692
removal.693

4.3. Macroscale flow and transport properties. For the specific geometry described694
above, we explore the impact of microstructure on macroscopic flow and dispersive transport695
by analysing the permeability and effective diffusivity tensors, K̂ (Figure 7) and D̂ (Fig-696
ures 8a,b and 9a,b) and the physical components of D̂: D̂obst and D̂disp (Figures 8c–f and697

9c–f). Finally we investigate the impact of continuously varying Pel on D̂disp (Figure 10).698

To determine K̂ and D̂ we solve Equations (4.4) and (4.7a)–(4.7d) over a unit cell for each699
cell geometry. Firstly, we must build and subsequently discretise the cell domain, adding a700
boundary layer surrounding each solid obstacle. The chosen mesh size varies based on the701
miscroscale geometry. We split the study into several steps; first the flow problem must be702
solved for each of the two flow components (i = 1 and i = 2) individually before these703
solutions are used to solve the transport problem. These iterative steps generate a significant704
computational time saving. In particular, we solve Equations (4.4), which can be thought705
of as a form of Stokes equations, for both flow components. Next, we use these flow solu-706
tions to solve Equations (4.7a)–(4.7d) individually for Γ1 and then Γ2. This methodology707
allows the partial differential equation (PDE) solvers to be provided with the converged flow708
solutions initially, which is responsible for the computational time saving. We choose to709
use COMSOL Multiphysics® to determine the solutions. We discretise the domain using710
the ‘User-controlled mesh’→ ‘Fluid dynamics’, and with a boundary layer around all solid711
obstacles. On this domain, we solve Equations (4.4) using Creeping Flow interface (‘Fluid712
Flow’ → ‘Single Phase Flow’ → ‘Laminar flow (spf)’) for both components of flow (cf.713
[5]). Within the same code we feed this information into the Coefficient Form PDE inter-714
face (‘Mathematics’→ ‘PDE interfaces’→ ‘Coefficient form PDE’) and subsequently solve715
Equations (4.7a)–(4.7d) individually for Γ1 and subsequently Γ2.716

As in Auton et al. [5], we have two degrees of microstructural freedom, which allows717
us to explore the anisotropy in the system. However, unlike in Auton et al. [5], D̂ depends718
on Pel∇̂P̂ , where, without loss of generality, we fix |∇̂P̂ | = 1. For arbitrary ∇̂P̂ , with719
this geometry and any other geometry exhibiting at least two lines of symmetry through the720
cell centre that lie parallel to the x̂ axes, K̂ is diagonal but D̂ has non-zero off-diagonal721
components due to the dependence of D̂disp on Pel∇̂P̂ . In what follows, we restrict our722

investigations to the case when ∇̂P̂ = (−1, 0)ᵀ; in this limit both K̂ and D̂ are diagonal723
matrices. Note that, to consider the case of fixed flux rather than fixed pressure gradient we724
would calculate the pressure gradient for a given flux via use of Darcy’s Law (Eq. 4.5), giving725
∇P = K̂−1V .726

4.3.1. Comparison with limiting cases. We validate our analysis for this geometry in727
several ways. First, in Figure 10 we demonstrate that the components of D̂disp each scale728
with Pe2l , in agreement with the classic Taylor dispersion scaling [4, 31, 14]. Note also that729 (
D̂disp

)
22
>
(
D̂disp

)
11

. This is because we use â = 1 in these figures, corresponding to730

the hexagonal pattern of the obstacles being shorter in the x̂1 direction compared to the x̂2731
direction. The aspect ratio of the hexagonal pattern is equal at â =

√
3, and shorter in the x̂2732

direction compared to the x̂1 direction for â >
√

3.733
Secondly, we have confirmed that the effective permeability and effective diffusivity van-734
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FIG. 7. The non-zero components of the effective permeability tensor against porosity for
R̂ ∈ {0.1, 0.2, R̂crit, 0.4, 0.49} (blue to yellow; cf. Eq. 4.8b), with â varying according to Equation (4.9). (a)

the effective longitudinal permeability
(
K̂
)
11

and (b) effective transverse permeability
(
K̂
)
22

. The components

of K̂ are independent of Pel and their difference implies macroscale anisotropy. When â = âmin(R) (Eq. 4.8a), the

behaviour of
(
K̂
)
ii

depends on the value of R̂: if 0 < R̂ ≤ R̂crit then
(
K̂
)
22
→ 0 whereas if R̂ < R̂crit then

both
(
K̂
)
11
,
(
K̂
)
22
→ 0. The values to which

(
K̂
)
ii

asymptote are shown as solid red vertical lines, and the

interpolation between the last numerically obtained data point and the minimum obtainable porosity for the given
R̂ is shown as a dotted red line. As φ̂ → 1 (â → ∞) then

(
K̂
)
11

and
(
K̂
)
22

diverge as the resistance to flow

vanishes. We fix ∇̂P = (−1, 0)ᵀ.

ish when the filter loses connectivity (â → âmin(R̂)). When â → âmin(R̂) with any fixed735
R̂ < 1/2, the obstacles move closer together in the longitudinal direction and the pore space736
becomesdisconnected in the transverse direction. Further, for R̂ ≥ R̂crit the pore space is737
simultaneously disconnected in the longitudinal direction. Thus, as â → âmin(R̂), for all738

values of R̂,
(
K̂
)
22

and
(
D̂
)
22

vanish and when R̂ ≥ R̂crit,
(
K̂
)
11

and
(
D̂
)
11

vanish739

while for R̂ < R̂crit,
(
K̂
)
11

and
(
D̂
)
11

obtain their global minimum values in this limit but740

do not vanish as the longitudinal permeability does not vanish (Figures 7, 8a,b and 9a, b).741
When R = 1/2, there is no transverse connectivity for all choices of â. When connectivity742

is lost, the solid obstacles fully hinder the spreading of the solute so that
(
D̂obst

)
ii
→ 1 and743 (

D̂disp

)
ii
→ 0 (Figures 8c–f and 9c–f), leading to an overall vanishing effective diffusivity.744

Finally, we also see that the permeability diverges as the obstacles vanish (φ̂ → 1);745

as φ̂ → 1 (â → ∞), both
(
K̂
)
11

and
(
K̂
)
22

diverge as the resistance to flow vanishes746

(Figure 7) and additionally
(
D̂obst

)
ii
→ 0 as molecular diffusion becomes unobstructed747

(Figures 8c,d, 9c,d).748

4.3.2. Qualitative effect on solute transport of varying Pel. For the majority of the â–749
R̂–φ̂ parameter space, the magnitude of D̂ is greater when Pel = 250 (Figure 9) than when750
Pel = 10 (Figure 8). This is largely explained by the Pe2l scaling for large Pel discussed751
above, which increases the relative importance of the dispersive component of the effective752
diffusivity (Figure 10).753

However, the qualitative behaviour of D is similar for both values of Pel. The main754

qualitative difference in
(
D̂
)
11

between the two values of Pel is in the behaviour of the755

R̂ = 0.4 curve; when Pel = 10 as φ̂ → 1, we have an apparent monotonic increase of756 (
D̂
)
11

, while for Pel = 250, there is a local maxima for φ̂ ∼ 0.9 (â ∼ 10). For R̂ ≥ R̂crit,757
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FIG. 8. We investigate the behaviour of the non-zero components of the effective diffusivity D̂ and the
contribution to D̂ due to the presence of obstacles D̂obst and that resulting from dispersive effects D̂disp (cf.
Eq. 3.28) when Pel = 10. Note that, all quantities are plotted against φ̂, for the same fixed R̂ values as in
Figure 6a and Figure 7. Further, all the line colours and styles are the same as in Figure 6a and Figure 7. In
particular, note that the red vertical lines show the values to which the functions asymptote. (a) the longitudinal
effective diffusivity and (b) the transverse effective diffusivity mirror the behaviour of

(
K̂
)
ii

when â = âmin— that

is, when
(
K̂
)
ii

vanishes,
(
D̂
)
ii

also vanishes. (c) the longitudinal component of D̂obst and (d) the transverse

component of D̂obst represent the reduction of solute spreading due to the presence of obstacles; as expected when
the presence of obstacles fully inhibits spreading both

(
D̂obst

)
11

and
(
D̂obst

)
22

tend to unity which occurs when(
K̂
)
ii
→ 0. (e) the longitudinal component of D̂disp and (f) the transverse component of D̂disp provide a measure

for the enhancement of spreading due to shear forces;
(
D̂disp

)
ii

vanishes when
(
K̂
)
ii
→ 0. Recall that D̂disp

is a function of Pel∇̂P̂ and thus depends on the value of Pel. There is a non-monotonicity in
(
D̂disp

)
22

with

respect to both φ̂ and R̂ and
(
D̂disp

)
11
>
(
D̂disp

)
22

.

(
D̂
)
22

increases monotonically from its minimum value to its maximum value as φ̂ → 1758

for both values of Pel. However, for R̂ < R̂crit, when Pel = 10,
(
D̂
)
22

also undergoes the759

same monotonic behaviour, while when Pel = 250,
(
D̂
)
22

obtains its maximum value for760

some φ̂ < 1. This non-monotonicity suggests that there is some microscale geometry that761
optimises the dispersive transport.762

Qualitatively both
(
D̂obst

)
11

and
(
D̂obst

)
22

are very similar for the cases where Pel =763

10 and Pel = 250 for all R̂. This is because the impingement on spreading due to the presence764
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FIG. 9. A replica of Figure 8, but for Pel = 250. We note the same limiting behaviour as Figure 8 in
when â = âmin, but note that the maximum magnitude of D̂disp is around two orders of magnitude greater than the
maximum magnitude of D̂disp with Pel = 10.

FIG. 10. The non-zero components of the effective diffusivity: the longitudinal diffusivity
(
D̂disp

)
11

(dashed

line, orange) and the transverse diffusivity
(
D̂disp

)
22

(solid line, aqua) against Pel, when â ≡ 1 and ∇̂P̂ =

(−1, 0)ᵀ. (a) Both
(
D̂disp

)
11

and
(
D̂disp

)
22

increase monotonically with Pel. (b)
(
D̂disp

)
ii

is shown on a

log–log scale, which shows that
(
D̂disp

)
22
>
(
D̂disp

)
11

and
(
D̂disp

)
ii
∝ Pe2l [4, 14, 31].
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of obstacles becomes negligible as the obstacles become arbitrarily spaced in the longitudinal765

direction. The only substantive difference in
(
D̂obst

)
11

between the Pel = 10 and Pel = 250766

cases is in the non-monotonic behaviour as R̂ varies for large fixed φ̂. For example, when767

φ̂ = 0.8, in the case that Pel = 10 we have that
(
D̂obst

)
11

increases monotonically with768

increasing R̂ whereas for Pel = 250 the smallest value of
(
D̂obst

)
11

occurs for R̂ = R̂crit.769

We expect to see non-monotonicities when the dispersive component dominates, which770
corresponds to high Pel; this is because of the competing transport mechanisms [23]. At771
small Pel, diffusion dominates, while as Pel increases the different dispersive mechanisms772
become increasingly important. In particular, as well as the classical dispersion caused by773
non-uniform velocity profiles within pores or throats, there are also effects due to hold-up774
dispersion. This occurs due to areas of low flow and mechanical dispersion resulting from775
the repeated separation and merging of flow passages at the junctions of the pore space [23].776
For Pel = 10, the contribution to D̂ from dispersion is negligible (Figure 8e,f) and thus as777

φ̂→ 1,
(
D̂
)
ii
∼ 1 (Figure 8a,b). However, for Pel = 250 the dispersive effects in the limit778

φ̂ → 1 are O(1) (Figure 9a,b) and thus
(
D̂
)
ii

is increased beyond unity (Figure 9e,f). In779

particular, Figure 9b shows a non-monotonicity in (D̂)22 — that is, the maximum transverse780

spreading is not achieved in the limit φ̂ → 1, but rather for some combination of â and781
φ̂ < 1. Figure 9f, highlights the origin of this non-monotonicity; we see that it is solely due to782 (
D̂disp

)
22

, as
(
D̂obst

)
22

shows a clear monotonic decrease as φ̂ increases. Further, although783

no non-monotonic behaviour is seen in
(
D̂
)
22

when Pel = 10 (Figure 8b),
(
D̂disp

)
22

shows784

a non-monotonicity with increasing φ̂ (Figure 8f).785

5. Conclusions. We have presented a formal derivation for dispersive transport within786
a heterogeneous porous medium comprising cells of varying size each containing multiple787
arbitrarily shaped obstacles, for a general, incompressible, fluid flow [1, 2]. We considered788
an advection-dominating regime, which introduces dispersion into the problem; this is im-789
portant in many industrial filtration scenarios, where dispersion becomes important [3]. The790
homogenisation was conducted using both multiple spatial and temporal scales, enabling us791
to deal with both the dispersive limit [29] and the microscale heterogeneity [5]. The het-792
erogeneity within the porous material originates from slowly varying obstacle size and/or793
obstacle spacing along the length of the porous medium; the latter also induces strong an-794
isotropy within the problem. This results in a near-periodic microscale problem; importantly,795
the variation in spacing means that the period of the microscale depends on the macroscale,796
which means that the upscaling of this problem requires a nontrivial modification of classic797
homogenisation. This builds on our previous work for slower flows with no dispersive effects798
[5]. To account for the dominant advective terms during the homogenisation, we introduced799
a second, fast temporal scale following the methodology presented in Salles et al. [29]. The800
fast timescale highlights how the transport equation is dominated by advection at leading801
order — that is, the solute advects (convects) with the fast fluid flow. We use this result to802
eliminate terms at higher orders and, on recombining the two temporal scales, we determine803
the leading-order transport equation on the slow timescale. This homogenised equation is804
an advection–diffusion–reaction equation, in which advection dominates, with an anisotropic805
effective diffusivity tensor, which itself comprises components due to molecular diffusivity,806
a reduction in spreading due to the presence of obstacles (D̂obst), and a dispersive compo-807
nent (D̂disp), which depends on the product of the local Péclet number, Pel, and pressure808
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gradient, ∇̂P̂ . The permeability, effective diffusivity and the removal terms are functions809
of the porosity, obstacle spacing and a scale factor controlling the variation in obstacle size810
across the medium; any two of these are free choices, which prescribe the third. To deal811
with the dominance of advection, we performed a subsequent drift transform to the frame812
of reference moving with the solute pulse. Under this transformation, a careful application813
of Taylor’s expansions provides the leading-order equation that governs the spreading of the814
solute (cf. Eq. 3.35). The resulting macroscale equations are computationally inexpensive815
to solve, allowing for optimisation of parameters through large sweeps, which would not be816
possible with direct numerical simulation (DNS).817

In §4 we considered a simple geometry comprising circular obstacles in a hexagonal818
array and fixed a particular incompressible fluid flow: Stokes flow. We determined the corre-819
sponding permeability and effective diffusivity numerically, and show how these depend on820
the radius of the obstacles and the aspect ratio of the cells. This work illustrates and quan-821
tifies how the permeability, diffusivity and dispersivity of a porous medium depend not only822
on the porosity of the medium, but also on its microstructure and the magnitude and direc-823
tion of the driving pressure gradient. The dispersive component of the effective diffusivity is824
shown to be proportional to Pe2l (Figure 10), in agreement with the classical Taylor dispersion825
scaling [4, 31].826

While we focus on the two dimensional case here for clarity in dealing with the non-827
standard homogenisation approach, we note that it is straightforward to generalise our results828
to the three-dimensional problem. We would expect the three-dimensional results to be quali-829
tatively similar to the two-dimensional problem considered here in general, with the important830
exception of a non-vanishing connectivity when obstacles touch.831

As in Auton et al. [5], we have assumed that the solute particles are negligibly small. If832
one were explicitly interested in understanding the effect of the smallest distances between833
adjacent obstacles (choke points), finite-size effects of particles may need to be considered,834
including the subsequent effect on geometry. The freedom in the microscale geometry allows835
for the construction of a porous structure with sufficiently wide longitudinal connectivity as836
to avoid blockages. Further, we note that applying a stress to the porous medium may vary837
the spacing between obstacles. This could be accounted for by coupling our model to an838
appropriate stress-strain relationship.839

We have validated our results against limiting cases; DNS for flow and transport in a840
broader range of relevant geometries would provide further validation and may lead to addi-841
tional insight, and should be the subject of future work. Here, we have limited our consid-842
eration to the case when the pressure gradient is purely longitudinal (i.e., ∇̂P̂ ≡ (−1, 0)ᵀ),843

however further investigation into the cases where ∇̂P̂ 6= (−1, 0)ᵀ is warranted and will844
undoubtedly yield further insights into the effect of microscale heterogeneity on macroscopic845
dispersive transport and removal. We also note that, the details of the behaviour of D̂disp in846
the limit â→∞ require more careful investigation as Pel increases.847

In summary, the results presented in this manuscript form a comprehensive framework848
for describing the macroscropic dispersive transport and removal properties of a heteroge-849
neous porous medium, subject to a general, incompresssible flow.850
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7. Data. The MATLAB codes for Figures 5–10 and the corresponding data produced by857
COMSOL Multiphysics® have been uploaded to Github: https://github.com/Lucy858
Auton/A-homogenised-model-for-dispersive-transport-and-859
sorption-in-a-heterogeneous-porous-medium-MATLAB860
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