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Circular bubbles in a Hele-Shaw channel:
a Hele-Shaw Newton’s cradle
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We consider the propagation of inviscid bubbles in a Hele-Shaw cell under a uniform
background flow. We focus on the distinguished limit in which the hydrodynamic pressure
gradient due to the external flow balances viscous drag effects due the thin liquid films
between the bubbles and the cell walls (Bretherton 1961), with the ratio between these
two effects measured by a single dimensionless parameter which we label §. In this régime,
we find that each bubble remains approximately circular, and its propagation velocity is
determined by a net force balance. The analytical solution for the problem of an isolated
bubble in an infinite Hele-Shaw cell is found to agree well with experimental data in
the literature. In particular, we find that the bubble may move faster or slower than the
background fluid speed, depending on whether § > 1 or § < 1, or precisely with the
background flow if § = 1.

When the model is generalised to include the effects of multiple bubbles and boundaries
in the Hele-Shaw cell, we still find that the sign of § — 1 causes striking changes in the
qualitative behaviour. For a train of three or more bubbles moving along a Hele-Shaw
channel, we observe longitudinal waves that propagate forwards or backwards along the
bubble train, depending on whether § > 1 or § < 1, resembling a Hele-Shaw Newton’s
cradle.

1. Introduction

Many microfluidic experiments and devices involve generating bubbles and then trans-
porting them along microfluidic channels (Huerre et al. 2014; Anna 2016; Gnyawali et al.
2017). The bubbles are often large enough (compared with the channel height) to be
pancake-shaped, i.e. flattened against the top and bottom walls of the channel, but
almost always small enough to remain approximately circular in plan view (see, e.g.,
Garstecki et al. 2004; Beatus et al. 2012; Shen et al. 2014; Gnyawali et al. 2017). In this
paper we derive a simple model for the motion of approximately circular bubbles in a
Hele-Shaw cell, then use it to describe bubble propagation along a microfluidic channel
modelled as a long Hele-Shaw cell with side walls.

It was first shown by Taylor & Saffman (1959) that, in the limit of zero surface tension,
a circular bubble in a Hele-Shaw channel travels at twice the speed of the outer liquid.
More generally they found that, for a specified channel width, outer liquid speed and
bubble area, one can achieve an arbitrary bubble speed; selecting a particular speed then
specifies the bubble shape. Maruvada & Park (1996) generalised the Taylor-Saffman
solution to describe an elliptical surfactant-laden bubble in a Hele-Shaw cell.

Complex analysis lends itself to Hele-Shaw flow problems since the pressure in the fluid
is modelled by Laplace’s equation. For example, Crowdy (2009) used complex variable
methods to study co-travelling multiple bubbles in an infinite Hele-Shaw cell. As in
the Taylor—Saffman problem, this model does not involve surface tension and suffers
from the same degeneracy. The degeneracy was removed by Tanveer (1986), who used
complex variable techniques to include surface tension in the Taylor—Saffman problem. In
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particular, Tanveer showed that, in the limit of large surface tension, the bubble shape is
circular. A class of exact solutions for an infinite stream of groups of bubbles was derived
by Vasconcelos (1994) by adapting the method of Tanveer. While the papers referenced
above concern the deformation of bubbles, with either weak or entirely absent surface
tension, in this paper we focus on the régime where surface-tension effects dominate
and the bubbles remain approximately circular, as is commonly seen in microfluidic
experiments.

Bretherton (1961) studied an inviscid bubble moving through a viscous liquid in a tube
in the limit of small capillary number Ca. Bretherton’s analysis was modernised by Park
& Homsy (1984) using matched asymptotic expansions, while applying the theory to two-
phase flow in a Hele-Shaw cell. For our purposes, their main finding is that viscous flow in
the thin liquid films between the bubble and the cell walls causes an additional pressure
jump across the bubble-liquid interface, which is proportional to Ca?/3. This result was
corroborated by Reinelt (1987), who further used numerical methods to extend the theory
to O(1) capillary numbers. Meiburg (1989) demonstrated numerically how Tanveer’s
solutions are modified by the inclusion of this additional pressure drop. The effective
boundary condition used by Meiburg (1989) was improved by Burgess & Foster (1990),
both to capture correctly the Bretherton pressure drop at the rear interface of a moving
bubble, and to analyse inner regions where the liquid flow is approximately tangent to
the bubble interface and the Park & Homsy (1984) model breaks down. Reichert et al.
(2019) included the Bretherton pressure drop in their model for an isolated circular
bubble in a Hele-Shaw cell with a uniform background flow. Reyssat (2014) also included
the Bretherton drag force in his model for a bubble in a Hele-Shaw cell whose walls are
slightly inclined to form a thin wedge, and observed that the bubble migrates out of the
wedge to reduce its surface area.

Kopf-Sill & Homsy (1988) studied experimentally the velocities of variously shaped
bubbles in a Hele-Shaw cell, in particular observing circular bubbles that always travelled
more slowly than the background flow. However, Park et al. (1994) showed that this
behaviour was due to the presence of surfactants, and their experiments showed circular
bubbles moving more quickly than the background flow, though still less than twice as
fast (the Taylor—Saffman limit). Similarly Reichert et al. (2019) found circular bubbles
travelling faster than the outer liquid velocity but with a larger range of bubble velocities.
Shen et al. (2014) investigated the motion of multiple droplets in a Hele-Shaw channel,
observing behaviour including pair exchange, where a single droplet catches up to a
pair of bubbles and then the leading bubble breaks away. Beatus et al. (2006, 2012)
explored instabilities in a one-dimensional array of droplets, resulting in the formation of
transverse and longitudinal waves. Their experimental observations were captured well
by a model where the droplets are treated as dipoles, although in principle this approach
is strictly valid only when the droplets are sufficiently well-separated.

Sarig et al. (2016) solved for the pressure field around two arbitrarily spaced and sized
droplets in a Hele-Shaw cell, and performed a force balance to determine the bubble
velocities, including an internal droplet friction as in Beatus et al. (2012). We adopt a
similar methodology, except we use the boundary condition derived by Burgess & Foster
(1990) instead of the empirical friction force. Sarig et al.’s results were further analysed
by Green (2018), who showed that the dipole approximation of Beatus et al. (2012) works
well even when the bubble spacing is rather small and extended the analysis to model
an arbitrary number of bubbles in the large-spacing asymptotic limit.

In §2 we derive a model for a bubble being swept along by a uniform flow in a Hele-Shaw
cell, in a distinguished asymptotic limit where the Bretherton pressure drop is of the same
order as the Hele-Shaw viscous forces. In this régime, the bubble remains approximately
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Figure 1: (a) Plan view of a bubble in a Hele-Shaw cell with a uniform background flow
of speed U. (b) Side view of the bubble.

circular, as in many microbubble experiments; the pressure in the surrounding liquid is
found by solving a Neumann problem involving the a priori unknown bubble velocity,
which is determined by a coupled net force balance on the bubble. We first derive the
equation of motion for a single isolated bubble, which is equivalent to the model obtained
by Reichert et al. (2019) using a dissipation argument. We then generalise the approach
to describe an arbitrary collection of bubbles. In §3, we demonstrate possible analytical
and numerical solution techniques by applying the model to some practically relevant
examples. In particular, we show that proximity to cell boundaries and/or to other
bubbles can either increase or decrease the bubble propagation speed, depending on the
value of a single key dimensionless parameter. In a train of three or more bubbles, these
effects result in the successive formation and breakup of bubble pairs in a phenomenon
which resembles the dynamics in a Newton’s cradle. We conclude in §4 by discussing our
findings and the limitations of our model.

2. Model derivation
2.1. Isolated bubble in an infinite medium
We begin by considering an isolated bubble in a Hele-Shaw cell of thickness fL parallel
to the (&, §)-plane. Under the lubrication approximation, in the limit where A is much
smaller than the horizontal dimensions of the cell and the bubble, the flow away from
the bubble is governed by the Hele-Shaw equations:

o= 3a (1—4?2), (2.1a)

h2

V=0, (2.10)

U= 12ﬂVp. (2.1¢)
Here, v(&, g, %) is the full fluid velocity profile, @ (&, §) is the depth-averaged fluid velocity,
Ze [—iz/Z, }Al/Q] denotes the height coordinate, p(Z,§) is the leading-order pressure, and
[ is the fluid viscosity.

In this section we focus on the simple model problem of a single bubble in a large cell
with a prescribed uniform background flow of speed U in the Z-direction, which gives us
the far-field condition

w— Ui as #24)% = oo, (2.2)

where % is the unit vector in the Z-direction.
Looking down on the cell from above (figure 1a), the boundary of the bubble appears
to be a closed curve in the (&,9)-plane, on which we impose the effective boundary



4 D. J. Booth, I. M. Griffiths and P. D. Howell

conditions (Meiburg 1989)
n-a="U,, (2.3a)
2y 24 )
po—p= % + gﬁ(Can)Cai/?’ + 255 (2.3b)

Here, n, U, and & are the outward-pointing normal, normal velocity and curvature of
the apparent bubble boundary, respectively; 4 is the surface-tension parameter, py is the
uniform pressure inside the bubble, Ca,, = /lUn /4 is the capillary number based on the
normal velocity, and 8 is the Bretherton coefficient, whose value depends on whether
the meniscus is advancing or retreating (Bretherton 1961; Halpern & Jensen 2002; Wong
et al. 1995):

b1 ~ 3.88 when Ca,, > 0,

2.4
B2 ~ —1.13 when Ca, < 0. (24)

B(Ca,) = {
The first term on the right-hand side of equation (2.3b) is the capillary pressure
difference due to the meniscus at the bubble boundary, whose leading-order radius of
curvature is given by fz/ 2. The second term containing the capillary number is the
correction to the pressure difference in the limit Ca,, < 1, derived in Bretherton’s original
paper (Bretherton 1961), due to the existence of the thin-film regions between the bubble
and the walls of the cell (see figure 1b). The final term in (2.3b) captures the in-plane
contribution to the curvature of the bubble interface, including the 7/4 factor derived
by Park & Homsy (1984).
We will further discuss the underlying assumptions and validity of the boundary
condition (2.3b) below in §4.

2.2. Non-dimensionalisation
We non-dimensionalise the model (2.1)~(2.3), scaling lengths with a typical bubble
radius, R, and velocities with the far-field uniform flow speed, U. We also scale p with
120U R/h?, pp with 24/h and & with 1/R. This process yields the following dimensionless
system (in which dimensionless variables are denoted without hats):

Vip=0 in £, (2.5a)
3C
Py — p =1+ Ca2/3R(U,) U3 + %m on 08, (2.5b)
€
n-Vp=-U, on 02, (2.5¢)
pr~—x+o0(l) as 2% +y? — oo, (2.5d)

where (2 is the fluid domain and 92, is the apparent bubble—fluid boundary in the (z, y)-
plane, whose normal velocity is U,,. The far-field condition (2.5d) (with no logarithmic
contribution) enforces conservation of the bubble area and thus in principle allows the
bubble pressure p, to be determined as part of the solution.
The system (2.5) contains two dimensionless parameters, the aspect ratio and the
capillary number, defined by
_ Ca=U (2.6)
2R gl
respectively. For the boundary-value problem (2.5) to be valid, both of these parameters
must be small: the Hele-Shaw model relies on € being small, while the boundary condition
(2.3b) is an asymptotic approximation in the limit Ca — 0 (Park & Homsy 1984). In the

€
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boundary condition (2.5b), the dominant balance depends on the relative size of these
two small parameters.

In this work, we study flows in which the Hele-Shaw pressure is of the same order as
the Bretherton drag term, and equation (2.5b) shows that this occurs when Ca = O(e?).
Expanding p, and x as asymptotic expansions in powers of € we then see that

3Ca em
Dbo + Dby + €Dy — ——pHO(3) ~ 1+ — (ko + er1) + SC2BUZ2 1+0(S3)  (2.7)
€ 4 ——o—
N—— 2
O(e2) O(e?)

on 0f2,. At O(1) we find that py, = 1, indicating that the leading-order bubble pressure
is determined by the capillary pressure jump across the meniscus. At O(e) we obtain
ko = 4pp, /7 = constant, which implies that the bubbles we are studying are circular to
leading order in €. By our choice of length-scale R we can take the bubble here to have
unit dimensionless radius.

Since the bubble remains (approximately) circular for all time, the normal velocity
on the boundary is just given by U, = Uy - n, where U, = (U, V,) is the constant
bubble velocity. In terms of plane polar coordinates (r, §) based on the bubble centre, we
therefore find that the pressure in the liquid satisfies the problem

Vip=0 in r>1, (2.8a)

? =-Up-n=-Uycosf — V,sinb on r=1, (2.80)
"

p~ —rcosh+o(l) as 1 — oo. (2.8¢)

If U}, were known, then p would be uniquely determined by (2.8). To find the bubble
velocity, we return to the boundary condition (2.7), which so far has been imposed up
to O(e). In principle the solvability condition at O(€?) determines U}, and closes the
problem. As a shortcut to deriving this condition, we note that, for any smooth closed
planar curve 02, and with k denoting the unit vector in the z-direction,

d d?
f nds:j{ kx—rds:o, f finds:j{ ——st:O7 (2.9)
a2 a2 ds a2, o, ds

by standard results from differential geometry (see, e.g., Kreyszig 1959, Chapter 2). We
therefore obtain from (2.5b) the constraint

€
—pnds = ——— U, -n)(U ~n2/3nds, 2.10
f[émb pds= o5 B mUs (2.10)

which may be interpreted as a force balance on the bubble. To evaluate the integral on
the right-hand side of (2.10), we now use the fact that, to leading order, the boundary
0S2 is the unit circle, which we parameterise using
Ub k x Ub .
7r(s) = = c0ss + ———— sins. 2.11a
STA Ul —
With 8 given by (2.4), we thus obtain

cos s)| cos s|%/3
U, [/

Vval'(4/3) U
r(11/6) |Ub|li/3> (2.11b)

27
ﬁ(Ub-n)(Ub~n)2/3nds=/ A( (Upcoss+ k x Uysins) ds
0

292,

= (p1 — B2)

where I" denotes the Gamma function. Thus (2.10) reduces to the following condition for
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the bubble velocity:

U, )
TARE = j{_l —pnds, (2.12)
where we define the Bretherton parameter
5 _3VTI(11/6) Cal/? . 12Ca1/3 (2.13)
o (51 —62)F(4/3) € - € ’ '

By assumption, ¢ is O(1) while e and Ca are asymptotically small.

2.3. Solution

The problem (2.8) for an isolated circular bubble in an infinite cell is easily solved to
obtain the pressure

U,—-1 Vi
p= ( b —r) cosf + —2 sin 6. (2.14)
r r
We can thus evaluate the integral on the right-hand side of the force balance (2.12) to
obtain an equation for the bubble velocity, namely

U
|Ub|1/3

It follows that the bubble moves parallel to the background flow, as expected, with
U, = Uyi, where U, satisfies the algebraic equation

Uz®

T = (2.16)
The equation (2.16) for the bubble speed is equivalent to that found in Reichert et al.
(2019), using a laborious viscous dissipation argument. (In Reichert et al. (2019) the
constant of proportionality in (2.13) is found to be 1.20 rather than 1.12, due to inaccurate
calculation of the integral and the Bretherton constants. Their method involves solution
for the height of the thin liquid films above and below the bubble, followed by calculation
of the viscous dissipation due to the thin films.) We note that equation (2.16) may
be transformed into a cubic and thus solved explicitly for Up; however the resulting
expression is unwieldy and not particularly illuminating.

We plot the prediction (2.16) for the bubble velocity U, versus the Bretherton pa-
rameter ¢ in figure 2, which shows good agreement with experimental data taken from
Reichert et al. (2019); Park et al. (1994). We observe that U, is an increasing function
of §; from (2.13) we see that § is proportional to the bubble radius ﬁ, which implies
that larger bubbles should travel faster. As § — 0, the Bretherton drag term dominates
and Uy, ~ (26)3/2. At the other extreme where 6 >> 1, we recover the traditional Taylor—
Saffman result (Taylor & Saffman 1959) of the bubble moving twice as fast as the outer
flow. However, we note that the assumption of the bubble remaining approximately
circular eventually fails if 0 is too large. From (2.7) we observe that variations in the
bubble curvature are of order §%¢, which is assumed to be small. We conclude that our
model remains valid when 6 is large, provided 1 < § < e~ 1/2.

From equation (2.16) we observe a transition in behaviour at 6 = 1: if 6 < 1 the
bubble moves slower than the outer flow (U, < 1) while if § > 1 the bubble moves faster
than the outer flow (U, > 1). The critical case where U, = 1, so the bubble moves with
the external flow, corresponds to the particular solution of the problem where p = —x.
We see that this solution satisfies (2.8) provided (U, V) = (1,0), and the force balance
(2.12) is also satisfied provided ¢ = 1.

= 0(2i — Uy). (2.15)
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Figure 2: The ratio U, of the bubble velocity to the outer fluid velocity as a function
of the Bretherton parameter, 6. The solid curve shows the model prediction (2.16). The
points show experimental data: g (¢ = 0.035) and @ (¢ = 0.071) from Park et al. (1994),
with Ca in the range 2.3-12.7 x 107%; [] (e = 0.044), O (e = 0.07), and A (e = 0.091)
from Reichert et al. (2019), with Ca in the range 0.4-6.0 x 1073.

2.4. The N-bubble problem

It is straightforward to generalise the model derived above to describe a system of N
bubbles. For the moment we continue to treat the Hele-Shaw cell containing the bubbles
as effectively infinite, with a uniform flow imposed at infinity; the effects of cell boundaries
will be incorporated below.

As in §2.2, each bubble remains circular (to leading order), with dimensionless radius
Ry, and velocity Uy, say, for 1 < k < N. The dimensionless pressure in the liquid domain
{2 therefore satisfies

Vip=0 in £, (2.17a)
n-Vp=-U-n on 02, (2.170)
Vp — —1i as 2% +9y? — oo, (2.17¢)

where 02, denotes the (circular) boundary of the k" bubble. In principle, p would thus
be determined if we knew the velocity Uy of each bubble. Indeed, the boundary-value
problem described in (2.17) would then be equivalent to finding the velocity potential
exterior to a collection of moving bodies or stirrers in two-dimensional irrotational flow
with no circulation. The two-body version of this problem has been solved by Tchieu
et al. (2010), and general integral expressions for the velocity potential due to any finite
number of moving bodies are given by Crowdy (2008).

In the present problem, however, the bubble velocities are not known in advance. As in
§2.2, the required equation of motion is obtained by performing an effective force balance,
which here leads to

Uy 1)
UL~ =Ry fi’mk pnds. (2.18)

Again we notice that p = —z is a solution to the problem (2.17) if and only if all of
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the bubbles move at the same velocity Uy, = 4 for all k. The force balance (2.18) then
requires 0 Ry, = 1. Therefore it is possible for all of the bubbles to be convected at the
same velocity as the outer flow, regardless of their position, only when all the bubbles
are the same size.

Thus far we have formulated a general model for the motion of approximately circular
bubbles in a Hele-Shaw cell and solved the model explicitly for the simplest possible case
of a single isolated bubble. In the next section we use the model to analyse some more
complicated examples, which illustrate the effects of walls on the bubble motion and the
interactions between multiple bubbles.

3. Examples
3.1. Isolated bubble near a wall

Next we consider the case of a single bubble in a semi-infinite Hele-Shaw cell (y > 0)
with an impermeable wall at y = 0 and a uniform flow —Vp ~ ¢ at infinity. The bubble
is taken to have unit dimensionless radius with its centre a dimensionless distance a > 1
away from the boundary. The following analysis allows us to examine how proximity to
a wall affects the velocity of the bubble, and also illustrates the application of complex
variable methods to our model. This formulation is equivalent to the problem of two
identical bubbles in an infinite cell with their centres separated by 2a and lined up
perpendicular to the outer flow direction, with the wall representing the line of symmetry
between them. The corresponding two-bubble problem was solved by Sarig et al. (2016)
using bipolar coordinates rather than complex variables. We choose the bubble centre to
be instantaneously at z = x + iy = ai, so that the domain of interest is 2 = {z : Im(z) >
0,z —ail > 1}.

Since p satisfies Laplace’s equation, we introduce a complex potential w(z) = —p + i1,
where 1 is the streamfunction. The problem is then to find a holomorphic function w(z)
in the region (2 such that

Im[w(2)] =0 on Im(z) =0, (3.1a)
Im[w(2)] = g + Im [U,2] on |z—adil=1, (3.1b)
w(z) ~z as z — 00. (3.1¢)

Both the complex bubble velocity U, = Uy + iV, and the real constant ¢ are a priori
unknown; ¢ represents the flux of liquid through the gap between the bubble and the
wall (relative to the moving bubble). Once we have solved for w, the equation of motion
(2.12) may be imposed by evaluating
1 1 U
— w(z)dz = —Up + fj{ pidz = —U, + 7171/3 (3.2)
1T Jog, T Jog, 0 [Uy|
We proceed by conformally mapping {2 onto a concentric annulus, where the problem
becomes solvable with standard techniques. Following the mapping

z—iva? —1

) = ! 3.3
R 33)

the solution domain in the ¢-plane is A = {¢ : X < [(] < 1}, where
X=a—+Va?-1. (3.4)

Writing the complex potential in the form w(z) = z + W(f(z)), we find that W is
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Figure 3: The function F'(a) defined by (3.10).

holomorphic on A and satisfies the boundary conditions

Im[W(¢)] =0 on [¢]=1, (3.5a)
Im[W({)] = ¢—Im {a <1—C>] on [(|=X, (3.5b)
where o = (1 —Hb) ivaz —1.

We then find that the a priori unknown flux ¢ is given by

g=Im(a) =(1-Up)Va2—1, (3.6)

and the complex potential in the {-plane is given by

e 2X2n
W) =D 7 (a¢" +ac™), (3.7)
n=1

We can thus calculate the integral on the left-hand side of equation (3.2) by transforming
into the ¢-plane and then using Cauchy’s Residue Theorem to obtain

L e YL WO 4 yrrte
R s T L SO
where

with X given as a function of a by (3.4). The formula (3.9) may be written in closed
form as

Vi)
F(a) = 2(a* - 1)-X5—, 3.10
(@) = 2(a = )25 2 (3.10)
in which ¥x2 denotes the ¢-digamma function (Salem 2012), defined by
1 dI,(2)
W, (z) = 2 11
q( ) Fq(Z) dZ ) (3 )

where I, is the g-gamma function (Askey 1978). As shown in figure 3, F'(a) is a decreasing
function of a, with F(1) = 72/3 and F(a) — 2 as a — oo.

Comparing imaginary parts in equation (3.2) we find that V}, = 0, so the bubble moves
parallel to the wall. Then equating real parts in equation (3.2), the bubble’s velocity in
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the z-direction is found to satisfy the algebraic equation

2/3

(1- Ub)%(a) TU, 0- (3.12)

Once again (3.12) gives us a cubic that in principle can be solved explicitly for the
dimensionless bubble velocity U,. Rather than writing this complicated expression out
explicitly, below we briefly examine the possible limiting cases.

First we observe that U, = 1 when § = 1, so the bubble moves precisely with the
external flow at this same critical value of the Bretherton parameter, regardless of the
distance from the wall. As noted in §2.3, this special case corresponds to the particular
solution where p = —z. For the extreme values of the Bretherton parameter §, using
(3.12) we derive the limits

F(a)

Uy, — Fla) -1 as 0 — 00, (3.13a)
Uy ~ (6F(a))*/? as 06— 0. (3.13b)
Taking the derivative of (3.12) with respect to § we find
oU, 3Up

Uy _ 0, 3.14
D5 [38(F(a) ~ 1)U, + 2] g (344

so Uy is a strictly increasing function of 8. It follows that Uy > 1 when § > 1 and wice
versa.

As noted above, F(a) — 2 as a — 00, so in this limit (3.12) reduces to the result
(2.16) for a bubble in an infinite fluid medium, as expected. Similarly we can look at
the limit @ — 1 in which the bubble touches the wall. Since F(1) = 72/3, the bubble
velocity tends to a non-zero value, which depends on the Bretherton parameter through
the relation

3U2/®
—_— = . 3.15
w2 — (w2 = 3)U, (3:15)
For intermediate values of a, we find that
0 —0F'
% _ (@) U, — 1), (3.16)

da | §(F(a) —1) + 2U; P

in which the term in square brackets is positive. It follows that Uy is a decreasing function
of a when ¢ < 1, but an increasing function of a when § > 1.

The behaviour of the bubble velocity as the parameters a and § are varied is shown
in figure 4. As predicted, we observe that the presence of the wall either increases or
decreases the bubble velocity, depending on whether 6 < 1 or § > 1, respectively. At the
critical value of § = 1 we have U, = 1 and the distance from the wall no longer matters.

At first glance it appears paradoxical that proximity to the wall may cause the bubble
either to speed up or slow down, depending on the size of §, but the behaviour may be
explained as follows. By using the boundary condition (2.17b) and integration by parts,
the force balance (2.18) may be rewritten as

1 1
Upyll+ —— | = — d 3.17
”( +6|Ub|1/3> ﬂfggb“ * (3.17)

T = —Vp is the dimensionless liquid velocity. For an isolated bubble,

where u = (u,v)
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Figure 4: (a) Bubble velocity U, versus Bretherton parameter § for a = 1 (dashed),

1.5 (dotted) and oo (solid). (b) Bubble velocity Uy versus distance a from the wall for
Bretherton parameter 6 = 1/2 (dotted), 1 (solid), 5 (dashed), 6 = oo (dot-dashed).

with the pressure given by (2.14), the integral on the right-hand side of (3.17) is easily
calculated to be 24, reproducing the equation of motion (2.15), and in general this term
captures the influence of the outer flow on the bubble motion.

Now, what happens when a wall is introduced next to the moving bubble? From (3.6),
we can calculate the average flow speed through the gap between the bubble and the

wall (relative to the moving bubble) as
Ja+1
( v) a—1

1 a—1 q
afl/o (u Ub)dy_a—l
First suppose the bubble is moving more slowly than the external flow, so U, < 1.
The right-hand side of equation (3.18) increases as the separation a — 1 between the
bubble and the wall decreases, measuring the acceleration of the liquid as it squeezes
between the bubble and the wall. We find that the average velocity on the bubble surface
thus increases and, according to (3.17), the bubble velocity also increases (relative to
an isolated bubble). The horizontal component of the right-hand side of (3.17) may be
calculated as

(3.18)

1

j{ uds =2+ (1 - Uy)(F(a) —2),
T Jos,
which indeed increases as a decreases when U, < 1.

On the other hand, if the bubble moves more quickly than the external flow (U, > 1),
then the liquid is squeezed backwards through the gap between the bubble and the wall
so, by the same argument, the integral on the right-hand side of (3.17) and the bubble
velocity should both decrease. This physical reasoning indeed agrees with the behaviour
observed in figure 4. As noted above, the bubble travels faster or slower than the external
flow depending on whether § < 1 or § > 1, and the effect of proximity to the wall is
accordingly either to speed up or to slow down the bubble.

(3.19)

3.2. Isolated bubble in a channel

Next we consider the motion of a singular bubble of unit radius in a Hele-Shaw channel
of width W > 2, between impermeable walls at y = £W/2. We again impose a uniform
flow with p ~ —z at infinity and, without loss of generality, take the bubble centre to be
instantaneously at (z,y) = (0,ys), where |yp| < W/2 — 1. It may then be shown that p is
an odd function of x, and it follows from (2.12) that V, = 0. Thus a single bubble in a
channel will continue moving parallel to the outer flow no matter where in the channel
it is initially placed.

To facilitate numerical solution, we pose the problem in terms of the streamfunction 1,
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which satisfies Dirichlet boundary conditions:

w

w
Y(x,y) = :I:? at y= :I:?, (3.20a)
Y(x,y) = q+ Upy at 22+ (y—)? =1, (3.200)
Y(z,y) =y as & — =oo. (3.20¢)
The a priori unknown constant ¢ is in principle determined by the constraint
0
9¢ ds =0, (3.21)
o 3n

which follows from single-valuedness of the pressure. The streamfunction is then decom-
posed as ¥ = Upy+ (1 —Up)1h1 + g2, where each 1y, satisfies a normalised boundary-value
problem that is independent of ¢ and U,. We solve for 11 and 12 using finite element
methods and then compute the four integrals

_ 1 Ny Oy,

I, = - 7{995 < o dy oy dx) , (3.22q)
1 Ny, O

Ji = - 7{9% <x o +(y— ) a9y ) dez, (3.220)

(k =1,2). The force balance (2.12) and constraint (3.21) provide two algebraic equations
for ¢ and Up. As in §3.1, the resulting equation of motion may be expressed in the form

Uz®
O F W)+ 0y (32
where now F(W,y,) = JoI1 /1o — Jyi. For given values of W and yp, the value of F(W,y)
can be computed once-and-for-all, following the procedure described above, and the
dependence of U, on ¢ is then determined by (3.23). An analogous approach is used
to compute the numerical solutions with multiple bubbles below.

We start by considering a bubble travelling along the centre-line of the channel, with
yp = 0, in which case it is easy to see that ¢ must also equal zero. Hence F(W,0) = —Ji,
and the one remaining integral can in principle be calculated using a Schwarz—Christoffel
mapping (Anselmo et al. 2018) or approximation schemes described by Crowdy (2016);
Love (1938), for example.

In figure 5(a) we examine the effects of varying the channel width W and Bretherton
parameter §. We observe that U, is an increasing function of § and as § — oo it tends
to a value strictly less than the Taylor—Saffman value Uy, = 2. Again § = 1 is the critical
value where the bubble moves with the external flow independently of the channel width,
corresponding to the exact solution of the problem where p = —z. As in §3.1, the bubble
may be accelerated or retarded by the presence of walls, depending on whether § < 1 or
0 > 1, respectively. In the limit of large W, the solution approaches that for an isolated
bubble, as expected, while the solutions all converge to U, = 1 as W — 2. This latter
limit corresponds to the case when the bubble exactly fits the channel width and, by
conservation of mass, must travel at the same speed as the outer flow.

In figure 5(b) we study the effects of the bubble being off-centre in the channel by fixing
W = 4 and varying y,. Again we observe that proximity to a wall may either increase
or decrease the bubble velocity, depending on whether § < 1 or § > 1, respectively, with
0 = 1 the critical case where U, = 1 for all ;. As in §3.1, this behaviour is caused by the
liquid flowing through the gaps between the bubble and the channel walls, which either
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Figure 5: Bubble velocity U, versus: (a) channel width W, with offset y, = 0; (b) distance
W/2—1—y, from the top channel wall, with width W = 4 and offset y;, € [0, 1]; Bretherton
parameter § = 1/2 (dashed), 1 (solid), § = 5 (dotted), § = co (dot-dashed).

09

08|

0.7+

06

Increasing S

051

L L L L L L L L
2 3 4 5 6 7 2 3 4 5 6 7

w w
Figure 6: Bubble velocity U, versus channel width W for a two-bubble system with
separation S = 0.2 (dotted), 2 (dashed), single-bubble solution (solid), and (a) § = 1/2;
(b) 6 =5.

speeds up or slows down, thereby increasing or decreasing the average velocity at the
bubble surface in equation (3.17).

3.3. Two identical bubbles in a channel

Next we examine a system of two identical bubbles travelling along the centre-line of
the channel. Without loss of generality we take the centres of the two bubbles to be
initially at £(1 4+ S/2,0), where S is the bubble separation. By symmetry, one can then
show that the bubbles must both move along the centre-line with identical velocities
U, =U; = (U,,0).

In figure 6 we show that the two-bubble solution rapidly converges to the corresponding
one-bubble solution as we increase the separation between the two bubbles, with the
solutions matching up very closely even for S = 2. For § < 1 the bubble pair moves more
slowly than a single bubble, but for 4 > 1 it moves more quickly. In other words, the
acceleration or retardation of the liquid as it squeezes through the gaps between each
bubble and the channel walls (as described in §§3.1-3.2) is suppressed by the presence of
the other bubble.

3.4. A Hele-Shaw Newton’s cradle
With three identical bubbles moving along the centre-line of a channel, we find that
the bubbles in general have different speeds so, for the first time, we have to solve an
unsteady problem. At each time-step we compute the three instantaneous bubble speeds
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by following a similar approach to that described in §3.2, and then update the bubble
positions. We again see different behaviour depending on whether § < 1 or § > 1.

At the special value § = 1, all of the bubbles move with the background flow, so
the distances between them remain fixed. When § < 1, the bubbles move more slowly
than the surrounding liquid. In this case we recall from §3.3 that the bubbles’ speed
is increased by confinement from the channel walls but decreased by the presence of a
second bubble. When there are three bubbles, we find that the outer two bubbles shield
the middle one from the accelerating influence of the walls. We therefore observe that the
centre bubble moves backwards relative to the outer two and thus eventually becomes a
pair with the rear bubble (see figure 7(a)). This qualitative behaviour has been observed
experimentally by Shen et al. (2014); however there were surfactants in their system so a
quantitative comparison with our model is not possible. The opposite effect occurs when
0 > 1, where now the central bubble moves faster than the outer ones and so eventually
joins with the front most bubble (see figure 7(b)).

Figure 8 depicts the dependence on § of the time T taken for the middle bubble either to
be caught by the rear bubble or to catch the front bubble. The initial bubble separations
are set to 1 and 0.04, as shown in figure 7(a) for 6 < 1 and figure 7(b) for § > 1, and we
show the results for two channel widths W = 4 and W = 20. We see an asymptote at
6 = 1, as expected when all the bubbles travel at the same the outer fluid speed. There
is also an asymptote as § — 0, since the bubble velocities all tend to zero in this limit.
As § — oo, T approaches a finite non-zero value that depends on W. Furthermore, we
observe that T increases as we decrease the channel width, with T"— oo as W — 2 for
all values of §, again because the bubbles all move at the same speed in this limit, by
conservation of mass. Even at W = 4, the transit time is quite large for all values of 9,
indicating that the difference in speed between the bubbles is relatively small.

When there are more than three bubbles, this effect can occur multiple times, as
illustrated in figure 9(a) for a case with 6 < 1. Initially the second bubble breaks away
from the front one to form a pair with the third bubble, before that pair itself breaks
up so the third and fourth bubbles can form a pair. For § < 1, we recall from §3.3 that
a pair of bubbles moves more slowly than an isolated bubble, so for longer times the
trailing pair in figure 9(a) is left behind by the front two. Beatus et al. (2012) observed
qualitatively similar longitudinal waves propagating backwards relative to the outer fluid
flow in a series of bubbles on the centre-line of a Hele-Shaw channel, behaviour which
they termed the peloton effect. However we find that the wave propagation can occur
in either direction, depending on whether § < 1 or 6 > 1. Figure 9(b) shows a typical
case with § > 1, where the initial condition is the reverse of that in figure 9(a), and
the observed evolutions are almost mirror images of each other. When § > 1, a pair of
bubbles travels faster than an isolated bubble, so eventually the front pair breaks away
and leaves behind the other two bubbles.

The formation and breakup of successive bubble pairs observed in figure 9 is highly
reminiscent of a Newton’s cradle, even though there is no inertia in our system, and the
motion arises solely due to viscous hydrodynamic interactions.

4. Conclusions

In this paper we develop a model for the motion of bubbles in a Hele-Shaw cell in
the distinguished limit where the typical bubble aspect ratio € and capillary number Ca
satisfy Cal/? = O(e) < 1. In this régime, each bubble remains approximately circular,
and its velocity is determined by a net force balance. For an isolated bubble in an infinite

Hele-Shaw cell, the model may be solved analytically, and the qualitative behaviour
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Figure 7: The progression of a series of three identical bubbles with: (a) 6 = 1/2; (b) § = 5.
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Figure 8: The transit time T versus Bretherton parameter § for the system shown in
figure 7(a) for 6 < 1 and figure 7(b) for § > 1, in a channel of width W = 20 (solid)
and W = 4 (dashed). When § < 1 the computation starts with separations of 1 and
0.04 between the rear two and front two bubbles, respectively, and finishes when the
separation between the rear two bubbles is 0.04; and vice versa when § > 1.
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Figure 9: The progression of a series of four identical bubbles with: (a) § = 1/2; (b) § = 5.
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depends on a dimensionless “Bretherton parameter”, § o Cal/? /€. In particular, the
bubble moves faster than the outer fluid speed when § > 1, slower when 6 < 1 and
precisely with the background flow if § = 1.

As shown in figure 2, the theoretically predicted bubble velocity agrees quite well with
the experimental literature, but we note that very little experimental data exists for the
case § < 1. The régime with § < 1 corresponds to Ca < 0.7¢3 and, with small values of the
aspect ratio € (as assumed in the Hele-Shaw theory), requires extremely small values of
Ca. At such very low capillary numbers, the thin films between each bubble and the cell
walls become so thin that other physical effects not included in the model (e.g. disjoining
pressure) may become important, leading for example to film rupture. We believe it is
for this reason that the experiments at small values of § usually include surfactants to
stabilise the thin films. Our model does not at present capture the influence of surfactants
on the bubble dynamics, though we note that some previous authors (e.g. Maruvada &
Park 1996; Reichert et al. 2019) have tried to incorporate such effects in an ad hoc way.

When the effects of cell boundaries and multiple bubbles are included, we still observe
striking changes in the qualitative behaviour depending on whether ¢ is greater or less
than 1. For example, in a train of three identical bubbles travelling along a Hele-Shaw
channel, we find that the middle bubble either catches up with the one in front (if § > 1)
or is caught by the one behind (if § < 1). In longer bubble trains, we observe bubble pairs
successively forming and breaking up from the front to the back of the train if § < 1
or vice versa if § > 1, resembling experimental observations by Beatus et al. (2012),
for example. Although this behaviour is reminiscent of a Newton’s cradle, it arises from
long-range hydrodynamic interactions rather than through momentum transfer between
the bubbles.

This phenomenon suggests that it is very difficult to maintain a finite stream of
equally spaced identical bubbles moving along the centre-line of a Hele-Shaw channel.
The bubbles are always expected to bunch up into pairs or larger aggregates, unless we
are in the special case where 6 = 1. We do find, though, that the relative bubble velocities
are often quite small, so the clustering occurs quite slowly, and it may be minimised in
experiments by reducing the channel width and by keeping § as close to 1 as possible
(see figure 8). In future work we will analyse the possible instability of bubble trains to
lateral perturbations, as is also often seen in experiments (Beatus et al. 2006; Shen et al.
2014).

It can be shown that the equation of motion (2.18) allows bubbles to approach and
touch cell boundaries or each other in finite time. In principle our model breaks down
when the distance between two bubbles (or between a bubble and a wall) becomes
comparable with the cell thickness. However, it is often observed in experiments that
bubbles can remain apparently stuck together without coalescing (Battat et al. 2022),
and our model can easily be adapted to describe propagating pairs of bubbles that either
remain attached or drift apart, depending on the sign of the mutual force between them.

We limit our attention in this paper to examples with relatively low numbers of equally
sized and collinear bubbles. For a general system of N bubbles, our solution method
would involve the numerical solution of 3N Dirichlet problems and computation of 9N?
force integrals to evaluate all of the bubble velocities at each time-step. For large NV, this
approach can become very slow even when the unsteady phenomena described below
are neglected. An attractive alternative approach is to assume that the bubbles are
sufficiently well-spaced to be approximated by dipoles, as in Beatus et al. (2012); Shen
et al. (2014). In principle, dipole methods are valid only when the bubbles are well-
separated; for two identical bubbles in an infinite Hele-Shaw cell, Green (2018) found
that the dipole approximation works well when the bubble separation is greater than
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about two bubble radii. It is the subject of current work to determine whether the
dynamics we observe (e.g., in figures 7 and 9) can be adequately captured by a dipole
model, even when the bubbles become arbitrarily close and the dipole approach is not
strictly valid.

Figure 2 shows that the speed of an isolated bubble is an increasing function of its
radius. In examples with many non-identical bubbles, the dynamics depends on the
relative sizes of neighbouring bubbles, as well as on the bubble interaction effects seen in
figures 7 and 9, for example. In microfluidic experiments and devices, the bubble radii
are often almost but not precisely uniform, and the resulting delicate balance between
size effects and interaction effects is also the subject of current research.

As promised in §2, we now discuss the validity of the boundary condition (2.3b). At
the front interface of a moving bubble, the additional pressure drop (proportional to
Cai/ 3) may be derived by solving Bretherton’s problem for a meniscus advancing with
effective capillary number Ca,, (Bretherton 1961). As noted by Reichert et al. (2019),
this approach is invalid close to points where Ca,, changes sign. Burgess & Foster (1990)
showed that the discontinuous term in (2.3b), involving the function 3, is smoothed out
in “lateral transition regions” (LTRs) where Ca, = O(¢3/5Cal/®). In the distinguished
limit studied here, Ca is assumed to be of order €2, and it follows that the LTRs contribute
corrections of order €5/° to the force balance (2.10). Since other corrections of order e
have already been neglected, we conclude that these effects are indeed negligible in our
model.

At a retreating meniscus, as well as the local value of Ca,, the additional pressure
drop depends also on the thickness of the liquid films between the bubble and the cell
walls into which the interface is propagating. In general, this dependence leads to a drag
coefficient of the form

B(Ca,) = F (Ca} /Cay) (4.1)

when Ca,, < 0, where Ca; is the normal capillary number at the corresponding point on
the front interface which deposited the thin films currently being consumed by the rear
interface, and the function F has been calculated e.g. by Burgess & Foster (1990). For a
circular bubble moving at constant velocity, we have Ca;” = Ca,, so 3(Ca,) = F(1) = B,
whenever Ca,, < 0, as in (2.4). For a non-circular bubble moving at constant velocity,
the argument of the function F in (4.1) is equal to Ca, /Ca,, = cosf /cosf_, where 6
are the angles made with the direction of motion at corresponding points on the front
and rear bubble interfaces (Burgess & Foster 1990).

The situation is more complicated when the motion is unsteady, even if the bubbles
remain (approximately) circular, as assumed in this paper. According to (4.1), the pres-
sure drop across the rear meniscus depends on the normal velocity at the front meniscus
at some previous time, and the force balance (2.18) thus produces an integral equation
rather than an algebraic equation for the bubble velocity. As a first approximation, we
can justify ignoring such effects in the unsteady multi-bubble solutions shown in §3.4 by
observing that the computed bubble velocities are slowly varying (on a typical transit
time-scale R / U ). Nevertheless, it is the subject of current research to quantify the impact
of non-local dynamics on the bubble motion in general.
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