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We investigate how the addition of surfactant affects the governing equations for a bubble in a
two-dimensional channel in the small-capillary-number limit. In the limit where the timescale
for absorption of surfactant is much shorter than the timescales for transport of surfactant
along the surface of the bubble, we derive a set of idealised free-surface boundary conditions
that capture the effects of surfactant in a single dimensionless “elasticity parameter”, and
apply them to the front and rear of the bubble separately. At the front of the bubble, there
are three regions of interest: the front cap, the thin film region, and a transition region that
smoothly connects the other two regions. Through matched asymptotic expansions, we derive
predictions for the thin film height and the pressure drop across the front meniscus. We find
that the viscous pressure drop across the front meniscus is always larger for a surfactant-
laden bubble than for a surfactant-free bubble, by an order-one factor of up to 4%/3. Using
a similar analysis at the rear of the bubble, we find that the viscous pressure drop across
the rear meniscus is also always larger in magnitude for a surfactant-laden bubble than for a
surfactant-free bubble, again up to a maximum factor of 4>/3. Finally, we use these results to
show that, for the same flow conditions, an isolated surfactant-laden bubble in a Hele-Shaw
cell will travel more slowly than an isolated surfactant-free bubble.

1. Introduction

Bretherton (1961) first analysed the motion of a surfactant-free bubble through a viscous
liquid in a capillary tube. His analysis was modernised by Park & Homsy (1984) into the
language of matched asymptotic expansions. We follow a similar methodology in this paper
for a surfactant-laden bubble. We then use the results of the analysis to show how the equation
of motion derived by Booth et al. (2023) for an approximately circular bubble in a Hele-
Shaw cell is modified by the presence of surfactant, resulting in a model that systematically
accounts for the effects of surfactant-laden thin liquid films above and below the bubble,
without the inclusion of any ad hoc fitting paramters.

There is a plethora of literature studying the propagation of a bubble or a finger of
air in a viscous liquid containing surfactants (see, for example, Ghadiali & Gaver 2003;
Halpern & Gaver 2012; Park 1992; Ratulowski & Chang 1990; Stebe & Barthes-Biesel
1995, and references therein). In particular, Ratulowski & Chang (1990) extended the
results of Bretherton (1961) to a finger of air propagating into a viscous liquid containing
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soluble surfactants. They proposed five different distinguished limits based on the convective,
diffusive and kinetic timescales. Park (1992) built on the work of Ratulowski & Chang to
consider the flow of a long bubble in a capillary tube and found that surfactants can rigidify
the bubble’s surface. Maruvada & Park (1996) used these results to describe a rigid elliptical
surfactant-laden bubble in a Hele-Shaw cell, generalising the Taylor & Saffman (1959)
solution for the motion of a bubble with constant Laplace pressure to include the rigidifying
effects of surfactants that can occur in the “convective equilibrium” regime proposed by
Ratulowski & Chang (1990).

In this paper, we focus on what Ratulowski & Chang term the “bulk equilibrium”
model, in which there is an abundance of surfactant in solution, such that the bulk
concentration remains approximately constant. Physically, this limit could correspond to
the bulk surfactant concentration being significantly above the critical micelle concentration
(CMC). Furthermore, we consider the regime in which the surfactant is highly soluble, so the
surface concentration is close to equilibrium with the bulk. Such a system has been recently
studied experimentally by Baué et al. (2025). While the work we present in this paper is
focused on the motion of a bubble, the methodology can be adapted to study the propagation
of a liquid plug or film coating. This problem thus has applications also to the transport of
fluid in the lung (see Waters & Grotberg 2002; Halpern & Gaver 2012; Shemilt ef al. 2023;
Grotberg 2011), and in fibre coating (see Shen et al. 2002; Delacotte et al. 2012).

Ginley & Radke (1989) also study a surfactant-laden bubble in a capillary tube, while
Waters & Grotberg (2002) study the similar problem of the propagation of a surfactant-
laden plug. Both of these papers investigate a regime where the surfactant concentration is
close to equilibrium, with the resulting Marangoni stress along the bubble interface being
negligible at leading order. Both then provide asymptotic results for the pressure drop
across the propagating bubble or plug and the height of the thin film deposited behind. We
consider a similar regime in this paper; however, we study the distinguished limit in which
Marangoni effects enter the problem at leading order. In the limit of small Marangoni stress
we recover the asymptotic predictions of Waters & Grotberg (2002) and Ginley & Radke
(1989); however, we find that their prediction that the film height decreases with increasing
Marangoni stress quickly fails. The thin film height actually starts to increase as the strength
of the Marangoni effect is increased, to a maximum factor of 42/3 times the Bretherton
prediction for a surfactant-free bubble. The factor 4>/3 has been seen in multiple studies
of large Marangoni stress (see, for example, Ratulowski & Chang 1990; Park er al. 1994;
Stebe & Barthes-Biesel 1995; Shen ef al. 2002), and occurs due to the bubble surface being
stationary in the lab frame of reference, rather than satisfying the zero-stress condition used
in the original Bretherton problem.

The basic problem studied in this paper consists of a surfactant-laden bubble propagating
along a two-dimensional channel, as sketched in figure 1. For the surfactant-free case,
Bretherton (1961) obtained approximate formulae for the height A, of the thin film deposited
by the front meniscus and the pressure drop p;, — p across the bubble meniscus, in the limit
as the capillary number Ca tends to zero, namely

hoo ~ a H Ca*/3 (1.1)
and
. . Yo Yo
pb_p~%+ﬁ%c32/3. (1.2)

The dimensionless prefactors ¢ and § are determined numerically: a ~ 1.337, while the
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Figure 1: Schematic of a two-dimensional surfactant-laden bubble propagating at speed
Uy, along a channel of height 2H. We take the origin to be at the start of the thin film
region, whose length and height are denoted by [ and heo, respectively. The pressures in
the bubble and in the fluid outside are denoted by pj, and p, respectively.

value of 8 depends on whether the meniscus is advancing or retreating, with

~ 3.88 t front (ad i i ,
= {,81 at front (advancing) meniscus (13)

B2~ —-1.13 at rear (retreating) meniscus.

Our aim in this paper is to determine how the values of these constants {a, 81, 8>} are
modified for a surfactant-laden bubble, using systematic matched asymptotic expansions.
We then apply these results to the propagation of a surfactant-laden bubble through a Hele-
Shaw cell and thus derive a drag law that contains no ad hoc fitting parameters, in a similar
fashion to Booth ez al. (2023).

This paper is structured as follows. We begin in §2 by writing down the governing equations
for the flow around a bubble propagating through a two-dimensional channel containing a
surfactant-laden viscous liquid. In §3 we describe the asymptotic structure of the front region
of the bubble, following the methodology of Park & Homsy (1984). We find that there are
three regions of interest: the front cap, the thin film region, and the transition region, which
allows for a smooth transition from the front cap into the thin film region. The equations in
the transition region are then analysed in §4, whereby we find the surfactant-laden analogues
of a in (1.1) and B; in (1.3). In §5 we describe the asymptotic structure of the rear of
the bubble, which has an additional matching condition that the height /., of the thin film
flowing towards the rear of the bubble must equal the height of the thin film deposited by the
front meniscus. Then, in §6, we analyse the rear transition region to find the surfactant-laden
analogue of 3, in (1.3). Combining the results of §§4 and 6 for 8, and 3;, in §7 we investigate
how the inclusion of surfactant affects the velocity of an isolated bubble in a Hele-Shaw cell.
Finally, in §8 we summarise our key findings.

2. Governing Equations
2.1. Dimensional modelling

We consider the steady propagation of a two-dimensional bubble inside a channel of height
2H (see figure 1). We orient the £-axis and the Z-axis along and perpendicular to the lower
wall, respectively. We define i and k as the unit vectors in the £- and Z-directions, respectively.
We assume that buoyancy effects are negligible, so the flow is symmetric across the centre-
line of the channel and we can restrict our attention to the region 0 < Z < H. We define the
bubble surface in this region to be at 2 = /(%). The normal to the liquid surface pointing into
the bubble and the tangent to the bubble surface are denoted by n, and ¢, respectively and are



112

113

114
115
116
117
118
119

120

121

122
123
124
125

126

127

128

129
130
131
132
133
134
135
136
137
138
139
140

141

142
143

144
145

146

147

4
given by

=—I,:l)’ei+k t=i+iljk’ @.1)

J1+h 1+ A2

where the subscript variable means partial differentiation with respect to that variable.

We assume the motion of the bubble is sufficiently slow that the flow is in the Stokes
regime and we move into a frame of reference in which the bubble is stationary and the walls
travel at a velocity —Upi, where Uj, is the bubble propagation speed. We denote the liquid
velocity as & = (i, V) and the pressure as p. The motion of the liquid is then governed by the
Stokes equations

n

o

V.
\%

0, in O, (2.2a)

: (2.2b)

1Y
1l
o

avia in

>
Il

where 7 is the constant liquid viscosity, Q denotes the liquid region, and V = (9/0%, 8/9%)
is the two-dimensional gradient operator.

The surfactant concentration on the surface of the bubble, I', is governed by the advection—
diffusion-reaction equation (Stone 1990)

dr
ds?

)5

+kC - kof, on 2=h(%), (2.3)

where § is arclength, D is the surface diffusion coefficient, C is the bulk concentration and
us =i -t),_; (2.4)

is the tangential surface velocity. We have supplemented (2.3) with a linear reaction term,
with rate constants k; and k,, because the surfactant concentration in the bulk and and on
the surface are assumed to be close to equilibrium. There are numerous numerical studies
that include nonlinear reaction kinetics, such as Fujioka & Grotberg (2005) and Muradoglu
et al. (2019). In general one would solve a coupled advection—diffusion equation for C but, as
mentioned above we focus on the “bulk equilibrium” limit in which the bulk concentration
does not vary significantly, so we take C to be a known constant. We further assume that the
surfactant quickly adsorbs or desorbs onto the surface of the bubble and thus the surfactant
concentration is close to equilibrium. This implies that surfactant cannot accumulate and thus
the bubble cannot rigidify, a phenomenon seen in surfactant systems without fast reactions
(see e.g. Park 1992).
On the Hele-Shaw cell wall, we supply the no-slip boundary condition

i =-Upi on 2=0. (2.5a)

On the bubble surface, we supply a kinematic condition and normal and tangential stress
balances:

4-n=0 on 2=h(%), (2.5b)
n-o-n=-p,+Pk on 2=h(%), (2.5¢)
dy .
t-6-n-= d—f on 2= h(®), (2.5d)
R)

where ¥ is the (no longer constant) surface tension, £ is the curvature, p, is the constant

Focus on Fluids articles must not exceed this page length
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148  pressure inside the bubble, and J is the viscous stress tensor, given by
N I SO |
149 0'=—pI+,u(Vu+Vu),

150 where I denotes the two-dimensional identity tensor and the superscript T denotes the
151 transpose.
152 We close our model with an equation of state, which relates the surface tension, 9, to the
153 surfactant surface concentration, I . Since we are assuming that the surfactant concentrations
154 in the bulk and on the surface are close to equilibrium, we also supply a linear equation of
155 state, i.e.,

156 7=H90+—=| (I'-Ty), (2.6)

157 where [y = k,C / k» is the equilibrium concentration of surfactant and 7§ is the surface
158 tension at equilibrium.

159 2.2. Non-dimensionalisation

160 We non-dimensionalise the system (2.2)—(2.6) as follows (in which dimensionless variables
161 are denoted without hats)

162 (£,2,8,h(%)) = H(x,z, 5, h(x)), i =Upu, 9 =90y,
A Yo K . A
163 s = = 5 > K= —=, I'= FOF. (2.7)
(P, Pv) H(p Pb) 7

164 The dimensionless governing equations are given by

165 Veu=0, Vp = CaV’u in0<z< hx). (2.8)
166 The dimensionless versions of the boundary conditions (2.5) are given by

167 u=-i on z=0, (2.9a)

168 and, on the bubble surface z = h(x),

d 1 d°T
6 — (I =——+k(1-0), 2.9b
169 £ (Tus) = o= + k(1= T) 2.90)
170 v =uhy, (2.9¢)
2C 1-Ma(I'-1))h
171 po=p =~ (1= B2) e+ Btz +v2)) = (1= Mal' = D)l (2.9d)
1+ hy (1+ h§)3/2
1 M
172 - (—4hxux + (1 - hi) (u, + vx)) - _r, (2.9¢)
(1+ h,%)l/2 Ca
173 where
1 d 1 d and u+ hyv
- - - Ug = ———
ds 14 p2dx VI+ R3]
175 The model (2.8)—(2.9) contains the dimensionless parameters
1 AU, Iy dy ko H
176 Ca=H20, pe = b Ma=--2L k=22 (2.10)
Y0 D Yo dI Up
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namely the capillary number, the Péclet number, the Marangoni number and the dimension-
less reaction constant, respectively. We consider slow flow in which Ca < 1. Furthermore,
we assume that Pe > 1, and hence we take the limit Pe — o, so (2.9b) reduces to an
advection-reaction equation for I'. Finally, we also consider the regime where k > 1 so that
the surface and bulk surfactant are approximately in equilibrium. We observe from (2.95) that
I' > 1 as k — oo and therefore define T = kCa'/3(I" — 1). Here the scaling of  with Ca'/?
is designed to achieve dominant balances in the transition region between the capillary-static
meniscus and the thin film on the channel wall (marked Region 3 in figure 2), as we will show
below. We then identify a distinguished limit in which, although the surface concentration
of surfactant is almost constant, the Marangoni stress at the free surface is retained in the
model at leading order. To this end, we define the dimensionless elasticity parameter

~Ma Ty dy

Cak Ak, df

and take E = O(1) while letting k — oco. The surfactant conservation equation (2.90) and
boundary conditions (2.9d)—(2.9¢) thus reduce to

@2.11)

d
Cali == = (2.12a)
A
2Ca > (1 - ECa® 1) hyy
v ((1=72) x4 otz +v0)) = T (2.12b)
X
C 1/3
a (—4hxux + (1 - hi) (u, + vx)) - _Er,, (2.12¢)

(1+n2)"?

all on z = h(x).

Following the above simplifying assumptions, the model now contains just two dimension-
less parameters: Ca, which is assumed to be small, and E, which we take to be O(1). Waters
& Grotberg (2002) study a similar system in which £ < 1 and Marangoni stress is therefore
negligible at leading order. The boundary conditions (2.12) represent the simplest model
that contains both the Marangoni stress due to surface gradients in surfactant concentration
(2.12¢) and the depletion of adsorbed surfactant by surface dilatation (2.12a). The resulting
system can also be interpreted as a model for surface viscosity (Gounley et al. 2016).

2.3. Summary of assumptions

Here we summarise the assumptions that have been made in this section.

e The bulk surfactant concentration C is sufficiently large that it does not vary significantly
due to interaction with the surface, and we can treat it as effectively constant.

e The surfactant is highly soluble, so the surface and bulk surfactant concentrations are
approximately in equilibrium, i.e., k > 1.

o Surface diffusion of surfactant is negligible, so Pe <« 1.
Following these assumptions, our model for a highly soluble surfactant is given by (2.8) with
the boundary conditions (2.9a), (2.9¢), and (2.12). In addition, we will assume shortly that
the bubble propagates sufficiently slowly for the capillary number Ca to be small.

3. The front of the bubble

3.1. Regions and scalings

We consider the small-Ca limit and perform a perturbation expansion in powers of Ca'/3,

following the analysis presented by Park & Homsy (1984), for the similar problem of a
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Region 1 Region 3 Region 2 Region 2 Region 3 Region 1

Figure 2: Schematic of the front and rear of a bubble, showing the three regions of interest
in each: (1) front and rear cap regions, (2) thin film regions, (3) transition regions.

surfactant-free bubble. As shown by Park & Homsy, in the small-Ca limit the problem splits
into three regions of interest (see figure 2).

1. The front-cap region. Here the free surface is capillary static and hence, to leading
order, is a circular cap.

2. The thin film region. Through a lubrication analysis, we find there is a thin liquid film
of constant thickness between the channel wall and the bubble.

3. The transition region. Here both viscous and capillary forces are important, which
allows us to smoothly transition from the circular cap to the thin film region.

We include for completeness the analysis of the front-cap and thin film regions, which follows
directly from Park & Homsy. It is in the transition region where the effect of the surfactant
is included, and thus the equations deviate from those found by Park & Homsy.

3.2. Region I: Front-cap region

In this region we expand our variables in powers of Ca'/3: p(x, z) ~ po(x,z)+Ca'3p (x,2)+

- and so forth. At leading order, the equations of motion (2.8) become
Veug=0, Vpo =0, (3.1a,b)

while the boundary conditions (2.12a) and (2.12¢) are both satisfied identically by 79 = 0.
Equation (3.1b) implies that py = constant, and the normal stress balances at the bubble
surface (2.12b) at leading order reads

17
hO

= W on 7= l’l()(.X), (32)

Apo

where Apg = pp — po is the leading-order difference between the constant pressure inside
the bubble, p;, and the fluid pressure.

To find the leading-order shape of the bubble, we impose the conditions hg(x) — 1
and hy(x) — oo at the front tip of the bubble (which we define to be at x = 0), and
ho(xc) = hj(x.) = 0, where x. < 0 is the a priori unknown location of the point where the
leading-order meniscus encounters the cell wall. We thus find that Apg = 1 and x, = —1,
and the leading-order shape of the meniscus a circular cap of radius 1 (Park & Homsy 1984),
given by

ho(x) = 1 =1 = (x+ 1), for x € (~1,0). (3.3)

In (1.2) we require knowledge of the pressure drop across the meniscus up to O(Ca?/?).
Following Park & Homsy (1984), we find that p;, k; = 0; then at 0(Ca2/3) we find that p,
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is a constant, denoted by —f31, and
hy

=2 3.4
(1+ k)32 G4

B

which can be solved to give

ha(x) = 11 = (x + 1)2, (3.5)

where (3] is the a priori unknown O(Caz/ 3) pressure correction.

3.3. Region 2: Thin film region
In the thin film region, we rescale the variables as
x =X, z= Ca2/3Z, h= Caz/3f~z, p—pp= Ca2/3ﬁ,
u =, v =Ca’p T=Ca'Pz. (3.6)
1/3

Again we expand the variables in powers of Ca
(2.8) become

. At leading order, the equations of motion

floz + Voz = 0, figzz = 0, Poz = 0. (3.7a-c)

The kinematic boundary conditions (2.9a) and (2.9¢) become

do=-1, ¥=0 on Z=0, (3.8a)
o = dohoz on 7= hy(%), (3.8b)
and the remaining boundary conditions (2.12a)—(2.12¢) reduce to
To = —ilgx, P0o = hoxx iz = 0 on %= hy(%). (3.9a—)
Hence we find that % = 0, iip = —1, po = 0 and h(F) = constant. Thus, region 2 has a
constant (a priori unknown) film thickness
ho = ﬁ (3.10)

where fzm is the dimensional film thickness indicated in figure 1.
Next, we examine the transition region, which allows us to smoothly transition from the
constant film region to the circular cap at the front of the bubble.

3.4. Region 3: Transition region
In the transition region, we shift the origin to x = —1 and rescale the variables as
x+1= Ca1/3X, z= Ca2/3Z, h = Ca2/3H, p=P,
1/3 (3.11)
u="U, v:Ca/V, T=0G.
We again expand the variables in powers of Cal/3.

The leading-order equations of motion (2.8) become
Uox + Voz =0, Pox = Uyzz, Pyz =0 in 0<Z< Ho(X) (3.1261—6‘)
The boundary conditions (2.9a) and (2.9¢) become

Uy=-1, Vp=0 on Z=0, (3.13a)
V() = U()H()X on Z= H()(X), (313b)
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A surfactant-laden bubble in a channel 9
and the remaining boundary conditions (2.12) become
Go = _U.;'O’ —P() = H(’),, UOZ = —EG(,) on Z= HQ(X), (3.14&—6‘)

where Us()(X) = Uo(X,H()(X)).
Using (3.12)—(3.14), we find that Uy is given by

Uo(X,Z)=—-1+ %H(’)”(X)(ZHO(X)Z -7 - EGy(X)Z. (3.15)

By integrating (3.15) across the liquid layer (from Z = 0 to Z = Hy(X)) we find that the flux
of liquid in the X-direction is given by
1, 1
0= §Hothg - EEGg)Hg — Ho. (3.16)
By conservation of mass this quantity must equal the flux of liquid in the thin film region,
where Q = —hy. We thus obtain an equation for the height of the bubble surface in the
transition region , namely

3(Ho — ho) N 3EG,

H = . 3.17
Next, using (3.15) and (3.17), we find that (3.14a) becomes
d 3ho
EG(H, = Gy. 3.18
X ( O+ T, ) 0 (3.18)

Equations (3.17) and (3.18) form a closed system for the film profile, Ho(X), and the
perturbation to the surface concentration of surfactant, Go(X) in the transition region. In
addition, we enforce the matching conditions

Ho(X) — ho, Go(X) >0 as X — —oo, (3.19a)
1
Ho(X) ~ Ex2 + B, Go(X) -0 as X — oo. (3.19b)

In principle, the solution of the system (3.17)—(3.18) subject to the far-field behaviour (3.19)
determines the a priori unknown constants /s and 8; along with Hy and Gy.
In the next section, we analyse the problem (3.17)—(3.19).

4. Analysis of the transition region equations
4.1. Normalisation

We begin by normalising the equations (3.17) and (3.18) by scaling the variables as

X+8 Ho(X s
S XS n(e) = 20X, ¢(@) = hoGo(X). ()
ho hO
The equations (3.17) and (3.18) are translation invariant, so we introduce an arbitrary shift
S to simplify the forthcoming analysis. Under these scalings, (3.17) and (3.18) become
3(p—-1 38¢’
77/// - (T] 3 ) + g , (4‘2a)
n 2n

’

2%’

& )
1 (ng') =¢ (4.2b)
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where
E
E=—. (4.3)
ho
The boundary conditions (3.19) imply that
nE — 1, 8(&) —0 as & — —oo, (4.4a)
g(¢é) >0 as & — oo, (4.4b)

The solution of (4.2a) can be shown to behave quadratically as & — oo so
1
n(&) ~ Eafz +bé+c as & — oo, (4.5)

where a, b and ¢ are constants. Notice that the coefficients are not uniquely determined due to
the arbitrary choice of origin for £. However, the translation-invariant groups a and ac — %bz
are uniquely determined. By comparison with (3.19), we see that they are related to the a
priori unknown constants /1o and 3 by

3 1
a = h, ac — Ebz = Bi. (4.6)

The solution strategy for the problem (4.2)—(4.4) is explained in the following subsection.
Once 1 and g have been computed for a given value of E, the surface velocity of the thin film
is calculated from (3.15), giving

3

&
- —ng - — 4,
78 4.7)

Us = .
S 2

| =

4.2. Solution

We solve (4.2) numerically by shooting from & — —co. Linearising (4.2) about the far-field
behaviour (4.4a), we find that

5 5
NE) ~ 1+ AgeE, g(€) ~ Y Buett as & — —oo, (4.8)
n=1 n=1
where the A, are roots of the quintic polynomial
4 12
- -12%+ = =0. 4.9
I3 3 (4.9)

This equation has two real and positive roots (which we label 4] and A,), one real and negative
(labelled 13), and a complex conjugate pair with negative real part (labelled 1. and A..). We
require the solution to decay as & — —co, so only the positive eigenvalues are permitted.
Hence the decaying linearised far-field behaviour is given by

n(€) ~ 1+ Ajes + A as & — —oo, (4.10a)
3 3
o) - A1) A e G124 L,
6

where A and A; are a priori unknown constants. Due to the translation invariance we may
(e.g.) set A; = x1 by choice of S in (4.1).7 We then determine A, via the shooting method
to ensure our solution satisfies g(£) — 0 as & — oo.

el 4 as & — —oo, (4.10b)

T Although translation allows us to set the coefficient of one exponential to have magnitude 1, we do not
know its sign in advance; however, we always find that in the front transition region A; > 0.

Rapids articles must not exceed this page length
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For each value of &, we use the above shooting method to solve for 7 and g, then read off
the coefficients {a, b, c} in the quadratic behaviour (4.5) as & — oo. We then use (4.3) and
(4.6) to determine a = hg and 8; parametrically as functions of E. However, the shooting
problem can become delicate for small or large values of &. In the next two subsections, we
present asymptotic results for these two limits.

4.3. Small-& limit
In the limit where & is small we expand
n~no+&ni+---, g~8 +8g1+---. (4.11)

This regime is similar to that studied by Waters & Grotberg (2002) for a surfactant-laden
liquid plug and by Ginley & Radke (1989) who considered a bubble in a capillary tube.
At O(1) in (4.2), we find that

1" 3( - 1)
g = =R (4.124)
My
3n/
g =-—. (4.12b)
2)70

The decoupled equation (4.12a) for 5y is the same Landau—Levich equation used by
Bretherton (1961) to determine the shape of a surfactant-free bubble in the transition
region. The solution for 79 is uniquely determined, up to an arbitrary translation, and
the corresponding leading-order surfactant concentration profile go(&), given by (4.12b),
is plotted in figure 3. Although the limit & — 0 is singular, removing the highest derivative
in (4.2b), we see that g, tends to zero in the far field, as required, and no boundary-layer
behaviour is produced, as also found by Waters & Grotberg (2002) and Ginley & Radke
(1989). The coeflicients in the quadratic behaviour

no(&) ~ %aofz + boé + ¢o as & — oo, (4.13a)

are also determined uniquely and, in particular, we have ag ~ 1.337 and agco — %b(z) ~ 3.88,
as found by Bretherton (1961).

To find the correction to &y and [1 due to the effect of surfactants, we proceed to first order
in (4.2a) to obtain the equation

12(3-=2 +9(2n%% = non?”
N = ( no)m +9(2ni — non; , 4.14)

1
4773

for the correction to the thin film height. We solve (4.14) in the same fashion as (4.12a) by
shooting from & — —oco. Again the solution to (4.14) behaves quadratically for large positive

é:
1 2
101 ~ Ealf + b€+ as & — oo, (4.15a)

where the constants a;, by, ¢ are in principle determined (up to an arbitrary translation) by
the solution of (4.14). In particular we find thata; ~ —0.0146, and agc+coa; —bob; = 0.58.

Finally, we obtain the small-£ expansions for a = ho and B from (4.6). Note that the
definition (4.3) of & involves A, so we have to manipulate the expansions to remove the
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dependence on /g to get

a~ao+ﬂEz 1.337-0.011E as E — 0, (4.16a)
ap
1 + — bob
Bi ~ aoco = 505 + A O = 0P E~388+043E as E—0. (4.16b)
ap

We note that (4.16a) and (4.16b) differ from (26) in Waters & Grotberg (2002) because they
include a factor of 3 in their Ca, which induces a factor of 3!/3 in the definition of E. We
also note that Waters & Grotberg’s expression for the pressure drop is twice ours, due to the
cylindrical instead of two-dimensional geometry that they study.

4.4. Large-& limit
In the other extreme where & is large, we expand
1 1
~no+—=m+-, ~—=g1+-. 4.17
M0+ S m g8~ g8 (4.17)

At O(1) in (4.2) we find
3(mo—-1) 3¢&]
"ro_ (770 ) + 81

n - 5 (418a)
° mn 2no

1 3776

< (81m0)" = —. 4.18b
We can integrate (4.18b) and substitute into (4.18a) to obtain

" 12( B 1)

ny = 0 (4.19)
0
1 , 1,02 1

g1 =315 = 7 (m)” = 3 Bro, (4.19b)

where S is the leading-order approximation for the coefficient 5.

Once again, (4.19a) is the Landau-Levich equation and it is similar to the surfactant-
free equation (4.12a) found by Bretherton (1961) except with an additional factor of 4 in
the numerator. This additional factor of 4 induces an increase in the thin film height and
correction to the pressure drop by a factor of 423, i.e.,

a — 423 .1.337 ~ 3.369 as E — oo, (4.20a)
B1 — Bio ~4*3.3.88~9.78 as E — . (4.20b)

In this limit, we find that the surface velocity (4.7) is given by Ug = —1, which corresponds
to the bubble interface travelling at the same velocity as the walls of the cell.

These results reproduce the large-Marangoni-number limit reported in previous studies
(see, for example, Ratulowski & Chang 1990; Park 1992; Stebe & Barthes-Biesel 1995; Shen
et al. 2002). However, we also evaluate the correction to the surfactant concentration, given
by (4.19bh) and plotted in figure 5, where it is evident that g; does not satisfy the far-field
condition g (¢) — 0 as & — —oo. This apparent inconsistency can be resolved by examining
an outer region in which

&= g7z, g(é) = & 'y(m), n(€) ~ 1 + exponentially small terms, 4.21)

so that (4.2b) is transformed to
P =49, (4.22)
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Figure 3: The surfactant concentration in the front transition region, g(¢), with & — 0
(black), & = 1 (blue), & = 4 (red), and & — oo (purple).

20

-
o
L e e e L S S S S S

—"

0 L L L L
-4 -2 0 2 4
3

Figure 4: The free surface profile 7(¢) in the front transition region, with & — 0 (black),
E =1 (blue), & = 4 (red)

up to exponentially small corrections. By matching with (4.19b) we thus obtain the leading-
order outer solution

1 =
Yy (E) = -5 Bioe*=. (4.23)

4.5. Results

In figure 3, we plot the correction from equilibrium to the surfactant concentration, g, in the
front transition region when & — 0, & = 1, & = 4 and & — oco. We use the arbitrary shift
S introduced in §4.1 to align the peaks of the concentration profiles. In the limit & — oo,
g vanishes across the entire domain, but in all other cases, we observe that g < 0 and so
the surfactant concentration is everywhere below equilibrium in the front transition region.
Similar concentration profiles were observed by Stebe & Barthes-Biesel (1995) in a system
with an elevated bulk concentration. In figure 4 we plot the film height in the transition region
and, for all values of &, we observe similar profiles to those found by Bretherton (1961) and
Park & Homsy (1984) for a surfactant-free bubble.
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& =1 (blue), & = 4 (red), and & — oo (purple).

We plot the lowest-order perturbation to the surfactant concentration, g (&), and the film
height, 179(£), in the limit & — oo in figure 5. The leading-order solution evidently does not
satisfy the downstream boundary condition g; (£) — 0 as & — —oo, implying that there must
be a boundary layer at infinity, as explained in §4.4. In figure 6 we plot the leading-order
surface velocity, Ug, for & — 0, & = 1, & = 4 and & — oo. We observe that, for finite
&, there is a stagnation point (in the frame of the bubble) within the transition region. Its
location is close to the minimum point of g in figure 3, because the flow directed outwards
advects surfactant away from the stagnation point. The presence of a stagnation point along
the front of the bubble is a prevalent feature of gas bubbles in Hele-Shaw cells or capillary
tubes, even in systems with more complicated surfactant dynamics and non-zero Reynolds
numbers (Fujioka & Grotberg 2005; Zheng et al. 2007).

The normalised height of the thin film, a, is plotted as a function of the elasticity parameter
E in figure 7. As E — 0, surfactant effects become negligible and the thin film height
approaches Bretherton’s result of 1.337 for a surfactant-free bubble (Bretherton 1961). At
the other extreme, when E is large, a approaches 3.369 which is larger by a factor of 4%/3,
as expected. Interestingly, (4.16a) predicts a decrease in the thin film height for small E (see
figure 7(b)), however, figure 7(b) shows that the asymptotic result (4.16a) (also obtained by
Waters & Grotberg 2002) quickly becomes redundant, and the normalised thin film height,
a, increases with E thereafter.

The correction to the pressure drop across the front meniscus, 31, is plotted as a function of



441
442
443
444
445
446
447
448
449
450

451
452

453
454

A surfactant-laden bubble in a channel 15

35

20

; 180 1‘0" 166 0 1 2 3 4 5
E E
Figure 7: The normalised thin film height a versus elasticity parameter E. The solid curve
is from the numerical solution of (4.2), and dashed curves are the asymptotic predictions:
(4.16a) for small E and (4.20a) for large E. (a) A log-linear plot to show the full range of
E. (b) The solution for 0 < E < 5.77.
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1 100 104 108

E
Figure 8: The correction to the pressure drop across the front meniscus, 8;, versus
elasticity parameter E. The solid curve is from the numerical solution of (4.2), and dashed
curves are the asymptotic predictions: (4.16b) for small E and (4.200) for large E.

E in figure 8. Again when FE is small we recover the Bretherton (1961) result that 8; = 3.88.
We observe that 8 is a monotonic increasing function and when E is large 8, approaches
9.78, in agreement with (4.205). In the numerical simulation of (4.2), accurate convergence
for the value of 81 could not be achieved for values of E < 0.5 due to the sensitivity of the
numerical shooting method, caused by the singular nature of the system (4.2) as E — 0. In
general, it is harder to compute the value of 8 than a at small E because a significantly larger
value of ¢ is needed to robustly extract the value of ac — b/2 from the quadratic function
(4.5) than to determine a. The numerical approach is thus useful provided E > O(1), while
the asymptotic approximation (4.16b) is useful when E is small, and we are reassured by
figure 8 that there is at least a small overlap region where they approximately agree.

5. Rear of the bubble
5.1. Regions

As for the front meniscus, in the small-Ca limit the problem at the rear of the bubble splits into
three regions of interest (see figure 2). In particular, for the rear cap region, we can follow the
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same analysis as in §3.2 and find that the leading-order shape and surfactant concentration

are given by
ho(x) =1-=+1-(1-1+x)?, (5.1a)

ho(x) = B (x + ) (2 =1 —x), (5.1b)
Io(x) =1, (5.1¢)

where [ is the dimensionless length of the bubble, and £, is the a priori unknown 0(Ca?’?)
correction to the pressure drop across the rear meniscus.

As in §3.3, in the thin film region (region 2), the film height ho is constant, and now in
principle known from the solution for the front meniscus (see figure 7). In the next section
we analyse the equation in the rear transition region in a similar manner to §4.

6. Analysis of the rear transition region equations
6.1. Normalisation

We again normalise by scaling the variables as

X+S Hy(X) -
=— nE) = ——, 8(&) = hoGo(X), (6.1
ho ho
where § is an arbitrary shift of our coordinates. We obtain exactly the same equations (4.2)
as the front transition region, i.e.,

&

" 3(77_1) 38g’
no = —3+2—,
n n

22
We solve (6.2) numerically now by shooting from & — oco. We find that the decaying
linearised solution is given by

n~1xeB% + Se'®é cos(1;€ - q), (6.3a)

g~
& -4

(6.2a)

&
Z(g'n)’ =g+ (6.2b)

eB — SA: (AR, A1)e R cos(A1€ = q) = SAs(Ar, A1)e'R? sin(A;€ — g),

(6.3D)

as & — oo. Here, S and g are a priori unknown shooting parameters, A3 is the real negative
solution of (4.9), and A, = Ag + id; is the complex root with negative real part. The
coeflicients are given by

6AR(—4 + E(A5 + 12))
16 +88(22 - %) + E2(A% + 13)Y
617(4 + E(A% + 1))
16 +88(A2 — A%) + E2(A3 + 11?2

Ac(AR,Ap) =

(6.4a)

AS (/lR7 /ll) =

(6.4D)

Note again that the + occurs in (6.3) because although translation allows us to set the
coeflicient of the exponential to be of magnitude 1, we do not know its sign in advance.
Finally, we now have that ry behaves quadratically for large negative &, i.e.,

n~ %Afz +BE+C as & — —oo. (6.5)
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A surfactant-laden bubble in a channel 17

We solve (6.2) for each value of & = E/ho(E) by applying a shooting method with two
unknown parameters S and ¢, which are fixed by ensuring g(¢) — 0 and " (£) — ho(E) as
& — —oo, where i (E) is as shown in figure 7. The first condition corresponds to matching
the surfactant concentration in the thin film to the equilibrium concentration in the rear cap
(see §5.1), and the second ensures that the thin film height at the rear meniscus matches the
height of the thin film deposited at the front meniscus. Following the matching procedure
laid out in §4.1, we then obtain the O (Ca®/ 3) correction to the pressure drop across the rear
meniscus as

Lo

pr=AC - 3B (6.6)

This two-parameter shooting problem can be extremely sensitive, so we examine the limiting
cases using asymptotic analysis.

6.2. Small & limit
In the extreme where & is small we expand

n~no+&n+---, (6.7a)
g~go+8Eg+---. (6.7b)

Then at O(1) in (6.2) we again find that the equations reduce to (4.12). We note that (6.2b)
is singular in the limit & — 0; however, for the same reasons as presented in §4.3 there is
no boundary-layer behaviour and the solution of (4.12b) satisfies all the relevant boundary
conditions.

Again, the equation (4.12a) for g decouples and is just the usual Landau—Levich equation
obtained for a surfactant-free bubble. At first order in (6.2) we again obtain equation (4.14)
for the correction to the bubble surface. We solve (4.14) by shooting from ¢ — oo. Following
the matching methodology laid out in §4.1, we thus find that the O (Ca*?) correction to the
pressure drop is given by

B2~ -1.13-0.73E as E — 0. (6.9

The leading term in (6.9) is Bretherton’s classical result for the rear meniscus of a surfactant-
free bubble (Bretherton 1961), and the second term is the first correction due to the presence
of surfactant.

6.3. Large E limit
In this limit we follow the same methodology as in §4.4 to obtain

e 12000 — 1
!, :#, (6.10)

Mo
Matching with the rear cap solutions (5.1) we find that the correction to the pressure drop is
then given by

Bo ~—4*3.113 ~ -2.85 as E — oo. (6.11)

Again this is a factor of 42/3 larger than the original Bretherton (1961) result. This extends
the large Marangoni number limit reported in many studies (see, for example, Ratulowski &
Chang 1990; Park 1992) to the rear meniscus.

6.4. Results

In figure 9 we show example solutions for E = 1.36 (§ = 1) and £ = 5.76 (§ = 4). In
figure 9(b) we observe that the surfactant concentration can be both above and below the
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Figure 9: (a) The surface profile, 7, (b) The surfactant concentration, g, and (c) the
surface velocity, Ug, in the rear transition region with & = 1, (black) & = 4 (red).

equilibrium concentration in the rear transition region, in contrast to the front transition
region, where the concentration is always below equilibrium. For these specific solutions, we
find that 8, ~ —1.50 for E = 1 and 8, ~ —2.33 for E = 4, which are greater in magnitude
than the pressure drop 8, = —1.13 for a surfactant-free bubble found by Bretherton (1961).
In figure 9(c) we plot the corresponding surface velocities, Us for the same values of E.
Similarly to the front meniscus, we observe a stagnation point (in the frame of the bubble) in
the transition region. However, here the flow is directed into the stagnation point, resulting
in a local increase in the surfactant concentration.

7. Application to the motion of bubbles in a Hele-Shaw cell
7.1. Force balance

We are now in a position to include the effect of surfactants in the models presented by Booth
et al. (2023, 2025a,b); Wu et al. (2024) for the motion of an approximately circular bubble
in a Hele-Shaw cell moving due to a uniform background flow U ri. Booth et al. (2023) find
that the dimensionless velocity U, of such a bubble is determined by the force balance

U, (5%
U3 7 Joa pres (7.1)

where 0Q is the bubble surface as viewed from above (see figure 10) and the Bretherton
parameter is defined by

3yar(ise) Ca/’
(B1=B)T(4/3) € °
Here € = H/R, where R is the radius of the bubble (measured from above), and Ca F= au £y
is the capillary number based on the background flow speed, U ', both of which are assumed
to be small. In the distinguished limit where Cay = O(€?) as € — 0, so the viscous
lubrication pressure balances the pressure drop across the menisci, the bubble is circular to
leading order (Booth et al. 2023). For a surfactant-free bubble, 8| and 5, are given by the
values B1(0) ~ 3.88 and 3,(0) = —1.13 originally calculated by Bretherton. This result is
now easily generalised for a surfactant-laden bubble by using the expressions for 8 (E) and
B2(E) found in §§4 and 6, respectively. Crucially, we recall that the elasticity parameter E,
given by (2.10), is independent of the capillary number, so the values of 8; and 8, depend
only on the given surfactant properties and concentration. Note that the values of 5| and 3
are both O (1) for the entire range of values of E € [0, o).
From (7.1), we find that the velocity of an isolated bubble in a uniform background flow

(7.2)
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0Q

Bubble
Liquid

Figure 10: Plan view of a surfactant-laden bubble in a Hele-Shaw cell in a uniform
background flow.

is given by U}, = Upi, where

2/3

U, [ Bi(0) = B2(0)
=0=—"=""-]65 (7.3)

2-Up BI(E) = B2(E)

and we define the surfactant-free Bretherton parameter
1/3 1/3
55 = — VL UL/6) Cay” 1 1zcaf/ (7.4)
?7 (B1(0) - B2(0)T(4/3) e '
7.2. Results

In figure 11 we plot U}, versus ¢ g, for a range of values of E. Note that, if we plotted versus the
Bretherton parameter, 6 given by (7.2), then all the curves would collapse. Plotting U, versus
op allows us to analyse the effect of surfactant on the bubble velocity in comparison with a
surfactant-free bubble experiencing the same flow conditions. We observe that the velocity
of a surfactant-laden bubble (E > 0) at each 6 is less than that of a surfactant-free bubble
(E = 0) at the same value of . This trend continues as we increase E, up to the limiting
case E — oo when 6 = 4%/35 g, the maximum value that § can take for a fixed 6 5. Hence, we
always find that a surfactant-laden bubble travels more slowly than a surfactant-free bubble
under the same flow conditions.

The form of (7.3) has the same structure as the expression found by Baué et al. (2025)
(their (5.11)) for the velocity of a droplet in a highly soluble surfactant solution, in the limit
as the droplet viscosity tends to zero. Note that their capillary number is calculated from the
droplet velocity, whereas we use the capillary number Cay based on the background flow
speed. One can make an analogy between their constant 1/K and the prefactor of §g in (7.4).
Our model provides the dependence of this prefactor on the surfactant properties, which
is missing in their work. Baué et al. (2025) found experimentally that, with highly soluble
surfactants, the velocity of a bubble increases with its size, which is consistent with (7.3).

8. Conclusions

In this paper, we develop a model for the propagation of a two-dimensional surfactant-laden
bubble in a channel. We adopt the so-called bulk equilibrium model, in which there is
assumed to be an abundance of surfactant in the liquid. We then identify a distinguished
asymptotic limit in which the reaction kinetics are so fast that the surface concentration of
surfactant remains close to equilibrium, but the Marangoni stress is large enough still to enter
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Figure 11: The dimensionless bubble velocity, U, (7.3) as a function of the surfactant-free
Bretherton parameter, 6 g (7.4) for a range of values of E = 0 (black), E = 1.36 (E =1)
(blue), E = 5.76 (& = 4) (red), E = oo (purple), with 3 and 8, given by (4.6) and (6.6),
respectively.

the model at leading order. The resulting boundary conditions (2.12) capture the important
physical effects of surfactant in a single dimensionless parameter E.

Through the method of matched asymptotic expansions, we derive results for the di-
mensionless height of the thin films between the bubble and the channel walls and for
the corrections to the pressure drop across the front and rear menisci of the bubble. Such
an analysis is reliant on the bubble being long, so we can treat the front and rear of the
bubble separately. Our bulk equilibrium surfactant model produces results analogous to
Bretherton’s, in which the thin film height and the pressure corrections scale with Ca®3
(Bretherton 1961), but where the prefactors are now numerically determined functions of E,
with the surfactant-free case corresponding to £ = 0. Previous work (Waters & Grotberg
2002) found that the height of the deposited film is a decreasing function of E in the limit
E — 0. Strikingly, we show that this asymptotic prediction fails for E as small as 0.2, and
in fact the film height almost always increases with E, up to a maximum value larger than
Bretherton’s by a factor of 42/3. Likewise, we find that the net pressure difference across both
menisci increases with E, again by a factor of up to 4>/3 in the limit as E — co. The factor
of 4%/3 comes from the bubble surface being stationary in the lab frame of reference, rather
than satisfying the zero-stress condition as in the original Bretherton problem.

The key outputs from our analysis are the normalised corrections to the pressure drop
B1 and B, across the front and rear meniscus, respectively. In practice, the computation of
these parameters across a range of values of E is very challenging because of the extreme
sensitivity of the relevant shooting problems, especially for the rear meniscus, where there
are two shooting parameters. To perform an exhaustive parameter sweep, particularly in the
singular limit where E — 0, it may be necessary to adopt an alternative numerical approach,
for example solving the boundary-value problem directly by discretizing the whole domain.

We use our results for the modified pressure drop across the bubble to obtain a generalised
equation of motion for a bubble in a Hele-Shaw cell that includes the effects of surfactants. As
in Booth er al. (2023), the effective viscous drag on the bubble is measured by a dimensionless
“Bretherton parameter” ¢ o Cal’? /€, with just the prefactor now a function of E (see (7.2)).
We find that, for the same flow conditions, an isolated surfactant-laden bubble will travel
more slowly than an isolated surfactant-free bubble. Crucially, £ depends only on the physical
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properties of the surfactant and the fluid, as well the cell height, but not on any local flow
properties (e.g., the local capillary number). The model thus easily generalises to an arbitrary
number of bubbles by modifying the prefactor in § in the same way for each bubble.

Our modelling relies on the surfactant being highly soluble, in the sense that the timescale
for adsorption is much shorter than that for surfactant transport, i.e., the Damkohler number
is large. It also relies on the capillary number being small, i.e., the bubble propagates slowly
enough for the free surface to be dominated by capillary effects. The former can be achieved
in practice using surfactants such as sodium alkyl sulphates, or alkyl trimethylammonium
bromides with fewer than 11 carbons in the alkyl chain (Baué et al. 2025). The latter is almost
always satisfied in microfluidic devices (Stone et al. 2004).

Our analysis relies on the front and rear menisci being well separated in the flow direction,
which is not true near the “poles” of the bubble (in plane view), where the bubble meniscus
is parallel to the background velocity. In these regions, a different asymptotic scaling allows
one to explain how the parameter § varies smoothly between the constant values 5; and
2, as shown by Burgess & Foster (1990) for clean bubbles. However, Booth et al. (2023)
showed that these regions provide a correction to the bubble velocity that is O (%), and
thus negligible to lowest order.
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