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We investigate how the addition of surfactant affects the governing equations for a bubble in a7
two-dimensional channel in the small-capillary-number limit. In the limit where the timescale8
for absorption of surfactant is much shorter than the timescales for transport of surfactant9
along the surface of the bubble, we derive a set of idealised free-surface boundary conditions10
that capture the effects of surfactant in a single dimensionless “elasticity parameter”, and11
apply them to the front and rear of the bubble separately. At the front of the bubble, there12
are three regions of interest: the front cap, the thin film region, and a transition region that13
smoothly connects the other two regions. Through matched asymptotic expansions, we derive14
predictions for the thin film height and the pressure drop across the front meniscus. We find15
that the viscous pressure drop across the front meniscus is always larger for a surfactant-16
laden bubble than for a surfactant-free bubble, by an order-one factor of up to 42/3. Using17
a similar analysis at the rear of the bubble, we find that the viscous pressure drop across18
the rear meniscus is also always larger in magnitude for a surfactant-laden bubble than for a19
surfactant-free bubble, again up to a maximum factor of 42/3. Finally, we use these results to20
show that, for the same flow conditions, an isolated surfactant-laden bubble in a Hele-Shaw21
cell will travel more slowly than an isolated surfactant-free bubble.22

1. Introduction23

Bretherton (1961) first analysed the motion of a surfactant-free bubble through a viscous24
liquid in a capillary tube. His analysis was modernised by Park & Homsy (1984) into the25
language of matched asymptotic expansions. We follow a similar methodology in this paper26
for a surfactant-laden bubble. We then use the results of the analysis to show how the equation27
of motion derived by Booth et al. (2023) for an approximately circular bubble in a Hele-28
Shaw cell is modified by the presence of surfactant, resulting in a model that systematically29
accounts for the effects of surfactant-laden thin liquid films above and below the bubble,30
without the inclusion of any ad hoc fitting paramters.31

There is a plethora of literature studying the propagation of a bubble or a finger of32
air in a viscous liquid containing surfactants (see, for example, Ghadiali & Gaver 2003;33
Halpern & Gaver 2012; Park 1992; Ratulowski & Chang 1990; Stebe & Barthes-Biesel34
1995, and references therein). In particular, Ratulowski & Chang (1990) extended the35
results of Bretherton (1961) to a finger of air propagating into a viscous liquid containing36
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soluble surfactants. They proposed five different distinguished limits based on the convective,37
diffusive and kinetic timescales. Park (1992) built on the work of Ratulowski & Chang to38
consider the flow of a long bubble in a capillary tube and found that surfactants can rigidify39
the bubble’s surface. Maruvada & Park (1996) used these results to describe a rigid elliptical40
surfactant-laden bubble in a Hele-Shaw cell, generalising the Taylor & Saffman (1959)41
solution for the motion of a bubble with constant Laplace pressure to include the rigidifying42
effects of surfactants that can occur in the “convective equilibrium” regime proposed by43
Ratulowski & Chang (1990).44

In this paper, we focus on what Ratulowski & Chang term the “bulk equilibrium”45
model, in which there is an abundance of surfactant in solution, such that the bulk46
concentration remains approximately constant. Physically, this limit could correspond to47
the bulk surfactant concentration being significantly above the critical micelle concentration48
(CMC). Furthermore, we consider the regime in which the surfactant is highly soluble, so the49
surface concentration is close to equilibrium with the bulk. Such a system has been recently50
studied experimentally by Baué et al. (2025). While the work we present in this paper is51
focused on the motion of a bubble, the methodology can be adapted to study the propagation52
of a liquid plug or film coating. This problem thus has applications also to the transport of53
fluid in the lung (see Waters & Grotberg 2002; Halpern & Gaver 2012; Shemilt et al. 2023;54
Grotberg 2011), and in fibre coating (see Shen et al. 2002; Delacotte et al. 2012).55

Ginley & Radke (1989) also study a surfactant-laden bubble in a capillary tube, while56
Waters & Grotberg (2002) study the similar problem of the propagation of a surfactant-57
laden plug. Both of these papers investigate a regime where the surfactant concentration is58
close to equilibrium, with the resulting Marangoni stress along the bubble interface being59
negligible at leading order. Both then provide asymptotic results for the pressure drop60
across the propagating bubble or plug and the height of the thin film deposited behind. We61
consider a similar regime in this paper; however, we study the distinguished limit in which62
Marangoni effects enter the problem at leading order. In the limit of small Marangoni stress63
we recover the asymptotic predictions of Waters & Grotberg (2002) and Ginley & Radke64
(1989); however, we find that their prediction that the film height decreases with increasing65
Marangoni stress quickly fails. The thin film height actually starts to increase as the strength66
of the Marangoni effect is increased, to a maximum factor of 42/3 times the Bretherton67
prediction for a surfactant-free bubble. The factor 42/3 has been seen in multiple studies68
of large Marangoni stress (see, for example, Ratulowski & Chang 1990; Park et al. 1994;69
Stebe & Barthes-Biesel 1995; Shen et al. 2002), and occurs due to the bubble surface being70
stationary in the lab frame of reference, rather than satisfying the zero-stress condition used71
in the original Bretherton problem.72

The basic problem studied in this paper consists of a surfactant-laden bubble propagating73
along a two-dimensional channel, as sketched in figure 1. For the surfactant-free case,74
Bretherton (1961) obtained approximate formulae for the height ℎ̂∞ of the thin film deposited75
by the front meniscus and the pressure drop 𝑝𝑏 − 𝑝 across the bubble meniscus, in the limit76
as the capillary number Ca tends to zero, namely77

ℎ̂∞ ∼ 𝑎 𝐻̂ Ca2/3 (1.1)78

and79

𝑝𝑏 − 𝑝 ∼ 𝛾̂0

𝐻̂
+ 𝛽 𝛾̂0

𝐻̂
Ca2/3. (1.2)80

The dimensionless prefactors 𝑎 and 𝛽 are determined numerically: 𝑎 ≈ 1.337, while the81
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Figure 1: Schematic of a two-dimensional surfactant-laden bubble propagating at speed
𝑈̂𝑏 along a channel of height 2𝐻̂. We take the origin to be at the start of the thin film

region, whose length and height are denoted by 𝑙 and ℎ̂∞, respectively. The pressures in
the bubble and in the fluid outside are denoted by 𝑝𝑏 and 𝑝, respectively.

value of 𝛽 depends on whether the meniscus is advancing or retreating, with82

𝛽 =

{
𝛽1 ≈ 3.88 at front (advancing) meniscus,
𝛽2 ≈ −1.13 at rear (retreating) meniscus.

(1.3)83

Our aim in this paper is to determine how the values of these constants {𝑎, 𝛽1, 𝛽2} are84
modified for a surfactant-laden bubble, using systematic matched asymptotic expansions.85
We then apply these results to the propagation of a surfactant-laden bubble through a Hele-86
Shaw cell and thus derive a drag law that contains no ad hoc fitting parameters, in a similar87
fashion to Booth et al. (2023).88

This paper is structured as follows. We begin in §2 by writing down the governing equations89
for the flow around a bubble propagating through a two-dimensional channel containing a90
surfactant-laden viscous liquid. In §3 we describe the asymptotic structure of the front region91
of the bubble, following the methodology of Park & Homsy (1984). We find that there are92
three regions of interest: the front cap, the thin film region, and the transition region, which93
allows for a smooth transition from the front cap into the thin film region. The equations in94
the transition region are then analysed in §4, whereby we find the surfactant-laden analogues95
of 𝑎 in (1.1) and 𝛽1 in (1.3). In §5 we describe the asymptotic structure of the rear of96
the bubble, which has an additional matching condition that the height ℎ̂∞ of the thin film97
flowing towards the rear of the bubble must equal the height of the thin film deposited by the98
front meniscus. Then, in §6, we analyse the rear transition region to find the surfactant-laden99
analogue of 𝛽2 in (1.3). Combining the results of §§4 and 6 for 𝛽1 and 𝛽2, in §7 we investigate100
how the inclusion of surfactant affects the velocity of an isolated bubble in a Hele-Shaw cell.101
Finally, in §8 we summarise our key findings.102

2. Governing Equations103

2.1. Dimensional modelling104

We consider the steady propagation of a two-dimensional bubble inside a channel of height105
2𝐻̂ (see figure 1). We orient the 𝑥-axis and the 𝑧-axis along and perpendicular to the lower106
wall, respectively. We define 𝒊 and 𝒌 as the unit vectors in the 𝑥- and 𝑧-directions, respectively.107
We assume that buoyancy effects are negligible, so the flow is symmetric across the centre-108
line of the channel and we can restrict our attention to the region 0 ⩽ 𝑧 ⩽ 𝐻̂. We define the109
bubble surface in this region to be at 𝑧 = ℎ̂(𝑥). The normal to the liquid surface pointing into110
the bubble and the tangent to the bubble surface are denoted by 𝒏, and 𝒕, respectively and are111
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given by112

𝒏 =
−ℎ̂ 𝑥̂ 𝒊 + 𝒌√︃

1 + ℎ̂2
𝑥̂

, 𝒕 =
𝒊 + ℎ̂ 𝑥̂𝒌√︃

1 + ℎ̂2
𝑥̂

, (2.1)113

where the subscript variable means partial differentiation with respect to that variable.114
We assume the motion of the bubble is sufficiently slow that the flow is in the Stokes115

regime and we move into a frame of reference in which the bubble is stationary and the walls116
travel at a velocity −𝑈̂𝑏 𝒊, where 𝑈̂𝑏 is the bubble propagation speed. We denote the liquid117
velocity as 𝒖̂ = (𝑢̂, 𝑣̂) and the pressure as 𝑝. The motion of the liquid is then governed by the118
Stokes equations119

∇̂ · 𝒖̂ = 0, in Ω̂, (2.2a)120

∇̂𝑝 = 𝜇̂∇̂2𝒖̂ in Ω̂, (2.2b)121

where 𝜇̂ is the constant liquid viscosity, Ω̂ denotes the liquid region, and ∇̂ = (𝜕/𝜕𝑥, 𝜕/𝜕𝑧)122
is the two-dimensional gradient operator.123

The surfactant concentration on the surface of the bubble, Γ̂, is governed by the advection–124
diffusion–reaction equation (Stone 1990)125

d
d𝑠

(
Γ̂𝑢𝑆

)
= 𝐷̂

d2Γ̂

d𝑠2 + 𝑘̂1𝐶̂ − 𝑘̂2Γ̂, on 𝑧 = ℎ̂(𝑥), (2.3)126

where 𝑠 is arclength, 𝐷̂ is the surface diffusion coefficient, 𝐶̂ is the bulk concentration and127

𝑢𝑆 = 𝒖̂ · 𝒕
��
𝑧̂=ℎ̂

(2.4)128

is the tangential surface velocity. We have supplemented (2.3) with a linear reaction term,129
with rate constants 𝑘̂1 and 𝑘̂2, because the surfactant concentration in the bulk and and on130
the surface are assumed to be close to equilibrium. There are numerous numerical studies131
that include nonlinear reaction kinetics, such as Fujioka & Grotberg (2005) and Muradoglu132
et al. (2019). In general one would solve a coupled advection–diffusion equation for 𝐶̂ but, as133
mentioned above we focus on the “bulk equilibrium” limit in which the bulk concentration134
does not vary significantly, so we take 𝐶̂ to be a known constant. We further assume that the135
surfactant quickly adsorbs or desorbs onto the surface of the bubble and thus the surfactant136
concentration is close to equilibrium. This implies that surfactant cannot accumulate and thus137
the bubble cannot rigidify, a phenomenon seen in surfactant systems without fast reactions138
(see e.g. Park 1992).139

On the Hele-Shaw cell wall, we supply the no-slip boundary condition140

𝒖̂ = −𝑈̂𝑏 𝒊 on 𝑧 = 0. (2.5a)141

On the bubble surface, we supply a kinematic condition and normal and tangential stress142
balances:143

𝒖̂ · 𝒏 = 0 on 𝑧 = ℎ̂(𝑥), (2.5b)144

𝒏 · 𝝈̂ · 𝒏 = −𝑝𝑏 + 𝛾̂𝜅 on 𝑧 = ℎ̂(𝑥), (2.5c)145

𝒕 · 𝝈̂ · 𝒏 =
d𝛾̂
d𝑠

on 𝑧 = ℎ̂(𝑥), (2.5d)146

where 𝛾̂ is the (no longer constant) surface tension, 𝜅 is the curvature, 𝑝𝑏 is the constant147
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pressure inside the bubble, and 𝝈̂ is the viscous stress tensor, given by148

𝝈̂ = −𝑝𝑰 + 𝜇̂
(
∇̂𝒖̂ + ∇̂𝒖̂

T
)
,149

where 𝑰 denotes the two-dimensional identity tensor and the superscript T denotes the150
transpose.151

We close our model with an equation of state, which relates the surface tension, 𝛾̂, to the152
surfactant surface concentration, Γ̂. Since we are assuming that the surfactant concentrations153
in the bulk and on the surface are close to equilibrium, we also supply a linear equation of154
state, i.e.,155

𝛾̂ = 𝛾̂0 +
d𝛾̂
dΓ̂

����
Γ̂=Γ̂0

(Γ̂ − Γ̂0), (2.6)156

where Γ̂0 = 𝑘̂1𝐶̂/𝑘̂2 is the equilibrium concentration of surfactant and 𝛾̂0 is the surface157
tension at equilibrium.158

2.2. Non-dimensionalisation159

We non-dimensionalise the system (2.2)–(2.6) as follows (in which dimensionless variables160
are denoted without hats)161

(𝑥, 𝑧, 𝑠, ℎ̂(𝑥)) = 𝐻̂ (𝑥, 𝑧, 𝑠, ℎ(𝑥)), 𝒖̂ = 𝑈̂𝑏𝒖, 𝛾̂ = 𝛾̂0𝛾,162

(𝑝, 𝑝𝑏) =
𝛾̂0

𝐻̂
(𝑝, 𝑝𝑏), 𝜅 =

𝜅

𝐻̂
, Γ̂ = Γ̂0Γ. (2.7)163

The dimensionless governing equations are given by164

∇ · 𝒖 = 0, ∇𝑝 = Ca∇2𝒖 in 0 < 𝑧 < ℎ(𝑥). (2.8)165

The dimensionless versions of the boundary conditions (2.5) are given by166

𝒖 = −𝒊 on 𝑧 = 0, (2.9a)167

and, on the bubble surface 𝑧 = ℎ(𝑥),168

d
d𝑠

(Γ𝑢𝑆) =
1
Pe

d2Γ

d𝑠2 + 𝑘 (1 − Γ), (2.9b)169

𝑣 = 𝑢ℎ𝑥 , (2.9c)170

𝑝𝑏 − 𝑝 −
2Ca

1 + ℎ2
𝑥

((
1 − ℎ2

𝑥

)
𝑢𝑥 + ℎ𝑥 (𝑢𝑧 + 𝑣𝑥)

)
=

(1 − Ma(Γ − 1))ℎ𝑥𝑥(
1 + ℎ2

𝑥

)3/2 , (2.9d)171

1(
1 + ℎ2

𝑥

)1/2

(
−4ℎ𝑥𝑢𝑥 +

(
1 − ℎ2

𝑥

)
(𝑢𝑧 + 𝑣𝑥)

)
= −Ma

Ca
Γ𝑥 , (2.9e)172

where173

d
d𝑠

=
1√︁

1 + ℎ2
𝑥

d
d𝑥

and 𝑢𝑆 =
𝑢 + ℎ𝑥𝑣√︁

1 + ℎ2
𝑥

�����
𝑧=ℎ (𝑥 )

.174

The model (2.8)–(2.9) contains the dimensionless parameters175

Ca =
𝜇̂𝑈̂𝑏

𝛾̂0
, Pe =

𝐻̂𝑈̂𝑏

𝐷̂
, Ma = − Γ̂0

𝛾̂0

d𝛾̂
dΓ̂
, 𝑘 =

𝑘̂2𝐻̂

𝑈̂𝑏

, (2.10)176
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namely the capillary number, the Péclet number, the Marangoni number and the dimension-177
less reaction constant, respectively. We consider slow flow in which Ca ≪ 1. Furthermore,178
we assume that Pe ≫ 1, and hence we take the limit Pe → ∞, so (2.9b) reduces to an179
advection–reaction equation for Γ. Finally, we also consider the regime where 𝑘 ≫ 1 so that180
the surface and bulk surfactant are approximately in equilibrium. We observe from (2.9b) that181
Γ → 1 as 𝑘 → ∞ and therefore define 𝜏 = 𝑘Ca1/3(Γ − 1). Here the scaling of 𝜏 with Ca1/3182
is designed to achieve dominant balances in the transition region between the capillary-static183
meniscus and the thin film on the channel wall (marked Region 3 in figure 2), as we will show184
below. We then identify a distinguished limit in which, although the surface concentration185
of surfactant is almost constant, the Marangoni stress at the free surface is retained in the186
model at leading order. To this end, we define the dimensionless elasticity parameter187

𝐸 =
Ma
Ca𝑘

= − Γ̂0

𝜇̂𝐻̂ 𝑘̂2

d𝛾̂
dΓ̂
, (2.11)188

and take 𝐸 = 𝑂 (1) while letting 𝑘 → ∞. The surfactant conservation equation (2.9b) and189
boundary conditions (2.9d)–(2.9e) thus reduce to190

Ca1/3 d𝑢𝑆
d𝑠

= 𝜏 (2.12a)191

𝑝𝑏 − 𝑝 −
2Ca

1 + ℎ2
𝑥

((
1 − ℎ2

𝑥

)
𝑢𝑥 + ℎ𝑥 (𝑢𝑧 + 𝑣𝑥)

)
=

(1 − 𝐸Ca2/3𝜏)ℎ𝑥𝑥(
1 + ℎ2

𝑥

)3/2 , (2.12b)192

Ca1/3(
1 + ℎ2

𝑥

)1/2

(
−4ℎ𝑥𝑢𝑥 +

(
1 − ℎ2

𝑥

)
(𝑢𝑧 + 𝑣𝑥)

)
= −𝐸𝜏𝑥 , (2.12c)193

all on 𝑧 = ℎ(𝑥).194
Following the above simplifying assumptions, the model now contains just two dimension-195

less parameters: Ca, which is assumed to be small, and 𝐸 , which we take to be 𝑂 (1). Waters196
& Grotberg (2002) study a similar system in which 𝐸 ≪ 1 and Marangoni stress is therefore197
negligible at leading order. The boundary conditions (2.12) represent the simplest model198
that contains both the Marangoni stress due to surface gradients in surfactant concentration199
(2.12c) and the depletion of adsorbed surfactant by surface dilatation (2.12a). The resulting200
system can also be interpreted as a model for surface viscosity (Gounley et al. 2016).201

2.3. Summary of assumptions202

Here we summarise the assumptions that have been made in this section.203
• The bulk surfactant concentration 𝐶̂ is sufficiently large that it does not vary significantly204

due to interaction with the surface, and we can treat it as effectively constant.205
• The surfactant is highly soluble, so the surface and bulk surfactant concentrations are206

approximately in equilibrium, i.e., 𝑘 ≫ 1.207
• Surface diffusion of surfactant is negligible, so Pe ≪ 1.208

Following these assumptions, our model for a highly soluble surfactant is given by (2.8) with209
the boundary conditions (2.9a), (2.9c), and (2.12). In addition, we will assume shortly that210
the bubble propagates sufficiently slowly for the capillary number Ca to be small.211

3. The front of the bubble212

3.1. Regions and scalings213

We consider the small-Ca limit and perform a perturbation expansion in powers of Ca1/3,214
following the analysis presented by Park & Homsy (1984), for the similar problem of a215



A surfactant-laden bubble in a channel 7

Region 2Region 3Region 1

Rear

· · ·

Region 2 Region 3 Region 1

Front

Figure 2: Schematic of the front and rear of a bubble, showing the three regions of interest
in each: (1) front and rear cap regions, (2) thin film regions, (3) transition regions.

surfactant-free bubble. As shown by Park & Homsy, in the small-Ca limit the problem splits216
into three regions of interest (see figure 2).217

1. The front-cap region. Here the free surface is capillary static and hence, to leading218

order, is a circular cap.219

2. The thin film region. Through a lubrication analysis, we find there is a thin liquid film220

of constant thickness between the channel wall and the bubble.221

3. The transition region. Here both viscous and capillary forces are important, which222

allows us to smoothly transition from the circular cap to the thin film region.223

We include for completeness the analysis of the front-cap and thin film regions, which follows224
directly from Park & Homsy. It is in the transition region where the effect of the surfactant225
is included, and thus the equations deviate from those found by Park & Homsy.226

3.2. Region 1: Front-cap region227

In this region we expand our variables in powers of Ca1/3: 𝑝(𝑥, 𝑧) ∼ 𝑝0(𝑥, 𝑧)+Ca1/3𝑝1(𝑥, 𝑧)+228
· · · and so forth. At leading order, the equations of motion (2.8) become229

∇ · 𝒖0 = 0, ∇𝑝0 = 0, (3.1a,b)230

while the boundary conditions (2.12a) and (2.12c) are both satisfied identically by 𝜏0 = 0.231
Equation (3.1b) implies that 𝑝0 = constant, and the normal stress balances at the bubble232
surface (2.12b) at leading order reads233

Δ𝑝0 =
ℎ′′0

(1 + ℎ′20 )3/2
on 𝑧 = ℎ0(𝑥), (3.2)234

where Δ𝑝0 = 𝑝𝑏 − 𝑝0 is the leading-order difference between the constant pressure inside235
the bubble, 𝑝𝑏, and the fluid pressure.236

To find the leading-order shape of the bubble, we impose the conditions ℎ0(𝑥) → 1237
and ℎ′0(𝑥) → ∞ at the front tip of the bubble (which we define to be at 𝑥 = 0), and238
ℎ0(𝑥𝑐) = ℎ′0(𝑥𝑐) = 0, where 𝑥𝑐 < 0 is the a priori unknown location of the point where the239
leading-order meniscus encounters the cell wall. We thus find that Δ𝑝0 = 1 and 𝑥𝑐 = −1,240
and the leading-order shape of the meniscus a circular cap of radius 1 (Park & Homsy 1984),241
given by242

ℎ0(𝑥) = 1 −
√︁

1 − (𝑥 + 1)2, for 𝑥 ∈ (−1, 0). (3.3)243

In (1.2) we require knowledge of the pressure drop across the meniscus up to 𝑂 (Ca2/3).244
Following Park & Homsy (1984), we find that 𝑝1, ℎ1 ≡ 0; then at 𝑂 (Ca2/3) we find that 𝑝2245
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is a constant, denoted by −𝛽1, and246

𝛽1 =
ℎ′′2

(1 + ℎ′20 )3/2
, (3.4)247

which can be solved to give248

ℎ2(𝑥) = 𝛽1
√︁

1 − (𝑥 + 1)2, (3.5)249

where 𝛽1 is the a priori unknown 𝑂 (Ca2/3) pressure correction.250

3.3. Region 2: Thin film region251

In the thin film region, we rescale the variables as252

𝑥 = 𝑥, 𝑧 = Ca2/3𝑧, ℎ = Ca2/3 ℎ̃, 𝑝 − 𝑝𝑏 = Ca2/3𝑝,253

𝑢 = 𝑢̃, 𝑣 = Ca2/3𝑣̃ 𝜏 = Ca1/3𝜏. (3.6)254

Again we expand the variables in powers of Ca1/3. At leading order, the equations of motion255
(2.8) become256

𝑢̃0𝑥̃ + 𝑣̃0𝑧̃ = 0, 𝑢̃0𝑧̃ 𝑧̃ = 0, 𝑝0𝑧̃ = 0. (3.7a–c)257

The kinematic boundary conditions (2.9a) and (2.9c) become258

𝑢̃0 = −1, 𝑣̃0 = 0 on 𝑧 = 0, (3.8a)259

𝑣̃0 = 𝑢̃0 ℎ̃0𝑥̃ on 𝑧 = ℎ̃0(𝑥), (3.8b)260

and the remaining boundary conditions (2.12a)–(2.12c) reduce to261

𝜏0 = −𝑢̃0𝑥 , 𝑝0 = ℎ̃0𝑥𝑥 , 𝑢̃0𝑧̃ = 0 on 𝑧 = ℎ̃0(𝑥). (3.9a–c)262

Hence we find that 𝜏0 ≡ 0, 𝑢̃0 ≡ −1, 𝑝0 ≡ 0 and ℎ̃0(𝑥) = constant. Thus, region 2 has a263
constant (a priori unknown) film thickness264

ℎ̃0 =
ℎ̂∞

𝐻̂Ca2/3 , (3.10)265

where ℎ̂∞ is the dimensional film thickness indicated in figure 1.266
Next, we examine the transition region, which allows us to smoothly transition from the267

constant film region to the circular cap at the front of the bubble.268

3.4. Region 3: Transition region269

In the transition region, we shift the origin to 𝑥 = −1 and rescale the variables as270

𝑥 + 1 = Ca1/3𝑋, 𝑧 = Ca2/3𝑍, ℎ = Ca2/3𝐻, 𝑝 = 𝑃,

𝑢 = 𝑈, 𝑣 = Ca1/3𝑉, 𝜏 = 𝐺.
(3.11)271

We again expand the variables in powers of Ca1/3.272
The leading-order equations of motion (2.8) become273

𝑈0𝑋 +𝑉0𝑍 = 0, 𝑃0𝑋 = 𝑈0𝑍𝑍 , 𝑃0𝑍 = 0 in 0 < 𝑍 < 𝐻0(𝑋). (3.12a–c)274

The boundary conditions (2.9a) and (2.9c) become275

𝑈0 = −1, 𝑉0 = 0 on 𝑍 = 0, (3.13a)276

𝑉0 = 𝑈0𝐻0𝑋 on 𝑍 = 𝐻0(𝑋), (3.13b)277
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and the remaining boundary conditions (2.12) become278

𝐺0 = −𝑈′
𝑆0, −𝑃0 = 𝐻′′

0 , 𝑈0𝑍 = −𝐸𝐺′
0 on 𝑍 = 𝐻0(𝑋), (3.14a–c)279

where𝑈𝑆0(𝑋) = 𝑈0(𝑋, 𝐻0(𝑋)).280
Using (3.12)–(3.14), we find that𝑈0 is given by281

𝑈0(𝑋, 𝑍) = −1 + 1
2
𝐻′′′

0 (𝑋) (2𝐻0(𝑋)𝑍 − 𝑍2) − 𝐸𝐺′
0(𝑋)𝑍. (3.15)282

By integrating (3.15) across the liquid layer (from 𝑍 = 0 to 𝑍 = 𝐻0(𝑋)) we find that the flux283
of liquid in the 𝑋-direction is given by284

𝑄 =
1
3
𝐻′′′

0 𝐻3
0 − 1

2
𝐸𝐺′

0𝐻
2
0 − 𝐻0. (3.16)285

By conservation of mass this quantity must equal the flux of liquid in the thin film region,286
where 𝑄 = −ℎ̃0. We thus obtain an equation for the height of the bubble surface in the287
transition region , namely288

𝐻′′′
0 =

3(𝐻0 − ℎ̃0)
𝐻3

0
+

3𝐸𝐺′
0

2𝐻0
. (3.17)289

Next, using (3.15) and (3.17), we find that (3.14a) becomes290

d
d𝑋

(
1
4
𝐸𝐺′

0𝐻0 +
3ℎ̃0
2𝐻0

)
= 𝐺0. (3.18)291

Equations (3.17) and (3.18) form a closed system for the film profile, 𝐻0(𝑋), and the292
perturbation to the surface concentration of surfactant, 𝐺0(𝑋) in the transition region. In293
addition, we enforce the matching conditions294

𝐻0(𝑋) → ℎ̃0, 𝐺0(𝑋) → 0 as 𝑋 → −∞, (3.19a)295

𝐻0(𝑋) ∼
1
2
𝑋2 + 𝛽1, 𝐺0(𝑋) → 0 as 𝑋 → ∞. (3.19b)296

In principle, the solution of the system (3.17)–(3.18) subject to the far-field behaviour (3.19)297
determines the a priori unknown constants ℎ̃0 and 𝛽1 along with 𝐻0 and 𝐺0.298

In the next section, we analyse the problem (3.17)–(3.19).299

4. Analysis of the transition region equations300

4.1. Normalisation301

We begin by normalising the equations (3.17) and (3.18) by scaling the variables as302

𝜉 =
𝑋 + S
ℎ̃0

, 𝜂(𝜉) = 𝐻0(𝑋)
ℎ̃0

, 𝑔(𝜉) = ℎ̃0𝐺0(𝑋). (4.1)303

The equations (3.17) and (3.18) are translation invariant, so we introduce an arbitrary shift304
S to simplify the forthcoming analysis. Under these scalings, (3.17) and (3.18) become305

𝜂′′′ =
3(𝜂 − 1)
𝜂3 + 3E𝑔′

2𝜂
, (4.2a)306

E
4
(𝜂𝑔′)′ = 𝑔 + 3𝜂′

2𝜂2 , (4.2b)307
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where308

E =
𝐸

ℎ̃0
. (4.3)309

The boundary conditions (3.19) imply that310

𝜂(𝜉) → 1, 𝑔(𝜉) → 0 as 𝜉 → −∞, (4.4a)311

𝑔(𝜉) → 0 as 𝜉 → ∞. (4.4b)312

The solution of (4.2a) can be shown to behave quadratically as 𝜉 → ∞ so313

𝜂(𝜉) ∼ 1
2
𝑎𝜉2 + 𝑏𝜉 + 𝑐 as 𝜉 → ∞, (4.5)314

where 𝑎, 𝑏 and 𝑐 are constants. Notice that the coefficients are not uniquely determined due to315
the arbitrary choice of origin for 𝜉. However, the translation-invariant groups 𝑎 and 𝑎𝑐− 1

2𝑏
2316

are uniquely determined. By comparison with (3.19), we see that they are related to the a317
priori unknown constants ℎ̃0 and 𝛽1 by318

𝑎 = ℎ̃0, 𝑎𝑐 − 1
2
𝑏2 = 𝛽1. (4.6)319

The solution strategy for the problem (4.2)–(4.4) is explained in the following subsection.320
Once 𝜂 and 𝑔 have been computed for a given value of 𝐸 , the surface velocity of the thin film321
is calculated from (3.15), giving322

𝑈𝑆 =
1
2
− E

4
𝜂𝑔′ − 3

2𝜂
. (4.7)323

4.2. Solution324

We solve (4.2) numerically by shooting from 𝜉 → −∞. Linearising (4.2) about the far-field325
behaviour (4.4a), we find that326

𝜂(𝜉) ∼ 1 +
5∑︁

𝑛=1
𝐴𝑛e𝜆𝑛 𝜉 , 𝑔(𝜉) ∼

5∑︁
𝑛=1

𝐵𝑛e𝜆𝑛 𝜉 as 𝜉 → −∞, (4.8)327

where the 𝜆𝑛 are roots of the quintic polynomial328

𝜆5 − 4
E 𝜆

3 − 12𝜆2 + 12
E = 0. (4.9)329

This equation has two real and positive roots (which we label 𝜆1 and 𝜆2), one real and negative330
(labelled 𝜆3), and a complex conjugate pair with negative real part (labelled 𝜆𝑐 and 𝜆𝑐). We331
require the solution to decay as 𝜉 → −∞, so only the positive eigenvalues are permitted.332
Hence the decaying linearised far-field behaviour is given by333

𝜂(𝜉) ∼ 1 + 𝐴1e𝜆1 𝜉 + 𝐴2e𝜆2 𝜉 as 𝜉 → −∞, (4.10a)334

𝑔(𝜉) ∼
𝜆1

(
𝜆3

1 − 12
)
𝐴1

6
e𝜆1 𝜉 +

𝜆2
(
𝜆3

2 − 12
)
𝐴2

6
e𝜆2 𝜉 as 𝜉 → −∞, (4.10b)335

where 𝐴1 and 𝐴2 are a priori unknown constants. Due to the translation invariance we may336
(e.g.) set 𝐴1 = ±1 by choice of S in (4.1).† We then determine 𝐴2 via the shooting method337
to ensure our solution satisfies 𝑔(𝜉) → 0 as 𝜉 → ∞.338

† Although translation allows us to set the coefficient of one exponential to have magnitude 1, we do not
know its sign in advance; however, we always find that in the front transition region 𝐴1 > 0.

Rapids articles must not exceed this page length
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For each value of E, we use the above shooting method to solve for 𝜂 and 𝑔, then read off339
the coefficients {𝑎, 𝑏, 𝑐} in the quadratic behaviour (4.5) as 𝜉 → ∞. We then use (4.3) and340
(4.6) to determine 𝑎 = ℎ̃0 and 𝛽1 parametrically as functions of 𝐸 . However, the shooting341
problem can become delicate for small or large values of E. In the next two subsections, we342
present asymptotic results for these two limits.343

4.3. Small-E limit344

In the limit where E is small we expand345

𝜂 ∼ 𝜂0 + E𝜂1 + · · · , 𝑔 ∼ 𝑔0 + E𝑔1 + · · · . (4.11)346

This regime is similar to that studied by Waters & Grotberg (2002) for a surfactant-laden347
liquid plug and by Ginley & Radke (1989) who considered a bubble in a capillary tube.348

At 𝑂 (1) in (4.2), we find that349

𝜂′′′0 =
3(𝜂0 − 1)

𝜂3
0

, (4.12a)350

𝑔0 = −
3𝜂′0
2𝜂2

0
. (4.12b)351

The decoupled equation (4.12a) for 𝜂0 is the same Landau–Levich equation used by352
Bretherton (1961) to determine the shape of a surfactant-free bubble in the transition353
region. The solution for 𝜂0 is uniquely determined, up to an arbitrary translation, and354
the corresponding leading-order surfactant concentration profile 𝑔0(𝜉), given by (4.12b),355
is plotted in figure 3. Although the limit E → 0 is singular, removing the highest derivative356
in (4.2b), we see that 𝑔0 tends to zero in the far field, as required, and no boundary-layer357
behaviour is produced, as also found by Waters & Grotberg (2002) and Ginley & Radke358
(1989). The coefficients in the quadratic behaviour359

𝜂0(𝜉) ∼
1
2
𝑎0𝜉

2 + 𝑏0𝜉 + 𝑐0 as 𝜉 → ∞, (4.13a)360

are also determined uniquely and, in particular, we have 𝑎0 ≈ 1.337 and 𝑎0𝑐0 − 1
2𝑏

2
0 ≈ 3.88,361

as found by Bretherton (1961).362
To find the correction to ℎ̃0 and 𝛽1 due to the effect of surfactants, we proceed to first order363

in (4.2a) to obtain the equation364

𝜂′′′1 =
12(3 − 2𝜂0)𝜂1 + 9(2𝜂′20 − 𝜂0𝜂

′′
0 )

4𝜂4
0

, (4.14)365

for the correction to the thin film height. We solve (4.14) in the same fashion as (4.12a) by366
shooting from 𝜉 → −∞. Again the solution to (4.14) behaves quadratically for large positive367
𝜉:368

𝜂01 ∼ 1
2
𝑎1𝜉

2 + 𝑏1𝜉 + 𝑐1 as 𝜉 → ∞, (4.15a)369

where the constants 𝑎1, 𝑏1, 𝑐1 are in principle determined (up to an arbitrary translation) by370
the solution of (4.14). In particular we find that 𝑎1 ≈ −0.0146, and 𝑎0𝑐1+𝑐0𝑎1−𝑏0𝑏1 ≈ 0.58.371

Finally, we obtain the small-𝐸 expansions for 𝑎 = ℎ̃0 and 𝛽1 from (4.6). Note that the372
definition (4.3) of E involves ℎ̃0, so we have to manipulate the expansions to remove the373
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dependence on ℎ̃0 to get374

𝑎 ∼ 𝑎0 +
𝑎1
𝑎0
𝐸 ≈ 1.337 − 0.011𝐸 as 𝐸 → 0, (4.16a)375

𝛽1 ∼ 𝑎0𝑐0 −
1
2
𝑏2

0 +
𝑎0𝑐1 + 𝑐0𝑎1 − 𝑏0𝑏1

𝑎0
𝐸 ≈ 3.88 + 0.43𝐸 as 𝐸 → 0. (4.16b)376

We note that (4.16a) and (4.16b) differ from (26) in Waters & Grotberg (2002) because they377
include a factor of 3 in their Ca, which induces a factor of 31/3 in the definition of 𝐸 . We378
also note that Waters & Grotberg’s expression for the pressure drop is twice ours, due to the379
cylindrical instead of two-dimensional geometry that they study.380

4.4. Large-E limit381

In the other extreme where E is large, we expand382

𝜂 ∼ 𝜂0 +
1
E 𝜂1 + · · · , 𝑔 ∼ 1

E 𝑔1 + · · · . (4.17)383

At 𝑂 (1) in (4.2) we find384

𝜂′′′0 =
3(𝜂0 − 1)

𝜂3
0

+
3𝑔′1
2𝜂0

, (4.18a)385

1
4
(𝑔′1𝜂0)′ =

3𝜂′0
2𝜂2

0
. (4.18b)386

We can integrate (4.18b) and substitute into (4.18a) to obtain387

𝜂′′′0 =
12(𝜂0 − 1)

𝜂3
0

, (4.19a)388

𝑔1 =
1
2
𝜂0𝜂

′′
0 − 1

4
(
𝜂′0
)2 − 1

2
𝛽10, (4.19b)389

where 𝛽10 is the leading-order approximation for the coefficient 𝛽1.390
Once again, (4.19a) is the Landau–Levich equation and it is similar to the surfactant-391

free equation (4.12a) found by Bretherton (1961) except with an additional factor of 4 in392
the numerator. This additional factor of 4 induces an increase in the thin film height and393
correction to the pressure drop by a factor of 42/3, i.e.,394

𝑎 → 42/3 · 1.337 ≈ 3.369 as 𝐸 → ∞, (4.20a)395

𝛽1 → 𝛽10 ≈ 42/3 · 3.88 ≈ 9.78 as 𝐸 → ∞. (4.20b)396

In this limit, we find that the surface velocity (4.7) is given by 𝑈𝑆 ≡ −1, which corresponds397
to the bubble interface travelling at the same velocity as the walls of the cell.398

These results reproduce the large-Marangoni-number limit reported in previous studies399
(see, for example, Ratulowski & Chang 1990; Park 1992; Stebe & Barthes-Biesel 1995; Shen400
et al. 2002). However, we also evaluate the correction to the surfactant concentration, given401
by (4.19b) and plotted in figure 5, where it is evident that 𝑔1 does not satisfy the far-field402
condition 𝑔1(𝜉) → 0 as 𝜉 → −∞. This apparent inconsistency can be resolved by examining403
an outer region in which404

𝜉 = E1/2Ξ, 𝑔(𝜉) = E−1Ψ(Ξ), 𝜂(𝜉) ∼ 1 + exponentially small terms, (4.21)405

so that (4.2b) is transformed to406

Ψ′′ = 4Ψ, (4.22)407
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Figure 3: The surfactant concentration in the front transition region, 𝑔(𝜉), with E → 0
(black), E = 1 (blue), E = 4 (red), and E → ∞ (purple).
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Figure 4: The free surface profile 𝜂(𝜉) in the front transition region, with E → 0 (black),
E = 1 (blue), E = 4 (red)

up to exponentially small corrections. By matching with (4.19b) we thus obtain the leading-408
order outer solution409

Ψ0(Ξ) = −1
2
𝛽10e2Ξ. (4.23)410

4.5. Results411

In figure 3, we plot the correction from equilibrium to the surfactant concentration, 𝑔, in the412
front transition region when E → 0, E = 1, E = 4 and E → ∞. We use the arbitrary shift413
S introduced in §4.1 to align the peaks of the concentration profiles. In the limit E → ∞,414
𝑔 vanishes across the entire domain, but in all other cases, we observe that 𝑔 < 0 and so415
the surfactant concentration is everywhere below equilibrium in the front transition region.416
Similar concentration profiles were observed by Stebe & Barthes-Biesel (1995) in a system417
with an elevated bulk concentration. In figure 4 we plot the film height in the transition region418
and, for all values of E, we observe similar profiles to those found by Bretherton (1961) and419
Park & Homsy (1984) for a surfactant-free bubble.420
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Figure 5: The leading-order (a) perturbation to the surfactant concentration, 𝑔1 (𝜉), and (b)
free surface profile, 𝜂0 (𝜉), in the front transition region in the limit E → ∞.
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Figure 6: The surface velocity,𝑈𝑆 (𝜉), in the front transition region with E → 0 (black),
E = 1 (blue), E = 4 (red), and E → ∞ (purple).

We plot the lowest-order perturbation to the surfactant concentration, 𝑔1(𝜉), and the film421
height, 𝜂0(𝜉), in the limit E → ∞ in figure 5. The leading-order solution evidently does not422
satisfy the downstream boundary condition 𝑔1(𝜉) → 0 as 𝜉 → −∞, implying that there must423
be a boundary layer at infinity, as explained in §4.4. In figure 6 we plot the leading-order424
surface velocity, 𝑈𝑆 , for E → 0, E = 1, E = 4 and E → ∞. We observe that, for finite425
E, there is a stagnation point (in the frame of the bubble) within the transition region. Its426
location is close to the minimum point of 𝑔 in figure 3, because the flow directed outwards427
advects surfactant away from the stagnation point. The presence of a stagnation point along428
the front of the bubble is a prevalent feature of gas bubbles in Hele-Shaw cells or capillary429
tubes, even in systems with more complicated surfactant dynamics and non-zero Reynolds430
numbers (Fujioka & Grotberg 2005; Zheng et al. 2007).431

The normalised height of the thin film, 𝑎, is plotted as a function of the elasticity parameter432
𝐸 in figure 7. As 𝐸 → 0, surfactant effects become negligible and the thin film height433
approaches Bretherton’s result of 1.337 for a surfactant-free bubble (Bretherton 1961). At434
the other extreme, when 𝐸 is large, 𝑎 approaches 3.369 which is larger by a factor of 42/3,435
as expected. Interestingly, (4.16a) predicts a decrease in the thin film height for small 𝐸 (see436
figure 7(b)), however, figure 7(b) shows that the asymptotic result (4.16a) (also obtained by437
Waters & Grotberg 2002) quickly becomes redundant, and the normalised thin film height,438
𝑎, increases with 𝐸 thereafter.439

The correction to the pressure drop across the front meniscus, 𝛽1, is plotted as a function of440
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Figure 7: The normalised thin film height 𝑎 versus elasticity parameter 𝐸 . The solid curve
is from the numerical solution of (4.2), and dashed curves are the asymptotic predictions:
(4.16a) for small 𝐸 and (4.20a) for large 𝐸 . (a) A log–linear plot to show the full range of

𝐸 . (b) The solution for 0 ⩽ 𝐸 ⩽ 5.77.
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Figure 8: The correction to the pressure drop across the front meniscus, 𝛽1, versus

elasticity parameter 𝐸 . The solid curve is from the numerical solution of (4.2), and dashed
curves are the asymptotic predictions: (4.16b) for small 𝐸 and (4.20b) for large 𝐸 .

𝐸 in figure 8. Again when 𝐸 is small we recover the Bretherton (1961) result that 𝛽1 ≈ 3.88.441
We observe that 𝛽1 is a monotonic increasing function and when 𝐸 is large 𝛽1 approaches442
9.78, in agreement with (4.20b). In the numerical simulation of (4.2), accurate convergence443
for the value of 𝛽1 could not be achieved for values of 𝐸 ≲ 0.5 due to the sensitivity of the444
numerical shooting method, caused by the singular nature of the system (4.2) as 𝐸 → 0. In445
general, it is harder to compute the value of 𝛽1 than 𝑎 at small 𝐸 because a significantly larger446
value of 𝜉 is needed to robustly extract the value of 𝑎𝑐 − 𝑏2/2 from the quadratic function447
(4.5) than to determine 𝑎. The numerical approach is thus useful provided 𝐸 ≳ 𝑂 (1), while448
the asymptotic approximation (4.16b) is useful when 𝐸 is small, and we are reassured by449
figure 8 that there is at least a small overlap region where they approximately agree.450

5. Rear of the bubble451

5.1. Regions452

As for the front meniscus, in the small-Ca limit the problem at the rear of the bubble splits into453
three regions of interest (see figure 2). In particular, for the rear cap region, we can follow the454
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same analysis as in §3.2 and find that the leading-order shape and surfactant concentration455
are given by456

ℎ0(𝑥) = 1 −
√︁

1 − (𝑙 − 1 + 𝑥)2, (5.1a)457

ℎ2(𝑥) = 𝛽2
√︁
(𝑥 + 𝑙) (2 − 𝑙 − 𝑥), (5.1b)458

Γ0(𝑥) = 1, (5.1c)459

where 𝑙 is the dimensionless length of the bubble, and 𝛽2 is the a priori unknown 𝑂 (Ca2/3)460
correction to the pressure drop across the rear meniscus.461

As in §3.3, in the thin film region (region 2), the film height ℎ̃0 is constant, and now in462
principle known from the solution for the front meniscus (see figure 7). In the next section463
we analyse the equation in the rear transition region in a similar manner to §4.464

6. Analysis of the rear transition region equations465

6.1. Normalisation466

We again normalise by scaling the variables as467

𝜉 =
𝑋 + S
ℎ̃0

, 𝜂(𝜉) = 𝐻0(𝑋)
ℎ̃0

, 𝑔(𝜉) = ℎ̃0𝐺0(𝑋), (6.1)468

where S is an arbitrary shift of our coordinates. We obtain exactly the same equations (4.2)469
as the front transition region, i.e.,470

𝜂′′′ =
3(𝜂 − 1)
𝜂3 + 3E𝑔′

2𝜂
, (6.2a)471

E
4
(𝑔′𝜂)′ = 𝑔 + 3𝜂′

2𝜂2 . (6.2b)472

We solve (6.2) numerically now by shooting from 𝜉 → ∞. We find that the decaying473
linearised solution is given by474

𝜂 ∼ 1 ± e𝜆3 𝜉 + 𝑆e𝜆𝑅 𝜉 cos(𝜆𝐼𝜉 − 𝑞), (6.3a)475

𝑔 ∼ ± 6𝜆3

E𝜆2
3 − 4

e𝜆3 𝜉 − 𝑆Λ𝑐 (𝜆𝑅, 𝜆𝐼 )e𝜆𝑅 𝜉 cos(𝜆𝐼𝜉 − 𝑞) − 𝑆Λ𝑠 (𝜆𝑅, 𝜆𝐼 )e𝜆𝑅 𝜉 sin(𝜆𝐼𝜉 − 𝑞),

(6.3b)

476

as 𝜉 → ∞. Here, 𝑆 and 𝑞 are a priori unknown shooting parameters, 𝜆3 is the real negative477
solution of (4.9), and 𝜆𝑐 = 𝜆𝑅 + i𝜆𝐼 is the complex root with negative real part. The478
coefficients are given by479

Λ𝑐 (𝜆𝑅, 𝜆𝐼 ) =
6𝜆𝑅 (−4 + E(𝜆2

𝑅
+ 𝜆2

𝐼
))

16 + 8E(𝜆2
𝐼
− 𝜆2

𝑅
) + E2(𝜆2

𝑅
+ 𝜆2

𝐼
)2
, (6.4a)480

Λ𝑠 (𝜆𝑅, 𝜆𝐼 ) =
6𝜆𝐼 (4 + E(𝜆2

𝑅
+ 𝜆2

𝐼
))

16 + 8E(𝜆2
𝐼
− 𝜆2

𝑅
) + E2(𝜆2

𝑅
+ 𝜆2

𝐼
)2
. (6.4b)481

Note again that the ± occurs in (6.3) because although translation allows us to set the482
coefficient of the exponential to be of magnitude 1, we do not know its sign in advance.483
Finally, we now have that 𝜂0 behaves quadratically for large negative 𝜉, i.e.,484

𝜂 ∼ 1
2
𝐴𝜉2 + 𝐵𝜉 + 𝐶 as 𝜉 → −∞. (6.5)485
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We solve (6.2) for each value of E = 𝐸/ℎ̃0(𝐸) by applying a shooting method with two486
unknown parameters 𝑆 and 𝑞, which are fixed by ensuring 𝑔(𝜉) → 0 and 𝜂′′ (𝜉) → ℎ̃0(𝐸) as487
𝜉 → −∞, where ℎ̃0(𝐸) is as shown in figure 7. The first condition corresponds to matching488
the surfactant concentration in the thin film to the equilibrium concentration in the rear cap489
(see §5.1), and the second ensures that the thin film height at the rear meniscus matches the490
height of the thin film deposited at the front meniscus. Following the matching procedure491
laid out in §4.1, we then obtain the 𝑂 (Ca2/3) correction to the pressure drop across the rear492
meniscus as493

𝛽2 = 𝐴𝐶 − 1
2
𝐵2. (6.6)494

This two-parameter shooting problem can be extremely sensitive, so we examine the limiting495
cases using asymptotic analysis.496

6.2. Small E limit497

In the extreme where E is small we expand498

𝜂 ∼ 𝜂0 + E𝜂1 + · · · , (6.7a)499

𝑔 ∼ 𝑔0 + E𝑔1 + · · · . (6.7b)500

Then at 𝑂 (1) in (6.2) we again find that the equations reduce to (4.12). We note that (6.2b)501
is singular in the limit E → 0; however, for the same reasons as presented in §4.3 there is502
no boundary-layer behaviour and the solution of (4.12b) satisfies all the relevant boundary503
conditions.504

Again, the equation (4.12a) for 𝜂0 decouples and is just the usual Landau–Levich equation505
obtained for a surfactant-free bubble. At first order in (6.2) we again obtain equation (4.14)506
for the correction to the bubble surface. We solve (4.14) by shooting from 𝜉 → ∞. Following507
the matching methodology laid out in §4.1, we thus find that the 𝑂 (Ca2/3) correction to the508
pressure drop is given by509

𝛽2 ∼ −1.13 − 0.73𝐸 as 𝐸 → 0. (6.9)510

The leading term in (6.9) is Bretherton’s classical result for the rear meniscus of a surfactant-511
free bubble (Bretherton 1961), and the second term is the first correction due to the presence512
of surfactant.513

6.3. Large 𝐸 limit514

In this limit we follow the same methodology as in §4.4 to obtain515

𝜂′′′0 =
12(𝜂0 − 1)

𝜂3
0

. (6.10)516

Matching with the rear cap solutions (5.1) we find that the correction to the pressure drop is517
then given by518

𝛽2 ∼ −42/3 · 1.13 ≈ −2.85 as 𝐸 → ∞. (6.11)519

Again this is a factor of 42/3 larger than the original Bretherton (1961) result. This extends520
the large Marangoni number limit reported in many studies (see, for example, Ratulowski &521
Chang 1990; Park 1992) to the rear meniscus.522

6.4. Results523

In figure 9 we show example solutions for 𝐸 = 1.36 (E = 1) and 𝐸 = 5.76 (E = 4). In524
figure 9(b) we observe that the surfactant concentration can be both above and below the525
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Figure 9: (a) The surface profile, 𝜂, (b) The surfactant concentration, 𝑔1, and (c) the
surface velocity,𝑈𝑆 , in the rear transition region with E = 1, (black) E = 4 (red).

equilibrium concentration in the rear transition region, in contrast to the front transition526
region, where the concentration is always below equilibrium. For these specific solutions, we527
find that 𝛽2 ≈ −1.50 for 𝐸 = 1 and 𝛽2 ≈ −2.33 for 𝐸 = 4, which are greater in magnitude528
than the pressure drop 𝛽2 ≈ −1.13 for a surfactant-free bubble found by Bretherton (1961).529
In figure 9(c) we plot the corresponding surface velocities, 𝑈𝑆 for the same values of 𝐸 .530
Similarly to the front meniscus, we observe a stagnation point (in the frame of the bubble) in531
the transition region. However, here the flow is directed into the stagnation point, resulting532
in a local increase in the surfactant concentration.533

7. Application to the motion of bubbles in a Hele-Shaw cell534

7.1. Force balance535

We are now in a position to include the effect of surfactants in the models presented by Booth536
et al. (2023, 2025a,b); Wu et al. (2024) for the motion of an approximately circular bubble537
in a Hele-Shaw cell moving due to a uniform background flow 𝑈̂ 𝑓 𝒊. Booth et al. (2023) find538
that the dimensionless velocity 𝑼𝑏 of such a bubble is determined by the force balance539

𝑼𝑏

|𝑼𝑏 |1/3 =
𝛿

𝜋

∮
𝜕Ω

−𝑝𝒏 d𝑠, (7.1)540

where 𝜕Ω is the bubble surface as viewed from above (see figure 10) and the Bretherton541
parameter is defined by542

𝛿 =
3
√
𝜋Γ(11/6)

(𝛽1 − 𝛽2)Γ(4/3)
Ca1/3

𝑓

𝜖
. (7.2)543

Here 𝜖 = 𝐻̂/𝑅̂, where 𝑅̂ is the radius of the bubble (measured from above), and Ca 𝑓 = 𝜇̂𝑈 𝑓 /𝛾̂544

is the capillary number based on the background flow speed, 𝑈̂ 𝑓 , both of which are assumed545
to be small. In the distinguished limit where Ca 𝑓 = 𝑂 (𝜖3) as 𝜖 → 0, so the viscous546
lubrication pressure balances the pressure drop across the menisci, the bubble is circular to547
leading order (Booth et al. 2023). For a surfactant-free bubble, 𝛽1 and 𝛽2 are given by the548
values 𝛽1(0) ≈ 3.88 and 𝛽2(0) ≈ −1.13 originally calculated by Bretherton. This result is549
now easily generalised for a surfactant-laden bubble by using the expressions for 𝛽1(𝐸) and550
𝛽2(𝐸) found in §§4 and 6, respectively. Crucially, we recall that the elasticity parameter 𝐸 ,551
given by (2.10), is independent of the capillary number, so the values of 𝛽1 and 𝛽2 depend552
only on the given surfactant properties and concentration. Note that the values of 𝛽1 and 𝛽2553
are both 𝑂 (1) for the entire range of values of 𝐸 ∈ [0,∞).554

From (7.1), we find that the velocity of an isolated bubble in a uniform background flow555
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Figure 10: Plan view of a surfactant-laden bubble in a Hele-Shaw cell in a uniform
background flow.

is given by 𝑼𝑏 = 𝑈𝑏 𝒊, where556

𝑈
2/3
𝑏

2 −𝑈𝑏

= 𝛿 =

(
𝛽1(0) − 𝛽2(0)
𝛽1(𝐸) − 𝛽2(𝐸)

)
𝛿𝐵, (7.3)557

and we define the surfactant-free Bretherton parameter558

𝛿𝐵 =
3
√
𝜋Γ(11/6)

(𝛽1(0) − 𝛽2(0))Γ(4/3)
Ca1/3

𝑓

𝜖
≈ 1.12

Ca1/3
𝑓

𝜖
. (7.4)559

7.2. Results560

In figure 11 we plot𝑈𝑏 versus 𝛿𝐵, for a range of values of 𝐸 . Note that, if we plotted versus the561
Bretherton parameter, 𝛿 given by (7.2), then all the curves would collapse. Plotting𝑈𝑏 versus562
𝛿𝐵 allows us to analyse the effect of surfactant on the bubble velocity in comparison with a563
surfactant-free bubble experiencing the same flow conditions. We observe that the velocity564
of a surfactant-laden bubble (𝐸 > 0) at each 𝛿𝐵 is less than that of a surfactant-free bubble565
(𝐸 = 0) at the same value of 𝛿𝐵. This trend continues as we increase 𝐸 , up to the limiting566
case 𝐸 → ∞ when 𝛿 = 42/3𝛿𝐵, the maximum value that 𝛿 can take for a fixed 𝛿𝐵. Hence, we567
always find that a surfactant-laden bubble travels more slowly than a surfactant-free bubble568
under the same flow conditions.569

The form of (7.3) has the same structure as the expression found by Baué et al. (2025)570
(their (5.11)) for the velocity of a droplet in a highly soluble surfactant solution, in the limit571
as the droplet viscosity tends to zero. Note that their capillary number is calculated from the572
droplet velocity, whereas we use the capillary number Ca 𝑓 based on the background flow573
speed. One can make an analogy between their constant 1/𝐾 and the prefactor of 𝛿𝐵 in (7.4).574
Our model provides the dependence of this prefactor on the surfactant properties, which575
is missing in their work. Baué et al. (2025) found experimentally that, with highly soluble576
surfactants, the velocity of a bubble increases with its size, which is consistent with (7.3).577

8. Conclusions578

In this paper, we develop a model for the propagation of a two-dimensional surfactant-laden579
bubble in a channel. We adopt the so-called bulk equilibrium model, in which there is580
assumed to be an abundance of surfactant in the liquid. We then identify a distinguished581
asymptotic limit in which the reaction kinetics are so fast that the surface concentration of582
surfactant remains close to equilibrium, but the Marangoni stress is large enough still to enter583
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Figure 11: The dimensionless bubble velocity,𝑈𝑏 (7.3) as a function of the surfactant-free
Bretherton parameter, 𝛿𝐵 (7.4) for a range of values of 𝐸 = 0 (black), 𝐸 = 1.36 (E = 1)
(blue), 𝐸 = 5.76 (E = 4) (red), 𝐸 = ∞ (purple), with 𝛽1 and 𝛽2 given by (4.6) and (6.6),

respectively.

the model at leading order. The resulting boundary conditions (2.12) capture the important584
physical effects of surfactant in a single dimensionless parameter 𝐸 .585

Through the method of matched asymptotic expansions, we derive results for the di-586
mensionless height of the thin films between the bubble and the channel walls and for587
the corrections to the pressure drop across the front and rear menisci of the bubble. Such588
an analysis is reliant on the bubble being long, so we can treat the front and rear of the589
bubble separately. Our bulk equilibrium surfactant model produces results analogous to590
Bretherton’s, in which the thin film height and the pressure corrections scale with Ca2/3591
(Bretherton 1961), but where the prefactors are now numerically determined functions of 𝐸 ,592
with the surfactant-free case corresponding to 𝐸 = 0. Previous work (Waters & Grotberg593
2002) found that the height of the deposited film is a decreasing function of 𝐸 in the limit594
𝐸 → 0. Strikingly, we show that this asymptotic prediction fails for 𝐸 as small as 0.2, and595
in fact the film height almost always increases with 𝐸 , up to a maximum value larger than596
Bretherton’s by a factor of 42/3. Likewise, we find that the net pressure difference across both597
menisci increases with 𝐸 , again by a factor of up to 42/3 in the limit as 𝐸 → ∞. The factor598
of 42/3 comes from the bubble surface being stationary in the lab frame of reference, rather599
than satisfying the zero-stress condition as in the original Bretherton problem.600

The key outputs from our analysis are the normalised corrections to the pressure drop601
𝛽1 and 𝛽2 across the front and rear meniscus, respectively. In practice, the computation of602
these parameters across a range of values of 𝐸 is very challenging because of the extreme603
sensitivity of the relevant shooting problems, especially for the rear meniscus, where there604
are two shooting parameters. To perform an exhaustive parameter sweep, particularly in the605
singular limit where 𝐸 → 0, it may be necessary to adopt an alternative numerical approach,606
for example solving the boundary-value problem directly by discretizing the whole domain.607

We use our results for the modified pressure drop across the bubble to obtain a generalised608
equation of motion for a bubble in a Hele-Shaw cell that includes the effects of surfactants. As609
in Booth et al. (2023), the effective viscous drag on the bubble is measured by a dimensionless610
“Bretherton parameter” 𝛿 ∝ Ca1/3/𝜖 , with just the prefactor now a function of 𝐸 (see (7.2)).611
We find that, for the same flow conditions, an isolated surfactant-laden bubble will travel612
more slowly than an isolated surfactant-free bubble. Crucially, 𝐸 depends only on the physical613
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properties of the surfactant and the fluid, as well the cell height, but not on any local flow614
properties (e.g., the local capillary number). The model thus easily generalises to an arbitrary615
number of bubbles by modifying the prefactor in 𝛿 in the same way for each bubble.616

Our modelling relies on the surfactant being highly soluble, in the sense that the timescale617
for adsorption is much shorter than that for surfactant transport, i.e., the Damköhler number618
is large. It also relies on the capillary number being small, i.e., the bubble propagates slowly619
enough for the free surface to be dominated by capillary effects. The former can be achieved620
in practice using surfactants such as sodium alkyl sulphates, or alkyl trimethylammonium621
bromides with fewer than 11 carbons in the alkyl chain (Baué et al. 2025). The latter is almost622
always satisfied in microfluidic devices (Stone et al. 2004).623

Our analysis relies on the front and rear menisci being well separated in the flow direction,624
which is not true near the “poles” of the bubble (in plane view), where the bubble meniscus625
is parallel to the background velocity. In these regions, a different asymptotic scaling allows626
one to explain how the parameter 𝛽 varies smoothly between the constant values 𝛽1 and627
𝛽2, as shown by Burgess & Foster (1990) for clean bubbles. However, Booth et al. (2023)628
showed that these regions provide a correction to the bubble velocity that is 𝑂 (𝜖6/5), and629
thus negligible to lowest order.630
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