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Abstract

We study the deformation and slip-through of a heavy elastic beam sus-

pended above two point supports and subject to an increasing body force —

an idealized model of a fibre trapped in the pores of a filter as flow strength

increases, for example. Using both asymptotic and numerical techniques,

we investigate the behaviour of the beam under increasing body force and

the maximum force that can be supported before it must slip between the

supports. We quantify this maximum body force as a function of the sep-

aration between the two supports. Surprisingly, we show the existence of a

critical separation below which the beam can withstand an arbitrarily large

body force, even in the absence of friction. This is understood as the limit

of a catenary between the supports that is connected to (and supported by

the tension in) a vertically hanging portion outside the supports. We explore

how frictional forces impact the deformation and load-bearing capacity of the

beam and show that our results are consistent with laboratory experiments.
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1. Introduction

Flexible objects in contact with a rigid boundary and subject to a body

force occur in a wide variety of scenarios, whether in an industrial setting

or in day-to-day life: the main cable in a suspension bridge (Zhang et al.,

2017; Zhou and Chen, 2019; Zhang et al., 2021), buckling of a pipe within a

borehole when drilling for oil (Miller et al., 2015a,b), and the rucking of a rug

(Vella et al., 2009; Kolinski et al., 2009), are some examples. While many of

these examples are at quite large scales, the essential ingredients (a uniform

body force and a flexible slender structure) can be a useful approximation of

complex scenarios at small scales. Two examples of the same ingredients at

smaller scales are the flow-induced trapping of a fibre in a filter (Lant et al.,

2022), and a soft robot walking on the floor (Shepherd et al., 2011; Hu et al.,

2018; Wu et al., 2023).

When modelling the deformation of elastic materials, it is important to

maintain key features such as the flexibility, as well as the forces underpinning

the deformation. In all of the aforementioned examples, the deformation is

influenced by contact with a surface. Therefore it is important to understand

the effects of the frictional and restoring forces as well as a constant body

force on the material. However, a general contact region can be complex and

so it is especially convenient that several of the earlier examples, such as the

trapping of fibres and soft robot locomotion, can be approximated as point

contact.

When considering a supported elastic beam, the question of when the

beam will slip through the supports and fall is often of interest. For example,
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when considering a model for a point supported or variable-arc-length beam,

the question is whether an equilibrium configuration exists (Athisakul and

Chucheepsakul, 2008; Chen et al., 2010; Plaut et al., 2011). The aim of this

class of problem is to understand the critical load that can be withstood

by the beam before it slides off the support, and how this depends on the

location of the support.

Previous work on point-supported elastic beams has focused on investi-

gating the optimal positions with which to lift an elastic cable (Wang, 1990),

as well as the critical weight and support span with which to store flexible

pipes or cables (Chen et al., 2010). The two models differ from one another

as the first model concerns the lifting of a cable, equivalent to having only

a nonzero vertical reaction force, whereas the latter captures how a cable is

supported, taking into account a nonzero horizontal component of the reac-

tion force. In either case, the focus has often been on determining either the

critical support positioning for a given load or, for a given support position-

ing, the critical load at which the beam slides off.

This system also has important practical implications. For example, when

considering the filtration of fibres that have detached from the clothes in a

washing machine or tumble-dryer, the slipping of a fibre through the filter

mesh occurs due to the action of the fluid flow through the filter. Such a

process is undesirable as this corresponds to failure in the filter operation.

Motivated by the filtration of fibres, in this paper, we consider the de-

formation of a supported elastica under an increasing body force, starting

from a small-deformation state. We note that, for highly-deformed fibres,

the force due to an external flow will actually vary with arc length along
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the fibre, since the force experienced by a fibre is proportional to the length

perpendicular to the external flow. However, for model simplicity we will as-

sume a uniform body force along the length. This is sufficient to uncover the

qualitative behaviour of the system; generalizing to an arc-length-dependent

force is straightforward. We also note that the model describes the defor-

mation of an elastic beam that is loaded uniformly across its length with

changes in load only happening quasi-statically.

In Section 2, we present our model of the deformation of a beam under

increasing force, for the case in which the contact between the beam and

the supports is assumed to be frictionless. We study the behaviour and

load-bearing capacity of the beam, above which the beam must slip and fall

between the supports. We show that for sufficiently close supports (supports

a fraction < 1/e of the total length of the beam apart) the system is able to

support an arbitrary high load in equilibrium — since 1/e ≈ 0.37, this seems

to reproduce a result of Chen et al. (2010) but allows additional insight that

may be generalized to include friction.

In Section 3, we generalize the model to explore how frictional forces

impact the deformation and load-bearing capacity of the beam. One com-

plication that this introduces to the problem is that friction allows a body

to hold a range of configurations (Vella et al., 2009; Plaut and Dillard, 2011;

Plaut et al., 2011). In Section 4 we present results from experiments while in

Section 5 we draw conclusions on our investigation of this point-supported

heavy beam.
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2. A heavy beam on point supports

2.1. Model setup

We consider a beam of length 2L, placed symmetrically on two point

supports, which are set a horizontal distance 2â apart, as shown in figure 1.

Here we will assume that the contact between the beam and the supports is

frictionless; we revisit this assumption in Section 3. The deformation occurs

under the action of a body force f̂ per unit length, which is intended to

represent the weight of the beam; the system is therefore referred to as the

Point Supported Heavy Elastica (or PSHE) henceforth. However, it may

also represent the action of an idealized viscous force from a uniform flow

perpendicular to the beam.

The coordinates (x̂, ŷ) are defined such that the point supports lie on

ŷ = 0, and the centre of the PSHE lies at x̂ = 0. We define θ as the angle

the tangent to the PSHE makes with the positive x̂-axis. The arc length ŝ is

defined symmetrically such that ŝ = 0 at the centre of the PSHE, ŝ = ±ŝ∗ at

the two point supports, and ŝ = ±L at the two free ends. The point supports

provide a reaction force with vertical and horizontal components, R̂ŷ and R̂x̂,

respectively, defined in the directions as shown in figure 1. The signs here

are chosen such that when the PSHE is in the shape given by figure 1, both

reaction forces are positive.

Geometry relates the cartesian coordinates (x̂, ŷ) to the intrinsic coordi-

nates (ŝ, θ) via

dx̂

dŝ
= cos θ,

dŷ

dŝ
= sin θ. (1a, b)

We exploit the symmetry of the problem to consider only the half of the
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ŷ(ŝ)

x̂(ŝ)

ŝ = 0

ŝ = ŝ∗

ŝ = L

θ(ŝ)

f̂

â
R̂ŷ

R̂x̂

Point supports

PSHE

Figure 1: Sketch of the setup for the point-supported heavy elastica (PSHE) of length

2L under the action of a body force f̂ per unit length and supported by points located a

distance 2â apart.

PSHE with 0 ≤ ŝ ≤ L. A vertical force balance then gives

d

dŝ

(
t̂ sin θ + n̂ cos θ

)
= f̂ − R̂ŷδ(ŝ− ŝ∗), (2)

where t̂ and n̂ are the tension and shear forces, defined to be tangent and nor-

mal to the PSHE, respectively, and δ(·) is the Dirac δ-function. A horizontal

force balance gives

d

dŝ

(
t̂ cos θ − n̂ sin θ

)
= R̂x̂δ(ŝ− ŝ∗). (3)

Finally, a moment balance gives

EI
d2θ

dŝ2
+ n̂ = 0, (4)

where E is the Young’s modulus of the PSHE and I is the second moment

of inertia of its cross-section (see Howell et al., 2008, for example).
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These equations are to be solved subject to the following boundary con-

ditions. From symmetry, we require that

θ(0) = 0, x̂(0) = 0. (5a, b)

At the contact point, we must have the following continuity conditions:

x̂(ŝ∗) = â, ŷ(ŝ∗) = 0, (6a, b)

[x̂]ŝ=ŝ∗ = 0, [ŷ]ŝ=ŝ∗ = 0, (6c, d)

[θ]ŝ=ŝ∗ = 0,

[
dθ

dŝ

]
ŝ=ŝ∗

= 0, (6e, f)

where [·] denotes the jump across ŝ = ŝ∗. Finally, at the free boundary we

have

t̂(L) = 0, n̂(L) = 0, (7a, b)

dθ

dŝ
(L) = 0. (7c)

We can immediately remove the δ-functions from equations (2) and (3)

by integrating equations (2) and (3) over the point support. This gives jump

conditions for t̂ and n̂ at the support, effectively splitting our system over

two regions: central (0 ≤ ŝ ≤ ŝ∗) and overhang (ŝ∗ ≤ ŝ ≤ L). Integrating

(2) over 0 ≤ ŝ ≤ L, using (5a), (7a,b), and n̂(0) = 0 (by symmetry), we find

R̂ŷ = f̂L. This represents a global vertical force balance: f̂L is the total

force on the (half) PSHE, which is balanced by the vertical component of

the reaction force from one support. Since the contact between the PSHE

and the point supports is frictionless, we impose that t̂ is continuous over the

point support, i.e.
[
t̂
]
ŝ=ŝ∗

= 0. Therefore, integrating (2) over ŝ∗
− ≤ ŝ ≤ ŝ∗

+
,

we find [n̂]ŝ=ŝ∗ = −f̂L sec θ(ŝ∗), with R̂x̂ = f̂L tan θ(ŝ∗) from (3).
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Taking the half-length L to be the natural length scale, we nondimen-

sionalize by letting,

ŝ = Ls, x̂ = Lx, ŷ = Ly, (8)

(n̂, t̂) =
EI

L2
(n, t), f̂ =

EI

L3
f, (R̂x̂, R̂ŷ) =

EI

L2
(Rx, Ry). (9)

This non-dimensionalization introduces an important dimensionless param-

eter (in addition to the force f): the half-gap a = â/L.

Rewriting, the system of dimensionless equations to be solved in

0 ≤ s < s∗ and s∗ < s ≤ 1 is

dx

ds
= cos θ, (10a)

dy

ds
= sin θ, (10b)

d

ds
(t sin θ + n cos θ) = f, (10c)

d

ds
(t cos θ − n sin θ) = 0, (10d)

d2θ

ds2
+ n = 0, (10e)

with boundary conditions

θ(0) = 0, x(0) = 0, (11a, b)

x(s∗) = a, y(s∗) = 0, (11c, d)

[x]s=s∗ = 0, [y]s=s∗ = 0, (11e, f)

[θ]s=s∗ = 0,

[
dθ

ds

]
s=s∗

= 0, (11g, h)
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[t]s=s∗ = 0, [n]s=s∗ = −f sec θ∗, (11i, j)

t(1) = 0, n(1) = 0, (11k, l)

dθ

ds
(1) = 0, (11m)

where we have denoted θ(s∗) by θ∗. Note that (10) is a twelfth-order system

with the unknown s∗, making it thirteenth-order; (11) provides the thirteen

boundary conditions required.

2.2. Numerical approach

To solve the two-point boundary value problem (10) with unknown con-

tact arc length s∗, we scale both the 0 ≤ s ≤ s∗ and s∗ ≤ s ≤ 1 regions onto

[0, 1] by introducing two new variables,

η =
s

s∗
, ξ =

s− s∗

1− s∗
. (12)

The price of this conversion is that the relevant equations differ by differ-

ent scaling factors. To solve the full system, we therefore need to consider

separate solutions in the central and overhang regions for each variable.

2.2.1. Force versus displacement control

There are several ways in which we can solve the problem using the bound-

ary value problem solver bvp4c inMATLAB, depending on whether we imag-

ine the force or displacement to be controlled.

Force control. The first, and arguably more intuitive, method is to impose

the force f and half-gap a, and solve for the unknown contact arc length

s∗. In this case, we start by solving for small f , and then increase f via

continuation.
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Displacement control. The second method is to impose the contact arc length

s∗ and half-gap a, and solve for the unknown force f required to give this

solution. In this case, we start from s∗ close to a, solve for f , and then

increase s∗ > a up to s∗ = 1 via continuation.

It is also possible to fix f and then decrease or increase a values, with

unknown s∗, again via continuation, but we do not consider this here.

Since we are generally interested in the solutions under increasing force,

our primary interest is in the force-controlled approach. However, we shall

make use of both methods to trace the system’s evolution. An initial guess

for each of the twelve variables and the remaining unknown parameter (ei-

ther s∗ or f , depending on the chosen control parameter) is required by the

solver. Focusing on increasing force f , we assume the PSHE starts from a

small-deformation state; this allows us to use a small-angle approximation

to provide an analytic guess for the numerical solver.

2.3. Small-angle approximation

We begin by assuming that the deformation angle is small, which we know

will occur for f ≪ 1. Since the deformation of the PSHE from the x-axis is

small, we must also have that y is small. Hence, x ≈ s and, in particular,

the contact arc length is approximately the same as the half-gap, i.e. s∗ ≈ a.

We linearize the governing equations and hence expect the other variables to

scale with f . Hence, we let

θ = f θ̃, n = fñ, y = fỹ. (13)

Expanding the system (10) and boundary conditions (11) to leading order in

f and solving the resulting (linear) system, we find the solution (expressed
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in the original dimensionless variables) to be

s∗ ≈ a, (14a)

x ≈ s, (14b)

t(x) ≈ 0, (14c)

n(x) ≈ f

x 0 ≤ x < s∗,

x− 1 s∗ < x ≤ 1,

(14d)

θ(x) ≈ f

6

−x3 + 3(2s∗ − 1)x 0 ≤ x < s∗,

−x3 + 3x2 − 3x+ 3s∗2 s∗ < x ≤ 1,

(14e)

y(x) ≈ f

24

−x4 + 6(2s∗ − 1)x2 + (s∗4 − 12s∗3 + 6s∗2) 0 ≤ x < s∗,

−x4 + 4x3 − 6x2 + 12s∗2x+ (s∗4 − 16s∗3 + 6s∗2) s∗ < x ≤ 1.

(14f)

Using this asymptotic result, we can also find an approximation for the

contact arc length s∗ as follows

s∗ =

∫ a

0

[
1 + (y′(x))2

]1/2
dx ≈ a+

1

2

∫ a

0

(y′(x))2 dx.

Computing this using (14f) for x < s∗, we find that

s∗ ≈ a+ f 2

[
1

504
a7 − 1

30
a6 +

11

60
a5 − 1

6
a4 +

1

24
a3
]
. (15)

While the asymptotic solution (14)-(15) provides some intuitive insight

into the shape (e.g. the curvature of the central region seems to change sign

values when s∗ ≈ 1/2, i.e. around a ≈ 1/2), it is important as a starting

point for the solution of the full system (10), allowing us to evolve from a

small-deformation state where f ≪ 1 and s∗ ≈ a.
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2.4. Results

2.4.1. Shapes of the PSHE

Typical shapes of the PSHE as the force f is increased for various values

of half-gap a, are shown in figure 2. As expected, the numerically-determined

shapes diverge from the small-angle shapes as f increases beyond unity.

y(s)

x(s) x(s)

Increasing f
Increasing f

(a) (b)

Figure 2: Plots of the PSHE shape for various values of the half-gap, a, and increasing

force, f . The dashed curves represent the small-deformation shape, y(x)/f , or (equiva-

lently) the shape predicted with f = 1 by the small-deformation theory. Solid curves show

the numerically-computed shapes for: (a) a = 0.8, log10 f = {−2,−1, 0}. (b) a = 0.2,

log10 f = {0, 1, 2, 3, 4, 5}. The different shapes illustrated are referred to as ‘u’-shape (as

in (a)) or ‘m’ and ‘n’-shape (as in (b)).

An interesting feature shown in figure 2 is that the shape of the PSHE

passes through three possible phases depending on the values of both f and

a. Following the similarity of the shapes shown in figure 2 to the respective

letters, we refer to each shape as a ‘u’, ‘m’, or ‘n’-shape. For a = 0.8,

for example, we find that the PSHE seems only to realize a u-shape, while
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for a = 0.2, the PSHE seems to realize both an n-shape and m-shape under

increasing force, but not a u-shape (figure 2). We define each shape concretely

by considering the following two features: the sign of the curvature at the

centre of the PSHE, and the sign of the angle at the endpoint of the PSHE.

In particular, we define:

(i) u-shape: θ′(0) > 0, θ(1) > 0.

(ii) m-shape: θ′(0) > 0, θ(1) ≤ 0.

(iii) n-shape: θ′(0) ≤ 0, θ(1) ≤ 0.

Figure 2 also highlights other features of the problem. For example, with

a = 0.8, as we continue to increase the value of f , numerical solutions cease

to exist for sufficiently large f . This suggests the existence of a maximum

force, beyond which the PSHE cannot sustain an equilibrium shape. In

practice, we identify this with the PSHE slipping through the supports. We

also notice that the PSHE can support a much greater force when a = 0.2

than it can when a = 0.8, which suggests that this maximum force must also

be dependent on a. In the next section, we explore the existence and value

of this maximum force, fmax(a), in more detail.

2.4.2. Non-monotonicity of f

Naively, one might expect that the force, f = fmax, needed to push the

PSHE between the two supports would correspond to the value of f such

that the entire length of the PSHE lies between the supports (i.e. s∗ = 1).

Treating s∗ as the control parameter and determining the corresponding value

of f , we see that f(s∗; a) is generally non-monotonic (figure 3): for f < fmax,

two possible solutions may exist, one with s∗ < s∗crit and one with s∗ > s∗crit,
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where s∗crit is defined by f(s∗crit) = fmax. This non-monotonicity separates

our solutions into two branches; our interest in the deformation of a PSHE

under increasing force means we will focus on the branch with s∗ < s∗crit

since this branch can be accessed from the small f asymptotic solution. This

differs from the approach of Chen et al. (2010) who considered both solution

branches.

s∗

f

Increasing a

Figure 3: Plots of the force, f , against the contact arc length, s∗, for half-gaps

a = {0.2, 0.4, 0.5, 0.6, 0.8, 0.9185, 0.95}.

We find that s∗crit = 1 is only realized when the half-gap a ≳ 0.9185, as

seen in figure 3 — for these values of a, f(s∗; a) is monotonic. The shapes

realized through this deformation are similar to that of the u-shapes in fig-

ure 2(a), except that the endpoints of the PSHE eventually reach the sup-

ports, at which point f = fmax.
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For a = 0.4, for example, we see the shape transition from an n-shape to a

m-shape under increasing f , as seen in figure 2(b) for a = 0.2. This requires a

large increase in force, and the contact arc length decreases as the transition

occurs, as shown in (figure 3). In such cases, we find the curve in figure 3 by

first using force control to increase f until the PSHE no longer realizes an

n-shape, and then switching to displacement control, increasing s∗. A similar

transition is realized in the s∗ > s∗crit branch for a = 0.4, where the shape

snaps from an m-shape to a u-shape as f decreases. This is seen numerically

as a jump in f , however, since we are interested in the deformation of the

PSHE under increasing force, we do not consider this further.

We can also see from figure 3 that the value of fmax increases as the half-

gap a decreases. More surprisingly, however, for a = 0.2 we note that it

appears there is no finite fmax; there seems to be a critical half-gap a∞ ∈

[0.2, 0.4), below which there does not exist a finite maximum force.

2.4.3. Behaviour for large f and a ≤ a∞

To understand the behaviour of the PSHE in the limit of large forces,

f ≫ 1, (and to understand if there is, indeed, no maximum load fmax in

some configurations), it is natural to rescale the forces by f , i.e. we let

n = fN, t = fT. (16)

With this rescaling, the force and moment balance equations (10c–e) become:

d

ds
(T sin θ +N cos θ) = 1, (17a)

d

ds
(T cos θ −N sin θ) = 0, (17b)

1

f

d2θ

ds2
+N = 0, (17c)
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subject to the boundary conditions (11), where (11i–l) are rescaled. This

system is now almost independent of the loading f , though we note that in

(17c) there is a small parameter, 1/f , in front of the highest derivative. As

such, we expect a boundary layer-type solution. In this case, from equation

(17c), we have N = 0 everywhere except in the boundary layer and hence

expect to have a heavy string, i.e. the catenary. This is similar to what we

see in the numerical solution for large f . We begin by considering the outer

solution.

Outer solution: the full catenary. For an outer solution, we will look at

system (17) at leading order. Equation (17c) gives N = 0 while (17a) and

(17b) yield, respectively,

d

ds
(T sin θ) = 1,

d

ds
(T cos θ) = 0. (18a, b)

Equations (18) can be integrated once to give

T sin θ = s+ α, T cos θ = β, (19a, b)

where α, β are constants of integration. We note that there are two solutions

for T depending on whether we impose boundary conditions at s = 0 or s = 1.

This means we must consider solutions in the central (i.e. 0 ≤ s < s∗) and

overhang (i.e. s∗ < s ≤ 1) regions separately, which we denote by subscripts

c and o, respectively. From equations (19), and using θ(0) = 0 and y(s∗) = 0,

we find α = 0 and the shape and tension in the central region are:

yc =
√

s2 + β2 −
√

s∗2 + β2, (20)

Tc =
√

s2 + β2, (21)
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where we note that β = T (0). This shape corresponds to the classic catenary,

which may be seen by relating the arc length s to x, i.e.

s = β sinh

(
x

β

)
(22)

to yield

yc = β

[
cosh

(
x

β

)
− cosh

(
a

β

)]
, (23)

Tc = β cosh

(
x

β

)
. (24)

For the solution in the overhang region, imposing T (1) = 0 in equations

(19), gives θo(s) = −π/2. This is a vertically hanging chain with solution

yo = s∗ − s, (25)

To = 1− s, (26)

where we have also used the boundary condition that y(s∗) = 0.

We therefore have two solutions of the problem with N = 0. These must

match at s = s∗; in particular, imposing that the tension is continuous at

the support, we have √
s∗2 + β2 = 1− s∗. (27)

However, this incurs a discontinuity in θ at the support that must be resolved

in the boundary layer (figure 4(a)).

Before we consider the boundary layer at s = s∗, we first make some

observations about the two solutions we have just found.

First, we note that the force f does not enter into the solution (20)-(21)

and (25)-(26): when N = 0, an arbitrarily large f may be supported in this
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O
(
f− 1

2

)O
(
f− 1

2

)Tc =
√

s2 + β2

To = 1− s

Tc(s∗) = To(s∗)

a

t

f

s

Increasing f

(a) (b)

Figure 4: (a) Sketch of the shape of the PSHE near the supports in the limit f ≫ 1.

(b) Plots of the numerically determined tension, t(s)/f , as a function of arc length s for

half-gap a = 0.36 (solid curves), for log10(f) = {4, 5, 6, 7}, alongside T (s) from the

outer solution (21) and (26) (dashed curve).

way. (We shall see shortly that it is only possible to find a suitable β if

a < a∞ = 1/e, however.)

Secondly, by combining equations (18), and using equation (10b), since

T (1) = 0, (11i), and T and y are both continuous over the supports, we can

write T (s) = y(s)− y(1). In particular

T (0) = y(0)− y(1), (28)

i.e. the difference in height between the centre of the PSHE, and the end

of the PSHE, is equal to the tension of the PSHE at the centre. This gives

us new insight into the classic catenary solution, (20) and (21), which has a

constant of integration β. The physical meaning of this constant appears not

to be well known. Since β = y(0) − y(1), one natural interpretation is that
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β represents the distance between the lowest point of the catenary and the

lowest point of the hanging chain needed to support the catenary. Since the

hanging chain is usually omitted, this is not apparent: by adding the freely

hanging part of the chain, the meaning of β becomes clearer. For this reason

we refer to the combination of hanging and central portions of the chain as

the ‘full catenary’.

An analytic expression for a∞. We have seen that if a value of β can be found

such that equation (27) is satisfied, the PSHE can withstand an arbitrarily

large force. We will determine the critical value of half-gap that separates

this case from the case in which equilibria exist only when f < fmax.

Substituting for s∗ from (22), we find that β satisfies

a = −β log β. (29)

Crucially, this equation for β has solutions provided that

a ≤ 1

e
:= a∞. (30)

(The right-hand-side of (29) has a maximum at β = 1/e.) Therefore, the

PSHE can assume this catenary-type configuration, and hence withstand an

infinite body force, provided that a ≤ a∞ = 1/e.

However, we note that the solution of (29) for β is multi-valued for a <

a∞, that is, for a given value of half-gap, there are two possible configurations

that satisfy the equations: one with contact arc length s∗ < s∗(a∞) and the

other with s∗ > s∗(a∞) (figure 5(a)). The existence of two solutions is

unsurprising, as previously we realized only one solution due to our focus

on solving the problem under increasing force, while the analysis above only
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holds for f ≫ 1. To understand which solution to take, we will look at the

energy of both solutions, and take the solution with less energy.

Energy and stability. The total energy of the PSHE combines the potential

and bending energies. In dimensional units, we have

Ûtotal = EI [Ug + Ub] /L, where

Ug = f

∫ 1

0

y(s) ds and Ub =
1

2

∫ 1

0

(
dθ

ds

)2

ds, (31)

are the dimensionless potential and bending energy, respectively. Since our

outer solution only holds for large f , we have that the bending energy

Ub ≪ Ug. Using the outer solutions (20) and (25), along with the conti-

nuity of tension (27), we find

Utotal ≈ Ug = f

[
1

2
(s∗ − 1) +

2s∗ − 1

4
log(1− 2s∗)

]
. (32)

From this, we see that the branch of solution with s∗ < s∗(a∞) has lower

energy, and hence is the energetically favourable solution (figure 5(b)).

The outer solution with s∗ ≤ s∗(a∞) agrees well with the numerical solu-

tion far from the point supports (see the plot of the tension in figure 4(b)).

However, it is inconsistent with the continuity of θ across the point supports,

and one can see that the behaviour of the rescaled tension, t/f , is dramati-

cally different in the outer solution near the supports than in the numerics.

As mentioned earlier, this is expected because of the small parameter mul-

tiplying the highest derivative in (17c), which will give rise to a boundary

layer-type solution — we now turn to determine this.

Inner solution: behaviour close to the supports. To find the inner solution

for the behaviour of the PSHE with f ≫ 1 close to the supports, we will
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1/e 1/e

Figure 5: (a) Plot of the contact arc length, s∗, in the outer solution, (22), against half-gap,

a ≤ 1/e, (29). (b) Plot of the (rescaled) potential energy, Ug/f , (32), against half-gap,

a, (29). The solid curves represent the branch of solutions with s∗ < s∗(a∞), and dashed

curves those with s∗ > s∗(a∞). The limiting point a = 1/e is shown by the vertical dotted

line.

again use equations (17) but first rescale the spatial variables near s = s∗

and then consider the leading order system. To retain the highest derivative

in equation (17c) with f ≫ 1, we scale the spatial variables as follows:

s = s∗ + f−1/2ζ, x = a+ f−1/2X, y = f−1/2Y. (33)
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Using these scalings, the governing equations (17) become, to leading order

in 1/f ,

dX

dζ
= cos θ, (34a)

dY

dζ
= sin θ, (34b)

d

dζ
(T sin θ +N cos θ) = 0, (34c)

d

dζ
(T cos θ −N sin θ) = 0, (34d)

d2θ

dζ2
+N = 0. (34e)

To match the inner solution to the outer solution in the limit f → ∞, and

impose the jump condition for N and continuity of T over the supports,

we need to consider separate solutions for either side of the support. We

will denote each solution by the subscripts L and R, for the solution to the

left, (catenary) with ζ ≤ 0, or right, (hanging chain) with ζ ≥ 0, of the

support, respectively. We will therefore solve the above equations subject to

the following boundary conditions:

ζ → −∞ : TL → T ∗
c , NL → 0, θL → θ∗c . (35a, b, c)

ζ → ∞ : TR → T ∗
o , NR → 0, θR → θ∗o. (35d, e, f)

ζ = 0 : NR −NL = − sec θ∗, TR − TL = 0. (35g, h)

ζ = 0 : θR − θL = 0,
dθR
dζ

− dθL
dζ

= 0, (35i, j)

where we have the outer solution tensions and angles at the supports, and

use the shorthand (·)∗ = (·)(s∗).
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Note that T ∗
c = T ∗

o by continuity (27), in the outer solution. Solving

equations (34c) and (34d), subject to the given boundary conditions, we find

the solutions for T and N in terms of θ∗ ≤ θL ≤ θ∗c and −π/2 ≤ θR ≤ θ∗ to

be

TL(θL) = T ∗
c cos (θL − θ∗c ) , TR(θR) = −T ∗

o sin θR, (36a, b)

NL(θL) = −T ∗
c sin (θL − θ∗c ) , NR(θR) = −T ∗

o cos θR. (36c, d)

Using the continuity of T , (35h), and jump condition for N , (35g), we can

then determine the value of θ∗ (matching as in figure 4(a)). To satisfy both

conditions, we must have

tan θ∗ = −β. (37)

Using the solutions forNL,R, we can solve equation (34e) to find θL,R(ζL,R),

and hence we have the following solutions for NL,R(ζL,R) and TL,R(ζL,R):

TL = T ∗
c

[
2 tanh2

(√
T ∗
c (ζL + cL)

)
− 1
]
, (38a)

TR = T ∗
o

[
2 tanh2

(√
T ∗
o (ζR + cR)

)
− 1
]
, (38b)

NL = −2T ∗
c tanh

(√
T ∗
c (ζL + cL)

)
sech

(√
T ∗
c (ζL + cL)

)
, (38c)

NR = −2T ∗
o tanh

(√
T ∗
o (ζR + cR)

)
sech

(√
T ∗
o (ζR + cR)

)
, (38d)

where we have set the constants cL,R such that θL,R = θ∗ when ζL,R = 0:

cL = − 1√
T ∗
c

arctanh

[
cos

(
1

2
(θ∗ − θ∗c )

)]
, (39a)

cR =
1√
T ∗
o

arctanh

[
cos

(
1

2

(
θ∗ +

π

2

))]
. (39b)
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Note that, since θ∗ + π/2 = −θ∗ + θ∗c , our inner solution has the rotational

symmetry,

θR(ζR)− θ∗ = −θL(ζR) + θ∗, (40)

From this, we have that cL = −cR. Hence, we also have symmetry in TL,R

and NL,R.

With the solutions for the inner region, we can now understand the full

behaviour of the PSHE in this limiting case. Our inner solution provides a

good approximation for the behaviour of the PSHE near the point supports.

2.5. Regime diagram for the PSHE

We have seen that the behaviour of the PSHE deforming under increasing

f is dependent on the value of the half-gap a. Moreover, the value and

existence of a maximum force for which a solution can be found, is also

dependent on a.

We summarize when such a solution can be found for the PSHE, and the

shapes of any existing solutions, by considering a phase diagram (figure 6).

As discussed previously, the shape realized by the PSHE is dependent on

both f and a. In addition to allowing us to see what happens as we change f

while holding a fixed, the phase diagram allows us to read off what happens

when we change a for a fixed value of f , therefore giving us a complete picture

of the behaviour of this PSHE problem.

For the values of a > 1/e, the relationships between f and s∗ in figure 3(a)

showed the existence of a finite fmax. This maximum corresponds to the

applied body force being sufficiently large that the PSHE slips through the

supports; when a ≤ 1/e, the PSHE can withstand an infinite force without
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a

f

No solution

f = fmax

Figure 6: Phase diagram for increasing force, f = f̂L3/(EI), against half-gap, a = â/L.

Here the phases are labelled by colour, with the grey region representing no solution,

i.e. the boundary is f = fmax. The asymptote at a = a∞ = 1/e is given by the dashed

line.

slipping between the supports. Moreover, we find numerically that the value

of fmax increases more rapidly when a decreases into the m-shape region

(i.e. a ≲ 1/
√
3) towards a = 1/e, as shown by the boundary curve in figure 6.

A PSHE under a sufficiently small fixed force f can realize all three shapes

by changing only the half-gap a. With this result, this phase diagram displays

the robustness of this PSHE problem, since there are several continuations

one could run to get to a certain f and a value, but the result remains the

same regardless.
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3. The effect of frictional forces

In the previous section, we investigated how a heavy elastic beam sus-

pended over two point supports behaves under an increasing body force. Our

analysis was based on the assumption that the contact between the beam and

the supports is frictionless. We found that the critical force required to push

the beam completely between the supports (so that no equilibrium exists)

is dependent on the size of the gap between the supports: generally, this

critical force increases as the gap size reduces. While this result is intuitive,

we showed that, below a critical half-gap a∞ = 1/e, the PSHE can, in fact,

support an arbitrarily large body force.

In reality, however, the PSHE will be affected by frictional forces acting

at the contact points. We expect that, with the inclusion of friction in the

model, there will be a corresponding increase in the critical load at which

the PSHE falls through: the existence of frictional forces should change the

required global force balance and allow for more arc length to comfortably be

supported between the supports, before falling through. We also anticipate

that the inclusion of friction may increase the critical gap width at which the

PSHE can withstand an arbitrarily large body force.

3.1. Model setup

To incorporate the effects of friction into the model, we use the same

governing equations as previously, i.e. (10). The key difference is that friction

allows for a discontinuity in the tension across the supports. We therefore

must modify the boundary conditions on the tension and normal forces at

the point supports given in (11i,j).
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We impose Coulomb friction and consider a (dimensionless) frictional

force Fµ, and normal reaction force RN , such that

−|µ|RN ≤ Fµ ≤ |µ|RN . (41)

Since the frictional force may be in either direction, we take a signed friction

coefficient, µ. At the onset of sliding, we will have that Fµ = µRN (Plaut

et al., 2011). Since our focus is on the time-independent problem, we focus

on when the beam is at the onset of sliding. We will also impose a direction

of friction and hold it fixed throughout the evolution, i.e. the sign of µ will

remain fixed throughout the evolution.

We also note that since our focus is on finding solutions that are on the

point of sliding, i.e. Fµ = µRN , we will actually have a family of solutions with

−|µ|RN ≤ Fµ ≤ +|µ|RN . If |µ| = 1, for example, the PSHE could obtain

any configuration between those found for µ = −1 and µ = 1.

3.1.1. Governing equations

In the previous section, we determined the (now dimensionless) reaction

forces Rx and Ry by considering a global force balance over half of the PSHE.

With friction, the vertical global force balance remains the same as in the

frictionless case since we still have that n(0) = 0 by symmetry; we therefore

have Ry = f , which is equivalent to the dimensional R̂ŷ as before. However,

with the contact between the PSHE and the supports now being frictional,

we no longer impose that t is continuous. Instead, we have

Fµ = −[t]s=s∗ , RN = −[n]s=s∗ . (42a, b)
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We impose the friction law Fµ = µRN , and with Ry = f , this gives

Rx =
tan θ∗ − µ

1 + µ tan θ∗
f. (43)

The resulting jump conditions are

[t]s=s∗ = − fµ

µ sin θ∗ + cos θ∗
, [n]s=s∗ = − f

µ sin θ∗ + cos θ∗
. (44a, b)

Note that upon setting µ = 0, we recover the jump conditions for the fric-

tionless case (11i,j).

3.2. Numerical Approach

As with the frictionless case, we solve the system (10) numerically as dis-

cussed in Section 2.2, subject to (11a–h, k–m) and the new jump conditions

(44). To do this, we provide a small-deformation solution as our initial guess

for the numerical solver. The solution remains the same as in (14) up to

leading order in f , except for t(x), which changes due to the jump condition

(44a), giving

t(x) =

fµ x < s∗,

0 x > s∗.

(45)

We will investigate the effects of such a frictional force by imposing a value

of µ and holding it constant whilst increasing either f or s∗ via continuation.

Similarly to the frictionless case, we are interested in the critical force needed

for the PSHE to fall between the supports, as well as the values of the half-

gap below which the PSHE can withstand an arbitrarily large body force

without slipping between the supports.
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3.3. Results

3.3.1. fmax and the coefficient of friction

In the frictionless case, we saw that the size (and even existence) of a

finite maximal body force, fmax, is dependent on the half-gap a (figure 3).

For a ≳ 0.5, fmax is determined by treating s∗ as the control parameter and

finding the corresponding f . However, for a ≲ 0.5, we first increase f via

continuation until the PSHE no longer realizes an n-shape, and then switch

the control parameter to s∗.

With the inclusion of friction, we see that the existence and size of fmax is

now also dependent on the value of µ (figure 7(a)). For example, for a = 0.4

we are not able to find a maximum f for µ ≥ 0.25 as chosen in figure 7(a).

For µ ≤ 0, however, there is a finite fmax which increases with µ. This tells

us that, by increasing the frictional force from the supports, the PSHE is

able to withstand a greater force. We also see from figure 7(a) that the value

of s∗crit = s∗(fmax) increases with µ, and for a given f , the contact arc length

s∗ decreases with µ.

Figure 7(b) shows the maximum supportable force fmax (when it exists)

as a function of a for different values of µ. This plot also shows that the

value of a = a∞(µ) — the value below which the force may increase without

ever causing slip-through — changes with µ from the frictionless value of

a∞(µ = 0) = 1/e. When µ > 0, we see that the maximum force appears to

blow up for a greater value of half-gap a∞. This supports the expectation that

frictional forces would make it more difficult for the PSHE to slip between

the supports. Conversely, for µ < 0, we see the maximum force blow up for

a smaller value of a∞.

29
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Increasing µ

a

fmax

Increasing µ
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Figure 7: (a) Plot of the force, f , against scaled excess contact arc length, s∗ − a, for

half-gap a = 0.4. (b) Plot of the maximum force, fmax, against half-gap, a, where the

asymptote at a = 1/e is given by the dotted line. In both (a) and (b), results are plotted

for µ = {−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}, with dashed curves representing

µ < 0 and solid curves µ ≥ 0. The value of fmax for a = 0.4 and µ = 0, is marked by a

circle in (a) and (b).

For µ = 0.5, we find that there is a jump in fmax from fmax ≈ 45 to

fmax ≈ 460 when a ≈ 0.5778. For any value of f within this range, there

exists an equilibrium solution for the PSHE, however we do not see a config-

uration, for any value of a, for which fmax lies within this range.

We first notice a jump in fmax for µ ≳ 0.47 and we see the size of this

jump increases with µ, until it becomes seemingly indefinite, i.e. numerically

we can no longer find an fmax when increasing f up to 107. For µ = 0.75, 1,

we find that there is no gradual increase in fmax as a → a∞ (figure 7(b)).

Rather, when decreasing a, we see an instantaneous change from a finite

fmax, to the system being able to support an arbitrarily large body force.
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This is believed to be due to the blow-up values being in a region where the

PSHE can only realize a u-shape (i.e. a ≳ 1/
√
3). We would always expect

there to exist a finite fmax for a u-shape solution, whereas the mechanism for

withstanding an infinite body force relies on the overhanging ends being long

enough to support the load, i.e. an m-shape. When evolving under increasing

f , we do not see a natural transition from u-shape to m-shape for these high

a values, which could explain this instantaneous blow-up.

3.3.2. Behaviour for large f and a ≤ a∞

As friction only plays a role in the contact region, we can find both

outer and inner solutions in the limit of infinite body force for the frictional

problem, just as we did in the frictionless case. Since the scaled governing

equations remain the same as in (17), the form of the solutions in terms of

β, θ, and ζ will remain the same as in Section 2.4.3. However, the values of

β and θ∗ must now depend on both a and µ because of the changes in jump

conditions for t and n — compare (11i,j) with (44).

Outer solution: the frictionally supported catenary. In the frictionless case,

recall that we found a∞ = 1/e by imposing continuity of T , i.e. T ∗
c = T ∗

o ,

using the outer solutions (21) and (26). However, in the presence of friction,

T is no longer continuous, so we must instead impose that T ∗
o − T ∗

c satisfies

the jump condition, (44a), for t/f , i.e. we must now find β such that

(1− s∗)−
√

s∗2 + β2 = − µ

µ sin θ∗ + cos θ∗
. (46)

Unlike with the frictionless case, we cannot immediately derive from this an

equation for a, since θ∗ is unknown; rather, we must first look at the inner

solution to derive an equation for θ∗.
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Inner solution: behaviour close to the frictional supports. Whilst the condi-

tion that determines β has changed, the inner solution is still governed by

the same system of equations and boundary conditions as in (34) and (35).

Hence, we will still find the same solutions in terms of θ∗ for NL,R and TL,R

(36), only now T ∗
c ̸= T ∗

o . Using these equations in the jump conditions for

t/f and n/f , (44), we can then find θ∗(β;µ).

Substituting in the solutions (36), along with T ∗
c , T

∗
o , and θ∗c from the

outer solution, we find that

tan θ∗ =
µ− β

µβ + 1
= tan(ϕf − arctan β), (47)

i.e. θ∗ = ϕf − arctan β, where ϕf = arctanµ is the friction angle. We note

once again that for µ = 0 we return to the frictionless result (37). We

also note that, with the imposition of friction, we no longer have rotational

symmetry of the solutions due to the change in force balancing.

Further, with equation (47) for tan θ∗, we can find an equation for a(β;µ).

Substituting (47) into (46) gives a transcendental equation for β(s∗;µ),

namely:

(1− s∗)−
√

s∗2 + β2 = −µ

√
β2 + 1

µ2 + 1
. (48)

Eliminating s∗ using (22), we can reduce this to an equation for a(β;µ):

a = β log

[
1

β

(
1 + µ

√
β2 + 1

µ2 + 1

)]
. (49)

Note that, again, setting µ = 0 returns us to the frictionless result for a(β)

(29). As in the frictionless case, the expression a(β;µ) in equation (49) is

multi-valued. Hence an a∞(µ), the largest value of a for which a catenary
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solution is possible, exists; to find it, we must solve for the maximum that

can be attained by the right-hand side of (49) as β varies with fixed µ.

This maximization must be done numerically. For a < a∞, the same energy

argument as in Section 2.4.3, shows that the solution with contact arc length

s∗ ≤ s∗(a∞) is the physically relevant one since the energy is lower than that

of the other solution.

µ

y(0)− y(1)

Increasing a

Figure 8: Difference in height between the hanging rod’s centre and outer edge, y(0)−y(1),

as a function of friction coefficient µ, for a = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35}. This

height difference is governed by (50) but is affected by the dependence of β on µ and a.

Finally, we note that T (0)−T (1) = β, but that now, since T is no longer

continuous over the point supports, we can no longer conclude that this is

also equal to the difference in height. With the solution for θ∗, (47), the

difference in height now becomes

y(0)− y(1) = β − µ

√
β2 + 1

µ2 + 1
. (50)
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This difference in height between the centre and edge of the hanging rod is

shown for a variety of a and µ in figure 8. This shows that increasing friction

increases the height difference — a result that is physically reasonable, but

initially appears to be at odds with the ‘−’ in the right hand side of (50),

which might suggest the opposite. (The key to this apparent contradiction

is that β depends also on µ.)

3.4. Apparent power-law behaviour in fmax

Whilst the numerical results for fmax(a;µ) and a∞(µ) give qualitative

information, it is natural to ask how fmax behaves as a → a∞ from above.

Given that fmax must diverge as a → a∞, a natural way to capture this is to

investigate power-law relationships:

fmax(a;µ) = λ(µ) [a− a∗(µ)]
γ(µ) , (51)

for some critical value a∞(µ), exponent γ(µ), and constant λ(µ). (We expect

a∗(µ) = a∞(µ), but leave this free for the moment.) To determine these

parameters, we follow Brun et al. (2016), taking the logarithm of both sides

of this equation, and then the derivative with respect to a, to find that

d log fmax(a;µ)

da
=

γ(µ)

a− a∗(µ)
. (52)

By using the reciprocal of equation (52), we can find best-fit values for both

parameters γ and a∗ using linear regression.

For example, in the frictionless case, for a near the blow-up value a∞ we

find that the slope is 1/γ(0) ≈ −0.534, and note that 8/15 ≈ 0.5333, with a

corresponding x-intercept of 0.368. This corresponds to having γ(0) ≈ −15/8
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and a∗(0) ≈ 1/e. Hence, for a near a∞, we will approximate fmax by the

following power-law:

fmax(a; 0) ≈ 2.5

(
a− 1

e

)−15/8

. (53)

The same procedure for each value of µ shows the same linear trend

for (d log fmax(a;µ)/da)
−1 as a tends to some a∞(µ). This suggests that

fmax(a;µ) follows the same power-law exponent as in (53), for each value of

µ, i.e.

fmax(a;µ) = λ(µ) [a− a∗(µ)]
−15/8 . (54)

We emphasize that the expression in (53) and (54) is based purely on numer-

ical observation; we do not understand the origin of the rational exponent

15/8 but it is numerically robust.

Under the assumption that fmax(a;µ) obeys the same power-law for each

value of µ, we can fine tune our estimates for a∗(µ) such that this holds true.

We can see from figure 9(a) that, for µ ≤ 0.5, with a good numerical guess

for a∗, the maximum force indeed seems to be following the same power-law.

The values of a∗ calculated this way compare well with the values of a at

which fmax(a;µ) → ∞, i.e. a∞(µ), as estimated from the asymptotics (49)

for −1 ≤ µ ≤ 0.5 (figure 9(b)). However, for µ ≳ 0.5, this agreement breaks

down, as a∞ is above the flip-point for these large values of µ. The inner and

outer solutions we have calculated do not take into account that the PSHE

will be evolving from a u-shape under increasing force. The two values of a∞

for µ = 0.75 and µ = 1 were instead estimated by running continuations in

f , decreasing a until the continuation could run for an arbitrarily large f .
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a− a∗(µ)

Increasing µ

µ

a∗

a = 1√
3

(a) (b)

Figure 9: (a) Plot of the maximum force, fmax(a;µ), against scaled half-gap, a−a∗(µ), for

µ = {−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5}, where the dashed curves represent results with

µ < 0 while solid curves represent µ ≥ 0. (b) Plot of the critical half-gap, a∗(µ), for which

a catenary-type solution may be found as f → ∞. The prediction from the inner solution

incorporating friction is given by the solid curve. The values of a∗ obtained from the power-

law approximation are given for µ = {−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5} by the circles.

The estimated values from the numerics found for µ = {0.75, 1} are given by the crosses,

but are believed to deviate from the analytical prediction because the corresponding values

for a∗ lie in the region where only a u-shape can be realized (i.e. a ≳ 1/
√
3), as indicated

by the dashed line.

4. Experiments

We performed model experiments to test two key predictions of our mod-

elling — the transitions between different shapes as f and a vary and the

presence of a critical a below which very large f can be supported (though

of course it is impossible to reach arbitrarily large f experimentally).
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4.1. System setup and rod fabrication

The key experimental parameter is the dimensionless body force, f . Using

our non-dimensionalization of f̂ (9), the dimensionless gravitational force on

a cylindrical rod of length L and radius r is

f =
4ρgL3

Er2
, (55)

where ρ is the volumetric density, g is the acceleration due to gravity, E is

the Young’s modulus, and I = πr4/4 is the second moment of inertia of the

rod’s cross-section.

The expression in (55) shows that reaching large values of f requires the

fabrication of slender rods (L/r ≫ 1) with very low Young’s modulus but

appreciable density. To do this, we fabricated cylindrical rods of Polyvinyl

Siloxane (PVS, Elite Double 32 from Zhermack) by injecting the mixed,

liquid form into cylindrical tubes using a syringe pump and allowing the rod

to cure. The rod could then be removed by carefully pulling from one end.

The density and Young’s modulus of Elite Double 32 were measured to be

ρ = 1150 kgm−3 and E = 8 × 105 Pa, respectively, agreeing with previously

reported values (see Box et al., 2020, for example). (While other types of

Elite Double have lower values of E, the resulting solids were found to extend

noticeably under their own weight, in contrast to our inextensible elastica

model. Similarly, they were very ‘tacky’, making it difficult to remove from

the cylindrical mould.)

The value of f was varied by changing the dimensions of the rod used

experimentally; specifically two different cylinder radii, r = 1.5mm and r =

4.5mm were used with L chosen to obtain the desired f . To span a large
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range of f , we used lengths L such that log10 f = 0, 1, 2, 3, as well as the

largest attainable f ≈ 24300.

a = 0.3

a = 0.3

a = 0.4

a = 0.55

a = 0.2

a = 0.2

a = 0.3

a = 0.3

a = 0.4

a = 0.4

a = 0.55

a = 0.8

(a)

(b)

(c)

(d)

Figure 10: Typical experimental images showing a range of different deformed rod shapes

as the body force and support-separation, f and a, are varied. In each row, the value of f

is fixed: (a) f ≈ 10, (b) f ≈ 100, (c) f ≈ 1000, (d) f ≈ 24300. (Note that to vary f , the

rod diameter and length are varied. For scale, the diameter of the vertical stand in each

image is 1.05 cm.)

Point-like supports were made by clamping glass capillary tubes (� =

1mm) horizontally (see images in figure 10). To reduce the friction between

the rod and the supports, we apply oil (Johnson’s baby oil) to the supports;

experiments on planar PVS samples on larger glass surfaces suggested a slid-

ing angle ϕ ∈ (5, 8)◦, corresponding to a friction coefficient µ ∈ (0.08, 0.15).
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The distance between the two supports, rescaled by the rod’s length, gives

the corresponding value of a.

The rod is placed by hand onto the supports as symmetrically as possible

(as judged by eye) and held in place until the effects of inertia have dispersed;

in this way, the experimentalist can ‘feel’ whether the rod is close to equilib-

rium before releasing it. (Releasing without this leads to large perturbations

that can destabilize scenarios for which equilibrium is actually possible.) If

the rod remains supported and in equilibrium for a given a then the shape

of deformation is noted1 (and an image captured from the side view). The

gap-width a is then increased by 0.1 until slip-through is reached. We then

introduce smaller changes to a to determine the largest value of a (with fixed

f) for which an equilibrium state exists to two significant figures; we denote

this quantity by amax(f).

4.2. Results

Typical experimental images are shown in figure 10. These demonstrate

examples of all three of the different deformed shapes as f and a are varied.

The particular shape adopted for each pair, (a, f) is also noted in a regime

diagram (figure 11). This is compared with the theoretically predicted regime

diagram for µ = 0.115. (This value of µ was obtained by comparing the

maximum value of a with the amax found from experiments for f = 24300.

Note that this value of µ lies within the experimentally-determined range of

µ values.)

1However, for small f ≈ 1 it was very difficult to distinguish the assumed shapes from

the ‘u’-shape.
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a

f

No solution

f = fmax

Figure 11: Phase diagram for body force, f , against half-gap, a, for µ = 0.115. Here

the phases are labelled by colour, with the grey region representing no solution, i.e. the

boundary is f = fmax. The asymptote at a = a∞(µ = 0.115) = 0.413 is given by the

dashed line. The different shapes are labelled by ▲ : n-shape, ■ : m-shape, ▼ : u-shape.

For each f , the largest equilibrium a, a = amax(f), is marked in red.

The phase diagram in figure 11 shows qualitatively similar behaviour

between experiments and the theoretical predictions. In particular, shape

changes occur as f and/or a are changed. Moreover, the prediction that

arbitrarily large f may be supported as a decreases below a ≈ 0.4 seems

consistent with our experimental data. However, the quantitative values of

parameters at which these transitions occur differ somewhat. (The most dra-

matic example of this seems to be the behaviour at f = 10 where we observe

‘u’-shapes over a significantly larger range of a-values than is expected.) We
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believe these discrepancies to be a result of the model’s assumption that the

rod is slender (r/L ≪ 1), which is violated for the thicker, shorter rods re-

quired to reach f ∼ 10. Nevertheless, we still see the dramatic decrease in

amax from a = 0.97 to a = 0.59 as f increases from 10 to 100. We also find

for extremely large f that only m-shapes are observed and the the experi-

mentally observed value amax ≈ 0.42, is close to a = 1/e as expected for this

small µ experiment.

5. Conclusions

In this paper, we have investigated the problem of a point-supported

heavy elastica (PSHE) deforming under the action of a uniform, increasing

body force. Our study was inspired by the industrial process of the filtration

of fibres and so we sought to understand the behaviour of such an elastic

object, focusing on the critical force at which equilibria cease to exist. We

then included the effects of friction into the model to investigate how these

results change with frictional force.

We showed that the PSHE can adopt three, qualitatively different, shapes

during its deformation: depending on the size of the half-gap and the load, u,

n, and m-shapes are observed, as summarized in figure 6. This is supported

by the results from our experiments (figures 10 and 11). For a fixed half-gap

a, we found the maximum force fmax that could be withstood by the PSHE,

before it falls between the supports, both in the absence and presence of

friction (figure 7(b)). The value of fmax for a given half-gap increases with the

inclusion of a frictional force, supporting the expectation that the presence

of friction allows for a heavier beam to be supported (figure 7(a)). The value
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of fmax also increases as a decreases, implying that the smaller the separation

of the supports, the heavier the beam that can be supported. In the context

of a fibre in a filter, this supports the intuitive notion that the finer the filter

mesh, the greater the force that can be withstood by the fibre before slipping

through. Surprisingly, however, we found that there is a critical value of half-

gap, denoted a∞(µ), below which the PSHE can support an arbitrarily large

body force. Via asymptotic analysis, we were able to determine a∞ for a

given value of µ (figure 9(b)). We also found numerically that the maximum

force fmax(a;µ) appears to follow the same power-law for each value of µ,

with fmax ∼ [a− a∞]−15/8 as a ↘ a∞ (figure 9(a)).

The results from our PSHE provide a good foundation for further work in

modelling the microscale filtration of a fibre. This is significant for filtration

as our model suggests that to ensure no fibre of length L > Lmin escapes the

filter, a pore of size apore < Lmin/e should be chosen. Of course, our analysis

assumed that the system remains left-right symmetric — one next step would

be relaxing this assumption of symmetry. In reality, the chances of a fibre

lying on a pore of a filter with perfect symmetry is low, so one extension to

consider is asymmetric contact, to see how the critical half-gaps and forces

change if the PSHE is placed off-centre over the supports.
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