
A mathematical model for optimal breakaways in cycling: balancing
energy expenditure and crash risk.

J. Chico-Vázquez1 · I. M. Griffiths1∗

Abstract We present a mathematical model for optimiz-
ing breakaway strategies in competitive cycling, balancing
power expenditure, aerodynamic drag, and crashing. Our frame-
work incorporates probabilistic crash dynamics, allowing a
cyclist’s risk tolerance to shape optimal tactics. We define
an objective function that accounts for both finish time dif-
ferences and the probability of crashing, which we optimize
subject to an energy expenditure constraint. We demonstrate
the methodology for a flat stage with a simple constant-
power breakaway. We then extend this analysis to account
for fatigue-driven power decay, and varying terrain and race
conditions. We highlight the importance of strategy by demon-
strating that carefully planned decision making can lead to
a race win even when the energy expenditure is low. Our re-
sults highlight and quantify the fact that, at the elite level,
success often depends as much on minimizing risk as on
maximizing physical output.

Keywords Competitive cycling · Breakaway · Crashing ·
Mathematical modelling

1 Introduction

In competitive cycling, cyclists typical ride for large por-
tions of the race as a group, or peloton. This has the ad-
vantage of significant reductions in aerodynamic drag. How-
ever, to win a race, a cyclist must choose to break away from
the peloton at some strategic position during the race. To
execute a successful breakaway, cyclists must balance en-
ergy expenditure, aerodynamic drag, and the inherent risk
of crashing, often under complex and dynamic race condi-
tions. To date, existing research has primarily focused on
isolated aspects of racing, such as drag reduction through
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drafting [1], nutrition or the biomechanics of power gener-
ation [2,3]. However, exploration of the specific interplay
between these factors in breakaway situations is limited. Un-
derstanding this interaction is essential for optimizing race
strategy, particularly for athletes seeking to achieve a tacti-
cal advantage.

Aerodynamic drag plays a significant role in determin-
ing the energy expenditure of a cyclist, especially when draft-
ing within the peloton or executing a breakaway. As pre-
vious studies have shown, aerodynamic resistance accounts
for up to 90% of the overall resistance a cyclist experiences
at race speeds [4,5]. While drafting can significantly reduce
drag – by as much as 80% for cyclists in a peloton [6,7] – a
breakaway rider is faced with the challenge of overcoming
this loss of aerodynamic advantage.

Gaul et al. [8] considered the problem of breakaway op-
timization by focusing on cyclist exhaustion and stamina,
but did not consider the peloton structure or the important
role crashing plays in their optimization strategy.

Crashing also contributes substantially to strategic
decision-making. Even a minor crash with no injuries can
mean a rider loses around a minute, in addition to the extra
energy expenditure required to catch up with the peloton.
In a sport where victories are achieved with razor-thin mar-
gins, a single crash can make or break a contender’s attempt.
Moreover, a single major crash can lead to severe injuries,
and ultimately a forcing a contender to abandon an event.

Crashes are influenced by environmental variables, race
conditions and cyclist behaviour [9,10]. In peloton settings,
a higher density of riders increases the likelihood of colli-
sions, which can play a tactical role, as riders often seek to
escape this risk by moving to the front or breaking away en-
tirely. Breakaway riders, however, encounter different risk
factors, such as fatigue-induced impairments, and exposure
to crosswinds that may affect stability.

In this paper, we aim to uncover the important role crashes
play in deciding racing outcomes, and how competitive cy-
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clists can make informed strategic decisions. We present a
comprehensive mathematical approach that integrates en-
ergy consumption, drag reduction, and crash probability to
determine the optimal position and timing for initiating a
breakaway attempt.

We begin in §2 by presenting the governing equations
for our model. These comprise equations of motion for the
riders and equations that capture the crashing probability.
The equation of motion for each rider are based on Newton’s
second law, incorporating aerodynamic drag and power gen-
eration and losses due to rolling resistance and drivetrain
friction. As we are interested in the role of attacking and es-
caping from the peloton, we incorporate a position-dependent
drag coefficient, which depends on how far the rider is from
the head of the peloton when riding in a group, and takes
the same value as a rider at the front of the peloton when
the rider is cycling alone. We introduce an objective func-
tion that balances the time advantage of winning a race with
the probability of crashing.

To facilitate analytical progress, we choose to write the
system in terms of the position of just two riders: the rider at
the front of the peloton, and a special rider who will break-
away from the peloton at some point during the race.

We first consider a simple case of a flat course with no
crashes in §3, to demonstrate the methodology. We extend
this by incorporating the probability of a crash, in §4. Here,
we show how we may obtain an analytic expression for our
objective function, which allows for easy optimization.

We develop the model further in §5, to account for rider
fatigue. We also briefly discuss more realistic course pro-
files with variable elevation in §C, and outline the numerical
techniques required to analyse these more complex equa-
tions. In §6, we draw conclusions from the analysis con-
ducted. We use this to make relevant predictions to real-
world cycle races, and we discuss extensions that would pro-
vide valuable further input for the optimization procedure.

2 Governing equations

2.1 Dimensional equations

We suppose that the race comprises a total of N riders, and
label these as i = [1,N]. We assume that all N riders start off
as a group, or peloton, but that at some point during the race,
a single rider can make a breakaway attempt. We assume
that the riders are arranged in the peloton as a rectangular
grid of cyclists, with N∥ rows and N⊥ columns, where N =

N∥N⊥, and ordered such that rider i = 1 is at the front of the
peloton and rider i = N is at the rear.

We track the distance travelled along the course by each
individual rider i at time t̂, and denote this by x̂i(t̂). We be-
gin by assuming that the course is flat (but generalize our

approach for non-flat courses in Appendix C). A force bal-
ance on an individual rider i on flat terrain gives

m̂i
d2x̂i

dt̂2 = P̂i(t̂)
(

dx̂i

dt̂

)−1

− 1
2

Ĉd,iρA
(

dx̂i

dt̂

)2

. (1)

In (1), m̂i is the mass of the rider and P̂(t̂) is the power the
rider is exerting, which also accounts for rolling resistance
and losses in the drivetrain. We choose to express the prob-
lem in terms of power exerted since most competitive cy-
clists carry a power-meter device, which they monitor closely
during a race. The constants ρ and A represent the air den-
sity and the rider’s cross-sectional area, respectively. Finally,
the drag coefficient Ĉd,i varies as a function of the distance
between the individual rider and the first rider in the peloton.
We model this functional dependence following Blocken et
al. [7], with drag decaying exponentially as we move further
back into the peloton:

Ĉd,i =

Ĉmin
d +(Ĉmax

d −Ĉmin
d )e−λ

ζ̂i
d ζ̂i > 0

Ĉmax
d ζ̂i < 0.

(2)

Here, d ≈ 4 m is the axle-to-axle distance in a packed pelo-
ton, so that by definition i = 1+ ζ̂i/d is the drafting position
of the individual rider within the peloton; λ is a parame-
ter that indicates how the drag force experienced by cyclists
decays as they move into the back of the peloton. We esti-
mate λ ≈ 0.25 from the work of Blocken et al. [7], and will
assume this value throughout this paper. We also take a rep-
resentative value of Ĉmax

d = 0.9 and Ĉmin
d = 0.05 [7,11]. We

note that we have assumed that riders share identical aerody-
namic properties, specifically the same cross-sectional area,
A and drag coefficient Cd,i, although the model readily gen-
eralizes to account for rider dependence of these parameters.

Since the riders in the peloton all travel at the same speed,
it is advantageous for us to work with the peloton behaviour
on average. To study this, we introduce the definition of a
peloton average of a quantity fi,

⟨ f ⟩= 1
N

N

∑
i=1

fi, (3)

Averaging (1) for the N riders in the peloton then gives

⟨m⟩d2x̂p

dt2 = ⟨P̂(t̂)⟩
(

dx̂p

dt̂

)−1

− 1
2
⟨Ĉd⟩ρA

(
dx̂p

dt̂

)2

, (4)

where x̂p = ⟨x̂⟩+ (N∥ − 1)d/2 defines the position of the
front of the peloton. To close the model, we supply the initial
condition x̂p(0) = 0, which assumes that the race begins in
peloton format, with the head of the peloton at the start line.

It is also useful to introduce the notion of energy deple-
tion. If rider i is exerting a power P̂i(t), then by time t̂ this
rider will have consumed the following energy:

Êi(t̂) =
∫ t̂

0
P̂i(t̂ ′)dt̂ ′. (5)
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From here on, we cease to consider N equations for the
position of all N riders in the peloton, and instead focus on
only two positions: the head of the peloton, x̂p(t̂), and one
‘special’ rider, whose race behaviour we wish to optimize.
Without loss of generality, we label the special rider by in-
dex i. Their position is then given by x̂i(t̂), and x̂i(0) =−ζ̂i,
so that this rider starts behind the head of the peloton.

2.2 Non-dimensionalization

To simplify the analysis of the equations of motion we in-
troduce the following dimensionless variables:

x̂ = Lx, ζ̂i = dζi, t̂ =
( ⟨Ĉd⟩ρAL3

2⟨P̂(0)⟩

)1/3

t,

P̂ = ⟨P̂(0)⟩P, Ê =

( ⟨Ĉd⟩ρA⟨P̂(0)⟩L3

2

)1/3

E. (6)

With this choice of scalings, the course length is one unit and
the course will be completed in one time unit by the rider
at the front of the peloton. Moreover, the average energy
expenditure of the peloton will also be equal to one.

The dimensionless counterpart of the equation of motion
for the peloton, (4), is then given by

ε
d2xp

dt2 = P(t)
(

dxp

dt

)−1

−
(

dxp

dt

)2

, (7)

where

ε =
2⟨m⟩

L⟨Cd⟩ρA
≈ 0.005. (8)

Here, we have used ρ = 1.225 kg·m−3, ⟨m⟩ = 70 kg, L ≈
100 km and ⟨Cd⟩A≈ 0.4 m2 [4]. We may interpret the small-
ness in ε by noting that changes in velocity happen very
quickly when compared to the duration of the race. The di-
mensionless counterpart to the equation of motion for the
individual rider, (1), is

εmi
d2xi

dt2 = Pi(t)
(

dxi

dt

)−1

−Cd,i

(
dxi

dt

)2

, (9)

where mi = m̂i/⟨m⟩ is the dimensionless mass of the rider,
and Cd,i = Ĉd,i/⟨Ĉd⟩ is the dimensionless drag coefficient.
For completeness, we list the initial conditions for the pelo-
ton and the individual rider:

xp(0) = 0, xi(0) =−δζi,
dxp(0)

dt
=

dxi(0)
dt

= 1. (10)

where δ = d/L ≪ 1. For a typical course length of 150km,
δ ≈ 2 × 10−5. In all subsequent analysis, we will neglect
terms of order δ , except in Appendix §A, where we analyse
the behaviour during an escape from the peloton, and must
consider the system on the peloton lengthscale.

Fig. 1: The immediate aftermath of a crash (pile-up). Riders
positioned ahead of the start of the crash are spared. The
crash propagates backwards through the peloton. Credit:
Luis Ángel Gómez.

The dimensionless energy is given by

E(t) =
∫ t

0
Pi(t ′)dt ′, (11)

where t f is the time it takes for the individual rider to com-
plete the course. We will pay particular attention to the di-
mensionless quantity E∗ = E(t f ), which measures the total
energy used during the entire race by the special rider com-
pared with the peloton average.

Motivated by the small value of the inertia, ε ≪ 1, we
will focus on the quasi-steady regime where ε = 0. In phys-
ical terms, this means that changes in power Pi(t) drive in-
stantaneous jumps in velocity. Whilst this is not true when
looking at the microscale, it is an excellent model when
comparing the time it takes to accelerate/decelerate to a new
velocity (seconds) with the time it takes to complete the en-
tire course (hours). The microstructure associated with iner-
tial effects and acceleration is explored further using bound-
ary layer methods in Appendix §A.

2.3 Crashing

Cycling near the rear of the peloton has clear advantages,
chiefly a drag reduction close to 90% [7]. However, it is also
associated with risks. In particular, if there is is a crash at a
given location in the peloton, since a crash propagates back-
wards in the peloton, a rider who is further back is more
likely to crash. Therefore, we need to model the probability
of crashing as part of our race-winning strategy. To find the
risk penalty associated with crashing, we use a conditional-
probability approach.

Let C(x) denote the event of a crash taking place be-
tween x and x+ dx. We define Ci|C(x) as the event that the
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rider in position i crashes given that a crash occurred at lo-
cation x. In other words, given that a crash has taken place
at x, Ci|C(x) is the event that rider i is involved. Moreover,
we introduce Sk|C(x) as the event that the first rider to crash
is at position k, given that a crash occurred at location x.
In order to compute the probability P(Ci(x)), we consider
P(Ci|Sk(x)), the probability that rider i is involved in the
crash given that rider j is involved in it. We assume that any
riders ahead of the crash are unaffected, but that riders be-
hind may crash, with a probability that decays exponentially
as we move away from the crash:

P((Ci|C)|(Sk|C)) = P(Ci|Sk) =

{
0 if i < k,

e−ω(i−k) if i ≥ k.
(12)

Here, ω(x) is a parameter that measures how far back a crash
propagates on average, and in general will depend on the
peloton speed, road conditions (for example, rain and ter-
rain type), along with other factors. Generally, we will set
ω < 1, so that an average crash will propagate over ω−1 > 1,
so more than one rider. We also note that P(Ci|Si) = 1, as re-
quired. We assume that the crash is equally likely to start at
any position, so that P(Sk|C) = 1/N. Non-uniform distribu-
tions for P(Sk|C), as well as a general model for the crash
propagation (12) are explored in §D. Invoking the law of
total probability, we obtain the probability that the rider at
position i crashes given a crash has occurred:

P(Ci|C(x)) = ∑
k
P((Ci|C)|(Sk|C))P(Sk|C)

=
1
N

j

∑
k=1

e−ω(i−k) =
1
N

1− e−ωi

1− e−ω
≡ H(i;ω).

(13)

The probability of rider i being involved in a crash at some
point in the race (defined as P) follows from a second ap-
plication of the law of total probability,

P ≡ P(Ci) =
∫ 1

0
P(Ci|C(x))P(C(x))dx, (14)

where P(C(x)) is the probability of a crash occurring be-
tween x and x+dx. For simplicity, here we will assume that
the probability of crashing is independent of x (no cobble-
stones, dangerous corners or other treacherous features), so
that

P = P(C)
∫ 1

0
H(i(x);ω)dx, (15)

where we write i(x) to explicitly denote that the position
of the rider within the peloton changes along the course of
the race. To estimate the crash density P(C(x̂)), we consider
a 21-stage, 3500 km-long Grand Tour. There are typically
1–3 crashes per stage, depending on environmental condi-
tions and course difficulty [12]. This corresponds to a crash

every 50–100 km of racing, and so P(C(x̂)) ≈ 0.01− 0.02
crashes/km. In dimensionless variables, P(C(x))=LP(C(x̂)=
1−2 crashes/unit dimensionless distance, which is the same
as P(C(x)) = 1−2 crashes/stage. Thus, we use P(C) = 2 un-
less otherwise stated.

2.3.1 A simple example

Here, we consider an example computation of P that will
be useful for later computations. In particular, in §3 we will
consider the simple scenario with the rider initially in the
peloton, until they break away at attack position x = xa (so
that i(x) = i for x < xa, and i(x) = 1 for x > xa). The integral
in (15) thus evaluates to:

P = P(C) [xaH(i;ω)+(1− xa)H(1;ω)]

=
P(C)

N

(
xa

1− e−ωi

1− e−ω
+1− xa

)
.

(16)

2.4 Objective function and optimization

The rider wishes both to finish ahead of the peloton and
to avoid crashing. Different riders will be willing to accept
more or less risk. To this end, we introduce an objective
function to evaluate the suitability of a racing strategy. The
objective function should be low when both the rider finishes
far ahead of the peloton and their probability of crashing is
small. These considerations motivate the definition of the
objective function M ∈ R as:

M =−β∆ t +(1−β )P, (17)

where ∆ t = t f − tp, t f is the time that the special rider i takes
to finish, tp is the time it takes for the peloton to complete
the course, and P is the crashing probability defined in (14).
Under our choice of scalings, tp = 1. The parameter β is a
measure of the risk the special rider is willing to assume:
β = 0 corresponds to risk-averse riders, who prioritize not
crashing over a larger winning margin, while β = 1 applies
to riders who are willing to take risks at any cost to maxi-
mize the win margin. Inclusion of a risk parameter is crucial
to the applicability of the model. For example, the Maillot
Jaune in the later stages of a Grand Tour should choose a
low value of β , as they are already winning the race and
have much to lose if they crash and are forced to retire.

The goal of this paper is to find the strategy for rider i
that minimizes M for a given risk tolerance β . By strategy,
we mean the allocation of resources from the energy budget
for cyclist i, E∗, by changing the power Pi(t) during the race
[13].
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Fig. 2: Left: plots of the attack position as a function of attack power for different energy budgets E∗, given by (19). Right:
plots of the attack power as a function of the attack position for different energy budgets E∗, given by (21). The dashed grey
line represents the minimum power required for the attack to be successful, Pmin

a =Cd,1. For both plots the initial position of
the rider inside the peloton is i = 5, which translates to Pl,i =Cd,i = 0.46. Other parameters are ω = 0.5 and Cd,1 = 1.43.

3 A simple breakaway with no crashes

To illustrate the mathematical model, we begin in this sec-
tion by considering a race in which no crashes take place.
We will suppose that a single rider sits at position i in the
peloton until making a breakaway attempt at some attack
point along the course, which we denote as xa. By our choice
of non-dimensionalization, the peloton moves at unit dimen-
sionless speed, and hence xp(t) = t. Second, we assume the
power exerted has the following form. Before the attack, the
rider is in the peloton at position i and so the power exerted
is Pi = Cd,i, using (9). We denote Pl,i = Cd,i as the lurk-
ing power of the rider at position i in the peloton. We note
that, due to the choice in non-dimensionalization, Pi,l < 1
for i > 1. After the rider makes their breakaway move at,
say, t = ta, we suppose that they provide a constant power
Pa > Pl,i until the end of the race. The total energy expendi-
ture is then simply

E∗ = Pl,ita +Pa(t f − ta). (18)

As the peloton moves with unit speed, the attack posi-
tion is related to the attack time by xa = ta (neglecting terms
in ζi as noted earlier). After the attack, the time left to com-
plete the course is t f − ta = (1− xa)/va where va ≡ dxi/dt =(
Pa/Cd,1

)1/3 is the attack velocity, using (9) and the fact that
the drag on a solo rider is Cd,1. We can thus find the earliest
attack location for a given attack power, Pa, that a rider can
provide and their total energy reserve, E∗,

xa = max

 C1/3
d,1 P2/3

a −E∗

C1/3
d,1 P2/3

a −Cd,i

,0

 . (19)

Here, we have introduced the max operator to ensure the at-
tack position is in the domain, i.e. xa > 0. Since we require

va > 1 for an attack to be successful, this gives a minimum
attack power, Pmin

a =Cd,1 and thus an associated earliest at-
tack time,

xmin
a = max

{
Cd,1 −E∗

Cd,1 −Cd,i
,0
}
, (20)

using (19). For the rider to have a chance of winning, we
must have xmin

a < 1, and so this means that the minimum
energy of the rider for an attack to be successful is E∗

min =

Cd,i.
In the left panel of fig. 2 we plot the dependence of xa

on the attack power for different values of E∗, given by (19).
For small energy budgets, the earliest attack position is close
to the finish line, but for higher energy budgets the attack
position is closer to the start line. In particular, if the energy
budget is high enough (namely if E∗ >Cd,1), then the earli-
est attack position xa ≤ 0. In this case, this means that a rider
has sufficient energy to make a break at the beginning of the
race (and still have surplus energy at the end of the race).

Alternatively, a racer may have identified a particular
place where they wish to breakaway. In this case, we can
rearrange (19) for Pa to determine the required power for
the optimal breakaway that uses all their energy reserves by
the end of the race:

Pa =

 E∗−Cd,ixa

C1/3
d,1 (1− xa)

3/2

. (21)

The dependence of Pa on the attack position xa is plotted in
the right panel of fig. 2. We show the minimum attack power
required to escape from the peloton (Pa >Cd,1 from va > 1),
as a dashed grey line.
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Fig. 3: Dependence of finish time of special rider ahead of the peloton for a fixed energy budget E∗, as a function of either
attack power, Pa, given by (22) (left) or attack position, xa, given by (23) (right). For both plots the initial position of the rider
inside of the peloton is i = 5, which translates to Pl,i =Cd,i = 0.46. Other parameters are ω = 0.5 and Cd,1 = 1.43.

We may also solve for the finish time ahead of the pelo-
ton for the breakaway rider in terms of Pa and E∗,

∆ t = 1− t f =
Cd,i −E∗

C1/3
d,1 P2/3

a −Cd,i

((
Cd,1

Pa

)1/3

−1

)
, (22)

or in terms of xa and E∗,

∆ t = 1− xa −
(1− xa)

3/2C1/2
d,1

(E∗−Cd,ixa)1/2 . (23)

We may see how the finish time ahead of the peloton, ∆ t
varies with either the attack power or the breakaway po-
sition in fig. 3. In the left panel, we observe the that the
time gap initially increases as the breakaway power rises,
but eventually it reaches a maximum before falling again.
Similarly, the time gap initially grows with attack position
before reaching a maximum before falling as the attack po-
sition gets closer to the end of the course with ∆ t = 0 at xa =

1. Another feature we highlight from the plots for ∆ t(xa)

is the discontinuous derivative of the function at the mini-
mum attack position. Breakaways attempted before this po-
sition lack the power necessary to overcome the increased
drag when riding in isolation, and the rider simply returns to
the peloton and finishes the race with the main group, with
∆ t = 0.

A key observation from fig. 3 is the existence of an opti-
mum that maximizes the time difference between the break-
away rider and the peloton for a given attack power Pa or
attack position xa, when taking account of the available en-
ergy reserves. In the following section, we will study the de-
pendence of this optimum on the parameters, and study how
this is affected by the introduction of a non-zero crashing
probability.

4 A simple breakaway with crash probability

4.1 Assembling the objective function

We now extend the model to study the effect that a non-zero
probability of crashing has on the existence of a strategy that
maximizes the finish time ahead of the peloton.

Substituting for ∆ t and P in (17) using (23) and (16),
respectively, gives

M =−β

1− xa −
(1− xa)

3/2C1/2
d,1

(E∗−Cd,ixa)1/2


+(1−β )

P(C)

N

(
xa

1− e−ωi

1− e−ω
+1− xa

)
.

(24)

In the left panel of fig. 4, we plot the components that
make up the objective function, ∆ t and P , given, respec-
tively, by (23) and (16), as a function of the breakaway point,
xa. In the right panel of fig. 4, we plot the objective function
M as a function of the attack position for several values of
the risk index level β .

For suitably large values of β , the value of xa that mini-
mizes M is a local minimum. However, when β is smaller,
the minimum value of M occurs at the discontinuity in the
graph, which occurs at xa = xmin

a , defined by (19). In the next
section, we will analyse this further, to find a method to de-
termine the value of xa where M is minimized, and hence
the optimal attack position.

4.2 Results

We now proceed to systemically analyse the dependence of
the critical attack position, and the finish time ahead of the
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peloton associated with such a location, on the system pa-
rameters. As seen earlier, the minimum value of M can ei-
ther occur at a local minimum in M (xa) or at a discontinuity
in M (xa).

If M attains its minimum value at a local minimum,
say x†

a ∈ (0,1), we may find the optimal attack position that
minimizes the objective function by solving ∂M /∂xa = 0,
which may be written as the depressed cubic

(1−β ) [NH(i;ω)−1]
P(C)

N
+β

+βC1/2
d,1

[
Cd,i

2
η

3 − 3
2

η

]
= 0,

(25)

where

η =

(
1− x†

a

E∗−Cd,ix
†
a

)1/2

. (26)

While (25) may be solved analytically for η and hence x†
a,

this is not required. Instead, we invert (26) for x†
a, to give

x†
a =

1−E∗η2

1−Cd,iη
2 , (27)

and since the solution for η from (25) is independent of E∗,
we immediately see the optimal attack position changes lin-
early with the budget energy E∗. We may also find the cor-
responding optimal attack power, say P†

a , in terms of η by
making use of (21),

P†
a =

1

C1/2
d,1 η3

. (28)

This optimal attack power is thus independent of the energy
budget.

The minimum of M may also be located at the discon-
tinuity at xa = xmin

a , defined by (19). To find the global mini-
mum of M , we thus compare the interior minimum x†

a found
from (27) with the value of M at xa = xmin

a given by (19).
The optimal location, x∗a, is then given by

x∗a = argmin
{

M (x†
a),M (xmin

a )
}
. (29)

Similarly, once the optimal attack location is known, we may
use (21), to find the optimal attack power, P∗

a . We now study
how the optimal attack location changes as the risk index is
varied.

4.2.1 Role of risk

In the left panel of fig. 5 we plot how the optimal attack
position, x∗a, varies as a function of the assumed risk β , for
several values of the energy budget. We observe the afore-
mentioned jump from xmin

a to x†
a > 0 as β is increased. We

see that x∗a = 0 when β = 0 if E∗ > E∗
crit =Cd,1, using (20),

and x∗a > 0 when β = 0 if E∗ < E∗
crit =Cd,1. For the param-

eters used in fig. 5, we find E∗
crit = 1.43. we also see that the

optimal attack position asymptotes to an E∗-dependent limit
value as β → 1.

In the middle panel of fig. 5 we plot how the finish time
ahead of the peloton varies as a function of risk, when the
rider makes an attack at the optimal location x∗a (as given in
the left panel). For sufficiently high energy budgets, if the
rider breaks at the start of the race they will win, but for
lower energy budgets, E∗ ≲ E∗

crit, the rider does not possess
sufficient energy to break from the start, and ends up finish-
ing the race with the peloton. This highlights how, when the
risk index β is low, the best strategy is to break away from
the peloton not to win but to avoid crashing. As the risk in-
creases and the optimal attack position moves away from
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x∗a = 0, the finish time ahead of the peloton subsequently
increases as well, converging to an E∗-dependent limit as
β → 1.

It is especially noteworthy that it is possible to win with
an energy budget that is appreciably lower than that used
on average in the peloton, namely E∗ ≈ 0.6, but to do so re-
quires the rider to be willing to assume a more elevated level
of risk (right panel of fig. 5). More generally, riders with an
energy budget E∗ < E∗

crit must assume a minimum level of
risk, about β ≈ 0.1 to win the race. This is consistent with
the intuition that a strong competitor can assume a much
lower risk to win, while a weaker opponent must be willing
to race with a riskier strategy.

In the right panel of fig. 5 we plot the optimal attack
power P∗

a , computed from x∗a using (21). We observe that
when x∗a > 0, the optimal power for different energy budgets
collapses into a single curve, as predicted in (28), where we
theorized that P∗

a was independent of E∗ provided the opti-
mal attack position was non-zero.

4.2.2 Dependence on energy budget

Intuition tells us that the energy budget will play an impor-
tant role on racing strategy. In particular, we found in (27)
that the optimal attack position varies linearly with the en-
ergy budget, provided we are in a region of parameter space
where the objective function is smooth.

In the left panel of fig. 6, we plot how the optimal at-
tack position changes with E∗ for various risk levels. For
low energy budgets the optimal location to attack is as close
as possible to the end of the race. As the energy budget in-
creases, the optimal location decreases linearly (as predicted
by (27)) until it reaches xa = 0 again for conservative riders
with high energy budgets, where the rider is strong enough
to break from the start and win as well. Cyclists with high
energy budgets who prioritize winning are recommended to
attack close to the midpoint of the race.

In the right panel of fig. 6, we plot how the finish time
ahead of the peloton (when breaking at the optimal loca-
tion) changes with the energy budget. As the energy budget
increases, the time difference will also increase (as intuition
suggests). For more conservative riders, there is a sharp tran-
sition at a critical value of E∗, where the rider can win by
attacking at the start of the race.

4.2.3 Minimum risk to win

In fig. 7 we show contours of the optimal attack position
(left) and the finish time ahead of the peloton (right) as a
function of the risk index and the energy budget. From the
right panel we can see how each risk index β has an asso-
ciated minimum energy budget that allows the breakaway

rider to win the race, which we define as Emin(β ). We see
that Emin(β ) is a piecewise constant function,

Emin(β ) =

{
E∗

crit =Cd,1 β < β ∗,

E∗
min =Cd,i β > β ∗.

(30)

This corresponds to the optimal strategy of either attacking
at the beginning of the race, xa = 0 (when β < β ∗) or at-
tacking at some intermediate point in the race xa > 0 (when
β > β ∗). We overlay a plot Emin(β ) in the right panel of
fig. 7 (right).

We compute the critical risk index β ∗ in terms of the
system parameters in Appendix B, which gives

β
∗ =

P(C)
N

(
1−e−ωi

1−e−ω −1
)

P(C)
N

(
1−e−ωi

1−e−ω −1
)
+ 1

2

(
1− Cd,i

Cd,1

) . (31)

For the parameter values used to produce fig. 7, the critical
risk is β ∗ = 0.0949. In practice, this means that riders who
take greater risks require less energy to win, with a sharp
cut-off at β = β ∗.

For an elite rider, it is perhaps more interesting to con-
sider the converse question, that is: for a given energy bud-
get, what is the smallest risk one must take to win the race?
This is provided by the inverse function, βmin(E∗), given by

βmin(E∗) =

{
β ∗ E∗

min < E∗ < E∗
crit,

0 E > E∗
crit,

(32)

where E∗
crit =Cd,1, E∗

min =Cd,i and β ∗ is given by (31).
If the energy budget is lower than E∗

min then there does
not exist a winning strategy, and we do not define βmin(E∗).
We see that for sufficiently high E∗, βmin(E∗) = 0, so that
very fit riders (who have 43% energy than the peloton) need
not assume any risks at all.

4.2.4 Dependence on crash propagation

In this section, we investigate how conditions such as rain,
fog, road narrowing, perilous corners, or exhaustion could
modify the optimal racing strategy. Mathematically, this is
implemented by changing the value of the crash propagation
parameter, ω . Since the crash propagation is inversely pro-
portional to ω , larger values of ω may be interpreted as safer
cycling conditions. In the left panel of fig. 8, we plot the op-
timal attack position as a function of risk index for various
crash-propagation parameters, ω . When the risk and energy
budget are fixed, stronger crash propagation (smaller values
of ω) is associated with an earlier optimal attack location
(smaller x∗a), as expected from intuition. Furthermore, we
observe the minimum risk required to win the race decreases
as ω increases and the riding conditions become safer.
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As smaller values of ω are associated with higher crash
probabilities P (see left panel of fig. 4), stronger crash prop-
agation manifests itself by increasing the value of the crash-
ing component in the objective function M , resulting in
the cyclist assigning lower priority to finishing ahead of the
peloton. This effect can be seen in the right panel of fig. 8,
where ∆ t decreases with decreasing ω , for both energy bud-
gets studied.

5 Towards a more realistic breakaway attempt

Although the model introduced in §3 can provide team di-
rectors with useful reference points for deciding team strat-
egy, such as the minimum energy expenditure, and a good
estimate for the optimal attack position, it assumes an unre-
alistic evolution of the power developed by a rider attempt-
ing a breakaway. Once an athlete exceeds their anaerobic
limit, their body produces lactic acid, a toxin that can only
be expelled in mammals by reducing the heart rate and re-
turning to respiratory levels closer to normal [14,15].

5.1 Modelling fatigue

In order to incorporate the production of lactic acid, and
more generally fatigue, we allow for a time-dependent attack
power, Pa(t). We follow a qualitatively similar approach to
[8], but choose instead to continue using breakaway power
rather than breakaway force:

Pa(t) =

{
Pl t < ta,

(Pmax −Ps)e−µ(t−ta)+Ps t > ta.
(33)

Here, Pmax is the maximum power the rider can exert, Ps is
the maximum sustainable power for the rider, and Pl is the
lurking power the rider exerts whilst in the peloton. Unless

explicitly stated, we take Ps = Pl . The dimensionless param-
eter µ captures the effect of lactic acid build-up on the rider;
lower values of µ correspond to a greater resistance to lactic
acid. A useful interpretation for µ in the context of com-
petitive cycling is to distinguish between riders who spe-
cialize in short, explosive outbursts of extremely high power
(‘sprinters’) and cyclists that are better suited for endurance
and long periods of sustained moderate high power, such as
time trial specialists and ‘climbers’.

Our methodology to find the optimal breakaway posi-
tion is similar to §3, but requires additional care and numer-
ical computation to handle the time-dependent power. We
assume the rider has budgeted an energy expenditure E∗ for
the race, and they wish to minimize the objective function
M subject to some risk level β . For Pa(t) as given in (33),
the total energy expenditure is

E∗ = Plta +Ps(t f − ta)+
1
µ

(
1− e−µ(t f −ta)

)
(Pmax −Ps),

(34)

where t f is the (a priori unknown) finish time for the rider.
Given the energy budget, we may solve for the maximum
attack power,

Pmax = Ps +
µeµt f

(
E∗−Pst f

)
eµt f − eµxa

. (35)

The velocity after the attack is

vi(t)≡
dxi

dt
=

1

C1/3
d

(
Ps +(Pmax −Ps)e−µ(t−ta)

)1/3
, t > ta,

(36)

using (9) in the asymptotic limit ε = 0. The position of the
rider may be readily obtained by integrating (36):

xi(t) = xa +
1

C1/3
d,1

∫ t

ta

(
Ps +(Pmax −Ps)e−µ(t ′−ta)

)1/3
d t ′.
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(37)

The finish time for the special rider, t f , is obtained by solv-
ing xi(t f ) = 1, which must be done numerically. This pro-
vides ∆ t = 1− t f , and allows us to calculate the objective
function M from (17), where the crashing component is un-
changed from the simpler attack (16).

Since we cannot find t f (xa,Ps,µ,E∗) explicitly from (37),
we must minimize M using a numerical approach. This is
achieved by solving a constrained optimization problem for
three variables: the attack position xa (which is the same as
the attack time ta), the maximum attack power Pmax and the
finish time of the special rider t f . More concretely, we mini-
mize M (xa, t f ,Pmax;E∗,µ,Ps,ω) over xa, t f , and Pmax, sub-
ject to (34), and (37) with xi(t) set to 1.

5.2 Results for time-dependent attack power

5.2.1 Effect of fatigue

In this section, we wish to understand the effect of rider fa-
tigue on the optimal attack time, ta, and the time difference
at the finish line, ∆ t = tp − t f = 1− t f . In the left panel of
fig. 9, we plot how the optimal breakaway time changes as a
function of the risk index for different values of µ . For small
values of µ , the breakaway power decays sufficiently slowly
that it remains close to constant and we recover the solution
from §3.

As µ increases, the optimal breakaway point moves
closer to the finish line. This is because the attack veloc-
ity eventually falls below the peloton speed (due to the in-
creased drag associated with riding without drafting). Thus,
attacks that take place early in the race run the risk of fail-
ing in the final stages of the race due to the exhausted rider
being caught by the peloton. Hence, we expect the optimal
attack location to increase as µ increases (see left panel of
fig. 9).

In the middle panel of fig. 9 we plot how the time differ-
ence at the finish line changes with risk index if the break-
away is attempted at the optimal attack position x∗a (from the
left panel). For moderate to high risk, we observe that en-
durance riders (small µ) finish the race with a larger margin
than explosive riders (large µ). Again, as µ → 0 we recover
the solution from the constant-breakaway-power model, plot-
ted in yellow. As in the simpler model from §3, there is
a minimum risk that must be assumed to finish ahead of
the peloton. Notably, this required minimum risk decreases
as µ increases. However, consistent with expectations, the
time gained over the peloton also diminishes with increas-
ing µ . Practically speaking, this implies that cyclists with
greater endurance capacity are better positioned to establish
and maintain substantial leads over the peloton. On the other

hand, explosive cyclists attack closer to the finish line and
reach the finish line with the peloton close behind.

In the right panel of fig. 9 we plot how the optimal maxi-
mum attack power changes with the risk index. As expected,
larger values of µ lead to larger maximum attack powers,
and for µ ≫ 1 we we see that Pmax = O(µ), a scaling pre-
dicted by (35). As µ → 0, we recover the µ = 0 trends from
fig. 5. We remark that the large values of µ we consider
here (µ ≈ 10) require the generation of high attack pow-
ers Pmax ≈ 10. In dimensional terms, this corresponds to ex-
erting a peak power output that is 10 times higher than the
peloton average during the start of the attack. This is not
too dissimilar to real data for elite sprinters, who have been
reported to attain peak powers in excess of 1000 W during
bursts [16]. This estimate thus compares well with peloton
powers for flat stages of around 150 W [17].

5.2.2 Role of energy budget

We look at how the energy budget changes the optimal break-
away strategy in fig. 10. We fix the fatigue parameter to
µ = 1, an intermediate value where the rider gets exhausted
in a time-scale comparable to the time to finish the race.
In the left panel, we plot how the optimal attack position
changes with the risk index β , for several values of the en-
ergy budget E∗. As in the simpler model from §3, for large
values of the energy budget, the optimal solution for suitably
risk-averse cyclists (small β ) is to break away at the start of
the race. For risk indices higher than the minimum risk, the
optimal attack position gradually increases, approaching a
an energy dependent limit as β → 1. In the right panel of
fig. 10, we plot how far ahead the peloton the breakaway
finishes as function of the risk index for several values of
E∗. As expected from the previous model, small values of
E∗ require the cyclist to assume a minimum risk to win.

6 Discussion and future directions

In this paper, we have developed a mathematical framework
that captures the key trade-offs faced by elite cyclists: bal-
ancing aerodynamic efficiency, energy expenditure, and the
risk of crashing. By incorporating both physiological limits
and probabilistic crash modelling, our approach extends ear-
lier models from [8] to more realistically capture the strate-
gic considerations involved in breakaway attempts.

One of the key strengths of our model lies in its relative
simplicity and analytical tractability. Despite this, it success-
fully quantifies several intuitive yet previously unmodelled
strategic insights. For example, it confirms that breakaways
near the end of a race are more energy-efficient, while ear-
lier attacks can result in larger time gains, but at a higher
energetic cost. Similarly, spending more time near the rear
of the peloton reduces drag [7] but significantly increases the
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risk of being caught in a crash. These results not only vali-
date widely held beliefs among athletes and team directors
but also allow for rigorous quantitative evaluation of such
strategies.

A particularly novel feature of this work is the inclusion
of crash dynamics as a fundamental part of strategic plan-
ning. By treating the probability of crashing as a dynamic
penalty, we show that risk management is as crucial to suc-
cess as fitness or power output. This aligns with real-world
race scenarios, where riders must weigh the dangers of re-
maining in a densely packed peloton against the energetic
demands of escaping it. In elite competition, where physi-
cal capabilities are often comparable among top athletes, it
is these marginal strategic decisions – timing of attacks, po-
sitioning, and risk tolerance – that frequently determine the
outcome.

The model is also versatile enough to accommodate dif-
ferent risk profiles via the parameter β , representing a rider’s

willingness to trade risk for performance. This provides a
useful lens to interpret decisions made by different types
of riders: for instance, a General Classification (GC) leader
may choose a conservative strategy, while a stage hunter
might favour risky strategies.

While the current model assumes a flat course and rela-
tively simple power profiles, extensions are straightforward.
In Appendix C, we outline a framework for incorporating
elevation changes, showing that our methods readily gener-
alize to more complex terrains. Though analytical results are
harder to obtain in this setting, standard numerical solvers
can be used to explore optimal strategies in varied topogra-
phy. In Appendix D, we show how the crash model could
be generalized to account for more realistic crash propaga-
tion patterns and environment-dependent risks such as road
conditions, weather, or race congestion.

There are several promising directions for future work.
One is to include dynamic chasing behaviour, where the
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peloton adjusts its speed in response to breakaways, and
how this affects the viability of a breakaway. Another is to
model physiological decay more precisely by linking the
power decay rate µ to underlying rider attributes or em-
pirical data (e.g., from power meters or lactate threshold
tests [18]). Similarly, incorporating nutrition and hydration
strategies, particularly over multi-stage races such as the Tour
de France, could provide insights into optimal energy allo-
cation over days rather than single stages [19].

Another future direction for this work could be to ex-
plore velocity-dependent crash probabilities, which would
reflect reduced reaction times at higher speeds. Moreover,
integrating spatial features of the course such as narrow roads,
roundabouts, or downhill corners would offer a more nu-
anced crash model. These refinements could also be informed
by data analytics from race telemetry and crash reports.

A third future direction is to understand how head-, tail-
and cross-winds can shape racing strategies, particularly when
the weather forecast is different for different stages of a race.
This is because strong headwinds should lead riders to pri-
oritize staying inside the peloton due to higher drag at the
same ground speed, but tail winds effectively reduce drag
and hence the advantages of staying in the peloton. More-
over, crosswinds can lead to the formation of echelons [20],
where riders who are not well positioned at the front of the
peloton may be easily dropped [21], giving rise to exhilarat-
ing racing conditions.

Finally, we emphasize that elite racing is not solely a
test of physical ability, but of strategic timing and decision-
making. As athletic performance nears physiological lim-
its [15,22], small tactical choices, such as when and where
to initiate a breakaway, can determine the outcome of a race.
Our framework provides a structured way to analyse these
choices, translating race-day intuition into quantifiable in-
sights. The analytical clarity that our mathematical model
provides makes this a valuable tool for interpreting rider
behaviour and guiding tactical planning in competitive set-
tings.
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Ángel Gómez, to whom we thank for his generosity. For the
purpose of Open Access, the authors will apply a CC BY
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A An in-depth look at the attack microstructure

In our analysis in §2.2, we exploit the fact that ε ≪ 1 to obtain a
leading-order solution for the trajectory of the rider by setting ε = 0.

In doing so, we solve (7) and (9) in such a way that the sudden jump
in power instantaneously translates to a jump in speed. In reality, there
is a small time when the rider is accelerating from the peloton speed
to their attack speed, as fig. 11 shows. There, we numerically solve
the nonlinear problem (9) for small but finite ε = 0.005. The veloc-
ity first rapidly increases when the attack occurs, as the rider benefits
from accelerating with reduced drag due to the presence of the peloton.
Once the rider reaches the head of the peloton (and the breakaway truly
commences) the rider experiences increased drag, with their speed re-
ducing until stabilizing to the attack velocity computed in the main
text, va = (Pa/Cd,1)

1/3. We can understand this transition region by
examining the time close to the attack position.

For a typical race length of 150 km, δ ≈ 2× 10−5 = γε2, where
γ ≈ 1. This means that the approach to the equilibrium velocity after
the attack takes place on two timescales: the first, O(ε2), timescale
captures the motion of the rider to the front of the peloton; the second,
O(ε), timescale captures the part of the race once the rider has escaped
the peloton and their speed approaches the solo equilibrium value.

To capture the first phase, we scale t = ta + ε2τ̃ and xi = xa +δζi,
where δ = γε2. Substituting these scalings into (9) gives, to leading
order in ε:

γmi
d2ζi

dτ̃2 = Pi −Cd,i(ζi), (38)

where

Cd,i(ζi) =
Ĉmin

d +
(
Ĉmax

d −Ĉmin
d

)
e−λζi

⟨Ĉd⟩
. (39)

We solve this subject to ζi =−(i−1) and dζi/dτ̃ = 0 for τ = 0, which
provides the solution until τ̃ = τ̃d defined by ζi(τ̃d) = 0, which corre-
sponds to the time when the rider has reached the front of the pelo-
ton. Note that here we are solving for ζi as a continuous variable.
This allows us to track the motion of the special rider past the dis-
crete values ζi = i− 1 that correspond to locations at which we per-
mit riders to sit while riding in the peloton and not making an attack.
The speed of the rider when they reach the front of the peloton is
v f ≡ dxi/dt|τ̃=τ̃ f = 1+dζi(τ f )/dτ̃.

For the second part of this, the appropriate distinguished limit is
obtained by scaling t = ta + ετ and xi = xa + εXi. Substituting these
scaling into (9) gives, to leading order in ε:

mi
d2Xi

dτ2 = Pi

(
1+

dXi

dτ

)−1

−Cd,i(0)
(

1+
dXi

dτ

)2

. (40)

We solve this subject to Xi = 0 and dXi/dτ = v f − 1 at τ = 0, which
ensure that the solution matches to the O(ε2) timescale of the rider
moving to the front of the peloton. We note that we can write (40) in
terms of the velocity dXi/dτ = dxi/dt − 1 = vi, which may then be
solved straightforwardly subject to vi = v f when τ = 0, to give

vi =
Piv f

Cd(0)v f +(Pi −Cd(0)v f )e−Piτ/mi
. (41)

The composite solution for vi first rises as the rider makes their way
through the peloton, reaching a maximum when they reach the front of
the peloton, before decaying exponentially to v∞ ≡ Pi/Cd(0) once the
rider escapes the peloton and becomes a solo rider (see fig. 11).

B Minimum risk computation

To compute the value of the minimum risk, we first recall the minimum
viable attack position xmin

a is given by (20). For E∗
min < E∗ < E∗

crit, the
minimum attack position lies in the open interval xmin

a ∈ (0,1). We fo-
cus on this range of energy budgets as (i) for E∗ >E∗

crit the start location
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Fig. 11: A sketch of the asymptotic transition layers during
the early stages of an attack attempt.

xa = 0 is a viable attack position and conservative riders will prefer it,
and (ii) for E∗ < E∗

min there is no viable attack position (mathemati-
cally, xa ≥ 1). Moreover, for E∗

min < E∗ < E∗
crit the objective function

has a discontinuity in its derivative at xmin
a for all values of β . In this

case, as we can see in the right panel of fig. 4, for xa < xmin
a the ob-

jective function is flat. For xa > xmin
a , the behaviour of the objective

function depends on the risk index, and there are two qualitatively dis-
tinct regimes.

The first regime occurs for small β , and is characterized by M (xa)
being a monotonically increasing function for xa > xmin

a . In this case,
x†

a is not defined as there is no point where M ′(xa) = 0 in the domain
(see, for example, the curves for β = 0 and 0.1 in the right panel of
fig. 4). In this regime, xa∗= xmin

a .
A second regime exists for larger β , where M (xa) is a non-monotonic

function of xa > xmin
a (see, for example, the curves for β = 0.4, 0.6, 0.8

and 1.0 in the right panel of fig. 4). In this case, x†
a is well defined as

the point where M ′(x†
a) = 0, and this is the global minimum of M , so

that x∗a = x†
a.

The transition between both regimes occurs at a critical β , which
we define as β ∗. To find this value, we observe that in the second
regime we have M ′(xmin

a )≤ 0, while in the first regime we have M ′(xmin
a )≥

0. At the critical value of β ∗, we are in an intermediate regime that sat-
isfies exactly M ′(xmin

a ) = 0. An alternative way of seeing this is to
consider how x†

a changes as β is decreased from a high value. As β is
decreased, x†

a decreases, eventually reaching x†
a = xmin

a for β = β ∗. By
definition x∗a is the point where the derivative vanishes, so that substi-
tuting we also find M ′(xmin

a ) = 0. Using the definition of M , (17), this
condition reads

−β
∗ ∂∆ t

∂xa

∣∣∣∣
xa=xmin

a

+(1−β
∗)

∂P

∂xa

∣∣∣∣
xa=xmin

a

= 0, (42)

and solving for the critical risk β ∗,

β
∗ =

∂P
∂xa

∣∣∣
xa=xmin

a

∂P
∂xa

∣∣∣
xa=xmin

a
+ ∂∆ t

∂xa

∣∣∣
xa=xmin

a

. (43)

We can compute the partial derivatives of the objective function com-
ponents. For the time difference,

∂∆ t
∂xa

= 1+
3
2

(
1− xa

E∗−Cd,i

)1/2

C1/2
d,1 −

Cd,iC
1/2
d,1

2

(
1− xa

E∗−Cd,i

)3/2

. (44)

Now, evaluating ∂∆ t/∂xa at xa = xmin
a , the above simplifies to

∂P

∂xa

∣∣∣∣
xa=xmin

a

=
1
2

(
1− Cd,i

Cd,1

)
, (45)

where we have used the fact that

η
2
min ≡

1− xmin
a

E∗−Cd,ixmin
a

=
1

Cd,1
. (46)

Since the probability of crashing is a linear function of xa from (16),
its derivative is constant and given by

∂P

∂xa

∣∣∣∣
xa=xmin

a

=
∂P

∂xa
=

P(C)

N

(
1− e−ωi

1− e−ω
−1
)
. (47)

Thus, the critical risk is

β
∗ =

P(C)
N

(
1−e−ωi

1−e−ω −1
)

P(C)
N

(
1−e−ωi

1−e−ω −1
)
+ 1

2

(
1− Cd,i

Cd,1

) . (48)

C Elevation

In this section, we outline how to generalize the methods from the main
paper to account for elevation changes, including an example simula-
tion of a race over arbitrary terrain. In this case, the generalized equa-
tion for the peloton motion, (7), when riding on a course of arbitrary
steepness θ(x), is given by

ε
d2xp

dt2 = P(t)
(

dxp

dt

)−1

−
(

dxp

dt

)2

− γ sin(θ(xp)) = 0, (49)

where

γ =
21/3⟨m̂⟩g

P̂2/3
p (⟨Ĉd⟩ρA)1/3

≈ 40, (50)

which is a ratio between the force due to gravity and aerodynamic drag.
Although γ appears rather large, since the inclination angle θ is at most
around 0.1, the effect of gravity is O(1). The generalized equation for
motion of an individual rider, (7), is

εmi
d2xi

dt2 = Pi(t)
(

dxi

dt

)−1

−Cd,i

(
dxi

dt

)2

−miγ sin(θ(xi)) = 0, (51)

One crucial difference with the flat course presented in the main paper
is that the time it takes for the peloton to complete the course, tp, is no
longer unity, as it will depend on the race profile θ(x). As a result, the
total energy expenditure in the peloton is no longer unity either, but is
now given by E = tp, using (11).

We now simulate a simple attack, where the rider is located at
some position in the interior of the peloton until they reach xa, where
they attempt to breakaway with a constant power, as in §3. Unlike for a
flat course, analytical progress is complicated, so we solve for the tra-
jectory of the peloton and the rider numerically. The solution strategy
for xp(t) and xi(t) is:

– We evolve the position of the peloton with a constant power Pp(t)=
1, solving (49).

– Before the attack, for xi(t)< xa the rider simply moves at the same
speed as the peloton, ẋi = ẋp, obtained in the first step. Using (51)
we can find the power Pi(t) that the rider must exert to maintain
this velocity, which will be in general lower than 1, as the rider is
located inside of the peloton and experiences lower drag.

– At xi(t) = xa, the rider attacks so that we now solve (51) with
the power set to Pi(t) = Pa (this could also be an exponentially
decaying power profile, as in §5).

– From here on we solve the (now uncoupled) equations of motion
for xp(t) and xi(t), until both of them reach the end of the race at
x = 1, where an event handler automatically stops the integration.
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We use Scipy’s solve ivp routine to solve the problem numerically.
The routine can handle “events”, stopping the integration once a certain
condition has been met, namely reaching the finish line at x = 1. The
integration method is either RK45, or BDF if we suspect the sharp
power profile leads to a stiff problem.

In fig. 12 we show the results for a simulation of a single rider
attacking at position xa = 0.5, with a constant attack power as in §3.
In the top row we can see the example mountainous course elevation
profile, h(x), obtained by a superposition of sines and cosines. The el-
evation is small because it is scaled by the course length L. The steep-
ness is given by θ(x) = tan−1(h′(x)). In the second row, we plot how
the distance between the rider and the peloton widens from x = xa on-
wards, as well as the velocity of the rider (red) and the peloton (blue) as
a function of position. We see that the individual rider moves faster in
flat (and uphill) sectors of the course, while the peloton descends faster
on the steepest regions due to the reduced drag it experiences. The third
row shows the positions and velocities of the rider and the peloton, but
now as a function of time. The bottom row shows the evolution of the
power of the rider, Pi(t), which varies in such a way that the velocity
vi = 1 before the breakaway, and vi = Pa after the breakaway. We do
not allow for negative powers, so that in very steep downhill sections
where the rider needs to do no work to keep up with the peloton, the
power is set to zero. The peloton power is set to unity for the whole
course. The lines in the right panel of the bottom row correspond to the
cumulative energy consumed, defined by (11).

D Complex crash dynamics

If we drop the assumption that the distribution of the position of crash
start is uniform, more complicated crashing dynamics emerge. We re-
call that the quantity of interest is the probability of being involved in
a crash conditioned on a crash occurring, which we define as P(C j|C).
Let P(Sk|C) = sk be the probability that the cyclist in position k crashes
first, which we now allow to vary with k. Once a crash has been initi-
ated at position k, the probability that the cyclist in position j crashes
too is zero if j < k (rider is ahead of the crash), and will in general
depend on the distance between j and k for j > k. Therefore, we write

P(C j|Sk) =

{
0 j < k
f ( j− k) j ≥ k,

(52)

where f (·) is a decreasing function of the distance between j and k (the
further away the less likely to also crash) and satisfies f (0) = 1 ( j = k
is the cyclist that starts the crash, so they crash with probability 1). In
general, both the distribution of the crash start position sk and the crash
propagation statistics could be learned from real-life data. In the main
paper, we used a uniform distribution for sk = 1/N and an exponential
decay for f ( j − k) = e−ω( j−k) as realistic yet simple starting points.
Furthermore, the parameters and distributions will in general depend
on the speed of the peloton (which will affect reaction time), environ-
mental factors (for example, fog, or wet roads that decrease braking
performance) and how densely packed the peloton is.

Once their function or numerical form has been found, the prob-
ability that the cyclist at position j crashes given that a crash has oc-
curred can be found using the law of total probability:

P(C j|C) =
N

∑
k=0

P(C j|Sk)P(Sk) =
j

∑
k=0

f ( j− k)sk. (53)
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Fig. 12: Details for the simulation of a rider (solid red lines) breaking away from the peloton (dashed blue lines) at xa = 0.5,
in a hilly race.The parameters are i = 5, Cd,1 = 1.43, Pa = 3.6, xa = 0.5, N = 75 and λ = 0.25. The feint red line in row 3,
left indicates the point where the individual rider has finished the course.
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