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The transport of a dilute suspension of particles through a channel with porous walls, accounting for the concentration
dependence of the viscosity, is analyzed. In particular, we study two cases of fluid permeation through the porous chan-
nel walls: (1) at a constant flux and (2) dependent on the pressure drop across the wall. We also consider the effect of
mixing the suspension first compared with point injection by considering inlet concentration distributions of different
widths. We find that a pessimal inlet distribution width exists that maximizes the required hydrodynamic pressure for a
constant fluid influx. The effect of an external hydrodynamic pressure, to compensate for the reduced transmembrane
pressure difference due to osmotic pressure, is investigated. VC 2014 American Institute of Chemical Engineers AIChE J,

60: 1891–1904, 2014

Keywords: porous walls, concentration-dependent viscosity, water filtration, concentration polarization

Introduction

Water filtration is becoming increasingly important as a
method of water treatment in our everyday lives. Many of
the processes are not fully understood, including the cross-
flow filtration system we consider. A crossflow filtration sys-
tem consists of a fluid with contaminants (often particulates)
flowing tangentially to a porous membrane. This membrane
allows the fluid to pass through but rejects the particulates.
The filtration is driven by two pressure differences: (1) the
hydrodynamic pressure difference across the membrane and
(2) the difference in osmotic pressure across the membrane.
The osmotic pressure on the filtrate side is generally close to
zero, whereas that on the feed side is greater than that in the
bulk flow due to the build-up of particles near the membrane
surface. This phenomenon is referred to as concentration
polarization and is one of the main limitations of the efficacy
of water filtration1 as the high osmotic pressure on the feed
side of the membrane reduces the effective pressure that
drives filtration.

The fluid velocity in a channel with porous walls has been
analyzed for a constant viscosity and constant permeation
velocity.2 The solution is a Poiseuille-like parabolic profile
decreasing in magnitude along the channel for the axial com-
ponent and a transverse component with a cubic dependence
on cross-channel position that is proportional to the permea-
tion flux. More generally, with any flow through the porous
walls, the axial flow rate in the channel is reduced and,

when combined with advection by the transverse flow,
results in concentration polarization.3

A complicating factor in water filtration using membranes
is the dependence of the liquid viscosity on particle concen-
tration. The liquid viscosity is often taken as a constant in
models of filtration, but in practice depends on many local
properties of the fluid such as its temperature, density, and
shear rate. Of particular concern in this article is the effect
of concentration-dependent viscosities on crossflow filtration.
Davis and Sherwood4 consider the convection–diffusion
equation for particles in a steady-state boundary layer with a
concentration-dependent viscosity and diffusivity given by
Davis and Leighton.5 This model assumes that, outside the
boundary layer, the bulk concentration of particles is con-
stant. Physically, this may be achieved in a system in which
the P�eclet number is large so that advection dominates diffu-
sion. A similarity solution in the boundary layer is obtained
in this case. Bowen and Williams6 consider a full numerical
solution to the continuity, Navier–Stokes and convective–
diffusion equations for crossflow ultrafiltration for concentra-
tion-dependent viscosity and diffusion coefficient using a
Thomas algorithm. Their results show the significant effect
various parameters have on concentration polarization and
the rate of filtration.

The transition from concentration polarization to deposi-
tion (fouling) on the membrane is of great importance to the
lifetime of membranes. Bacchin et. al.7 model this by a tog-
gle that changes the equations for the permeate flux and wall
concentration depending on which is taking place. This tog-
gle is implemented via a critical concentration: below this
critical value, concentration polarization occurs, but once
above it, there is sufficiently high concentration for particle
deposition to occur as well as concentration polarization

Correspondence concerning this article should be addressed to I. M. Griffiths at
ian.griffiths@maths.ox.ac.uk.

VC 2014 American Institute of Chemical Engineers

AIChE Journal 1891May 2014 Vol. 60, No. 5



(i.e., there is some irreversible solidification as a gel or cake
formation). The type of driving phenomena may alter the
outcome and the critical flux for the transition between con-
centration polarization and deposition is linked to the local
P�eclet number.

In this article, we consider a pressure-driven fluid flow
with advection and diffusion of particles in a thin porous
channel, with aspect ratio d� 1. We study the particular
case of a dilute suspension of identical and neutrally buoyant
particles and consider a bulk concentration with a specified
cross-stream distribution entering the channel. As such, we
assume that no deposition of particles on the membrane
occurs. Determining the critical concentration, defined in
Bacchin et al.,7 is beyond the scope of this work; rather, our
aim is to understand the early stages of particle build-up that
ultimately leads to concentration polarization.

We assume that the flow is steady (i.e., constant in time)
and examine its variations in space arising due to the local
particle concentration and permeation flux through the chan-
nel walls. The fluid (but not particles) may pass through the
porous walls so that the walls act as perfect filters, and we
do not consider the possibility that particles may block pores
when they reach the walls. The effects of a concentration
dependence of the viscosity of the fluid are analyzed, how-
ever, a constant diffusion coefficient is shown to be asymp-
totically appropriate for a dilute suspension. The form of the
channel fluid flow as in Probstein2 is retrieved as a leading-
order solution that does not have a particle concentration
dependence, and the higher-order concentration-dependent
solution is determined. The case of a pressure-dependent per-
meation flux is considered, where the hydrodynamic and
osmotic pressures drive the filtration. We are particularly
interested in the pressures required for a constant inlet fluid
flux due to the concentration-dependent viscosity.

We provide a mathematical description of the problem,
applying a thin-channel approximation to the governing
equations to derive a coupled system of nonlinear partial dif-
ferential equations. These equations are simplified by exam-
ining the asymptotic limit of a dilute suspension of particles
and solved with analytic results at leading order and numeri-
cal results at the next order. We also consider the effects of
an outer pressure, that is, a pressure outside the channel that
affects the transmembrane pressure difference. Order-one
P�eclet numbers are taken so that the advection and diffusion
of particles in the channel are equally important, to provide
the greatest generality for the particle dynamics in the
channel.

Modeling

We consider a two-dimensional channel of length L, with
porous walls located at y56H=2, as depicted in Figure 1.
Fluid is injected into the channel at x50 at a fixed flow rate,
Q ðm2=sÞ, and with a given concentration distribution of par-
ticles. The velocity field within the fluid is u5ðu; vÞ, with u
the axial component and v the transverse component. In such
a configuration the solvent (particle-free) viscosity, l0, will
play a key role in determining the flow profile.

For typical set-ups of interest, we consider channels of
length, L, of around a meter (m) and width, H, of order
millimeters (mm) so that the channel is thin, with aspect
ratio d51023, flow speeds, U5Q/H, of order millimeters per
second (mm/s), and particles of typical size, a, of tens of
nanometers. Such a parameter regime is applicable to

direct-flow configurations8 (which are the basis for many
designs in the water industry) and may also be applicable to
some crossflow scenarios. The density and viscosity of
water are q51000 kg/m3 and l051023 Pa s, respectively,
and kBT54310221 J at room temperature T5300 K (with
Boltzmann’s constant kB). In a thin channel, the ratio of iner-
tial to viscous forces is given by the reduced Reynolds num-
ber, Re5d2qUL=l0 � 1, which is small so that inertial
forces may be neglected. The small aspect ratio and Reyn-
olds number offer mathematical simplifications to the analy-
sis. The particles, of size a, are in principle subject to
Brownian diffusion (D05kBT=6pl0a)1 and shear-induced
diffusion (a2 _c,9 for shear rate _c5U=H). However, for
a � 10 nm, Brownian diffusivity dominates. This also gives
an order-one reduced P�eclet number, Pe5d2UL=D05Oð1Þ,
as D0 depends on the size of the particle. An Oð1Þ P�eclet
number allows for the richest interplay between diffusion
and advection.

The particles in the channel are described by their volume
fraction, /ðx; yÞ. The volume fraction of particles at the inlet,
x50, is prescribed by /ðx50; yÞ5UðyÞ for some function U.
We wish to understand how the volume fraction, /ðx; yÞ,
changes with distance along the channel as a result of the
fluid flow, and how it influences the flow. The viscosity of
the fluid, l, is assumed to be dependent on the volume frac-
tion, writing l5lð/Þ, the functional form of which will be
prescribed in due course.

Governing equations

Assuming a small Reynolds number, the fluid flow is gov-
erned by the steady Stokes equations, representing conserva-
tion of mass and momentum of the fluid

$ � u50 (1a)

$ � lð/Þ $u1 $uð ÞT
h i� �

5$p (1b)

where p is the hydrodynamic fluid pressure.
The flow advects the particles down the channel, but they

also diffuse within the channel. The particle volume fraction
is, therefore, governed by the steady advection–diffusion
equation

u � $/5$ � Dð/Þ$/ð Þ (2)

Here, Dð/Þ is the particle diffusivity, which will in gen-
eral also depend on volume fraction.

Figure 1. Schematic of a channel with porous walls.

The channel has length L and width H. The fluid flows

from left to right and is allowed to leak out through the

channel walls. Particles entrained in the fluid with some

distribution at the inlet are advected by the flow and dif-

fuse by Brownian motion, collecting at the channel walls.
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Boundary conditions

Let us now consider the boundary conditions to which the
governing equations, (1) and (2), are subjected. The flow and
particle distribution are assumed to be symmetric about the
axis of the channel, that is

@/
@y

5
@u

@y
5v50 on y50 (3)

Henceforth, we shall consider only the behavior in the
half channel 0 � y � H=2. We consider the two permeation
fluxes through the porous channel walls, V : 5vðx;H=2Þ, that
are most often found in practical applications. First the case
when V is a constant, say V�, is considered. In the absence
of significant osmotic effects, this type of permeation flux
has been achieved by having a flow of fluid (recirculated fil-
tered fluid) outside the channel so that the pressure differ-
ence across the membrane is constant along the wall.10

Second, we consider the case where V is proportional to the
net driving force (i.e., the transmembrane pressure less the
difference in osmotic pressure). At the wall, we, therefore,
have one of the two possible boundary conditions for the
transverse velocity

vðx;H=2Þ5V5
V�5constant ðCase 1Þ

j Dp2Dpð Þ ðCase 2Þ

(
(4)

respectively, where j is a constant of proportionality that is
related to the solvent viscosity and the permeability of the
porous wall and its thickness (cf. Darcy’s law). Here, the
term Dp5pðxÞ2pouter is the hydrodynamic pressure differ-
ence across the membrane, which is measured relative to the
pressure outside the channel, pouter (i.e., the reference pres-
sure). Similarly, Dp5p2pouter where p is the osmotic pres-
sure due to particles in the channel and pouter is that due to
particles outside the channel. Here, pouter 50 as we assume
complete rejection of particles at the channel wall. The
osmotic pressure difference across the porous wall is, in gen-
eral, a function of the volume fraction of particles at the sur-
face of the porous wall.

In general, at a porous wall there is a tangential slip
velocity, whose magnitude is determined by a Neumann
boundary condition such as that given by Beavers and
Joseph.11 However, it has been found that this slip is not sig-
nificant for a wide range of membranes,12 and so here, for
simplicity, we shall assume a no-slip boundary condition

uðx;H=2Þ50 (5)

as also adopted by Bowen and Williams.6

As particles are rejected by the membrane but fluid may
permeate, a no-flux boundary condition for the particles at
the channel walls is applied. This may be written as4,7

v/2D
@/
@y

50 on y5H=2 (6)

Two final conditions close the system. At the inlet, we
impose a constant flow, Q

Q5

ðH=2

2H=2

u dy52

ðH=2

0

u dy at x50 (7)

At the outlet, the pressure is assumed to be constant; with-
out loss of generality we may set this outlet pressure to zero,
that is

p50 at x5L (8)

but note that this may differ from the pressure outside the
channel, ie. pouter may not necessarily be zero. We note that
the appropriate outlet boundary condition for a direct-flow
configuration is u50 at x5L. However, we could in principle
choose the outlet pressure such that there is no net outflow.
Although these conditions are not identical, the overall
behavior in both cases will be similar, except in a small
region near the outlet.

Thin-channel approximation

We suppose that the channel is thin so that the aspect ratio
H=L5d� 1. We exploit the smallness of d, nondimension-
alizing the system by letting

x5Lx̂; y5dLŷ; u5
Q

H
û;

v5d
Q

H
v̂; l5l0l̂; p5

Ql0

d2HL
p̂; (9)

j5
d3L

l0

ĵ; p5
Ql0

d2HL
p̂; D5D0D̂

in which the dimensionless variables appear with a hat, and
l0 is the viscosity of the solvent in the absence of particles
and D0 is the constant Brownian diffusion coefficient for a
particle in the absence of the effects of surrounding par-
ticles. Conservation of mass motivates the transverse veloc-
ity scaling being chosen to be the same as the axial
velocity scaling multiplied by a factor of d. However, note
that the total fluid permeate may be order unity (despite the
small velocity at each point) because of the length of the
pipe. Substituting the nondimensionalization (9) into Eqs. 1
and 2 and retaining only leading-order terms in d provides
the equations for the volume fraction in a thin-channel flow
with a concentration-dependent viscosity (dropping the hats
for convenience)

@u

@x
1
@v

@y
50 (10a)

@

@y
lð/Þ @u

@y

� �
5
@p

@x
(10b)

05
@p

@y
(10c)

Pe u
@/
@x

1v
@/
@y

� �
5
@

@y
Dð/Þ @/

@y

� �
(10d)

Here, Pe is the (reduced) P�eclet number

Pe5d2 UL

D0

5d
Q

D0

(11)

The P�eclet number measures the rate of advection of par-
ticles down the channel compared with the diffusion across
the channel. As discussed earlier, the viscosity l /ð Þ is
assumed to be a known function. We note that (10c) implies
that the hydrodynamic pressure is, to leading order, a func-
tion of x only, that is, p5pðxÞ. Note also that Eq. 10d indi-
cates that there is no axial particle diffusion present at
leading order in d.

The dimensionless boundary conditions, to leading order
in d, to be used in determining the solution to (10) are as
follows (again dropping hats for convenience)
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@/
@y

5
@u

@y
5v50 on y50

(12a)

vðx; 1Þ5V5

V� Case 1ð Þ

j p2pouter 2Dp½ � Case 2ð Þ

8<
: (12b)

uðx; 1Þ50 (12c)

Pe v/2
@/
@y

50 on y51 (12d)

ð1

0

u dy51 at x50 (12e)

p50 at x51 (12f)

The two cases in Eq. 12b refer to the two distinct permea-
tion fluxes as described in (4): constant, V�, and pressure-
dependent, and will be treated separately. Finally, we specify
the volume fraction profile at the inlet

/ð0; yÞ5UðyÞ (13)

for some UðyÞ. Two natural types of injection that should be
compared are (1) uniform injection across 0 � y � 1 and (2)
point injection. To capture both of these, we consider a nor-
malized particle distribution at the inlet that is Gaussian in
nature, of the form

/ð0; yÞ5UðyÞ5
exp 2y2

2r2

� �
ffiffi
p
2

p
r erf 1ffiffi

2
p

r

� � (14)

Here, r is a constant that reflects the width of the distribu-
tion. The uniform inlet volume fraction arises in the limit
r!1, whilst point injection at the center y50 corresponds
to r! 0; intermediate values of r give different pulse
widths.

Equations 10 subject to boundary conditions Eq. 12 and
inlet condition Eq. 13 define our problem mathematically.

Model solution

Our aim is to determine the change in particle volume
fraction, /, as we move down the channel, that is, the varia-
tion with y of /ðx; yÞ as x increases. Integrating the momen-
tum Eq. 10b, and making use of the symmetry and no-slip
conditions (12a, 12c) gives

uðx; yÞ52
dp

dx

ð1

y

~y

lð/ðx; ~yÞÞd~y (15)

Substituting (15) into the continuity equation, (10a) inte-
grating and applying (12a) gives

vðx; yÞ5 @

@x

dp

dx
y

ð1

y

~y

lð/ðx; ~yÞÞd~y1

ðy

0

~y2

lð/ðx; ~yÞÞd~y

� �� �
(16)

The transverse fluid velocity at the channel wall, V, is
then given by

vðx; 1Þ5V5
@

@x

dp

dx

ð1

0

~y2

lð/ðx; ~yÞÞd~y

� �� �
(17)

Treating V as given by the two behaviors of the permea-
tion flux of interest in Eq. 12b, and expanding the derivative
in Eq. 17 results in an ordinary differential equation (ODE)
for the hydrodynamic pressure, p(x), of the form

d2p

dx2
2

BðxÞ
AðxÞ

dp

dx
2

1

AðxÞ V50 (18)

where

AðxÞ5
ð1

0

~y2

lð/ðx; ~yÞÞd~y (19a)

BðxÞ5
ð1

0

~y2

lð/ðx; ~yÞÞ2
@lð/ðx; ~yÞÞ

@x
d~y (19b)

Eqs. 15 and 16 give the axial and transverse velocities in
terms of the volume fraction, /, and hydrodynamic pressure,
p. These may be substituted into the advection–diffusion
equation, (10d), and, with the ODE for the hydrodynamic
pressure equation, (18), they provide two coupled integro-
differential equations for / and p, which are difficult to
solve numerically. However, in the next section, we are able
to make further analytical progress by exploring the limit of
a dilute suspension, /� 1.

Asymptotics for a Dilute Suspension

The coupled nonlinear system of Eq. 10 can be simplified
by considering a dilute suspension of particles

/ðx; yÞ5�/1ðx; yÞ (20)

with �� 1 and /1 assumed to be O 1ð Þ.
The osmotic pressure difference across the porous wall, in

the dilute limit, is a linear function of the particle volume
fraction at the wall13

Dp5�p0/1ðx; y51Þ1O �2
	 


(21)

where p0 is a reference osmotic pressure related to the van’t
Hoff factor. In the dilute limit, the leading-order effect of
volume fraction on viscosity is given by the Einstein
viscosity14

lð/Þ511
5

2
�/11O �2

	 

(22)

Finally, the asymptotic expression for the effective diffu-
sion coefficient, Dð/Þ, for a dilute mono-disperse suspension
is given by15

Dð/Þ511�v/1 (23)

where the constant v is a virial coefficient, a type-specific con-
stant accounting for particle–particle interactions (see Elimelech
et al.,15 Batchelor16 for tabulated values from the literature).

We exploit the dilute approximation by expanding the
hydrodynamic pressure and velocity components as

pðxÞ5p0ðxÞ1�p1ðxÞ1O �2
	 


(24a)

uðx; yÞ5u0ðx; yÞ1�u1ðx; yÞ1O �2
	 


(24b)

vðx; yÞ5v0ðx; yÞ1�v1ðx; yÞ1O �2
	 


(24c)

Substituting these expressions into the advection–diffusion
equation for /, Eq. 10d, the lowest-order terms are at O �ð Þ,
and so this forms an equation for /1 in terms of the leading-
order velocities u0 and v0

Pe u0

@/1

@x
1v0

@/1

@y

� �
5
@2/1

@y2
(25)
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We note that the Brownian diffusivity, D0, enters through
the P�eclet number and also that the concentration-dependent
terms in the diffusivity only appear at order �2, and hence
play no role. As a result, we need only consider a constant
particle diffusivity, D0, here. The symmetry and no-flux
boundary conditions from (12a) and (12d) read

@/1

@y
50 on y50 (26a)

PeV0/12
@/1

@y
50 on y51 (26b)

where V05v0ðx; 1Þ is the leading-order permeation flux at
the porous channel walls. The inlet condition is

/1ð0; yÞ5U1ðyÞ (27)

for a normalized Gaussian function UðyÞ of the form given
by Eq. 14.

The expression for the axial velocity given by (15) may
be expanded in powers of �, using the viscosity and pressure
expansions (22) and (24a), to give

uðx; yÞ5 dp0

dx

ðy221Þ
2

1�
dp1

dx

ðy221Þ
2

1
dp0

dx

ð1

y

5

2
~y/1ðx; ~yÞd~y

� �
1O �2

	 

(28)

Similarly for the transverse velocity, given by (16), we
find

vðx; yÞ5 d2p0

dx2

ð3y2y3Þ
6

1�
@

@x

�
dp1

dx

ð3y2y3Þ
6

2
dp0

dx

�
y

ð1

y

5

2
~y/1ðx; ~yÞd~y1

ðy

0

5

2
~y2/1ðx; ~yÞd~y

��
1O �2

	 
 (29)

Equations 28 and 29 determine the leading-order and
order-� components of the velocities u and v. As expected in
the dilute limit, the presence of particles does not affect the
leading-order problem; their effect is only felt at the next
order.

The two cases for the boundary condition for v at y51
(12b) take the form V5V01�V1 where

V5V01�V1

5
V� ðCase 1Þ

j p02p0
outer

	 

1�j p12p1

outer 2p0/1ðx; y51Þ
 �

ðCase 2Þ

(

(30)

Thus, there is no O �ð Þ correction to the permeation flux
for the case of constant outflow, that is, V150 in this case.
However, for the pressure-dependent permeation flux, the
leading-order outflow is proportional to the leading-order
pressure difference across the membrane, and the Oð�Þ out-
flow is related to the Oð�Þ hydrodynamic pressure and the
osmotic pressure.

Results

Leading-order velocities

Examining the Oð1Þ velocity terms in the expansions (28)
and (29), we find the leading-order velocity components
u05ðu0; v0Þ

u0ðx; yÞ5
dp0

dx

ðy221Þ
2

(31a)

v0ðx; yÞ5
d2p0

dx2

ð3y2y3Þ
6

(31b)

Note that the axial velocity, u0, depends quadratically on
the transverse coordinate, y, and the transverse velocity, v0,
depends cubically on y. Similar channel velocities may be
found in the literature (e.g., see Probstein2 for the case of a
constant permeation flux). If the hydrodynamic pressure gra-
dient, dp0=dx, were constant, the leading-order velocities
(31) would correspond precisely to Poiseuille flow. However,
here we have the added interest that dp0=dx may be a func-
tion of x. This means that, while the profile remains para-
bolic, its magnitude may vary due to the spatially varying
hydrodynamic pressure, p0. This variation must be deter-
mined case by case by considering the leading-order flow
through the channel wall V0

v0ðx; 1Þ5V05
1

3

d2p0

dx2
5
V� ðCase 1Þ

jp0 ðCase 2Þ

(
(32)

We note that, in solving for the leading-order hydrody-
namic pressure p0 from the ODE in (32), the constraints of
constant flux at the channel inlet, (12e), and zero pressure at
the outlet, (12f), are applied, which, for the leading-order
problem, read as ð1

0

u0dy51; at x50 (33a)

p050; at x51 (33b)

In the following, we consider each of these two cases, in
turn.

Case 1: Constant Permeation Flux. In the case of con-
stant flow through the porous walls, V0 � V�5constant , the
ODE for the leading-order hydrodynamic pressure, (32),
with conditions (33) has solution

p053ð12xÞ 12
1

2
V�ðx11Þ

� �
(34)

This function decreases with V� for all x, that is, the
greater the permeation flux the lower the required hydrody-
namic pressure to maintain a constant flux. The leading-
order flow then reads

u05ðu0; v0Þ5
3

2
ð12y2Þ2 3

2
V�xð12y2Þ; 1

2
V�ð3y2y3Þ

� �
(35)

from (31). The leading-order axial velocity u05u0ðx; yÞ and
the transverse velocity v05v0ðyÞ are dependent on the mag-
nitude of the flow through the walls. In the case of no per-
meation flux (impermeable walls), V�50, and (35) reduces
simply to Poiseuille flow.

There is a maximum allowable constant permeation flux,
V�max , for which there is a positive net axial flow at the end
of the channel; in this limiting case, all the fluid injected at
the inlet passes through the porous walls. Exceeding this per-
meation flux results in back-flow from the channel outlet
into the channel. The value of V�max is obtained by equating
the influx of fluid with the flux through the channel walls,
given by integrating the velocity v0 (35) along the channel
wall at y 5 1, resulting in a maximum permeation flux of
V�max 51. As mentioned previously, another filtration process
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in which the flow is zero at the end of the channel (dead-end
flow) is direct-flow filtration.8

Case 2: Pressure-Dependent Permeation Flux. We now
determine leading-order solutions for the velocities, pressure,
and volume fraction for a pressure-dependent permeation
flux. For simplicity let us assume zero pressure outside the
channel, pouter � 0. This corresponds to the common set-up
in which the hydrodynamic outlet pressure and pressure out-
side the channel walls are equal. Later, this assumption is
relaxed to explore the effect of a nonzero pouter .

When the permeation flux through the wall is proportional
to the hydrodynamic pressure, p, and osmotic pressure, p,
then at leading order only the hydrodynamic pressure is sig-
nificant, V05jp0, as seen from Eq. 30. The leading-order
transverse flow at y51 (32) gives an ODE for the leading-
order hydrodynamic pressure

1

3

d2p0

dx2
5jp0 (36)

This ODE, subject to the boundary conditions (33), has
solution

p05

ffiffiffi
3

j

r
sech

ffiffiffiffiffiffi
3j
p

sinh
ffiffiffiffiffiffi
3j
p
ð12xÞ

h i
(37)

From this equation, we observe that the pressure, p0,
decreases with j for all x and, as is the case for uniform perme-
ation flux, the greater the permeation flux through the channel
walls, the lower the required hydrodynamic pressure to achieve
a constant influx. Substituting (37) into (31) determines the
leading-order velocity field, u0; v0ð Þ. We note that, as j! 0 (in
the limit of impermeable walls), p0 ! 3ð12xÞ, and we recover
Poiseuille flow, as expected. The components of the leading-
order velocity field are shown in Figure 2 for j51. We observe
that the leading-order axial velocity u0 retains its parabolic pro-
file along the channel though the amplitude decreases exponen-
tially, because of the permeation of fluid through the channel
walls. The leading-order transverse fluid velocity v0, which has
a cubic profile about y50, also decreases in magnitude along
the channel. This indicates the tendency of the fluid to move
toward the porous walls of the channel but with an exponen-
tially decaying rate along the channel.

Numerical results for volume fraction

Having seen that the leading-order velocity fields and
pressure gradient can be determined analytically in the two

cases of interest, we now turn our attention to determining
the volume fraction profile, /1. Recall that the advection–
diffusion equation, (25), with u0 and v0 given by our previ-
ous analysis, must be solved subject to the boundary condi-
tions (26) and the Gaussian inlet particle distribution (27).
We note that this initial condition does not satisfy the no-
flux boundary condition (12d) and so there is a small tran-
sient over which this relaxes to a configuration that satisfies
the boundary conditions. However, we choose to use this
inlet condition as it provides a simple expression that eluci-
dates the effect of a nonuniform particle volume fraction dis-
tribution, and we do not expect the behavior in the small
transient to have an effect on the global system dynamics.
This system is solved numerically, implementing a scheme
in MATLAB (see Appendix A for details). As an illustrative
example, Figure 3 depicts how an initial distribution in the
channel develops downstream of the injection point, with
r250:05, Pe53, for the cases of: no permeation at the wall;
constant permeation flux; and pressure-dependent permeation
flux (with j51).

For the case of an impermeable wall, V�50, we observe
that the initial distribution spreads until it is essentially uni-
form across the width of the channel (Figure 3a). We note
that, as the particles are initially localized in the center of
the channel (y50) where the transverse velocity is low as in
Eq. 35, the transport of particles to the walls is slower than
we would expect if the particles were injected with a uni-
form distribution. With permeation through the porous wall,
particles still diffuse away from the center-line but now col-
lect near the wall. This build-up of particles at the porous
walls is known as concentration polarization.1 In particular,
for the case of constant permeation, the volume fraction of
particles at the wall increases monotonically along the length
of the channel (Figure 3b). When permeation is proportional
to the pressure, the volume fraction at the walls is greatest
about half way along the channel, as in Figure 3c. This is as
a result of the transverse flow, which becomes smaller near
the end of the channel after which point diffusion acts to
move particles away from the wall.

Order-� velocities

Having computed the leading-order velocity components,
u0 and v0, and volume-fraction distribution /1, we are now
in a position to compute the perturbation to the fluid flow
caused by the presence of particles, that is, the O �ð Þ

Figure 2. Profiles of the leading-order velocities for pressure-dependent permeation flux with j51 so that V05p0:
(a) axial velocity, u0 and (b) transverse velocity, v0.

In each, the profiles are shown at x 5 0 (solid), x 5 0.25 (dot-dashed), x 5 0.5 (dashed), x 5 0.75 (dotted), and x 5 1 (skinny-dotted).
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corrections to the fluid velocity. From the axial and trans-
verse velocities, (28) and (29), respectively, we have

u1ðx; yÞ5
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We note that a perturbation to the velocity, u1, in principle
affects the flux of fluid into the channel. However, the condition
of constant fluid influx (12e), considering (33a), demands thatð1

0

u1ð0; yÞdy50 (39)

To ensure that this condition is satisfied, we must impose
a perturbation to the hydrodynamic pressure at the inlet
x50, that is, p1ð0Þ5P 6¼ 0. The value of P indicates how
much harder we must push the liquid in the presence of par-
ticles to obtain the same fluid influx as would be obtained
for a configuration in the absence of particles. The hydrody-
namic pressure perturbation, p1, may be found from the per-
turbed permeation flux V1 out of the channel wall at y51
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using the transverse velocity (29). Here, V150 for the case
of constant permeation flux through the channel walls and
V15j p12p0/1ð Þ when the permeation flux is pressure-
dependent, see Eq. 30. For each case, we may substitute for
p0 in Eq. 40 and solve subject to

p1ð0Þ5P; p1ð1Þ50 (41)

and the flux condition (39) is applied to find P.
By considering the initial volume fraction distribution given

by (14), we may determine the dependence of P on the width
of the distribution, r. This gives us insight into the pressures
required to transport a fixed flux of fluid containing a given
distribution of particles through the channel for the two dis-
tinct cases of permeation flux through the channel walls, V1.

Case 1: Constant Permeation Flux. When there is con-
stant flow through the boundary, V5V�, and so, at order �,
V150. In this case, the ODE (40) to determine the order-�
pressure, p1, becomes
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which has solution
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where we have applied the boundary conditions (41).
Upon imposing the flux condition (39), the input pressure
perturbation, P, is related to the particle volume fraction
through
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Figure 3. Profiles of the particle volume fraction /1 in the channel given by the solution to (25) with velocities (31).

(a) No permeation V�50, /1 tends to a uniform state in the channel, (b) constant permeation V�50:25, pressure given by (34), and

(c) pressure-dependent permeation with p0 given by (37). In (b) and (c) permeation flux results in particles collecting at the boun-

daries. In all computations, Pe 5 3, r250:05, and for (c), j51.
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We note that this relationship is nonlocal, depending on
the behavior of the particles along the entire length of the
channel. Substituting for P into (43) provides the pressure
perturbation, p1, and, along with /1, allows us to calculate
the perturbations to the velocity field u1 and v1 using the
order-� velocities (38).

In Figure 4a, we illustrate the pressure for the profile /1

with r250:05 and Pe53, as shown in Figure 3b. As
expected, the pressure perturbation is positive for all x: the
hydrodynamic pressure in the channel required to maintain
the same fluid influx as the case in which no particles are
present is increased as a result of the increase in viscosity.
The perturbation to the axial velocity, u1, is shown in Figure
4b. Recall that the leading-order axial velocity here is a
Poiseuille profile, decreasing in magnitude as we move down
the channel. We see that, in regions of high particle volume
fraction, u1 is negative and so the total axial velocity, u, is
decreased by the presence of particles, whereas in regions of
lower particle volume fraction u1 is positive and so the total
axial velocity is increased. By conservation of mass, (10a), a
perturbation in the axial velocity results in a perturbation in
the transverse velocity, v. As there is an accumulation of
particles near the walls, that is, the region of high volume
fraction moves to the walls, the location of the position of
maximum retardation in the transverse direction caused by
the perturbation to the flow moves toward the walls as we
move down the channel (Figure 4b). Hence, while the per-
turbed transverse velocity, v1 (38b), initially increases, as

there is no perturbed permeation through the walls, that is,
v1ðx; 1Þ50, the fluid must ultimately be transported back
toward the center of the channel; this is signified by a
change in sign of v1 further along the channel, as seen in
Figure 4c.

The relationship between the pressure perturbation at the
inlet, P, and the width of the particle distribution, r, for var-
ious constant permeation fluxes, V�, is shown in Figure 5.
Because the addition of particles increases the viscosity of
the fluid, and the hydrodynamic pressure gradient is related
to the viscosity through the momentum equation, (10b), we
expect that a greater hydrodynamic pressure will be required
to maintain a constant influx. However, we find that there is
a critical value of r that maximizes the additional pressure,
P. This means, surprisingly, that there is an inlet particle
distribution width that requires the largest additional (per-
turbed) pressure, whereas the pressure perturbation increases
as the permeation flux increases (Figure 6a). The pessimal
value of the distribution width, rpess , decreases linearly with
permeation flux, V� (Figure 6b). The values of r around this
pessimal pressure perturbation reflect inlet distributions that
have significant volume fraction gradients across the chan-
nel. Hence, the viscosity has a significant gradient in the
channel, globally, and thus the particles have a greater effect
on the resulting flow. It is found that both “thinner” and
“fatter” volume fraction distributions require less additional
pressure to maintain a constant fluid influx: for larger values
of r, the volume fraction distribution is more uniform and so

Figure 4. Pressure and order-� velocity profiles given by (38) for the case of constant permeation flux through the
channel walls, V�50:25.

(a) The hydrodynamic pressure, p5p01�p1, for �50:05 (dot-dashed) is plotted with the leading-order term, p0 (solid), (b) Profile

of the order-� axial velocity perturbation, u1, for x50 (solid), x50:25 (dot-dashed), x50:5 (dashed), x50:75 (dotted), and x51

(skinny-dotted), and (c) profile of order-� transverse velocity perturbation, v1, for x50 (solid), x50:25 (dot-dashed), x50:5
(dashed), x50:75 (dotted), and x51 (skinny-dotted). In the computations, Pe 5 3, r250:05.
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there is less variation to the flow due to the concentration-
dependent viscosity, whereas for smaller values of r the vol-
ume fraction is largely confined to a small region that does
not significantly affect the viscosity for large regions of the
channel.

In the case of no flow through the porous walls (imper-
meable walls, V�50) there is an analytic asymptote for P
as r!1, namely P ! 15=2 (see Figure 5, solid line).
This may be calculated using the expression for p0 from
(34) and the equation for P (44), as in the limit r!1,
/ � 1. However, in the case of porous walls, concentration
polarization along the channel walls results in /1 no longer
being spatially independent in the channel. This precludes
the analytical calculation of the asymptote that is observed
numerically in the limit r!1, see Figure 6a. The asymp-
totic value of P increases with the magnitude of the perme-
ation flux.

Although the leading-order hydrodynamic pressure, p0,
required to maintain a constant influx decreases with increasing

permeation flux, it is observed in Figure 5 that the Oð�Þ hydro-
dynamic pressure, p1, increases with increasing permeation
flux. This arises as a result of there being no Oð�Þ permeation
flux in this case. Particles aggregate at the walls because of the
leading-order permeation flux; by increasing the permeation
flux, V�, this increases the accumulation of particles at the
wall, and thus the local viscosity, so more pressure is required
to advect these particles along the channel.

Case 2: Pressure-Dependent Permeation Flux. When
there is a pressure-dependent flow through the porous chan-
nel walls, the Oð�Þ permeation flux through the walls is
given by V15j p12p0/1ðx; y51Þ½ �. The ODE for the hydro-
dynamic pressure, (40), then becomes

d2p1

dx2
23jp153gðxÞ (45)

with boundary conditions (41), where
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The homogeneous adjoint problem to (45) only permits
the trivial zero solution; the Fredholm Alternative Theorem17

then implies that the ODE in (45) with boundary conditions
(41) has a unique solution. This solution can be found using
the method of variation of parameters, giving
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where we have imposed the boundary condition (41a) and
flux condition (39). Imposing the final boundary condition
(41b), we determine the relationship between the additional
pressure, P, and the particle distribution /1

Figure 5. Variation of the pressure perturbation param-
eter P given by (44) with r for the case of
constant permeation flux: V�50 (solid), V�5
0:2 (dot-dashed), V�50:4 (dashed), and V�5
0:6 (dotted).

As r increases, P tends to a constant, with a nontrivial

behavior showing a critical value of r that maximizes P.

Note that P ! 15=2 as r!1 when V�50. In the com-

putations, Pe 5 3.

Figure 6. (a) The pessimal pressure perturbation, Ppess (solid), and the asymptotic pressure perturbation, Pasym

(dot-dashed), as r!1, for the case of a constant permeation flux V5V�, and (b) the distribution width
resulting in the pessimal pressure, rpess .

In the computations, Pe 5 3.
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Given /1, we may solve (48) for P and then the pressure
p1 and the Oð�Þ velocities u1 and v1 follow immediately
from (47) and (38).

We illustrate the resulting behavior by considering the
injection of particles with distribution width r5

ffiffiffiffiffiffiffiffiffi
0:05
p

, so
that /1 is as shown in Figure 3c. The reference osmotic
pressure is taken to be p050:1 here. We note that, while the
quantitative results are affected by changes in p0, the quali-
tative features are unaffected and as such we choose to hold
the parameter constant in the results presented here. The
behavior of p0 and p1 and the osmotic pressure are then as
shown in Figure 7a. We observe that the hydrodynamic pres-
sure perturbation, p1, is positive corresponding to an increase
in the total hydrodynamic pressure in the channel. However,

there is an axial position beyond which the osmotic pressure,
Dp, exceeds the hydrodynamic pressure perturbation. This is
unavoidable as p150 at x51, and this has an impact on the
permeation flux observed.

The flow perturbation u1 is shown in Figure 7b. Near the
entrance to the channel, u1 is negative in the center of the
channel, where there is a high volume fraction so the total
axial flow is lower than the leading-order (particle-free)
flow; in regions of low particle volume fraction, u1 is posi-
tive and so the total axial flow is greater than in the absence
of particles, similar to the case of constant permeation flux.
However, further down the channel u1 is negative across the
entire channel. This is due to the order-� transverse permea-
tion flux, which causes fluid to be removed from the chan-
nel. In this case, the perturbation to the transverse velocity,
v1, (see Figure 7c) increases the total transverse velocity
toward the walls over the entire length of the channel. This
induces an additional fluid flux through the channel walls
which also advects particles toward the walls, increasing the
osmotic pressure due to concentration polarization up to the
point where it exceeds the hydrodynamic pressure (see Fig-
ure 7a). This excess osmotic pressure results in a net inward
flow (classic osmosis), which is undesirable in filtration
because it reduces the amount of pure water that is produced
by filtration. Hence, near the end of the channel this osmotic
inflow is unavoidable, when pouter 50. However, as the par-
ticles in the channel do not affect the leading-order flow,

Figure 7. Pressure and order-� velocity profiles given by (38) for the case of pressure-dependent permeation flux
through the channel walls, V15j p12p0/1ðx; 1Þ½ �.
(a) The hydrodynamic pressure, p5p01�p1 for �50:05 (dot-dashed) is plotted with the leading-order term, p0 (solid). The inset

shows the pressure perturbation, p1 (solid), and the osmotic pressure (dot-dashed) in the channel. (b) Profile of order-� axial veloc-

ity perturbation, u1, at x50 (solid), x50:25 (dot-dashed), x50:5 (dashed), x50:75 (dotted), and x51 (skinny-dotted), and (c) profile

of order-� transverse velocity perturbation, v1, at x50 (solid), x50:25 (dot-dashed), x50:5 (dashed), x50:75 (dotted), and x51

(skinny-dotted). In the computations, Pe 5 3, r250:05, and p050:1.
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there is no osmotic inflow of fluid at leading order, and the
outflow through the channel walls tends to zero at the end of
the channel (as p50 at x51).

The relationship between P and r is shown in Figure 8
for different constants of proportionality, j, for the pressure-
dependent permeation flux. A similar functional relationship
to Case 1 for constant permeation flux is observed, specifi-
cally the existence of a pessimal distribution of particles. As
for Case 1, when V� 6¼ 0 there is no simple analytical
asymptote as r!1. The value of the distribution width
resulting in the pessimal pressure perturbation increases line-
arly with j (Figure 9a), however, the pessimal pressure per-
turbation is observed to decrease with j, in an
approximately linear fashion (provided j exceeds a certain
value, j � 0:3) as in Figure 9b. Similarly to Case 1, the
leading-order hydrodynamic pressure in the channel, (37), is
reduced by the permeation flux. However, this case differs in
that the asymptote for P as r!1 decreases as the permea-
tion flux through the channel walls increases through an
increase in wall permeability in j. This decrease is approxi-

mately linear for j � 0:3, as in Figure 9b. Hence, less pres-
sure is required to ensure a constant influx of fluid for higher
wall permeabilities when particles are present in the channel.
This result is a consequence of the osmotic component of P,
which becomes increasingly negative with j and so causes
the reduction in the pressure perturbation. This suggests that
the component of the channel for which there is a net fluid
outflow and which acts as an effective filter is shorter
because more fluid is lost through the walls earlier in the
channel, reducing the hydrodynamic pressure, p, required to
maintain a given fluid influx.

Total permeate

A quantity of particular interest is the total flux of fluid
that flows out through the porous walls, F. This is given by
the integral of the transverse velocity along the wall

F52
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0

vðx; 1Þdx

52

ð1

0

ðv0ðx; 1Þ1�v1ðx; 1ÞÞdx5F01�F1 (49)

(Here, the factor of two is due to the symmetry of the sys-
tem about y50.) This is easily calculated for the constant
permeation-flux case as here V5V� for all 0 � x � 1, and so
the total fluid flux passing through the porous walls is simply
F52V�.

For the pressure-dependent permeation flux case, the
leading-order total flux may also be calculated analytically
as F052 12sech

ffiffiffiffiffiffi
3j
p	 


, an increasing function of j as would
be expected. However, the order-� term must be calculated
numerically. The interesting feature of the order-� term, F1,
is that it is dependent on the particles in the flow. In addi-
tion, there is an osmotic inflow of fluid toward the end of
the channel that reduces the net permeate flux. Consequently,
both the inlet distribution width, r, and the P�eclet number,
Pe, influence the result (Figure 10a). For lower P�eclet num-
bers, more localized distributions (lower values of r) result
in larger fluxes, but for larger P�eclet numbers, more spatially
uniform distributions (larger values of r) produce larger
fluxes. Analyzing the pressure perturbation parameter, P,
with P�eclet number (Figure 10b), we see that, as the P�eclet
number is increased, a greater pressure is required to main-
tain a constant influx. As an increase in P�eclet number also
increases the permeation flux, this suggests a direct

Figure 8. Variation of the pressure perturbation param-
eter, P, given by (48) with r for the case of
pressure-dependent permeation flux through
the channel walls, V15j p12p0/1ðx;1Þ½ � with j
50:25 (solid), j50:5 (dot-dashed), j50:75
(dashed), and j51 (dotted).

As r increases P tends to a constant, again with a non-

trivial behavior showing a critical r at which P is maxi-

mized. In the computations, Pe 5 3 and p050:1.

Figure 9. (a) The distribution width resulting the pessimal pressure, rpess and (b) the pessimal pressure perturba-
tion, Ppess (solid), and the asymptotic pressure perturbation, Pasym (dot-dashed), as r!1, for different
channel wall permeabilities, j.

In the computations, Pe 5 3 and p050:1.
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correspondence between hydrodynamic pressure and permea-
tion flux, as one would expect.

Pressure Outside the Channel

In the previous section, we concluded that it is an inevita-
ble consequence of the osmotic pressure that an O �ð Þ flux of
fluid enters the channel through its walls in a pressure-
dependent permeation flux. In water filtration, this effect, at
any order, is undesirable. Here, we consider a modified set-
up that eliminates this inflow by setting the pressure outside
the channel, pouter , to be a nonzero constant. The effective
total transmembrane pressure may then be written as

Dp2Dp5p0ðxÞ2pouter 1� p1ðxÞ2p0/1ðx; 1Þ½ � (50)

We retain, without loss of generality, the condition that
the fluid pressure, p, is zero at the end of the channel. By
choosing pouter appropriately, we can ensure that the effec-
tive total transmembrane pressure remains nonnegative over
the entire length of the channel.

Osmotic pressure is again negligible in the leading-order
problem and the leading-order permeation flux is given here
by V05jðp02pouter Þ (cf. Eq. 30). The leading-order trans-
verse flow at y51 (32) gives an ODE for the leading-order
pressure
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3
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which on application of boundary conditions (33) yields
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The leading-order velocities ðu0; v0Þ may be calculated by
substituting (52) into Eq. 19b. These, in turn, may be used
to calculate the volume fraction of particles, /1, in the chan-
nel by solving the advection–diffusion equation, (10d).

If pouter > 0 then the pressure difference across the mem-
brane, and thus the permeation flux, is reduced which in turn
increases the hydrodynamic pressure, (52), required to maintain
a constant influx. As the permeation flux is reduced, concentra-
tion polarization at the channel walls is reduced. However, as
p50 at x51, there is a point in the channel at which p < pouter

and so there is an induced leading-order permeation influx from
the outside into the channel through the channel walls. This
inflow does not occur at leading order with pouter 50. Hence, a
positive outer pressure decreases particle collection at the wall
but results in an influx. Conversely, if pouter < 0 then the pres-
sure difference across the membrane is increased, increasing the

Figure 11. (a) Order-� flux through the channel walls as a function of P�eclet number, Pe, for r50:2 with zero outer
pressure (solid) and an order-� outer pressure pouter 52p0/1ð1; 1Þ (dot-dashed), and r50:75 (dashed,
skinny-dotted, respectively).

We see that the order-� outer pressure increases the fluid flux. (b) Pressure perturbation parameter, P, as a function of P�eclet

number for r50:2 with zero outer pressure (solid) and an order-� outer pressure pouter 52p0/1ð1; 1Þ (dot-dashed), and r50:75

(dashed, skinny-dotted, respectively). We see that the order-� outer pressure decreases the pressure perturbation parameter. In

the computations, Pe 5 3 and p050:1.

Figure 10. (a) Order-� flux through the channel walls as a function of P�eclet number, Pe, for r50:2 (solid), r50:4
(dot-dashed), r50:75 (dashed), and r51:5 (skinny-dotted).

(b) Pressure perturbation parameter, P, against P�eclet number for r50:2 (solid), r50:4 (dot-dashed), r50:75 (dashed), and

r51:5 (skinny-dotted). In the computations, Pe 5 3 and p050:1.
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permeation flux which in turn decreases the required hydrody-
namic pressure, (52). Here, we do not have an influx of fluid into
the channel at any position at leading order if pouter is larger in
magnitude than the osmotic pressure (order-�). However, as the
permeation flux is increased, there is a greater concentration
polarization effect at the channel walls. Hence, a negative outer
pressure ensures a number of outcomes. First, no fluid leaks into
the channel from the walls. From a water-filtration perspective
this means that none of the filtered water re-enters the channel.
Second, we increase the permeation flux at the walls resulting in
more fluid being filtered. The penalty in doing so is the extra
energy required to generate the negative external pressure and
also the increase in particle collection at the walls.

The leading-order total permeate, F0, for a nonzero pouter , reads

F052 12sech
ffiffiffiffiffiffi
3j
p� �

22

ffiffiffi
j
3

r
pouter tanh

ffiffiffiffiffiffi
3j
p

(53)

using (49). We note that F0 is a decreasing function of pouter

for all j, and the critical point (F050) beyond which there
is a net influx occurs when pouter 5

ffiffiffiffiffiffiffiffi
3=j

p
tanh

ffiffiffiffiffiffi
3j
p

=2. Fur-
thermore, the order-� total permeate, F1, is a decreasing
function of the outside pressure for all Pe and r.

Order-� outer pressure

We wish to choose the outer pressure to avoid any re-entry
of fluid into the channel through the walls. In the previous sec-
tion, we saw that this might be achieved using a sufficiently
large negative outer pressure. However, we also want to
reduce the energy required to generate this additional pressure,
so it is the “optimum” outer pressure that is of interest. As re-
entry is an order-� effect due to the osmotic pressure, we
assume that pouter is O �ð Þ. Now the leading-order pressure is
given by Eq. 37 and F0 does not depend on pouter and remains
as in the case of pouter 50, that is, F052 12sech

ffiffiffiffiffiffi
3j
p	 


. Also,
as F0 differs between the cases of an outer pressure and no
outer pressure, a better comparison of how the particles affect
the flow is to consider an outer pressure that is of order-�.

As the leading-order problem remains unchanged, and the
re-entry is a result of the osmotic pressure exceeding the
hydrodynamic pressure near the exit of the channel, we take
pouter to be equal and opposite to the osmotic pressure at the
exit of the channel, that is

pouter 52�p0/1ð1; 1Þ (54)

The transmembrane pressure difference now reads

Dp2Dp5p0ðxÞ1� p1ðxÞ2p0½/1ðx; 1Þ1/1ð1; 1Þ�f g (55)

This leads to a modification to the Oð�Þ pressure given by
Eq. 47 and the pressure perturbation given by Eq. 48. In this
case the terms /1ð~x; 1Þ in the final term of each equation are
replaced with /1ð~x; 1Þ2/1ð1; 1Þ.

The choice of outer pressure that negates the osmotic effect
does indeed prevent any influx of fluid from outside the channel
through the walls, with transverse velocity giving a permeation
flux out of the channel at each point along the wall. This results
in a greaterOð�Þ permeate flux F1 as seen in Figure 11a as well
as a reduction in the pressure perturbation P as in Figure 11b.

By choosing pouter , (54), in this way, we ensure that no
fluid leaks into the channel from the walls. However, in
terms of the energy penalty in doing so, the analysis here
provides a mechanism for determining the minimum suction
pressure required to ensure that no filtered fluid re-enters the
channel, thus optimizing the filtration operation if the actual

outlet gauge is zero (p50 at x50). For a positive outlet pres-
sure, pouter could be zero or even positive.

Conclusions

The flow and particle distribution for a dilute suspension in a
channel flow with porous walls has been described. The pres-
ence of particles reduces the flow velocity by increasing the vis-
cosity of the fluid. Allowing permeation (either constant or
pressure dependent) through the porous walls reduces the pres-
sure required for the fluid to flow at a constant influx. This per-
meation flux also contributes to the transport of particles from
the center of the channel to the channel walls, leading to concen-
tration polarization when the walls are impermeable to particles.

We considered the effect of varying the width of an inlet
pulse of particles in the cross-stream channel direction.
Beginning with a very narrow pulse (relatively highly concen-
trated in a small region around the center of the channel), we
observe that, as this pulse width increases, it initially becomes
harder to push the particles and fluid at the same rate, that is,
a higher inlet hydrodynamic pressure is required. This is
attributed to the size of the region of the channel occupied by
the particles: for small widths the particles do not affect a sig-
nificant region of the channel to alter the fluid flow; however,
as this pulse width increases, the particles affect a greater pro-
portion of the fluid and so a greater pressure is required to
transport the particles with a constant fluid influx. Interest-
ingly, however, this increase in pressure reverses as the width
of the inlet distribution of particles surpasses a critical value
and it becomes easier (less pressure is required) to transport
the particles. We attribute this observation to the lower gra-
dients of particle volume fraction in the channel, as the par-
ticles are now more uniformly distributed. Thus overall we
observe a critical pessimal value of the inlet distribution
width that maximizes the additional pressure required.

In the case of pressure-dependent permeation flux, concentra-
tion polarization results in the osmotic pressure exceeding the
hydrodynamic pressure at the end of the channel which leads to
an inward flow from the porous channel walls. In a filtration
system, this situation of pure fluid entering the channel contami-
nated by particles is undesirable yet unavoidable due to the con-
dition of equal outlet pressure and pressure outside the channel.

Finally, we analyzed the effect of a constant outer pres-
sure to the channel walls in an effort to eliminate the occur-
rence of clean water re-entry. A positive outer pressure
decreases concentration polarization at the channel walls but
again there is an unavoidable influx of fluid through the
channel walls. A negative outside pressure increases the per-
meation flux, with no influx, but at the cost of increased con-
centration polarization and energy expenditure. Applying an
outer pressure that is equal and opposite to the osmotic pres-
sure at the end of the channel negates the influx caused by
osmosis. As the magnitude of the outer pressure is small, it
is a reasonable compromise in terms of additional energy
required to prevent the re-entry of fluid into the channel.

The results presented here provide new observations into a
model problem related to water filtration that may offer
insight into operating strategies.
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Notation
x = axial direction
y = transverse direction
u = axial velocity
v = transverse velocity
p = hydrodynamic pressure
D = diffusion coefficient
a = particle radius
Q = inlet flow rate

Pe = P�eclet number
Re = Reynolds number
F = total permeate
V = permeation velocity
V� = constant permeation velocity
P = pressure perturbation at x50
H = typical channel height
L = typical channel length
U = typical channel velocity

Greek letters
l = viscosity
/ = particle volume fraction
p = osmotic pressure

p0 = reference osmotic pressure
j = permeability
d = channel aspect ratio
r = standard deviation of particle distribution
� = small parameter
v = virial coefficient

Subscripts
outer = outside the channel

0 = leading-order
1 = order-�
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Appendix A: Numerical Scheme

We exploit symmetry about the y axis to consider the domain

ðx; yÞ 2 ½0; 1�3½0; 1�, and discretize this domain by introducing

grid points

xi5hi; i50; 1 . . . N (A1a)

yj5kj; j50; 1 . . . M (A1b)

for grid spacings h and k where h5Dx51=N and

k5Dy51=ðM21Þ. We index the variable / as follows

/i;j5/1ðxi; yjÞ (A2)

The resulting solutions are then mapped to the other half of

the domain, 21 � y < 0. A forward-center finite difference

scheme for the advection–diffusion equation, (25), is

/i11;j5/i;j

1
2h

p0 ðxiÞðy2
j 21Þ

�
2p

00 ðxiÞ
3yj2y3

j

6

/i;j112/i;j21

2k

1
1

Pe

/i;j1122/i;j1/i;j21

k2

�
(A3a)

/i11;15/i;12
2h

p0 ðxiÞ
2

Pe

/i;22/i;1

k2

� �
(A3b)

/i11;M5
2/i11;M212 1

2
/i11;M22

3
2
2kPevi11;M

(A3c)

/1;j5UðyjÞ (A3d)

for i51; 2; . . . N21 and j52; 3; . . . M21. The standard forward-

center finite difference discretization for nonboundary points of the

advection–diffusion equation, (25), is given in (A3a), with the sym-

metry condition @/1=@y50 at y50 given by (A3b) and the no-flux

boundary condition given by (A3c). There is an initial condition of

some /ð0; xÞ5U (A3d). The scheme (A3) is second-order accurate.

For a constant-coefficient convection–diffusion equation

fx1afy5bfyy (A4)

with b > 0, there are two mesh size parameters to consider

m5
aDx

Dy
; g5b

Dx

Dy2
(A5a,b)

Implementing a stable forward in x, central-differences in y
finite-differences scheme, it is required that18

0 < m � 1; 0 < g � 1

2
(A6)

In our governing equations, the advection–diffusion Eq. 10d for

the volume fraction /1 does not have constant coefficients, but the

coefficients are well behaved, with no singularities. We ensure that

the scheme is stable by requiring Dx=Dy2 51=50� 1=2 for stabil-

ity: we use Dy5231022 and Dx5831026.
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