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We derive a mathematical model for the drawing of a two-dimensional thin sheet of vis-
cous fluid in the direction of gravity. If the gravitational field is sufficiently strong, then
a portion of the sheet experiences a compressive stress and is thus unstable to transverse
buckling. We analyse the dependence of the instability and the subsequent evolution on
the process parameters, and the mutual coupling between the weakly nonlinear buckling
and the stress profile in the sheet. Over long time-scales, the sheet centre-line ultimately
adopts a universal profile, with the bulk of the sheet under tension and a single large
bulge caused by a small compressive region near the bottom, and we derive a canonical
inner problem that describes this behaviour. The large-time analysis involves a logarith-
mic asymptotic expansion, and we devise a hybrid asymptotic–numerical scheme that
effectively sums the logarithmic series.
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1. Introduction

Thin glass sheets are increasingly prevalent in everyday technology, with current ap-
plications including substrates in thin-film batteries and thumbprint sensors in smart-
phones, and with futuristic applications such as bendable televisions and tablets on the
horizon (Burke 2016; Horvatitsch 2016). Specialist thin glass sheets are often manufac-
tured using a “redraw” process, whereby a prefabricated block is fed continuously into a
furnace (referred to as a heater zone) where it is heated and stretched by the application
of draw rollers downstream. During the redraw process, out-of-plane ripples sometimes
develop in the glass sheet which persist downstream of the heater zone and draw rollers,
and render the product unusable. The source of these ripples is not immediately obvi-
ous, and the extreme temperatures required for the manufacturing process make in situ
imaging of ripple formation very difficult.

Glass drawing processes are characterized by the small ratio of thickness (or radius) to
other length-scales, and reduced models exploit this small parameter (see, for example,
Matovich & Pearson 1969). An early study of viscous buckling was presented by Taylor
(1969), whose experiments include a viscous thread floating on mercury which buckles
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when its ends are pushed together. Buckmaster et al. (1975) modelled the buckling and
demonstrated the emergence of a new time-scale associated with buckling which is shorter
than the time-scale for stretching. Later, Howell (1994, 1996) noted that even small
inertial effects dramatically change the behaviour, and a buckling length-scale shorter
than the sheet length must also be introduced. The buckling of a thin viscous sheet or
fibre has since been studied extensively due to its prevalence in everyday life (e.g. honey
coiling, Mahadevan et al. 1998), industrial manufacturing processes (Batty et al. 2012;
Perdigou 2015), and geophysical flows (Ribe 2001).

A substantial body of work has been developed describing the buckling of a vis-
cous sheet or jet impinging on a perpendicular plate following the experimental study
of Cruickshank & Munson (1981), who measured the periods of folding and coiling of thin
sheets and jets of viscous fluid and recorded the increase of folding/coiling frequency with
the length of the falling jet. Cruickshank (1988) and Tchavdarov et al. (1993) developed
mathematical models for this buckling phenomenon and predicted the heights at which a
plane jet and an axisymmetric jet become unstable along with the corresponding period
of folding/coiling. Chiu-Webster & Lister (2006) and Morris et al. (2008) modified the
standard impinging-jet experiments to observe a falling jet impinging on a perpendicular
moving belt, so that the jet is draped along the surface. The unstable buckling modes
depend on the fall height, belt speed and viscosity, and the large range of observed modes
has caused the apparatus to be dubbed a “fluid-mechanical sewing machine”.

In the context of thin glass sheets, the presence of buckling or ripples is highly un-
desirable, motivating an investigation of the production of ripples during glass drawing.
A model for the viscous flow of a three-dimensional sheet in the small-aspect-ratio limit
was derived by Howell (1994, 1996), who used this as a model for the float-glass process.
This thin-sheet model has been used to characterize the thickness profile of a redrawn
glass sheet by Filippov & Zheng (2010) and by O’Kiely et al. (2015, 2018). Filippov &
Zheng (2010) noted that the instability of a stretched thin viscous sheet is linked to the
existence of compressive zones in the sheet, and calculated these zones for a glass sheet
undergoing redraw. More recently, Srinivasan et al. (2017) and O’Kiely (2018) solved
the linear-stability problem for small out-of-plane deformations, determining the fastest-
growing eigenmodes and corresponding growth rates for early-time growth of ripples in
sheets, and investigated the dependence of the buckling behaviour on the length of the
heater zone through which the sheet is drawn. They determined that compressive buck-
ling zones are always present upstream of the stretching region, and that short heater
zones give rise to a second buckling region downstream of the stretching region.

The results of Filippov & Zheng (2010) and Srinivasan et al. (2017) are based on first
solving the in-plane problem to determine the stress in a three-dimensional glass sheet
undergoing redraw, and then analysing the transverse stability of the sheet subject to
the given stress profile. Therefore they do not capture the subsequent nonlinear buckling
behaviour, during which the in-plane stress and out-of-plane deformation are coupled.
Our aim in this paper is to study this coupling in the simpler context of a two-dimensional
thin viscous sheet undergoing redraw under gravity, and to determine when and how it
will buckle.

The stress in a two-dimensional sheet undergoing downwards redraw (as shown schemat-
ically in figure 1) is a combination of the tension due to the downstream rollers and the
compressive stress caused by gravity. When the effect of gravity is relatively small, the
sheet experiences a positive tension everywhere. As the effect of gravity is increased,
the sheet velocity increases beyond the draw velocity, the tension changes sign in some
region of the sheet, and an instability occurs. Since the sheet cannot escape through the
draw rollers as quickly as it arrives, its centre-line increases in length and buckles out
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of plane. Since the transverse deformation, in turn, modifies the tension/compression in
the sheet, the location of any compressive zone is not determined a priori but must be
computed along with the centre-line dynamics. In this scenario, the location of the sheet
centre-line at the top and bottom of the heater zone is fixed by rollers, in contrast with
the studies carried out by authors such as Cruickshank & Munson (1981), in which the
point of contact of the sheet (or jet) is free to move across a perpendicular surface.

The plan for this paper is as follows. In §2 we present a mathematical model for the
dynamics of a two-dimensional thin glass sheet buckling due to gravity while undergoing
redraw. In §3 we determine the steady-state solution, and investigate the effect of process
parameters on centre-line stability. In §4 we present numerical solutions of our simplified
model, and an early-time linear stability analysis, while in §5 we analyse the late-time
behaviour. Finally, in §6 we discuss our findings and their implications for a more general
study of buckling processes in thin viscous sheets.

2. Model derivation

2.1. Full dimensional model

The complexity of the mathematical model governing the centre-line deformation of a
viscous sheet or thread depends on the size of the deformation. To describe deformations
that are comparable with the sheet length, a geometrically nonlinear model is neces-
sary (Buckmaster et al. 1975). In this paper, we focus on the simpler case where the
centre-line deformation is comparable to the thickness and the sheet is approximately
planar; we assess the validity of this assumption in §5.6.

We consider a two-dimensional (infinitely wide) nearly planar sheet, and use Cartesian
coordinates x = (x, z), with the x-axis aligned with the direction of drawing and z in the
transverse direction, as shown in figure 1. We consider a sheet with thickness 2h(x, t),
which undergoes drawing over a distance L in the x-direction, with gravity also acting in
the positive x-direction. We use the notation h(0, t) = hin for the initial half-thickness,
U for the feed speed and DU for the draw speed. We denote the sheet centre-line by
H(x, t), so that the glass surfaces are located at z = z±(x, t) := H(x, t) ± h(x, t) for
0 < x < L.

We assume the glass is an incompressible Newtonian fluid and is therefore governed
by the Navier–Stokes equations

∇ · u = 0, ρ
Du

Dt
= ∇ · σ + ρgı̂. (2.1)

Here u = (u,w) is the velocity vector, ∇ = (∂/∂x, ∂/∂z) is the two-dimensional gradient
operator, D/Dt = ∂/∂t+ u · ∇ is the convective derivative, and ı̂ is a unit vector in the
x-direction. The stress tensor is given by

σ = −pI + µ
(
∇u+ (∇u)

T
)
, (2.2)

with p denoting pressure, I the identity matrix and µ the viscosity. Glass has a strongly
temperature-dependent viscosity, which varies during the redraw process as the sheet
is heated and cooled. However, our focus here is on the fundamental fluid-mechanical
processes involved in buckling, and we assume for simplicity that the sheet has uniform
viscosity.

On the free surfaces z = z±, we impose kinematic and no-stress conditions

D

Dt

(
z − z±

)
= 0, σ · n̂ = 0, (2.3)
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Figure 1: Two-dimensional glass sheet with thickness 2h(x, t) undergoing drawing over
a distance L in the x-direction subject to gravity g, also acting in the x-direction. The
sheet has velocity u = (u,w) with feed speed u = U and draw speed u = DU , and
centre-line z = H(x, t), and h(0, t) = hin = is a prescribed constant.

where n̂ is the unit vector normal to the free surface. We neglect the effect of surface
tension under the assumption that the capillary number Ca = µU/γ � 1, where γ is
surface tension (typically Ca ≈ 102).

Appropriate boundary conditions to be imposed at the inlet x = 0 and at the outlet
x = L will be discussed later after we have reduced the problem to a thin-sheet model.
We also need initial conditions for this time-dependent problem, and we will discuss how
these may be chosen in §3.

2.2. Non-dimensionalization

We define the aspect ratio of the sheet, ε, by

ε =
inlet half-thickness

length of drawing process
=
hin
L
. (2.4)

The thickness is always much smaller than the length in glass drawing processes, so we
assume that ε� 1.

We also define the Reynolds number Re = ρLU/µ. In industrial processes of interest,
the Reynolds number is invariably small (Re . 10−4), but inertia terms may be important
if buckling takes place over a sufficiently short time-scale. In particular, scaling arguments
in Howell (1996) predict that the length-scale and time-scale associated with buckling
are

length-scale ∼ ε2/3Re−1/6L, time-scale ∼ ε2/3Re1/3 L

U
, (2.5)
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if the Reynolds number is O(ε4) or larger. We focus on the distinguished limit where
Re = O(ε4) so that, according to (2.5), the buckling wavelength is comparable to the
heater length L and the time-scale is of order ε2L/U . This choice results in a canonical
model in which inertia plays a role at leading order, and limiting versions of which apply
to the cases when Re � ε4 or ε4 � Re � 1.

Bearing in mind the above scaling arguments, we non-dimensionalize our model using

(x′, z′) =

(
x, ε−1z

)
L

, (u′, w′) =
(u, εw)

U
, t′ =

t

ε2L/U
, (2.6a)

(h′, H ′, z±
′
) =

(h,H, z±)

εL
, (p′, σ′xx, σ

′
xz, σ

′
zz) =

(
p, σxx, ε

−1σxz, ε
−2σzz

)
µU/L

. (2.6b)

With primes dropped, the Navier–Stokes equations (2.1) in dimensionless form become

ε2ux + wz = 0, (2.7a)

(σxx)x + (σxz)z + St = ε2R̂e
(
ut + ε2uux + wuz

)
, (2.7b)

(σxz)x + (σzz)z = R̂e
(
wt + ε2uwx + wwz

)
, (2.7c)

where Re/ε4 = R̂e = O(1), and the Stokes number

St =
ρgL2

µU
(2.8)

gives the ratio of gravity to viscous forces. The components of the Newtonian constitutive
relation (2.2) read

σxx = −p+ 2ux, ε2σxz = uz + wx, ε2σzz = −p− 2ux, (2.9)

and the dimensionless versions of the free-surface boundary conditions (2.3) are

w = z±t + ε2uz±x , σxz = z±x σxx, σzz = z±x σxz (2.10)

at z = z±(x, t).
Before proceeding with the asymptotic analysis, we first derive some exact conservation

principles by integrating the governing equations (2.7) across the sheet thickness. First by
integrating (2.7a) from z = z− to z = z+ and applying the boundary condition (2.10a),
we obtain the net mass-conservation equation

ht + ε2 (hu)x = 0, (2.11)

where the bar denotes the cross-sectional average

f(x, t) =
1

2h(x, t)

∫ z+(x,t)

z−(x,t)

f(x, z, t) dz. (2.12)

Similarly, integration of (2.7b) and (2.7c) with respect to z and application of (2.10)
results in

(hσxx)x + St h = ε2R̂e
[
(hu)t + ε2

(
hu2

)
x

]
, (2.13a)

(hσxz)x = R̂e
[
(hw)t + ε2 (huw)x

]
, (2.13b)

which represent net force balances in the x- and z-directions.
Finally, we obtain a net moment balance by multiplying (2.7b) by (z − H) before
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integrating across the sheet with respect to z, resulting in[
h(z −H)σxx

]
x

+Hxhσxx − hσxz =
ε2R̂e

2

∫ z+

z−
(z −H)

(
ut + ε2uux + wuz

)
dz. (2.14)

2.3. Thin-sheet limit

Now we are ready to let ε→ 0 in the governing equations and boundary conditions (2.7)–
(2.14) . From (2.7a) we see that w is independent of z to leading order, and the kinematic
boundary conditions (2.10a) then imply that

w = Ht (2.15)

and

ht = 0, (2.16)

so the sheet thickness remains fixed over the buckling time-scale. The thickness profile
is therefore given by the initial conditions, which we discuss in §3.

The leading-order velocity and axial stress are then determined from (2.9) as

u = u+ (H − z)Hxt, σxx = 4ux. (2.17)

We can thus evaluate the relevant integrals of σxx in (2.13a) and (2.14) to obtain

hσxx = 4h (ux +HxHxt) , h(z −H)σxx = −4h3

3
Hxxt. (2.18)

These two quantities describe the axial tension and the bending moment in the sheet,
respectively with the factor of 4h3/3 representing the dimensionless bending stiffness.

Finally, by eliminating σxz from the averaged equations (2.13b) and (2.14), we obtain
the leading-order system

[4h (ux +HxHxt)]x = −St h, (2.19a)

R̂e hHtt +

(
4h3

3
Hxxt

)
xx

= [4h (ux +HxHxt)Hx]x . (2.19b)

The term 4h (ux +HxHxt) on the left hand side of (2.19a) is the viscous tension in the
sheet. The same term appears on the right-hand side of (2.19b), where it may act to
straighten or bend the sheet, depending on whether it is positive or negative. On the
left-hand side of (2.19b), the first term corresponds to the inertia of the sheet, and the
expression inside the brackets of the second term is the bending moment.

With h(x) in principle a known function, (2.19) gives a coupled system of partial
differential equations for u(x, t) and H(x, t). In addition to two initial conditions for H, to
be discussed below, the system requires one boundary condition for u and two boundary
conditions forH at each end of the domain x = 0 and x = 1. We have non-dimensionalized
with the inlet flow speed and therefore impose

u(0, t) = 1, u(1, t) = D, (2.20)

where the draw ratio D is the ratio of the draw speed to the inlet speed. For the centre-
line deformation, we suppose that the transverse deflection is constrained to be zero by
the inlet and outlet rollers, and that no bending moment is imposed at either end, which
implies the simple-support boundary conditions

H(0, t) = Hxxt(0, t) = 0, H(1, t) = Hxxt(1, t) = 0. (2.21)
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By integrating (2.19a) with respect to x, we can express the tension in the sheet as

4h (ūx +HxHxt) = St

∫ 1

x

h(s) ds+ c(t), (2.22)

where c(t) is the force on the sheet at x = 1. If c(t) < 0 then this force is in the upward
direction, so some portion of the sheet near x = 1 is under compression and we expect
the centre-line to be susceptible to buckling. Integrating (2.22) and applying boundary
conditions (2.20), we can express c in terms of the as yet unknown centre-line deflection:

c(t) =

[
D − 1− St

4

∫ 1

0

∫ 1

x

h(s)

h(x)
dsdx+

∫ 1

0

Hx(x, t)Hxt(x, t) dx

]/∫ 1

0

dx

4h(x)
. (2.23)

We obtain a single non-local equation for H(x, t) by substituting (2.22) into the moment
balance (2.19b) to give

R̂e hHtt +

(
4h3

3
Hxxt

)
xx

=

[(
St

∫ 1

x

h(s) ds+ c(t)

)
Hx

]
x

. (2.24)

The evolution of the sheet centre-line is governed by equation (2.24), with c(t) deter-
mined by (2.23), subject to the boundary conditions (2.21) and suitable initial conditions.
We note that this model breaks down once the centre-line deformation is large enough
that Hxx = O(1/ε). Once this regime is reached, the centre-line deformation should be
scaled with the sheet length rather than its thickness, and additional geometrical nonlin-
earities are promoted into the leading-order governing equations (Howell 1994, Chapter 3).

3. Initial conditions and stability

If the sheet centre-line is stable, then the sheet remains flat, and its thickness and in-
plane velocity evolve on the stretching time-scale which is much longer than the buckling
time-scale; we see that a balance occurs in the exact mass-conservation equation (2.11)
when t = O

(
ε−2
)
. On the other hand, for some parameter values the sheet centre-

line becomes unstable and then evolves on the fast buckling time-scale. In this unstable
regime, the initial conditions for the buckling problem are given by the solution on the
stretching time-scale at the time at which the sheet first becomes unstable. The initial
conditions therefore depend on the route by which the system approaches the unstable
regime. We consider an idealized scenario in which the sheet is initially held fixed and
the thickness and velocity are in steady state. At t = 0, the centre-line is released and
the sheet can undergo buckling.

Under this assumption, the thickness and initial velocity are given by the solution to
the steady-state versions of (2.11) and (2.19) with H ≡ 0, i.e.,

uh = 1, (4hux)x = −Sth, (3.1)

with boundary conditions

u(0) = h(0) = 1, ū(1) = D. (3.2)

We note that this is the standard steady-state Trouton model for one-dimensional viscous
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stretching with gravity (Howell 1994). The solutions to (3.1), (3.2) are given by

u(x) =

(
St

2a

)
sin2

(√
a

2
x+ sin−1

√
2a

St

)
, (3.3a)

h(x) =

(
2a

St

)
cosec2

(√
a

2
x+ sin−1

√
2a

St

)
, (3.3b)

where a < St/2 satisfies the transcendental equation

D =

(
St

2a

)
sin2

(√
a

2
+ sin−1

√
2a

St

)
. (3.4)

The initial profile is unstable whenever any portion of the sheet is under compression.
This assertion can be verified by solving the linear stability problem outlined in §4.1,
and is consistent with analogous wrinkling problems in thin elastic sheets, which cannot
sustain a compressive force in the “high-bendability” limit (see, for example, Davidovitch
et al. 2011). Compression is most likely to occur near x = 1, since the positive contribu-
tion to the tensile force (the integral term in (2.24)) is zero there. At x = 1, the force on
the sheet is given by

c =

[
D − 1− St

4

∫ 1

0

∫ 1

x

h(s)

h(x)
dsdx

]/∫ 1

0

dx

4h(x)

= 4
√
a cot

(√
a

2
+ sin−1

√
2a

St

)
, (3.5)

when h(x) is given by (3.3b). If c > 0, the force is positive and the whole sheet is under
tension and therefore stable to centre-line perturbations. If c < 0 then at least some of
the sheet is under compression, and the sheet is unstable to centre-line perturbations.

The neutral-stability curve separating regions of stability and instability is found by
setting c to zero. We show the resulting relation between the critical draw ratio and the
Stokes number, namely

St = 8D
[
tan−1

√
D − 1

]2
(3.6)

for 1 6 D <∞, in figure 2a. For a fixed gravitational parameter St , (3.6) gives a critical
minimum draw ratio below which the tension becomes negative in a region near the
bottom of the sheet. Alternatively, for a fixed draw ratio D, (3.6) gives a maximum value
of the gravitational parameter St above which the tension is negative near the bottom of
the sheet. In either case, the size of the region in which the tension is negative increases.
The value of x at which the tension changes sign, namely

x∗ =
2√
a

cos−1
√

2a

St
(3.7)

is plotted versus St for different values of D in figure 2b. As either St increases or D
decreases, the length of the interval (x∗, 1] in which the tension is negative increases.

We note that (3.6) represents a balance between drawing and gravity, i.e., the param-
eters St and D; inertia does not affect whether the sheet is initially stable or unstable.
However, the neutral-stability curve would be different had we used a different initial
thickness profile. For example, if the sheet is thicker and therefore heavier, it will stretch
faster under gravity, and is more likely to be unstable. On the other hand, if the initial
thickness profile were chosen to make the centre-line stable at a smaller draw ratio D
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than the critical value shown in figure 2a, then the thickness and velocity profile would
evolve towards (3.3) over a time-scale of order ε−2, ultimately rendering the sheet unsta-
ble to buckling. The neutral-stability curve (3.6) therefore gives an absolute lower bound
on the draw ratio D at which stable drawing can be achieved for a given value of St .

100 101 102 103
0

20

40

60

80

St

D stable

unstable

(a)

101 102 103 104
0.5

0.75

1

St

x
∗ increasing D

(b)

Figure 2: (a) Neutral-stability curve for an initially flat sheet with uniform viscosity. The
red + and × denote the positions for D = 2 and St = 12 and 200 respectively, which
will be used in the solutions shown in figure 3. (b) Position x∗ at which tension in the
sheet (right-hand side of (2.22)) changes sign as a function of Stokes number St at draw
ratios D = 2, 5 and 10.

4. Buckling solutions

4.1. Early-time behaviour

We perform a linear-stability analysis of an initially planar centre-line by considering
a perturbation in which |H(x, t)| � 1. Linearization of (2.23) removes the dependence
of c upon H, and therefore c(t) remains fixed at its initial value c(0), given by (3.5).
We decompose H(x, t) into Fourier modes eλtψ(x), which grow if Re[λ] > 0 and decay
if Re[λ] < 0. Upon linearizing, the centre-line evolution equation (2.24) turns into the
generalized eigenvalue problem

λ2R̂e h(x)ψ(x) +
4λ

3

(
h(x)3ψ(x)′′

)′′
=

[(
St

∫ 1

x

h(s) ds+ c(0)

)
ψ′(x)

]′
, (4.1)

with boundary conditions ψ(x) = ψ′′(x) = 0 at x = 0, 1, and primes denote differ-
entiation. To enable numerical solution of (4.1), we introduce Ω(x) = λψ(x) to obtain
a linear eigenvalue problem, where ψ and Ω are coupled, and discretize in space using
second-order finite differences. The resulting matrix equation can then be solved using
eig in MATLAB.

We solve the eigenvalue problem (4.1) numerically for D = 2, St = 12 (marked with
a red + in the D–St space shown in figure 2a) and for D = 2, St = 200 (red × in the

D–St space shown in figure 2a), for R̂e = 0 (blue) and R̂e = 100 (red, dashed). In both
cases, we find that all eigenvalues are real, and we show in figure 3 the fastest-growing
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mode, corresponding to the largest value of λ. We note that D = 2, St = 12 is close to
the stability threshold, so we expect the growth rate to be small, while D = 2, St = 200
is far from the stability boundary and we expect fast buckling.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

x

ψ

(a) Close to stable: D = 2, St = 12.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

x
ψ

(b) Far from stable: D = 2, St = 200.

Figure 3: Fastest-growing eigenmodes of (4.1) corresponding to centre-line shape at early
times: (a) and (b) correspond to the red + and the red × in figure 2a, respectively. In

each case blue is for R̂e = 0 and dashed red is for R̂e = 100. Corresponding growth rates
are (a) λ = 4.65 × 10−3 for both values of R̂e, and (b) λ = 31 for R̂e = 0 and λ = 3.74

for R̂e = 100 respectively.

In the almost-stable regime (figure 3a), the upward force at the draw rollers |c(0)| � 1,
and hence only a short segment of the sheet near x = 1 experiences the small compres-
sive force that drives the buckling of the entire sheet, and the growth rate is small:
λ ≈ 4.65× 10−3 for both R̂e = 0 and R̂e = 100. We also observe that the rescaled
Reynolds number R̂e appears to have very little impact on the sheet dynamics: the
fastest-growing eigenmodes are almost indistinguishable for R̂e = 0 and R̂e = 100.

In the far-from-stable case (figure 3b), the compressive force is larger, so a substantial
portion of the almost-flat sheet experiences compression, and the growth rate is larger:
λ = 31 for R̂e = 0 and λ = 3.74 for R̂e = 100. The Reynolds number plays a more signif-
icant role in this regime. With the larger value of R̂e, the fastest-growing eigenmode is
more oscillatory and has a smaller growth rate; in other words, the length-scale is shorter
and the time-scale is longer, in agreement with the scalings (2.5). For this fast-growing
mode, the need to overcome inertia significantly slows the initial growth. Furthermore, a
highly oscillatory centre-line can accommodate the same excess length as a single buckle
but with a smaller amplitude, so the fluid does not have to travel as far or as quickly.
As a result, a system with larger Reynolds number exhibits more oscillatory behaviour
at early times when inertia is important. These arguments also explain the role of Re in
the scalings (2.5).

We investigate the variation of growth rate λ with process parameters in more detail
in figure 4. We see that the growth rate increases as St increases, and always decreases
for larger R̂e. This is as expected: increasing the effect of gravity produces a larger
destabilizing compressive force over a longer section of the sheet (see figure 2b), while
inertia acts to slow down the onset of buckling.
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Figure 4: Early-time buckling growth rates (eigenvalues of (4.1)) as a function of Stokes

number St at R̂e = 0, 0.1, 1, 10 and 100 and draw ratio D = 2.

4.2. Numerical solution

To determine the full nonlinear evolution of the centre-line profile, we solve the evolution
equation (2.24) numerically, subject to the boundary conditions (2.21), using the method
of lines, with second-order finite differencing in space. We initialize the computation at
small t using the most unstable mode as identified in §4.1. In figure 5, we illustrate the
evolution of the sheet in time by plotting a series of snapshots of a sheet centre-line with
D = 2, St = 200, for both R̂e = 0 and R̂e = 100.

We see that the early-time solutions are dramatically different for different R̂e. At t = 1
the centre-line profiles still resemble the results of the linear-stability analysis shown in
figure 3 (see figure 5a, b), and the amplitude is much smaller for larger R̂e, as expected.

However, as time proceeds, solutions for different values of R̂e become similar and, by
t = 100, the profiles are virtually independent of the value of R̂e (see figure 5e, f). In
figure 6, we further investigate the influence of inertia over short and long time-scales by
showing the maximum amplitude of the centre-line (defined as maxx |H|) as a function
of time. As suggested by the snapshots in figure 5, the amplitude depends significantly
on the value of R̂e at early times when inertia slows down buckling. However, as time
increases the amplitudes for different values of R̂e converge. We also note that the growth
of the amplitude at late time appears to be close to maxx |H| ∼ t1/3.

In figure 7, we show the centre-line profile computed at very late time t = 105, with
D = 2, St = 200 and R̂e = 0. We observe that the amplitude has become very large,
with a pronounced peak close to x = 1. The resulting large gradients in the region near
x = 1 necessitate the use of an increasingly fine grid to maintain accuracy; at t = 105,
the peak is located in x ∈ [0.99, 1] and a mesh spacing of 1.25×10−3 gives a relative error
of 10−2. In the next section we develop a late-time analysis to explain and quantify both
the collapse of data at late times, as demonstrated in figures 5 and 6, and the spatial
localization noted in figure 7.
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Figure 5: Numerical solutions to (2.21), (2.24) with D = 2, St = 200 and scaled Reynolds

numbers R̂e = 0 (a,c,e: blue lines) and R̂e = 100 (b,d,f: dashed red lines). The solutions

at t = 1 and t = 10 are also included in (e) for comparison, and the solution for R̂e = 0
is included in (f) for comparison.
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Figure 6: Log–log plot of centre-line amplitude as a function of time for D = 2, St = 200,
R̂e = 0 (blue) and R̂e = 100 (red, dashed).
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Figure 7: Centre-line shape H(x, t) at t = 105 with draw ratio D = 2, Stokes number

St = 200 and Reynolds number R̂e = 0. The numerical solution to (2.21), (2.24) is shown
in black. The hybrid asymptotic–numerical solution described in §5.5 is shown in red,
with the dashed curve showing the outer solution (5.7) and the solid curve the inner
numerical solution of (5.17).

5. Late-time analysis

5.1. Scaling analysis

Since the numerical solutions shown in figures 5 and 6 indicate that inertia does not play
a role in the late-time behaviour, we neglect inertia in the analysis to follow and justify
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this simplification a posteriori. We therefore set R̂e = 0 in equation (2.24) to obtain(
4h3

3
Hxxt

)
xx︸ ︷︷ ︸

bending

=

[(
St

∫ 1

x

h(s) ds︸ ︷︷ ︸
gravity

+ c(t)︸︷︷︸
tension

)
Hx

]
x

, (5.1)

where we have identified the three labelled terms with the contributions due to bending,
gravity, and the force at x = 1, c(t). In the limit t→∞, the bending term on the left-hand
side of (5.1) is lower order than the right-hand side, and therefore negligible at leading
order in the majority of the sheet. Since there are then two fewer spatial derivatives in
the leading-order governing equations, the limit t → ∞ is a singular perturbation, and
we anticipate that there will be boundary layers near either end of the sheet where the
bending term is significant. Near x = 0, the gravity term in (5.1) is O(1) and therefore
balances the bending term in a boundary layer where x = O

(
t−1/2

)
. However, near

x = 1, the gravity term scales with 1−x, and the bending, gravity and tension terms all
balance if c(t) = O

(
t−1/3

)
and 1− x = O

(
t−1/3

)
.

Finally, we write the governing equation (2.23) for the downstream tension c(t) in the
form

c(t) =
1

b

[
−m+

1

2

d

dt

∫ 1

0

Hx(x, t)2 dx

]
, (5.2)

where the two constants

b =
1

4

∫ 1

0

dx

h(x)
, m =

St

4

∫ 1

0

∫ 1

x

h(s)

h(x)
dsdx− (D − 1) (5.3)

are in principle both determined a priori. From §3 we know that m, which measures the
difference between the compressive gravitational stress and the tension due to drawing,
must be positive for the sheet to buckle. We identify the final term in (5.2) as the viscous
tension caused by lengthening of the centre-line.

We have argued above that c(t) = O(t−1/3)→ 0 as t→∞, and therefore the two terms
in square brackets in (5.2) must balance. We find that the dominant contribution to the
length integral comes from the downstream boundary layer where 1 − x = O

(
t−1/3

)
,

and we then obtain a balance in (5.2) if H(x, t) = O
(
t1/3

)
as t→∞, in agreement with

figure 6.

5.2. Governing equations in three regions

Based on the above scaling arguments, we now present the leading-order governing equa-
tions to be solved in three distinct asymptotic regions, namely the bulk of the sheet,
where bending is unimportant, and the two boundary layers at either end. Since the
sheet thickness h(x) is independent of t, in the limit as t → ∞ in which the boundary
layer widths both shrink towards zero, the thickness inside each boundary layer becomes
uniform to leading order.

In the outer region where x = O(1), the bending and tension terms in (5.1) are smaller
than the gravity term, by factors of order t−1 and t−1/3, respectively. To lowest order,
the centre-line profile therefore satisfies

Hx

∫ 1

x

h(s) ds = A(t), (5.4)

where StA(t) is the tension in the sheet and, from our scaling arguments, we expect
A(t) = O

(
t1/3

)
as t→∞.

In the top boundary layer where x = O
(
t−1/2

)
, we have a balance between the bending
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and gravity terms, but the tension term remains negligible to leading order. Thus (5.1)
reduces to

Hxxxxt =

[
3St

4h(0)3

∫ 1

0

h(s) ds

]
Hxx, (5.5)

in which the factor in square brackets is an a priori known constant. We integrate (5.5),
subject to H = Hxxt = 0 at x = 0 and matching with (5.4), to get

Hxxt −
[

3St

4h(0)3

∫ 1

0

h(s) ds

]
H = − 3St

4h(0)3
A(t)x. (5.6)

For the solutions of (5.4) and (5.6) to match, the leading-order outer solution must
satisfy H(0, t) = 0, so that the relevant solution of (5.4) is

H(x, t) = A(t)

∫ x

0

dr∫ 1

r
h(s) ds

. (5.7)

The leading-order outer solution is thus completely determined once we have solved for
the amplitude function A(t). It follows from (5.7) that the solution H(x, t) of (5.6) in the
upper boundary layer must be smaller than the outer solution by a factor of t−1/2: this
is a weak passive boundary layer in which the curvature Hxx adjusts to satisfy the zero
moment condition at x = 0. For matching with the bottom boundary layer, we expand
(5.7) as x→ 1 to obtain

H(x, t) ∼ A(t)

[
− 1

h(1)
log(1− x) + C

]
, (5.8)

where C denotes the (known) constant

C =

∫ 1

0

(
1∫ 1

x
h(s) ds

− 1

(1− x)h(1)

)
dx, (5.9)

which quantifies the difference between the deflection in the case of uniform thickness
and an arbitrary thickness profile.

Finally we consider the downstream boundary layer, where 1− x = O
(
t−1/3

)
and all

three terms balance in (5.1) to give the leading-order equation

4h(1)3

3
Hxxxxt =

[(
St h(1)(1− x) + c(t)

)
Hx

]
x
. (5.10)

Our focus for the remainder of this section is on the solution of the inner evolution
equation (5.10) subject to the relevant matching and boundary conditions. We first reduce
the problem to canonical form.

5.3. Canonical boundary layer problem

We normalize the problem in the downstream boundary layer at x = 1 by scaling as
follows:

H(x, t) =

√
8m

3St
h(1) t̃

1/3
F (η, T ), (5.11a)

A(t) =

√
8m

3St
h(1)2 t̃

1/3
α(T ), (5.11b)

c(t) = −St h(1) t̃
−1/3

K(T ), (5.11c)
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where

t̃ =

(
3St

4h(1)2

)
t, η = (1− x) t̃

1/3
, T = h(1)C +

1

3
log
(
t̃
)
, (5.12)

and the form of the scalings (5.11) arises from a balance between tension, compression
and gravity. The evolution equation (5.10) is transformed to

1

3

[
FT + ηFη + F

]
ηηηη

=
[(
η −K(T )

)
Fη
]
η
, (5.13)

the boundary conditions (2.21) imply that

F = Fηη = 0 at η = 0, (5.14)

and matching with (5.8) leads to the far-field condition

F (η, T ) ∼ α(T )(T − log η) as η →∞. (5.15)

Finally, the length constraint (5.2) reduces to∫ ∞
0

Fη(η, T )2 dη ≡ 1. (5.16)

We have thus removed all the parameters from the boundary-layer problem, and only
have to solve it once.

5.4. Asymptotic behaviour

A slight simplification is obtained by writing the problem (5.13)–(5.16) in terms of
G(η, T ) := Fη(η, T ), which satisfies

1

3
[GT + ηGη + 2G]ηη +

(
K(T )− η

)
G = α(T ), (5.17a)∫ ∞

0

G(η, T )2 dη = 1, (5.17b)

Gη(η, T ) = 0 at η = 0, (5.17c)

G(η, T )→ 0 as η →∞, (5.17d)∫ η

0

G (η′, T ) dη′ + α(T ) log η → Tα(T ) as η →∞. (5.17e)

We recall from (5.12) that the surrogate time variable T scales with log t as t→∞. We
would hope that the problem (5.17) admits a limiting solution in which G(η, T ) becomes
independent of T and thus the local behaviour becomes self-similar. However, here the
convergence to self-similarity is very slow, as a consequence of the appearance of T on
the right-hand side of (5.17e), which originates from the logarithmic matching condition
(5.8). Indeed, we find that the large-T behaviour of the solution of (5.17) involves a full
logarithmic expansion of the form

G(η, T ) ∼ G0(η) +
G1(η)

T
+ · · · , α(T ) ∼ α1

T
+
α2

T 2
+ · · · , K(T ) ∼ K0 +

K1

T
+ · · ·

as T →∞. (5.18)

At leading order, we find that G0 satisfies the boundary-value problem

ηG′′′0 (η) + 4G′′0(η) + 3(K0 − η)G0(η) = 0, (5.19a)

G′0(0) = 0, G0(η)→ 0 as η →∞. (5.19b)
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Figure 8: The eigenfunctions corresponding to the four smallest eigenvalues K0 of the
problem (5.19).

Equation (5.19a) is singular at η = 0, as a result of which the first boundary condition
in (5.19b) actually removes two degrees of freedom for the solution for G0. This eigenvalue
problem (5.19) admits non-trivial solutions for G0 only if K0 takes one of a discrete set
of positive values, and the amplitude of G0 is then fixed using (5.17b), i.e.,∫ ∞

0

G0(η)2 dη = 1. (5.19c)

The resulting eigenfunctions corresponding to the first four eigenvalues are plotted in
figure 8. Evidently the higher modes become increasingly oscillatory, and we hypothesize
that only the lowest mode, with K0 ≈ 0.986, is physically relevant. We then read off the
first approximation for α from (5.17e), i.e.,

α1 =

∫ ∞
0

G0(η) dη ≈ 1.5. (5.20)

Since T scales with log
(
t1/3

)
, we calculate one further term in the large-T expansion

for improved accuracy at moderately large values of t. We shall see below that it is helpful
to solve the adjoint version of (5.19), namely

ηφ′′′(η)− φ′′(η)− 3(K0 − η)φ(η) = 0, (5.21a)

φ′(0) = 0, φ(η)→ 0 as η →∞, (5.21b)

which admits non-trivial solutions φ(η) when K0 is equal to one of the eigenvalues iden-
tified above, and we again take the smallest.

At O
(
T−1

)
we find that G1 satisfies the boundary-value problem

ηG′′′1 (η) + 4G′′1(η) + 3(K0 − η)G1(η) = 3
(
α1 −K1G0(η)

)
, (5.22a)

G′1(0) = 0, G1(η)→ 0 as η →∞, (5.22b)
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Figure 9: Late-time solutions for the centre-line shape in the lower boundary layer com-
puted with T = 10: leading-order solution F0(η) (red dashed); first-order approximation
F0(η) + T−1F1(η) (red solid); numerical hybrid solution (blue solid).

as well as the normalization condition∫ ∞
0

G0(η)G1(η) dη = 0. (5.22c)

Since the value of K0 is chosen such that (5.19) admits non-trivial solutions, (5.22) has
no solutions unless the inhomogeneous right-hand side is orthogonal to the solution φ
of the adjoint problem (5.22). This solvability condition determines the first correction
to K, namely

K1 = α1

∫ ∞
0

φ(η) dη

/∫ ∞
0

G0(η)φ(η) dη ≈ 2.2, (5.23)

where we have used both G0 and the solution φ to the adjoint problem (5.21). With K1

defined by (5.23), we can solve (5.22) for G1(η), with the amplitude of the complementary
function determined by (5.22c). We then obtain the next correction to α from (5.17e),
i.e.,

α2 =

∫ ∞
0

(
G1(η) +

α1

1 + η

)
dη ≈ 0.5146. (5.24)

We obtain the late-time solution for the centre-line profile as an asymptotic expansion
of the form

F (η, T ) ∼ F0(η) + T−1F1(η) + · · · as T →∞ (5.25)

by integrating G0(η) and G1(η) with respect to η. The resulting leading-order and first-
order approximations to F (η) are shown in figure 9 using red dashed and red solid curves
respectively, with T = 10. The O

(
T−1

)
correction does not make a noticeable difference

close to η = 0, but becomes increasingly important as η increases. The leading-order
approximation F0(η) tends to a constant as η → ∞, so we need to include the first
correction to get the correct logarithmic behaviour (5.15).

Our analysis also determines the asymptotic behaviour of the amplitude A of the outer
solution, namely

A ∼
√

8m

3St
h(1)2

t̃
1/3

T

(
α1 +

α2

T
+ · · ·

)
, (5.26)

with α1 and α2 the numerically determined constants given above. However, we recall
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from (5.12) that T scales with log
(
t1/3

)
, and so huge values of t correspond to moderate

values of T , (e.g. up to t = 1013 for the value T = 10 used in figure 9). To capture the
behaviour over long but realistic time-scales where the large T asymptotics do not hold,
we next consider the full numerical solution of the inner problem (5.17).

5.5. Hybrid asymptotic-numerical solution

A hybrid asymptotic–numerical scheme for a perturbed eigenvalue problem with loga-
rithmic gauge functions was developed by Ward et al. (1993) and adapted by Kropinski
et al. (1995) for the case of low-Reynolds-number flow past a cylindrical body. In this
scheme, rather than calculating individual terms in the logarithmic expansion separately,
the entire series is calculated in one go as the function of a new variable which is the
logarithm of the small parameter in the asymptotic expansion. We adopt an analogous
approach here by solving the problem (5.17) numerically, treating T as a time-like inde-
pendent variable, to obtain a solution that incorporates all of the logarithmic corrections
and is thus accurate up to O

(
t−1/3

)
. Although this means we still have to solve a par-

tial differential equation to determine the shape of the centre-line, the rescaling into the
bottom inner region means the boundary-layer problem (5.17) does not suffer from the
stiffness of the original problem (2.21), (2.24), which allows for much faster computation
at late times. Furthermore, we have removed any dependence on the process parameters,
meaning that this boundary-layer problem must only be solved once, and the centre-
line shape and the force in the boundary layer may then be deduced for any process by
appropriate rescalings.

Integrating (5.17a) with respect to η and imposing (5.17c), (5.17d) and (5.17e) reveals
the identity ∫ ∞

0

[
α(T ) + ηG(η, T ) +

α(T )K(T )

1 + η

]
dη ≡ 0, (5.27)

which allows the force K to be expressed in terms of G and α. The evolution of G
and α is then fully determined by the differential equation (5.17a), the boundary condi-
tions (5.17c), (5.17d), and the constraint (5.17b), together with a suitable initial guess,
which does not affect the late-time behaviour. We discretize the problem (5.17) using
second-order finite differencing in η to give a system of ODEs in T supplemented by two
algebraic conditions. We solve this system of equations using MATLAB’s built-in DAE
solver ode15i.

The resulting numerical solution for the normalized centre-line profile F (η, T ) in the
boundary layer, evaluated at T = 10, is shown as the solid blue curve in figure 9. We
observe that successive approximations in the large-T expansion indeed converge towards
the computed solution. The solid red curve in figure 7 shows the boundary layer solution
compared with the numerical solution of the full problem (2.21), (2.24) at t = 105, here
corresponding to T ≈ 7.957. The dashed red curve shows the corresponding leading-order
outer solution (5.7), with A(t) given by (5.11b) and α(T ) obtained from the boundary-
layer solution. We observe that both the shape and the amplitude are very well captured
by the hybrid computation. We also note that a high-resolution numerical solution is
difficult to obtain at this late time due to the localization of bending near x = 1, an issue
from which our asymptotic solution does not suffer.

5.6. Validity of late-time analysis

We conclude by examining the validity of the asymptotic assumptions made in our anal-
ysis. By reversing the normalization (5.11), (5.12), we determine how the neglected terms
in the governing equations scale with t and with the other key parameters in the problem,
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in particular St , which measures the importance of gravity, and m, which measures the
excess compressive stress at x = 1. Our late-time analysis is valid when t̃ � 1, which
corresponds to t� D−2St−1; by using large values of St , we are able to clearly observe
the limiting behaviour at relatively manageable values of t.

First, we recall that we assume inertia to be negligible throughout. We can readily
calculate the size of the neglected inertia term in each of the three regions considered.
We find that it is largest in the lower boundary layer, where it is smaller than the
retained terms in (5.10) by a factor of order (R̂e St)D−2/3(St t)−7/3. Thus, although
inertia is formally negligible in the limit as (St t) → ∞, it might take a long time to

become insignificant in cases where R̂e St is large.
Finally we return to the question of the validity of our basic model (2.19), which

breaks down whenever the dimensionless curvature Hxx becomes of order ε−1. As above,
we can estimate the size of the curvature in each of the asymptotic regions identified,
and we again find that it is greatest in the lower boundary layer, where Hxx scales
with

√
mSt D t. Thus geometrical nonlinearity remains unimportant as long as t �

D−1m−1/2St−1/2ε−1. In particular, the curvature remains small for longer when m is
small, in other words when the excess force due to gravity and hence the rate of elongation
of the sheet are small.

Collecting together the above estimates, we conclude that the late-time analysis is
valid for time-scales satisfying

D−2

D−2/7
(

R̂e St
)3/7 }� St t� 1

ε

1

D

√
St

m
. (5.28)

Such a region of validity exists for sufficiently small ε and R̂e that ε� D
√

St/m and

ε7/3R̂e � St1/6m−7/6D−5/3.

6. Discussion

In this paper we derive and analyse a model governing the thickness, velocity and
centre-line of a two-dimensional thin viscous sheet undergoing redraw, focusing on the
distinguished limit where the Reynolds number Re = O

(
ε4
)
, where ε is the (small)

aspect ratio of the sheet. The tension in the sheet is determined by a balance between
the pulling force provided by draw rollers and the compressional force due to gravity. If
gravity is sufficiently strong, then a region near the bottom of the heater zone experiences
compression, causing the sheet to buckle.

We analyse sheet buckling using both linear stability analysis and full numerical solu-
tions. At the instability threshold, a small compressive force appears near the bottom of
the sheet, and the sheet begins to buckle. Moving further from the threshold, the size of
the region under compression and the magnitude of the compressive force both increase,
thus modifying the centre-line shape and increasing the growth rate. The buckling growth
rate and length-scale are also affected by the inertia of the sheet, as we explain using
physical arguments. However, as the centre-line continues to deform, its shape ultimately
becomes independent of the Reynolds number and exhibits a single bump with its peak
near the bottom of the sheet. We note that our “nearly planar” model does not predict
the sagging behaviour one might expect at extremely late times, when the weight of
glass at the apex of the deformed sheet is large enough to pull it down past the draw
rollers. Nonetheless, our results give useful insight into the initial buckling behaviour, and
would provide the initial conditions for a geometrically nonlinear model that describes
the subsequent evolution when the dimensionless curvature is no longer small.
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Initially, while the centre-line deflection remains small, the stress in the sheet is unaf-
fected by the buckling behaviour, but at later times they are strongly coupled. Indeed,
our analysis of the late-time behaviour demonstrates that the sheet centre-line deforms
in such a way as to expel any compression from the system: as the sheet buckles, the size
of the region under compression and the magnitude of the compressive force both shrink.
The bulk of the sheet is thus under tension, and the dynamics is driven by the small
boundary layer at the bottom where the sheet is under compression. Matching between
these regions reveals that the appropriate asymptotic expansion for large values of time t
is a double series in powers of t1/3 and log

(
t1/3

)
. We circumvent the logarithmic ex-

pansion by neglecting all algebraically small corrections but retaining log
(
t1/3

)
(suitably

normalized) as a dependent variable, and solving the resulting partial differential equa-
tion numerically. This hybrid asymptotic–numerical scheme yields universal predictions
for the late-time behaviour which give excellent agreement with numerical solution of the
full problem.

It has been established (see e.g. Filippov & Zheng 2010) that sinuous centre-line in-
stability in glass sheet redraw is associated with the occurrence of compressive regions
in the sheet. In three-dimensional redraw, such compressive zones always appear (even
in the absence of gravity), as the sheet necks in in the transverse direction. Srinivasan
et al. (2017) and O’Kiely (2018) both perform linear stability analysis of a such a sheet
to predict where the sheet is under compression and thus where wrinkles are expected to
appear. The compressive zones computed by Srinivasan et al. (2017) and O’Kiely (2018)
do not extend to the bottom of the sheet, although in practice undesirable wrinkles may
be present in the final product. Thus, although the linear theory determines where buck-
ling is likely to start, it does not tell us how the resulting wrinkles subsequently evolve
or, in particular, whether they become frozen into the sheet as it exits the heater zone.

In the linearized models, the stress in the sheet is calculated in advance, and remains
unaffected by any resulting evolution of the centre-line. However, when the centre-line is
unstable, the transverse deflection must grow exponentially and, once it is the same order
as the sheet thickness, start to influence the stress. Our toy two-dimensional model for
redraw, which explicitly includes the mutual coupling between the tension in the sheet
and the centre-line evolution, provides insight into weakly nonlinear viscous buckling
more generally.
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