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We derive leading-order governing equations and boundary conditions for a sheet of viscous6
fluid retracting freely under surface tension. We show that small thickness perturbations7
about a flat base state can lead to regions of compression, where one or both of the principal8
tensions in the sheet becomes negative, and thus drive transient buckling of the sheet centre-9
surface. The general theory is applied to the simple model problem of a retracting viscous10
disc with small axisymmetric thickness variations. Transient growth in the centre-surface11
is found to be possible generically, with the dominant mode selected depending on the12
imposed initial thickness and centre-surface perturbations. An asymptotic reduction of the13
boundary conditions at the edge of the disc, valid in the limit of large normalised thickness14
perturbations, reduces the centre-surface evolution equation to an ODE eigenvalue problem.15
Analysis of this eigenvalue problem leads to insights such as how the degree of transient16
buckling depends on the imposed thickness perturbation, and which thickness perturbation17
gives rise to the largest transient buckling.18
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1. Introduction20

There are multiple methods to manufacture thin glass sheets (Shelby 2005). The float glass21
process (Pilkington 1969; Berenjian & Whittleston 2017; Pop 2005), in which molten glass22
is fed onto a bath of molten tin and drawn through rollers, gives exceptionally smooth, high23
quality glass sheets with thickness typically ranging from 2 mm to 20 mm. Thinner glass24
sheets can be produced using the down-draw method (Overton 2012), in which a ribbon25
of molten glass is drawn through an annealing furnace before being cooled and removed,26
resulting in sheet thickness ranging from 20 𝜇m to 1.1 mm. Despite the long history of glass27
sheet manufacture, and the progressive refinement of manufacturing processes, ripples (i.e.,28
sinuous deformations) can still form in the molten glass during production, compromising29
quality and adding cost. Real-time analysis of the ripple formation is difficult due to the high30
working temperature of molten glass, and so mathematical modelling is invaluable in the31
analysis of problems in production.32

In principle, the origin of the observed ripples is understood. In the industrially relevant33
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limit where the sheet thickness is much smaller than its typical in-plane dimensions,34
perturbation methods can be used to reduce the governing Navier–Stokes equations and free35
boundary conditions to a simplified quasi-two-dimensional model that depends on integrated36
tensions and bending moments (e.g., Howell 1996). As shown by Filippov & Zheng (2010),37
in a down-drawn viscous sheet, regions naturally form in which one of the principal in-38
plane tensions changes sign, causing a change of type from elliptic to hyperbolic in the39
underlying partial differential equation governing the sheet centre-surface. The ‘hyperbolic40
zones’ correspond to regions under compression and are associated with transverse buckling.41
Srinivasan et al. (2017) find the fastest growing out-of-plane eigenmodes for the early-time42
growth of ripples in the sheet. Perdigou & Audoly (2016) consider a sheet falling under43
gravity into a bath of fluid and calculate the buckling modes by solving a two-dimensional44
eigenvalue problem using finite element methods.45

The coupled heat transfer and fluid flow for the drawing of a viscous sheet are considered46
by Scheid et al. (2009), who find that cooling has a destabilizing effect when heat transfer47
with the air dominates, but has a stabilizing effect when both advection and heat transfer48
with air are important. Thermal effects are also often incorporated simply by treating the49
viscosity as a function of position, as opposed to solving the coupled energy problem (e.g.,50
Pfingstag et al. 2011; Srinivasan et al. 2017).51

In the present paper, we consider the simple model problem of a thin isothermal sheet52
of viscous fluid retracting freely under surface tension. Despite the absence of any external53
forcing whatsoever, we show that compressive tensions form generically, and that they can54
be sufficiently strong to drive growth in sinuous perturbations of the sheet centre-surface.55
The linear stability analyses performed in previous studies leave open the question of how56
the amplitude of any transverse ripples is determined in practice. There seem to be two57
possible mechanisms: either geometrically nonlinear effects cause the growth to saturate58
(see, e.g., O’Kiely et al. 2019), or convection through the compressive regions where the59
centre-surface is predicted to be unstable limits the exponential growth. In this paper, we60
neglect nonlinearity, but include convection by the underlying flow, and find transient rather61
than exponential growth in the centre-surface displacement.62

The surface-tension-driven retraction of a thin viscous sheet has been well studied. In the63
inertial limit, fluid collects in a rim at the edge of the sheet. However, when the Reynolds64
number is sufficiently small, simulations and experiments show that the sheet instead retracts65
uniformly (Debrégeas et al. 1995; Brenner & Gueyffier 1999; Sünderhauf et al. 2002; Savva66
2007; Savva & Bush 2009). If the sheet thickness is constant initially, it will therefore remain67
spatially uniform, and any small initial fluctuations in the thickness are preserved as the sheet68
retracts. As we will show, it is these thickness fluctuations that can give rise to compressive69
tensions in the sheet and thus drive transient buckling.70

We begin in §2 by deriving exact integrated conservation equations for a general viscous71
sheet with no external forcing other than surface tension acting at the free surface. In §372
we derive effective boundary conditions via a boundary-layer analysis of the region of73
high curvature at the edge of the sheet, where the in-plane and transverse length-scales are74
comparable. With this setup in place, in §4 we use perturbation methods to derive a simplified75
model for the retraction of a thin approximately uniform sheet under surface tension. The76
leading-order equations and boundary conditions are first derived in a general form before77
being applied to the simple model problem of a disc of viscous fluid, subject to small78
axisymmetric fluctuations in the thickness. Numerical solutions to these governing equations79
are presented in §5, where we find that transient buckling is possible, with selection of the80
dominant mode determined by a delicate interaction between the imposed initial thickness81
and centre-surface perturbations. A further asymptotic approximation in §6, in the limit of82
large normalised thickness perturbations, allows us to explain this interaction and to predict83
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𝑧 = 𝐻 (�̃�, 𝑡)

𝑧 = 𝐻 (�̃�, 𝑡) + ℎ(�̃�, 𝑡)/2

𝑧 = 𝐻 (�̃�, 𝑡) − ℎ(�̃�, 𝑡)/2 𝑥

�̃�

𝑧

Figure 1: A sketch of a general, viscous sheet, with the in-plane position vector given by
�̃� = (𝑥, �̃�).

the thickness and centre-surface perturbations that lead to the greatest transient growth.84
Finally, in §7 we discuss our findings and draw our conclusions.85

2. Net balance equations86

We start by deriving exact balance equations representing conservation of mass, linear87
momentum and angular momentum for a thin sheet of incompressible viscous fluid. To this88
end, we use a tilde to represent in-plane components; for example, let �̃� denote the in-plane89
position vector so that, with the transverse unit vector being given by 𝒌, the position of any90
point in the sheet may be expressed in the form 𝒙 = �̃� + 𝑧𝒌. We likewise decompose the91
velocity 𝒖 and the stress tensor 𝝈 into in-plane and transverse components, i.e.,92

𝒖 = �̃� + 𝑤𝒌, 𝝈 =
©«

�̃� �̂�

�̂�𝑡 𝜎𝑧𝑧

ª®¬ . (2.1a,b)93

Here, �̃� ∈ R2×2 is the in-plane stress tensor, �̂� ∈ R2 is the vector of transverse stresses94
and �̂�𝑡 is its transpose. The fluid is assumed to lie between two free surfaces, denoted by95
𝑧 = 𝐻±(�̃�, 𝑡) := 𝐻 (�̃�, 𝑡) ± ℎ(�̃�, 𝑡)/2, where ℎ > 0 and 𝐻 represent the thickness of the96
sheet and the position of the centre-surface, respectively, as shown in figure 1. To keep this97
derivation as general as possible, we do not yet make any assumptions about the lateral extent98
of the sheet. We assume that any external body forces are negligible, so the flow is driven99
entirely by the constant surface tension 𝛾 acting at the free surfaces.100

Now, when we express the governing equations and boundary conditions in dimensionless101
form, the assumed thinness of the sheet is captured by applying differential scalings to in-102
plane and transverse components of the variables. We denote a typical in-plane length-scale103
of the sheet by 𝐿 and a typical transverse length-scale by 𝜖𝐿, where 𝜖 ≪ 1. By balancing104
surface tension with viscous effects, a suitable scaling for the in-plane velocity is found to105
be 𝛾/𝜖𝜂, where 𝜂 is the constant dynamic viscosity. This velocity scale is the typical speed106
at which a thin inertia-free sheet would retract under surface tension (Debrégeas et al. 1995;107
Griffiths & Howell 2007). We use the corresponding convective time-scale and scale the108
transverse velocity and stress components to obtain balances in the Stokes equations (see109
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below). Thus we arrive at the scalings110

�̃� = 𝐿�̃�′, 𝑧 = 𝜖𝐿𝑧′, 𝑡 =
𝜖𝐿𝜂

𝛾
𝑡′ (2.2a)111

�̃� =
𝛾

𝜖𝜂
�̃�′, 𝑤 =

𝛾

𝜂
𝑤′,

(
𝐻, ℎ, 𝐻±) = 𝜖𝐿 (

𝐻′, ℎ′, 𝐻±′) , (2.2b)112

�̃� =
𝛾

𝜖𝐿
�̃�′, �̂� =

𝛾

𝐿
�̂�′, 𝜎𝑧𝑧 =

𝜖𝛾

𝐿
𝜎′
𝑧𝑧 . (2.2c)113

In the dimensionless equations presented below, the prime decoration is dropped.114
We assume that inertia and any body forces are negligible, so the flow is governed by the115

dimensionless incompressible Stokes equations, which take the forms116

∇̃ · �̃� + 𝜕𝑤
𝜕𝑧

= 0, ∇̃ · �̃� + 𝜕�̂�
𝜕𝑧

= 0, ∇̃ · �̂� + 𝜕𝜎𝑧𝑧

𝜕𝑧
= 0, (2.3a–c)117

following our decompositions, where ∇̃ denotes the in-plane gradient operator. At the two118
free surfaces 𝑧 = 𝐻±, we apply the kinematic boundary condition119

𝑤 =
𝜕𝐻±

𝜕𝑡
+ �̃� · ∇̃𝐻±, (2.4)120

and the dynamic boundary condition, which may be decomposed into121

�̃� · ∇̃𝐻± + 𝜖2𝜅±∇̃𝐻± = �̂�, (2.5a)122

𝜎𝑧𝑧 + 𝜅± = �̂� · ∇̃𝐻±. (2.5b)123

Without loss of generality, the constant external pressure has been set to zero. The free-surface124
curvatures are given by125

𝜅± = ∓ ∇̃ ·
(
∇̃𝐻±

Δ±

)
, where Δ± =

√︃
1 + 𝜖2

��∇̃𝐻±
��2. (2.6a,b)126

Integrating the continuity equation (2.3a) across the thickness and applying the kinematic127
boundary condition (2.4), we obtain the net mass conservation equation128

𝜕ℎ

𝜕𝑡
+ ∇̃ · (ℎ�̄�) = 0, (2.7)129

where130

�̄� =
1
ℎ

∫ 𝐻+

𝐻−
�̃� d𝑧 (2.8)131

is the average in-plane velocity.132
Integrating the in-plane component of the momentum equation (2.3b) and applying the133

dynamic boundary condition (2.5a) gives134

∇̃ · T = 0, (2.9)135

where we define the in-plane tension tensor by136

T =

∫ 𝐻+

𝐻−
�̃� d𝑧 +

[
(Δ+ + Δ−)I − 𝜖2(∇̃𝐻+) (∇̃𝐻+)𝑡

Δ+ − 𝜖2(∇̃𝐻−) (∇̃𝐻−)𝑡
Δ−

]
. (2.10)137

The first integral term on the right-hand side of equation (2.10) is the viscous contribution138
to the tension, while the term in square brackets is the contribution due to surface tension.139
Similarly, by integrating the out-of-plane component of the momentum equation (2.3c) and140
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applying the dynamic boundary condition (2.5b), we obtain141

∇̃ · N = 0, (2.11)142

where we define the total shear stress by143

N =

∫ 𝐻+

𝐻−
�̂� d𝑧 +

[
∇̃𝐻+

Δ+ + ∇̃𝐻−

Δ−

]
. (2.12)144

Finally, by multiplying the in-plane component of the momentum equation (2.3b) by (𝑧−𝐻)145
before integrating over the thickness, we derive the torque balance equation146

∇̃ · M + T · ∇̃𝐻 = N , (2.13)147

where the bending-moment tensor is defined by148

M =

∫ 𝐻+

𝐻−
(𝑧−𝐻)�̃� d𝑧+ ℎ

2

[
(Δ+ − Δ−)I − 𝜖2(∇̃𝐻+) (∇̃𝐻+)𝑡

Δ+ + 𝜖
2(∇̃𝐻−) (∇̃𝐻−)𝑡

Δ−

]
. (2.14)149

The basic governing equations for the evolution of a thin sheet of viscous fluid under150
surface tension are (2.7), (2.9), (2.11) and (2.13). We emphasise that no approximations151
have been made yet, so these net balance equations are exact, and that the contributions152
from surface tension have been incorporated into the definitions of the integrated stress and153
moment tensors. This approach was found to be beneficial by Griffiths & Howell (2007)154
when studying the surface-tension-driven evolution of a tube of viscous fluid, and we will155
show in the next section how it pays off when deriving the effective boundary conditions at156
a sheet edge.157

To close the problem (2.7), (2.9), (2.11) and (2.13), it remains to derive constitutive158
relations for T and M in terms of �̄�, ℎ and 𝐻, by exploiting the assumed smallness of 𝜖 .159
In previous studies of viscous buckling (e.g., Buckmaster et al. 1975; Howell 1996; Ribe160
2002), two possible dominant balances have been identified. The sheet thickness ℎ evolves161
over an 𝑂 (1) “stretching” time-scale, while transverse sheet motion occurs over an 𝑂

(
𝜖2)162

“bending” time-scale. In contrast with these previous studies, we will show that, when the163
leading-order sheet thickness is spatially uniform, bending and stretching occur on the same164
𝑂 (1) time-scale.165

3. Edge boundary layer166

3.1. Motivation and local coordinate system167

In §2 we derived the general net balance equations for a thin sheet of viscous fluid. Now we168
show how to supplement these equations with effective boundary conditions that apply at a169
free edge of the sheet. Near such an edge, there is a boundary layer in which the in-plane and170
transverse dimensions of the sheet become comparable, as illustrated in figure 2(a). We note171
that the solution for the flow in this inner region was found numerically by Munro & Lister172
(2018), but we show that the effective boundary conditions for the bulk flow can be obtained173
just using asymptotic matching. In this derivation, we consider the general situation where the174
edge of the sheet can be arbitrarily curved, though, for simplicity, we assume that it remains175
approximately planar. We use intrinsic curvilinear coordinates embedded in the sheet edge;176
a similar derivation is presented by O’Kiely (2017), though without the inclusion of surface177
tension. Since the problem is quasi-steady we can focus on determining the instantaneous178
boundary conditions and, for the moment, suppress the dependence on time 𝑡.179

An edge of the sheet is identified as a curve on which ℎ = 0. As illustrated in figure 2(b),180
we parameterise the projection of this curve onto the �̃� = (𝑥, �̃�)-plane using arc-length 𝑠, and181
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𝑛

𝑧

𝑧 = 𝐻 (𝑠, 𝑛, 𝑡) O(𝜖)
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𝑠

Figure 2: (a) Sketch of the inner region at the edge of a thin sheet. (b) Sketch of the
curvilinear coordinate system employed at the edge of the sheet.

denote the corresponding planar tangent vector as �̃�(𝑠). We fix the orientation such that the182
planar normal pointing outwards from the sheet edge is given by �̃� = 𝒌 × �̃�, where we recall183
that 𝒌 denotes the unit vector in the 𝑧-direction. The normal and tangent vectors are related184
by the Serret–Frenet formulae (Kreyszig 1959)185

d �̃�
d𝑠

= 𝜅 �̃�,
d�̃�
d𝑠

= −𝜅 �̃�, (3.1a,b)186

where 𝜅(𝑠) is the curvature of the edge (projected onto the (𝑥, 𝑦)-plane). The position of any187
point in the sheet can be expressed in the form188

𝒓 (𝑠, 𝑛, 𝑧) = �̃� + 𝑧𝒌 =

∫ 𝑠

0
�̃�(𝑠′) d𝑠′ + 𝑛�̃� + 𝑧𝒌, (3.2)189

where 𝑛 < 0 and 𝐻− (𝑠, 𝑛) < 𝑧 < 𝐻+(𝑠, 𝑛). The edge of the sheet is defined to be at 𝑛 = 0,190
where we have 𝐻− (𝑠, 0) = 𝐻+(𝑠, 0) = 𝐻 (𝑠, 0).191

Now our strategy is to express the integrated governing equations (2.9), (2.11) and (2.13)192
using the local coordinates (𝑠, 𝑛). Then, at the edge of the sheet, since ℎ(𝑠, 0) = 0 we193
seemingly have five boundary conditions194

𝑇𝑛𝑛 = 𝑇𝑠𝑛 = 𝑁𝑛 = 𝑀𝑛𝑛 = 𝑀𝑠𝑛 = 0 at 𝑛 = 0, (3.3)195

where subscripts denote components of the tensor or vector. However, this is one too many196
boundary conditions for the outer problem. This issue was first addressed in the context of197
thin elastic plates (see, for example, Love 1927; Timoshenko & Woinowsky-Krieger 1959).198
We resolve the difficulty by rescaling into the boundary layer at the edge and thus deriving199
the appropriate effective boundary conditions to apply to the outer problem.200

3.2. Edge boundary layer201

We examine the boundary layer by defining202

𝑛 = 𝜖 �̂�, 𝑇𝑠𝑠 = 𝑇𝑠𝑠, 𝑇𝑠𝑛 = 𝜖𝑇𝑠𝑛, 𝑇𝑛𝑛 = 𝜖𝑇𝑛𝑛, (3.4a–d)203

𝑀𝑠𝑠 = �̂�𝑠𝑠, 𝑀𝑠𝑛 = �̂�𝑠𝑛, 𝑀𝑛𝑛 = 𝜖 �̂�𝑛𝑛, 𝑁𝑠 =
�̂�𝑠

𝜖
, 𝑁𝑛 = �̂�𝑛, (3.4e–i)204
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where we denote variables in the boundary layer by hats (not to be confused with the205
transverse stress components as in §2). The different scalings of the tensions, shears and206
bending moments are made to obtain non-trivial balances in the dimensionless integrated207
Stokes equations, (2.9), (2.11) and (2.13), which become (see, for example, van de Fliert208
et al. 1995)209

𝜕𝑇𝑠𝑠

𝜕𝑠
+ 𝜕

𝜕�̂�
(ℓ̂𝑇𝑠𝑛) − 𝜖𝜅𝑇𝑠𝑛 = 0, (3.5a)210

𝜖
𝜕𝑇𝑠𝑛

𝜕𝑠
+ 𝜕

𝜕�̂�
(ℓ̂𝑇𝑛𝑛) + 𝜅𝑇𝑠𝑠 = 0, (3.5b)211

𝜕�̂�𝑠

𝜕𝑠
+ 𝜕

𝜕�̂�
(ℓ̂�̂�𝑛) = 0, (3.5c)212

𝜖
𝜕

𝜕𝑠

(
�̂�𝑠𝑠 + �̂�𝑇𝑠𝑠

)
+ 𝜕

𝜕�̂�

[
ℓ̂
(
�̂�𝑠𝑛 + 𝜖 �̂�𝑇𝑠𝑛

) ]
− 𝜖𝜅

(
�̂�𝑠𝑛 + 𝜖 �̂�𝑇𝑠𝑛

)
= ℓ̂�̂�𝑠, (3.5d)213

𝜕

𝜕𝑠

(
�̂�𝑠𝑛 + 𝜖 �̂�𝑇𝑠𝑛

)
+ 𝜕

𝜕�̂�

[
ℓ̂
(
�̂�𝑛𝑛 + �̂�𝑇𝑛𝑛

) ]
+ 𝜅

(
�̂�𝑠𝑠 + �̂�𝑇𝑠𝑠

)
= ℓ̂�̂�𝑛, (3.5e)214

where ℓ̂ = 1 − 𝜖𝜅�̂� is the metric coefficient. The boundary conditions (3.3) at the edge of the215
sheet are transformed to216

𝑇𝑛𝑛 = 𝑇𝑠𝑛 = �̂�𝑛 = �̂�𝑛𝑛 = �̂�𝑠𝑛 = 0 at �̂� = 0. (3.6)217

We now expand our variables as asymptotic series in powers of 𝜖 , i.e.,𝑇𝑠𝑠 ∼ 𝑇𝑠𝑠0+𝜖𝑇𝑠𝑠1+· · ·218
as 𝜖 → 0. Note that the scalings (3.4) already assume the leading-order matching conditions219

220

𝑇𝑠𝑛0, 𝑇𝑛𝑛0, 𝑀𝑛𝑛0 → 0 as 𝑛→ 0, �̂�𝑠0 → 0 as �̂�→ −∞. (3.7a,b)221

As anticipated above and suggested by the sketch in figure 2(a), we also assume that, although222
the sheet thickness ℎ varies significantly in the edge layer, the centre-surface 𝐻 does not, so223
that �̂� (𝑠, 𝑛) ∼ �̂�0(𝑠) +𝑂 (𝜖).224

At leading order, we find from (3.5d) that225

�̂�𝑠0 =
𝜕�̂�𝑠𝑛0
𝜕�̂�

. (3.8)226

Substituting this result into (3.5c) gives, at leading order,227

𝜕

𝜕�̂�

(
�̂�𝑛0 +

𝜕�̂�𝑠𝑛0
𝜕𝑠

)
= 0. (3.9)228

By applying the boundary conditions (3.6), we deduce that229

�̂�𝑛0 +
𝜕�̂�𝑠𝑛0
𝜕𝑠

= 0, (3.10)230

and, by matching to the outer region, we deduce the leading-order effective boundary231
condition232

�̂�𝑛0 +
𝜕𝑀𝑠𝑛0
𝜕𝑠

= 0 at 𝑛 = 0. (3.11)233

On the other hand, by combining equations (3.5b) and (3.5e) at leading order we obtain234

�̂�𝑛0 =
𝜕�̂�𝑠𝑛0
𝜕𝑠

+ 𝜕�̂�𝑛𝑛0
𝜕�̂�

+ 𝜅�̂�𝑠𝑠0, (3.12)235

which can be used to eliminate the shear stress and express (3.11) purely in terms of the236
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bending-moment tensor. In summary, we can express the leading-order effective boundary237
conditions for the outer problem as238

𝑇𝑠𝑛 = 𝑇𝑛𝑛 = 𝑀𝑛𝑛 = 2
𝜕𝑀𝑠𝑛

𝜕𝑠
+ 𝜕𝑀𝑛𝑛

𝜕𝑛
+ 𝜅𝑀𝑠𝑠 = 0 at 𝑛 = 0. (3.13)239

A benefit of this method, when compared with similar derivations carried out by Howell240
et al. (2009); O’Kiely (2017), for example, is that we did not need to calculate any velocity241
components of the fluid; instead we worked with the tensions and bending moments.242
Moreover, incorporating surface tension contributions into the definitions of the net tensions243
and bending moments made it straightforward to generalise the boundary conditions found244
by O’Kiely (2017) to include surface tension effects. We note that an alternative derivation of245
the effective boundary conditions based on a virtual work argument is presented by Srinivasan246
et al. (2017), though there appear to be some sign inconsistencies in their formulation.247

Armed with the boundary conditions (3.13), we are ready to tackle the outer governing248
equations (2.7), (2.9), (2.11) and (2.13). As noted in §2, we must first derive constitutive249
relations for the integrated tensions and bending moments by analysing the asymptotic limit250
as 𝜖 → 0. In doing so, we choose to focus on a model geometrical setup in which a disk of251
viscous fluid retracts under surface tension, and then examine the response of the system to252
small transverse perturbations.253

4. Model for an approximately uniform viscous sheet254

4.1. Leading-order solution255

Now we invoke the dimensionless Newtonian constitutive relations, namely256

�̃� = −𝑝 �̃� + ∇̃�̃� + ∇̃�̃�
𝑡
, 𝜖2𝜎𝑧𝑧 = −𝑝 − 2∇̃ · �̃�, 𝜖2�̂� =

𝜕�̃�

𝜕𝑧
+ 𝜖2

∇̃𝑤, (4.1a–c)257

where the pressure 𝑝 has been made dimensionless with 𝛾/𝜖𝐿, the same scaling as the258
in-plane stress. Here we have assumed that the viscosity 𝜂 is constant; the theory developed259
below is generalised to include small viscosity variations in Appendix A. When we express260
the dependent variables as asymptotic expansions of the form �̃� ∼ �̃�0 + 𝜖2�̃�1 + · · · , we261
immediately see from (4.1c) that the flow is extensional to leading order, with the in-plane262
velocity �̃�0 independent of 𝑧, i.e.,263

�̃�0 = �̃�0 (�̃�, 𝑡) . (4.2)264

The net mass-conservation equation (2.7) thus reduces to265

𝜕ℎ0
𝜕𝑡

+ ∇̃ · (ℎ0�̃�0) = 0. (4.3)266

Next we use the constitutive relation (4.1a) to evaluate the leading-order in-plane stress267
�̃�0 and thus from (2.10) the in-plane tension tensor, namely268

T0 =
(
2 + 2ℎ0∇̃ · �̃�0

)
�̃� + ℎ0

(
∇̃�̃�0 + ∇̃�̃�𝑡

0
)
. (4.4)269

In this expression, the first factor of 2 is the contribution due to surface tension, and the270
remaining terms (proportional to ℎ0) are the viscous contributions. Let us denote the region271
of the �̃�-plane occupied by the sheet by Ω, with boundary 𝜕Ω. Then the governing equation272
and boundary condition for T0, namely273

∇̃ · T0 = 0 in Ω T0 · �̃� = 0 on 𝜕Ω, (4.5a,b)274

follow from (2.9) and (3.13), respectively. In principle, given ℎ0, the boundary-value problem275
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(4.4)–(4.5) determines both T0 and �̃�0 (up to an irrelevant rigid-body motion), and then ℎ0276
can be stepped forward in time using (4.3).277

In this paper, we focus on the behaviour of a sheet whose thickness is spatially uniform to278
leading order, i.e., for which279

ℎ0 (�̃�, 𝑡) = 𝜓(𝑡). (4.6)280

In this case, the problem (4.4)–(4.5) implies that:281

T0 (�̃�, 𝑡) = 0. (4.7)282

Although the flow is extensional at leading order, the viscous and surface tension terms in283
(2.10) exactly balance, so the leading-order tension in the sheet is identically zero. Up to284
an arbitrary rigid-body translation and rotation, the corresponding leading-order velocity is285
found from (4.4) to be given by286

�̃�0 (�̃�, 𝑡) = − �̃�

3𝜓(𝑡) . (4.8)287

Then the mass-conservation equation (4.3) reduces to ¤𝜓 − 2/3 = 0 (with the dot denoting288
differentiation) and, therefore,289

ℎ0(�̃�, 𝑡) = 𝜓(𝑡) = 1 + 2𝑡
3
. (4.9)290

In this leading-order solution, the initially uniform sheet thickness remains uniform and291
grows linearly with 𝑡, as the sheet retracts under surface tension. If we define in-plane292
Lagrangian variables �̃� by293

�̃� =
�̃�√︁
𝜓(𝑡)

(4.10)294

then, with respect to �̃�, the sheet domain, which we will now denote by Ω𝑋, remains fixed295
for all time. Of course, this result is subject to the caveat that the aspect ratio of the sheet296
must remain small, which requires that 𝜓(𝑡) ≪ 𝜖−2/3.297

4.2. Small thickness perturbations298

We have seen that the leading-order tension in the sheet is identically zero when the sheet299
thickness is spatially uniform. We now introduce small thickness perturbations of order 𝜖2300
which, as we will demonstrate, are sufficient to induce regions of compression and thus301
the possibility of buckling. To simplify the analysis, we make the change of variables from302
(�̃�, 𝑧, 𝑡) to

(
�̃�, 𝑧, 𝑡

)
, where �̃� are the Lagrangian in-plane variables introduced in (4.10). We303

then perturb about the above leading-order solution as follows:304

ℎ
(
�̃�, 𝑡

)
∼ 𝜓(𝑡) + 𝜖2ℎ1

(
�̃�, 𝑡

)
+𝑂

(
𝜖4) , (4.11a)305

�̄�
(
�̃�, 𝑡

)
∼ − �̃�

3𝜓(𝑡)3/2 + 𝜖2�̄�1
(
�̃�, 𝑡

)
+𝑂

(
𝜖4) , (4.11b)306

where the initial thickness perturbation ℎ1
(
�̃�, 0

)
is assumed to be specified. We impose the307

constraint308 ∬
Ω𝑋

ℎ1
(
�̃�, 0

)
d�̃� = 0, (4.12)309

so that the mass of the sheet is accounted for entirely by the leading-order solution.310
We also make small perturbations to the centre-surface 𝐻, so that311

𝐻
(
�̃�, 𝑡

)
∼ 𝛿𝐻1

(
�̃�, 𝑡

)
, (4.13)312
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where 0 < 𝛿 ≪ 1. The initial centre-surface displacement 𝛿𝐻1
(
�̃�, 0

)
is again assumed to313

be specified and small. The restriction to small centre-surface perturbations allows us to314
linearise about the base state 𝐻 = 0, and the size of 𝛿 in relation to 𝜖 is irrelevant. The315
resulting theory models the onset of buckling, should it occur, and remains valid so long as316
𝐻1 remains smaller than 𝑂

(
𝛿−1) .317

We recall that the in-plane tension tensor T is zero at leading order, and its asymptotic318
expansion thus takes the form319

T
(
�̃�, 𝑡

)
∼ 𝜖2T1

(
�̃�, 𝑡

)
+𝑂

(
𝜖4, 𝜖2𝛿2

)
. (4.14)320

The first-order in-plane stress �̃�1 is found by substituting the expansions (4.11)–(4.13)321
into the governing equations (2.3)–(2.5) and constitutive relations (4.1). The first nonzero322
contribution T1 to the tension is then found from the definition (2.10), which produces323

T1 = 2
(
𝜓3/2

∇̃ · �̄�1 −
ℎ1
𝜓

)
�̃� + 𝜓3/2 (

∇̃�̄�1 + ∇̃�̄�𝑡
1
)
, (4.15)324

where now the gradient operator ∇̃ is performed with respect to the new in-plane variables �̃�.325
The first-order tension satisfies a boundary-value problem analogous to (4.5), that is,326

∇̃ · T1 = 0 in Ω𝑋 T1 · �̃� = 0 on 𝜕Ω𝑋 (4.16a,b)327

(with no contributions due to perturbations in 𝜕Ω𝑋 because T0 is identically zero). As in328
§4.1, if ℎ1 is known then the problem (4.16) and constitutive relation (4.15) in principle329
determine both T1 and �̄�1, up to an arbitrary rigid-body motion. The evolution of ℎ1 is then330
determined from the first-order mass conservation equation (2.7), namely331

𝜕ℎ1
𝜕𝑡

− 2ℎ1
3𝜓

+ 𝜓3/2
∇̃ · �̄�1 = 0. (4.17)332

We can simplify the problem (4.15)–(4.17) by introducing a scaled Airy stress function333
A

(
�̃�, 𝑡

)
such that334

T1 = 𝜓−3/4ℌc [A] = 𝜓−3/4

(
𝜕2A
𝜕𝑌2 − 𝜕2A

𝜕𝑋𝜕𝑌

− 𝜕2A
𝜕𝑋𝜕𝑌

𝜕2A
𝜕𝑋2

)
, (4.18)335

which satisfies (4.16a) identically. Here we have introduced the notation ℌ[·] for the two-336
dimensional Hessian matrix and ℌc for the corresponding cofactor matrix. By eliminating337
�̄�1 from (4.15), we find that A satisfies the forced biharmonic equation338

∇̃4A + 𝜓−1/4∇̃2ℎ1 = 0, (4.19)339

and the mass-conservation equation (4.17) can be expressed as340

6
𝜕ℎ1
𝜕𝑡

+ 𝜓−3/4∇̃2A = 0. (4.20)341

By eliminating A from (4.19) and (4.20), we find that ℎ1 satisfies342

𝜕∇̃2ℎ1
𝜕𝑡

=
¤𝜓

4𝜓
∇̃2ℎ1, (4.21)343

and hence344

∇̃2ℎ1
(
�̃�, 𝑡

)
= 𝜓(𝑡)1/4∇̃2ℎ1

(
�̃�, 0

)
. (4.22)345

The first-order tension in the sheet is thus given by (4.18), where A satisfies346

∇̃4A + ∇̃2ℎ1
(
�̃�, 0

)
= 0 in Ω𝑋 (4.23a)347

Rapids articles must not exceed this page length
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and (from (4.16b))348

A =
𝜕A
𝜕𝑛

= 0 on 𝜕Ω𝑋 . (4.23b)349

Since Ω𝑋 is fixed with respect to the Lagrangian variables �̃�, the scaled stress function A350
is independent of 𝑡 and determined once and for all by the boundary-value problem (4.23).351
Thus the spatial form of the stress field (4.18) is likewise fixed, and it simply scales with352
𝜓(𝑡)−3/4 as time increases. The evolution of the thickness perturbations is then given by353

ℎ1
(
�̃�, 𝑡

)
=

(
1 − 𝜓(𝑡)1/4

)
∇̃2A

(
�̃�
)
+ ℎ1

(
�̃�, 0

)
. (4.24)354

Note that the mass constraint (4.12) on the initial thickness perturbation holds for all time,355
i.e.,356 ∬

Ω𝑋

ℎ1
(
�̃�, 𝑡

)
d�̃� = 0 (4.25)357

for all 𝑡.358

4.3. Evolution of the centre-surface359

For consistency with (4.13), we find that the bending moment tensor scales with360

M
(
�̃�, 𝑡

)
∼ 𝜖2𝛿M1

(
�̃�, 𝑡

)
, (4.26)361

where362

M1 = −𝜓
4

6
𝜕

𝜕𝑡

(
ℌ[𝐻1] + (∇̃2𝐻1) �̃�

)
− 𝜓3

18

(
4ℌ[𝐻1] + (∇̃2𝐻1) �̃�

)
. (4.27)363

By using (2.11) to eliminate N from (2.13), we thus obtain the moment balance equation in364
the form365

𝜓15/4

3

(
𝜓
𝜕∇̃4𝐻1
𝜕𝑡

+ 5
6
∇̃4𝐻1

)
= ℌc [A] : ℌ[𝐻1] . (4.28)366

We can slightly simplify this equation by defining the function367

𝐽
(
�̃�, 𝑡

)
= 𝜓(𝑡)5/4𝐻1

(
�̃�, 𝑡

)
, (4.29)368

which satisfies369

𝜕∇̃4𝐽

𝜕𝑡
= 3𝜓(𝑡)−19/4ℌc [A] : ℌ[𝐽] . (4.30)370

The effective boundary conditions (3.13) may also be expressed in terms of 𝐽 in the forms371

𝜕

𝜕𝑡

(
𝜕2𝐽

𝜕𝑛2 + ∇̃2𝐽

)
+ 1

2𝜓(𝑡)

(
𝜕2𝐽

𝜕𝑛2 − ∇̃2𝐽

)
= 0 on 𝜕Ω𝑋, (4.31a)372

𝜕

𝜕𝑡

(
𝜕3𝐽

𝜕𝑛3 − 3
𝜕∇̃2𝐽

𝜕𝑛
+ 3𝜅0∇̃2𝐽

)
+ 1

2𝜓(𝑡)

(
𝜕3𝐽

𝜕𝑛3 − 𝜕∇̃2𝐽

𝜕𝑛
− 𝜅0∇̃2𝐽

)
= 0 on 𝜕Ω𝑋 . (4.31b)373

We emphasise that these boundary conditions are again expressed in the Lagrangian frame,374
in which Ω𝑋 is a fixed domain, with known boundary Ω𝑋, whose curvature 𝜅0( �̃�) is thus375
independent of time. The curvature 𝜅 in the Eulerian domain can be recovered using 𝜅(�̃�, 𝑡) =376 √︁
𝜓(𝑡)𝜅0(�̃�

√︁
𝜓(𝑡)).377

To summarise, given the initial thickness perturbation ℎ1( �̃�, 0), the scaled Airy stress378
function A( �̃�) is fully determined by the boundary-value problem (4.23). The evolution of379
the sheet centre-surface is then governed by the partial differential equation (4.30), subject380
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to the boundary conditions (4.31) and the initial condition381

𝐽 ( �̃�, 0) = 𝐻1( �̃�, 0). (4.32)382

Of particular interest is whether certain choices of initial data ℎ1( �̃�, 0) and 𝐻1( �̃�, 0) can383
give rise to temporal growth in the centre-surface displacement 𝐻1( �̃�, 𝑡).384

From (4.18) we see that the sum of the principal stresses is given by Tr(T1) = 𝜓−3/4∇̃2A,385
and the boundary conditions (4.23b) thus imply that386 ∬

Ω𝑋

Tr(T1) d�̃� = 0. (4.33)387

It follows that, except for the trivial case where ∇̃2ℎ1( �̃�, 0) = 0 and so T1 is identically zero,388
there must be a subset of Ω𝑋 in which Tr(T1) < 0, i.e., where at least one of the principal389
stresses is negative and the sheet is thus locally under compression. In the next section we390
will show that these compressive zones can indeed give rise to transient growth in the sheet391
centre-surface by focusing on the relatively simple special case where Ω𝑋 is a disc.392

4.4. Model for a retracting viscous disc393

Now let us apply the general theory developed thus far to the particular case where Ω𝑋 is394
a disc subject to axisymmetric thickness perturbations. The disc is defined by 0 ⩽ 𝜁 < 1,395
where 𝜁 is the radial Lagrangian variable, related to the usual plane polar variable 𝑟 by396

𝜁 = 𝑟
√︁
𝜓(𝑡). The sheet thickness perturbations are given by ℎ1(𝜁, 𝑡), for which the net mass397

conservation condition (4.25) reduces to398 ∫ 1

0
𝜁ℎ1(𝜁, 𝑡) d𝜁 = 0. (4.34)399

Given this constraint, we measure the size of the thickness perturbations using a scalar400
amplitude 𝐴, defined by401

𝐴 =

[∫ 1

0
𝜁ℎ1(𝜁, 0)2 d𝜁

]1/2

. (4.35)402

From (4.22) with the assumption of axisymmetry we have403

1
𝜁

d
d𝜁

(
𝜁

d
d𝜁

) [
ℎ1(𝜁, 𝑡) − 𝜓(𝑡)1/4ℎ1(𝜁, 0)

]
= 0. (4.36)404

Imposing boundedness at the origin and the mass constraint (4.34), we deduce that405

ℎ1(𝜁, 𝑡) = 𝜓(𝑡)1/4ℎ1(𝜁, 0). (4.37)406

Similarly, (4.23a) can be integrated directly in this case to give407

∇̃2A =
1
𝜁

d
d𝜁

(
𝜁

dA
d𝜁

)
= −ℎ1 (𝜁, 0) . (4.38)408

The in-plane tension is given by409

T1(𝜁, 𝑡) = diag [𝑇1𝑟𝑟 , 𝑇1𝜃 𝜃 ] = 𝜓(𝑡)−3/4 diag
[

1
𝜁

dA
d𝜁

,
d2A
d𝜁2

]
. (4.39)410
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By integrating (4.38), we thus obtain411

𝑇1𝑟𝑟 = −𝐴𝜓(𝑡)−3/4 𝐹 (𝜁)
𝜁2 , (4.40a)412

𝑇1𝜃 𝜃 = 𝐴𝜓(𝑡)−3/4 𝐹 (𝜁) − 𝜁𝐹′ (𝜁)
𝜁2 , (4.40b)413

where we have defined the function 𝐹 such that414

𝐴𝐹 (𝜁) =
∫ 𝜁

0
𝑠ℎ1(𝑠, 0) d𝑠. (4.41)415

By including the factor 𝐴 in the definition (4.41), we ensure that 𝐹 satisfies the normalisation416
condition417 ∫ 1

0

𝐹′ (𝜁)2

𝜁
d𝜁 = 1, (4.42)418

along with the boundary conditions419

𝐹 (0) = 𝐹′ (0) = 𝐹 (1) = 0. (4.43)420

Otherwise, 𝐹 may be chosen freely by varying the initial thickness perturbation ℎ1(𝜁, 0).421
It follows from (4.40) that422

𝑇1𝑟𝑟 + 𝑇1𝜃 𝜃 = −𝐴𝜓(𝑡)−3/4 𝐹
′ (𝜁)
𝜁

= −𝜓(𝑡)−3/4ℎ1(𝜁, 0) (4.44)423

and hence, as pointed out in §4.3, for any nontrivial initial centre-surface perturbation there424
must always be regions of the disc where 𝑇1𝑟𝑟 + 𝑇1𝜃 𝜃 < 0 so the sheet is locally under425
compression.426

Although we have restricted to axisymmetric thickness perturbations, it is possible for the427
azimuthal tension 𝑇1𝜃 𝜃 to be negative. We therefore make no such restriction to the sheet428
centre-surface displacement, which may well be unstable to non-axisymmetric perturbations.429
As the problem for 𝐻1 is linear, we can write the solution as a sum over azimuthal modes,430
that is,431

𝐻1(𝜁, 𝜃, 𝑡) = 𝜓(𝑡)−5/4𝐽 (𝜁, 𝜃, 𝑡) = 𝑏(𝑡) + 𝑐(𝑡)𝜁ei𝜃 + 𝜓(𝑡)−5/4
∞∑︁

𝑚=0
𝐽 (𝑚) (𝜁, 𝑡)ei𝑚𝜃 (4.45)432

(real part assumed). The two scalars 𝑏 and 𝑐 are included to account for arbitrary rigid-body433
motions. They are chosen such that434 ∫ 2𝜋

0

∫ 1

0
𝐻1(𝜁, 𝜃, 𝑡)𝜁 d𝜁d𝜃 = 0, (4.46a)435 ∫ 2𝜋

0

∫ 1

0
𝐻1(𝜁, 𝜃, 𝑡)e−i𝜃 𝜁2 d𝜁d𝜃 = 0, (4.46b)436

which eliminate the net transverse displacement and rotation of the sheet, respectively. We437
assume that the coordinates are oriented such that the constraints (4.46) are satisfied at 𝑡 = 0.438

The centre-surface equation (4.30) becomes439

𝜕Δ2
𝑚𝐽

(𝑚)

𝜕𝑡
+ 3𝐴𝜓(𝑡)−19/4

{
1
𝜁

𝜕

𝜕𝜁

(
𝐹 (𝜁)
𝜁

𝜕𝐽 (𝑚)

𝜕𝜁

)
− 𝑚2

𝜁2
d

d𝜁

(
𝐹 (𝜁)
𝜁

)
𝐽 (𝑚)

}
= 0, (4.47)440
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where441

Δ𝑚 :=
𝜕2

𝜕𝜁2 + 1
𝜁

𝜕

𝜕𝜁
− 𝑚2

𝜁2 (4.48)442

is the Laplace operator for mode𝑚. The operator Δ𝑚 is of Cauchy–Euler form and singular at443
𝜁 = 0, and the appropriate conditions to impose on 𝐽 (𝑚) (𝜁, 𝑡) as 𝜁 → 0 depend somewhat on444
the value of𝑚. For𝑚 > 2, bounded solutions for 𝐽 (𝑚) (𝜁, 𝑡) are proportional to 𝜁𝑚 or 𝜁𝑚+2 as445
𝜁 → 0. For𝑚 = 2, the value of 𝐽 (2) (𝜁, 0) must be set to zero to ensure thatΔ2𝐽

(2) is bounded.446
For 𝑚 = 1, the value of 𝜕𝐽 (1)/𝜕𝜁 (𝜁, 0) is indeterminate and, without loss of generality, may447
be set to zero by choosing 𝑐(𝑡) appropriately in (4.45). Similarly, no generality is lost by448
setting 𝐽 (0) (0, 𝑡) to zero, by adjusting the function 𝑏(𝑡). Thus, for all mode numbers 𝑚, we449
can select a unique solution for 𝐽 (𝑚) by imposing the boundary conditions450

𝐽 (𝑚) (0, 𝑡) = 𝜕𝐽 (𝑚)

𝜕𝜁
(0, 𝑡) = 0. (4.49)451

The parameters 𝑏 and 𝑐 are then given by452

𝐻1(0, 𝜃, 𝑡) = 𝑏(𝑡) = −2𝜓(𝑡)−5/4
∫ 1

0
𝐽 (0) (𝜁, 𝑡)𝜁 d𝜁, (4.50a)453

e−i𝜃 𝜕𝐻1
𝜕𝜁

(0, 𝜃, 𝑡) = 𝑐(𝑡) = −3𝜓(𝑡)−5/4
∫ 1

0
𝐽 (1) (𝜁, 𝑡)𝜁2 d𝜁 . (4.50b)454

The boundary conditions (4.31) at the disc edge are transformed to455

𝜕

𝜕𝑡

[
2
𝜕2𝐽 (𝑚)

𝜕𝜁2 + 𝜕𝐽
(𝑚)

𝜕𝜁
− 𝑚2𝐽 (𝑚)

]
+ 1

2𝜓(𝑡)

(
𝑚2𝐽 (𝑚) − 𝜕𝐽 (𝑚)

𝜕𝜁

)
= 0, (4.51a)456

𝜕

𝜕𝑡

[
2
𝜕3𝐽 (𝑚)

𝜕𝜁3 − 3(𝑚2 + 1) 𝜕𝐽
(𝑚)

𝜕𝜁
+ 6𝑚2𝐽 (𝑚)

]
+ 1

2𝜓(𝑡)

(
1 − 𝑚2

) 𝜕𝐽 (𝑚)

𝜕𝜁
= 0 (4.51b)457

at 𝜁 = 1,458

and the initial condition for 𝐽 (𝑚) is given by459

𝐽 (𝑚) (𝜁, 0) = 1
2𝜋

∫ 2𝜋

0
𝐻1(𝜁, 𝜃, 0)e−i𝑚𝜃 d𝜃. (4.52)460

5. Numerical solution461

To calculate the evolution of the centre-surface, we solve equation (4.47) along with boundary462
conditions (4.49)–(4.51) and appropriate initial conditions. We use a Green’s function to463
invert the biharmonic operator and isolate 𝜕𝐽/𝜕𝑡, then use the method of lines to transform464
the problem into a system of ordinary differential equations which is then solved numerically.465
We present this derivation in the simplest case 𝑚 = 0, noting that the cases 𝑚 > 0 follow466
similarly. In this simpler case, it is possible to integrate the governing equation (4.47) once467
to find that the centre-surface is governed by468

𝜕

𝜕𝑡

(
𝜁2 𝜕

3𝐽 (0)

𝜕𝜁3 + 𝜁 𝜕
2𝐽 (0)

𝜕𝜁2 − 𝜕𝐽 (0)

𝜕𝜁

)
+ 3𝐴𝜓(𝑡)−19/4𝐹 (𝜁) 𝜕𝐽

(0)

𝜕𝜁
= 0, (5.1)469
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subject to the centre-surface being specified initially and boundary conditions470

𝐽 (0) = 0 at 𝜁 = 0, (5.2a)471

𝜕𝐽 (0)

𝜕𝜁
= 0 at 𝜁 = 0, (5.2b)472

2
𝜕3𝐽 (0)

𝜕𝜁2𝜕𝑡
+ 𝜕

2𝐽 (0)

𝜕𝜁𝜕𝑡
− 1

2𝜓(𝑡)
𝜕𝐽 (0)

𝜕𝜁
= 0 at 𝜁 = 1. (5.2c)473

We can solve the problem (5.1)–(5.2) for 𝜕𝐽 (0/𝜕𝑡 in the form474

𝜕𝐽 (0)

𝜕𝑡
(𝜁, 𝑡) = −3𝐴𝜓(𝑡)−19/4

∫ 1

0
𝐺 (𝜁, 𝜉) 𝜕𝐽

(0)

𝜕𝜁
(𝜉, 𝑡)𝐹 (𝜉) d𝜉 + 𝜁2

12𝜓(𝑡)
𝜕𝐽 (0)

𝜕𝜁
(1, 𝑡), (5.3)475

where the Green’s function 𝐺 (𝜁, 𝜉) satisfies476

𝜁2 𝜕
3𝐺

𝜕𝜁3 + 𝜁 𝜕
2𝐺

𝜕𝜁2 − 𝜕𝐺

𝜕𝜁
= 𝛿(𝜁 − 𝜉) 0 < 𝜁 < 1, (5.4a)477

𝐺 =
𝜕𝐺

𝜕𝜁
= 0 𝜁 = 0, (5.4b)478

2
𝜕2𝐺

𝜕𝜁2 + 𝜕𝐺
𝜕𝜁

= 0 𝜁 = 1, (5.4c)479

and is given by480

𝐺 (𝜁, 𝜉) =


− 𝜁

2

12

(
1 + 3

𝜉2

)
0 ⩽ 𝜁 ⩽ 𝜉 ⩽ 1,

−3 + 𝜁2

12
+ 1

2
log

(
𝜉

𝜁

)
0 ⩽ 𝜉 < 𝜁 ⩽ 1.

(5.5)481

We discretize spatially to transform equation (5.3) into a system of ordinary differential482
equations in 𝑡, which is then solved numerically as an initial-value problem, with the initial483
conditions given by equation (4.52). When solving the centre-surface equation (4.47) for484
a general 𝑚, we employ the same method, using a Green’s function to isolate the time-485
derivative followed by the method of lines. We then use (4.50) to determine the functions486
𝑏(𝑡) and 𝑐(𝑡), and finally reconstruct the centre-surface displacement using (4.45).487

To see whether any selection of modes occurs, we prescribe a pseudo-random initial488
centre-surface profile, choose an initial thickness profile and analyse whether any modes are489
dominant. For this exercise we use the thickness perturbation490

ℎ1(𝜁, 0) = 𝐴𝐵 sin (2𝜋𝜁) /𝜁, (5.6)491

where 𝐵 is chosen to satisfy the normalisation condition (4.35). When 𝐵 > 0, the thickness492
profile (5.6) corresponds to the disc having a thicker centre, and thinner edges. It causes493
the radial tension (4.40a) to be negative everywhere and the azimuthal tension (4.40b) to be494
negative towards the centre of the disc, as seen in figure 3.495

For the initial centre-surface profile, we use a sum of Bessel functions in 𝜁 and a sum496
of Fourier modes in 𝜃, with contributions from 𝑚 = 0, 1, . . . , 10. The coefficients for this497
series are then drawn randomly from a uniform distribution between −1 and 1, and a contour498
plot of the resulting initial centre-surface is shown in figure 4(a). We then solve the problem499
(4.47)–(4.52) for the centre-surface evolution numerically, following the method described500
above.501

In figure 4(b), we show the time evolution of the centre-surface at the point (𝜁, 𝜃) = (1, 0)502
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Figure 3: The thickness perturbation (5.6) (with 𝐵 > 0) and the corresponding radial and
azimuthal tensions, given by (4.40).
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Figure 4: (a) Pseudo-random initial centre-surface profile, and (b), the displacement of the
edge of the disc, 𝐻1 (1, 0, 𝑡), when subject to the initial thickness perturbation (5.6) with
𝐴 = 30 and 𝐵 > 0. The coloured lines represent the times at which the contour plots in

figure 5 are plotted, namely 𝑡 = 0, 𝑡 = 0.5, 𝑡 = 1.5 and 𝑡 = 6.

on the boundary of the disc, for the solution with 𝐵 > 0 and 𝐴 = 30. We observe transient503
growth in this case, before decay, with the centre-surface eventually becoming flat. In figure 5504
we show how the centre-surface profile evolves through a sequence of snapshots, plotted505

using the Eulerian radial coordinate 𝑟 = 𝜁/
√︁
𝜓(𝑡) to emphasise the radial shrinkage. We506

see that the axisymmetric mode 𝑚 = 0 quickly becomes dominant, though the influence of507
non-axisymmetric modes remains noticeable until very late in the process. We hypothesize508
that radial tension 𝑇1𝑟𝑟 being negative everywhere (as shown in figure 3) is responsible for509
selecting the axisymmetric mode in this example.510

Next, we consider an example with the same pseudo-random initial centre-surface profile511
(shown in figure 4(a)) and the same value of 𝐴 = 30, but now with 𝐵 < 0, i.e., using the512
negative of the thickness perturbation just considered. Changing the sign of 𝐵 also reverses513
the tensions, so that 𝑇1𝑟𝑟 is now positive everywhere and 𝑇1𝜃 𝜃 has a region of compression514
near the edge of the disc. The centre-surface again exhibits transient growth, before decaying515
to zero, as can be seen in figure 6(a). Figure 6(b) shows time snapshots of the displacement516
at the edge of the disc as a function of 𝜃. We observe that the pseudo-random initial data517
(in orange) is quickly swamped by transient growth in the 𝑚 = 2 mode, which then slowly518
decays. The contour plots in figure 7 likewise capture the dominance of 𝑚 = 2, though519
the influence of the other modes is still noticeable, especially in figure 7(a). By comparing520
figures 4(b) and 6(a), we observe that, for the same value of 𝐴, there is more growth in the521
case where 𝑚 = 2 is dominant compared with the case where 𝑚 = 0 is dominant.522
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Figure 5: Contour plots of the centre-surface taken at (a) 𝑡 = 0.5, (b) 𝑡 = 1.5 and (c) 𝑡 = 6.
The initial centre-surface is pseudo-random, shown in figure 4(a), and the thickness

perturbation is given by (5.6) with 𝐴 = 30 and 𝐵 > 0. Here, (a) corresponds to the red
dashed line in figure 4(b), (b) to the blue line and (c) to the black line.
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Figure 6: (a) Displacement of the edge of the disc, 𝐻1 (1, 0, 𝑡), with the thickness
perturbation given by (5.6) with 𝐴 = 30 and 𝐵 < 0, and a pseudo-random initial

centre-surface profile, shown in figure 4(a). The coloured lines represent the times at
which the contour plots in figure 7 are taken. These are 𝑡 = 0, 𝑡 = 0.5, 𝑡 = 1.4 and 𝑡 = 6.
(b) The displacement at the edge of the disc, 𝐻1 (1, 𝜃, 𝑡), for time snapshots, where the

colours correspond to the times in (a).
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Figure 7: Contour plots of the centre-surface taken at (a) 𝑡 = 0.5, (b) 𝑡 = 1.4 and (c) 𝑡 = 6,
where the initial centre-surface is random, shown in figure 4(a), and the thickness

perturbation is given by (5.6) with with 𝐴 = 30 and 𝐵 < 0. (a) corresponds to the red
dashed line in figure 6(a), (b) to the blue line and (c) to the black line.
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We now investigate a different example in which the mode number 𝑚 is fixed, and 𝐻 and ℎ523
are both combinations of two Gaussian distributions, with means ±𝜇𝐻 and ±𝜇ℎ respectively.524
Specifically, we choose525

ℎ1(𝜁, 0) = 𝐴𝐵ℎ (𝜇ℎ)
{
exp

[
−(𝜁 − 𝜇ℎ)2

2(0.2)2

]
+ exp

[
−(𝜁 + 𝜇ℎ)2

2(0.2)2

]
+ 𝐶ℎ (𝜇ℎ)

}
, (5.7)526

where 𝐵ℎ (𝜇ℎ) > 0 and 𝐶ℎ (𝜇ℎ) < 0 are set by the net mass and normalisation con-527
straints (4.34) and (4.35), and

𝐻1(𝜁, 𝜃, 0) = 𝐵𝐻 (𝜇𝐻 )ei𝑚𝜃

{
exp

[
−(𝜁 − 𝜇𝐻 )2

2(0.2)2

]
+ exp

[
−(𝜁 + 𝜇𝐻 )2

2(0.2)2

]
528

+ 𝐶𝐻 (𝜇𝐻 ) + 𝐷𝐻 (𝜇𝐻 )𝜁
}
. (5.8)529

The fixing of the normalisation constant 𝐵𝐻 (𝜇𝐻 ) is discussed below. The final two constants530
in (5.8) depend on the value of 𝑚. We choose 𝐶𝐻 (𝜇𝐻 ) such that the displacement constraint531
(4.46a) is satisfied when 𝑚 = 0 and such that 𝐻1(0, 𝜃, 0) = 0 for 𝑚 > 0, while 𝐷𝐻 (𝜇𝐻 ) is532
chosen to satisfy the rotation constraint (4.46b) when 𝑚 = 1 and otherwise is equal to zero.533
The Gaussian profiles (5.7) and (5.8), with the four free parameters 𝑚, 𝜇𝐻 , 𝜇ℎ and 𝐴, allow534
us to analyse the effects of simultaneously varying the initial centre-surface and thickness535
perturbations on the evolution of the centre-surface.536

To quantify the transient growth of the centre-surface, we define the maximum difference537
between any two points on the centre-surface at each time, at a fixed angle 𝜃 = 0. We denote538
this quantity by 𝑑 (𝑡), where539

𝑑 (𝑡) = max
𝜁

[𝐻1(𝜁, 0, 𝑡)] − min
𝜁

[𝐻1(𝜁, 0, 𝑡)] , (5.9)540

and we infer that transient growth occurs if ever 𝑑′ (𝑡) > 0. As we have linearised with respect541
to the centre-surface displacement, 𝐻, we have the freedom to scale it such that 𝑑 (0) = 1542
whenever 𝐻1 ≠ 0 (this choice fixes the normalisation constant 𝐵𝐻 (𝜇𝐻 ) in (5.8)). We are543
also interested in the overall maximum growth, 𝑑∗, and the time 𝑡∗ at which this maximum544
occurs, i.e.,545

𝑑∗ = max
𝑡⩾0

[𝑑 (𝑡)] = 𝑑 (𝑡∗), 𝑡∗ = arg max
𝑡⩾0

[𝑑 (𝑡)] . (5.10a,b)546

When there is no transient growth, we have 𝑑∗ = 1 and 𝑡∗ = 0.547
With the initial thickness and centre-surface perturbations given by (5.7) and (5.8), the548

value of 𝑑∗ depends on 𝑚, 𝜇𝐻 , 𝜇ℎ and 𝐴. We choose to fix 𝐴 = 30 and, at each value of549
(𝜇𝐻 , 𝜇ℎ), maximise 𝑑∗ over the mode number 𝑚. The resulting contour plot of 𝑑∗ in the550
(𝜇𝐻 , 𝜇ℎ)-plane is shown in figure 8. We see that the plane is divided into distinct regions, in551
each of which a different mode is dominant, either 𝑚 = 0, 𝑚 = 1 or 𝑚 = 2. Furthermore, we552
observe that the value of 𝑑∗ is significantly lower in the regions where𝑚 = 1 is dominant than553
it is when either of the other two modes is dominant. The overall maximum occurs with𝑚 = 2554
and 𝜇ℎ close to 1, when the value of 𝑑∗ can exceed 500. Generally, the non-axisymmetric555
mode 𝑚 = 2 is dominant when the thickness is greater at the edge of the disc than at the556
centre, and 𝑚 = 0 is dominant when the reverse is true.557

In figure 9 we show the initial centre-surface displacement 𝐻1(𝜁, 0, 0) and the normalised558
maximal displacement 𝐻1(𝜁, 0, 𝑡∗)/𝑑∗ at three particular values of (𝜇𝐻 , 𝜇ℎ), indicated by the559
red crosses in figure 8. In figure 9(a) we show a case where the 𝑚 = 2 mode dominates; here560
the maximal centre-surface profile is monotonic, with its maximum and minimum roughly561
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Figure 8: A contour plot of log10 𝑑∗, where 𝑑∗ is defined by (5.10), versus the parameters
𝜇𝐻 and 𝜇ℎ characterising the initial centre-surface and thickness perturbations, given by

(5.8) and (5.7) with 𝐴 = 30, respectively. The black dashed curves delineate regions where
the dominant mode changes. The numbered red crosses denote where in the

(𝜇𝐻 , 𝜇ℎ)-plane the centre-surface is plotted in figure 9. The faint green dashed lines
indicated by by (A), (B) and (C) denote the values of 𝜇ℎ for which the stress profiles are

plotted in figure 10.

coinciding with those of the initial condition. In figure 9(c) we show a case where the 𝑚 = 0562
mode is dominant; again we find that the maximal centre-surface profile at is monotonic563
and quite well approximated by the initial condition. Finally, in figure 9(b) we show a rare564
example where the 𝑚 = 1 mode dominates; here the centre-surface is non-monotonic, with565
an interior maximum. There is little change between the initial and maximal centre-surface566
profiles because here 𝑡∗ is close to zero and 𝑑∗ is close to 1.567

To illustrate why different modes are dominant in different regions, we show the stress568
profiles for three different thickness perturbations, one in which 𝑚 = 0 is typically dominant569
(figure 10(a)), an intermediate case where there is not much growth at all (figure 10(b)), and570
a case where 𝑚 = 2 is typically dominant (figure 10(c)); the corresponding values of 𝜇ℎ571
are indicated by green dashed lines in figure 8. In the first case (A), the radial stress, 𝑇1𝑟𝑟572
is negative throughout, which indeed we would expect to promote axisymmetric buckling573
where 𝑚 = 0 is dominant. On the other hand, in case (C), the azimuthal stress, 𝑇1𝜃 𝜃 is574
negative near the edge of the disc, while the radial stress is positive everywhere, giving rise575
to non-axisymmetric buckling. In the intermediate case (B), both stress components change576
sign and, while there is a band of azimuthal compression, at the edge and centre of the577
disc, 𝑇1𝜃 𝜃 is positive; this stress field does not significantly excite either axisymmetric or578
non-axisymmetric modes.579
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Figure 9: The initial centre-surface displacement, 𝐻1 (𝜁, 0, 0) (dashed), and normalised
maximal displacement 𝐻1 (𝜁, 0, 𝑡∗)/𝑑∗ (solid), for (𝑚, 𝜇𝐻 , 𝜇ℎ) = (a): (2,0.2,0.9), (b):

(1,0.45,0.2) , (c): (0,0.8,0.4). These positions are shown by red crosses in figure 8.
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Figure 10: The initial radial and azimuthal tensions, given by (4.40) with 𝑡 = 0, where the
thickness perturbation is given by (5.7) with 𝐴 = 30 and (a) 𝜇ℎ = 0.2, (b) 𝜇ℎ = 0.6, and

(c) 𝜇ℎ = 0.9. These positions are shown by green dashed lines in figure 8.

6. Eigenvalue problem approximation580

6.1. Axisymmetric eigenvalue problem581

We have seen in §5 that it is typical for the centre-surface to grow transiently, then decay582
for large time. We also see that certain modes can be selected, with either 𝑚 = 0 or 𝑚 = 2583
appearing to be dominant for most parameter values. We now show that this behaviour can584
be quantified by making some approximations to the boundary conditions (4.51) at the edge585
of the disc. For simplicity, we begin by considering an axisymmetric centre-surface, before586
generalising to a non-axisymmetric centre-surface to understand the mode selection.587

Seeking a separable solution to the axisymmetric centre-surface equation (5.1), we make588
the ansatz589

𝐻1(𝜁, 𝑡) = 𝜓(𝑡)−5/4𝐽 (0) (𝜁, 𝑡) = 𝜓(𝑡)−5/4 exp
[
6𝐴
5𝜆

(
𝜓(𝑡)−15/4 − 1

)]
𝑔(𝜁), (6.1)590

where 𝜆 is an eigenvalue. Then the axisymmetric centre-surface equation and boundary591
conditions (5.1)–(5.2) become592

𝜁𝑔′′′ (𝜁) + 𝑔′′ (𝜁) − 1
𝜁
𝑔′ (𝜁) = 𝜆 𝐹 (𝜁)

𝜁
𝑔′ (𝜁), (6.2)593

and594

𝑔(0) = 𝑔′ (0) = 0, (6.3)595

2𝑔′′ (1) + 𝑔′ (1) + 𝜆

6𝐴
𝜓(𝑡)15/4𝑔′ (1) = 0. (6.4)596

We see that, due to the final term in (6.4), the problem does not accept a fully separable597
solution. However, in the limit of large thickness perturbations where 𝐴 ≫ 1, the boundary598
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Figure 11: The evolution of the centre-surface displacement at the edge of the disc,
𝐻1 (1, 𝑡), calculated from the full centre-surface boundary-value problem (5.1)–(5.2) in

red, and via the eigenvalue approximation (6.7) in black. The initial thickness and
centre-surface perturbations are given by ℎ1 (𝜁, 0) = 10 sin(2𝜋𝜁)/𝜁 and

𝐻1 (𝜁, 0) = 𝜁2 (15 − 6𝜁)/9.

condition (6.4) may be approximated by599

2𝑔′′ (1) + 𝑔′ (1) = 0. (6.5)600

This approximation breaks down for large times where 𝑡 = O
(
𝐴4/15) , but allows us to capture601

the early dynamics where buckling may occur, even if it is transient. For given 𝐹 (𝜁), the602
eigenvalue problem (6.2) with boundary conditions (6.3) and (6.5) may be solved numerically603
by shooting, with asymptotic behaviour 𝑔(𝜁) ∼ 𝜁2 as 𝜁 → 0 and 𝜆 determined as a shooting604
parameter by imposing the boundary condition (6.5).605

Given 𝐹 (𝜁) (satisfying the conditions (4.42) and (4.43)), equation (6.2), along with the606
boundary conditions (6.3) and (6.5) constitutes an eigenvalue problem for 𝑔 and 𝜆. The607
eigenfunctions, 𝑔𝑘 , satisfy an orthogonality condition, given by608

⟨𝑔 𝑗 , 𝑔𝑘⟩ =
∫ 1

0

𝐹 (𝜁)
𝜁

𝑔′𝑗 (𝜁)𝑔′𝑘 (𝜁) d𝜁 = 0 for 𝑗 ≠ 𝑘. (6.6)609

(We note that 𝐹 need not be positive on (0, 1), in which case ⟨·, ·⟩ does not formally define610
an inner product.) Having computed all the eigenvalues 𝜆𝑘 and eigenfunctions 𝑔𝑘 , we can611
reconstruct the solution for the centre-surface as an eigenfunction expansion, namely612

𝐻1(𝜁, 𝑡) = 𝜓(𝑡)−5/4
∑︁
𝑘

⟨𝐻1(𝜁, 0), 𝑔𝑘⟩
⟨𝑔𝑘 , 𝑔𝑘⟩

exp
[

6𝐴
5𝜆𝑘

(
𝜓(𝑡)−15/4 − 1

)]
𝑔𝑘 (𝜁). (6.7)613

We check the validity of using the approximate boundary condition (6.5) instead of (6.4)614
with a thickness perturbation ℎ1(𝜁, 0) = 10 sin(2𝜋𝜁)/𝜁 , corresponding to 𝐴 ≈ 12.48, and615
the initial centre-surface given by 𝐻1(𝜁, 0) = 𝜁2(15 − 6𝜁)/9. In figure 11 we show the616
evolution of the centre-surface displacement 𝐻1(1, 𝑡) at the edge of the disc, predicted by617
the full numerical solution described in §5, and by the approximate solution (6.7). We see618
that there is very good agreement in the early-time behaviour and good qualitative agreement619
between the two solutions for all times, with the eigenfunction expansion (6.7) capturing well620
the growth and decay of the full solution. Nevertheless, we will demonstrate below that the621
approximate solution (6.7) provides good estimates of both the duration and the amplitude622
of the transient growth.623
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6.2. Quantifying the centre-surface deviation624

It is difficult to make much analytical progress with the full expansion (6.7), so let us consider625
for now the case where the centre-surface perturbation is exactly an eigenfunction. Then we626
only have a contribution from one term in the series, say627

𝐻1(𝜁, 𝑡) = 𝑐𝜓(𝑡)−5/4 exp
[
6𝐴
5𝜆

(
𝜓(𝑡)−15/4 − 1

)]
𝑔(𝜁). (6.8)628

In this instance, assuming we have again normalised 𝐻1 such that 𝑑 (0) = 1, we explicitly629
calculate the maximum difference (5.9) to be given by630

𝑑 (𝑡) = 𝜓(𝑡)−5/4 exp
[
6𝐴
5𝜆

(
𝜓(𝑡)−15/4 − 1

)]
. (6.9)631

It is thus possible for the solution to grow only if 𝜆 is negative. However, by taking the inner632
product of the eigenvalue equation (6.2) with 𝑔′, we find that the eigenvalues are given by633

𝜆

𝐴
=
𝑔′ (1)2/2 +

∫ 1
0

[
𝜁𝑔′′ (𝜁)2 + 𝑔′ (𝜁)2/𝜁

]
d𝜁∫ 1

0 𝜁𝑇1𝑟𝑟 (𝜁, 0)𝑔′ (𝜁)2 d𝜁
. (6.10)634

Here, the numerator is non-negative and the denominator depends on the initial radial635
tension. As we would expect (e.g., Filippov & Zheng 2010), if the radial tension is positive636
everywhere, then all of the eigenvalues 𝜆 are positive and transient growth is impossible. On637
the other hand, if the radial tension is negative everywhere then the eigenvalues are negative638
and transient buckling is possible; if 𝑇1𝑟𝑟 changes sign then we can have both positive and639
negative eigenvalues.640

Assuming that 𝜆 is negative, we find that the stationary point of 𝑑′ (𝑡) = 0 occurs at 𝑡 = 𝑡∗,641
where642

𝜓(𝑡∗) =
2𝑡∗
3

+ 1 =

(
−18𝐴

5𝜆

)4/15
. (6.11)643

To have 𝑑 (𝑡) initially increasing, we need644

𝐴 > −5𝜆
18

> 0, (6.12)645

i.e., we need both for the problem (6.2)–(6.5) to admit a negative eigenvalue 𝜆 and for 𝐴 to646
be sufficiently large. As seen in Ryan et al. (2024), there is a threshold for the amplitude of647
the thickness perturbation, above which there is transient buckling and below which there is648
not. At the stationary point 𝑡 = 𝑡∗, we calculate the maximum centre-surface deformation649

𝑑∗ = 𝑑 (𝑡∗) =
(
−5𝜆
18𝐴

)1/3
exp

(
−1

3
− 6𝐴

5𝜆

)
. (6.13)650

We infer that thickness perturbations of amplitude 𝜖2𝐴 where 𝐴 = 𝑂
(
1/log (1/𝛿)

)
can cause651

𝐻1 to grow by an order of magnitude in 𝛿, thus invalidating the neglect of nonlinear terms652
in §4.2. We note also that, in the full eigenfunction expansion (6.7), the term corresponding653
to the largest negative eigenvalue 𝜆∗ (i.e., the negative eigenvalue of smallest amplitude)654
will dominate the solution when 𝑡 ∼ 𝑡∗, so we can continue to use the approximations655
(6.11) and (6.13) for general centre-surface profiles comprising a mix of eigenfunctions. We656
thus predict that the maximal time and centre-surface deformation amplitude should satisfy657
𝜓(𝑡∗) = 𝑂

(
𝐴4/15) and 𝑑 (𝑡∗) = 𝑂

(
𝐴−1/3e𝑘𝐴

)
as 𝐴→ ∞, for some constant 𝑘 .658

We now compare these predicted relationships to numerical results calculated using the659
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Figure 12: (a) 𝜓(𝑡∗) and (b) 𝑑 (𝑡∗)𝐴1/3 plotted versus the thickness perturbation amplitude
𝐴, ad calculated from the full boundary-value problem (5.1)–(5.2). We use a thickness

perturbation given by (5.7), with 𝜇ℎ = 0.3, 0.4, 0.5, and initial centre-surface
displacement 𝐻1 (𝜁, 0) = 𝜁2.

full centre-surface equation (5.1) and boundary conditions (5.2). We take the initial centre-660
surface profile 𝐻1(𝜁, 0) = 𝜁2, and Gaussian thickness perturbation (5.7). In figure 12(a)661
we observe, as expected, a threshold value of 𝐴 for transient growth, above which there662
is a clear 4/15 power law. We see that there is excellent agreement between the predicted663
relationships, (6.11) and (6.13), and the numerical solution (figure 12) once the threshold for664
transient growth has been reached. Moreover, the asymptotically straight curves seen using665
log-linear axes in figure 12(b) are consistent with the predicted exponential dependence of666
𝑑∗ on 𝐴.667

We note that the maximal time 𝑡∗ ∼ 𝐴4/15 occurs precisely when the approximation (6.5)668
breaks down. Nevertheless, we conclude from the excellent agreement observed in figure 12669
that the asymptotic predictions (6.11) and (6.13) correctly capture the power-law behaviour670
for large 𝐴, though not necessarily the prefactors.671

6.3. Maximising axisymmetric buckling672

We recall from figure 8 that the magnitude of the transient growth strongly depends on both673
the initial centre-surface and the thickness profiles. Now we pose the question of which674
combination of thickness and centre-surface perturbations gives rise to the largest transient675
growth. The above analysis suggests the following related problem: which function 𝐹 (𝜁),676
satisfying the normalisation condition (4.42) and boundary conditions (4.43), gives rise to677
the smallest possible (in magnitude) negative eigenvalue 𝜆∗ of the problem (6.2)–(6.5)? We678
then maximise over centre-surface perturbations by choosing 𝐻1(𝜁, 0) to be proportional to679
the eigenfunction 𝑔∗(𝜁) corresponding to the extremal eigenvalue 𝜆∗.680

Mathematically, our problem is then:681

𝜆∗ = min
𝐹 (𝜁 )

{|𝜆 | : 𝜆 < 0} , (6.14)682

subject to 𝐹 satisfying the the constraint (4.42) and boundary conditions (4.43), and {𝑔, 𝜆}683
solving the eigenvalue problem (6.2), (6.3) and (6.5). We perturb around the extremal684
solutions by setting 𝑔′ ↦→ 𝑔′∗ + 𝜒, 𝐹 ↦→ 𝐹∗ + 𝜙, while 𝜆 = 𝜆∗ remains stationary. Then,685
substituting into (6.2), (6.3) and (6.5), we get686

(𝜁 𝜒(𝜁)′)′ − 1 + 𝜆∗𝐹∗(𝜁)
𝜁

𝜒(𝜁) = 𝜆∗
𝑔′∗(𝜁)𝜙(𝜁)

𝜁
, (6.15a)687

𝜒(0) = 2𝜒′ (1) + 𝜒(1) = 0. (6.15b)688
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This problem for 𝜒 is self-adjoint, with the homogeneous problem satisfied by 𝑔′∗(𝜁). By the689
Fredholm Alternative Theorem, we obtain the solvability condition690 ∫ 1

0

𝑔′∗(𝜁)2

𝜁
𝜙(𝜁) d𝜁 = 0. (6.16)691

Meanwhile, by perturbing the conditions (4.42) and (4.43) on 𝐹 we find692 ∫ 1

0

d
d𝜁

(
𝐹′
∗ (𝜁)
𝜁

)
𝜙(𝜁) d𝜁 = 0, (6.17a)693

𝜙(0) = 𝜙′ (0) = 𝜙(1) = 0. (6.17b)694

From (6.15) and (6.17), we deduce that the extremal functions 𝑔∗ and 𝐹∗ satisfy the boundary-695
value problems696

𝑔′′′∗ (𝜁) + 𝑔
′′
∗ (𝜁)
𝜁

− 1 + 𝜆∗𝐹∗(𝜁)
𝜁2 𝑔′∗(𝜁) = 0, (6.18a)697

𝑔∗(0) = 𝑔′∗(0) = 2𝑔′′∗ (1) + 𝑔′∗(1) = 0, (6.18b)698

𝐹′′
∗ (𝜁) − 𝐹′

∗ (𝜁)
𝜁

− 𝜇𝑔′∗(𝜁)2 = 0, (6.18c)699

𝐹∗(0) = 𝐹′
∗ (0) = 𝐹∗(1) = 0. (6.18d)700

The extremal eigenvalue 𝜆∗ is determined as part of the solution, while the additional701
eigenvalue 𝜇 is associated with the constraint (4.42) and may be set to ±1 by scaling 𝑔∗702
appropriately. We solve the problem (6.18) by shooting from 𝜁 = 0, with the asymptotic703
behaviour 𝑔∗(𝜁) ∼ 𝜁2 and 𝐹∗(𝜁) ∼ 𝑐𝜁2 as 𝜁 → 0, where 𝑐 and 𝜆 are determined as shooting704
parameters by imposing the boundary conditions at 𝜁 = 1.705

To validate the results of the above approach, we also calculate the extremal kernel function706
𝐹∗ and the corresponding extremal eigenvalue 𝜆∗ and eigenfunction 𝑔∗ numerically using707
the Rayleigh–Ritz method (see, for example, Collins 2006). We write (6.10) in the form708
𝜆 = 𝐼 [𝑔]/𝐾 [𝑔], where709

𝐼 [𝑔] = 𝑔′′ (1)2

2
+

∫ 1

0

(
𝜁𝑔′′ (𝜁)2 + 𝑔

′ (𝜁)2

𝜁

)
d𝜁, 𝐾 [𝑔] =

∫ 1

0

𝐹 (𝜁)𝑔′ (𝜁)2

𝜁
d𝜁 . (6.19a,b)710

We approximate 𝑔(𝜁) and 𝐹 (𝜁) by truncated power series in 𝑥, with the coefficients chosen to711
satisfy the boundary conditions (6.18b) and (6.18d), as well as the normalisation conditions712
(4.42) and 𝐾 [𝑔] = 1. The remaining coefficients are then varied to minimise 𝐼 [𝑔].713

For this exercise, we fix 3 degress of freedom (DoF) in 𝑔 (which is therefore approximated714
by a polynomial of degree 6) while taking 1, 2 or 3 DoF in 𝐹 (which is approximated by715
a polynomial of degree 4, 5 or 6). The approximate values thus obtained for the smallest716
negative eigenvalue are given in table 1. We see that this sequence of eigenvalues approaches717
a limit as the number of DoF is increased, and that the limiting value agrees with the value718
of 𝜆∗ computed from the ‘optimal’ boundary-value problem (1). This extremal value of 𝜆719
tells us about the absolute maximum axisymmetric transient growth that can be observed for720
a given (large) perturbation amplitude 𝐴.721

We plot the calculated thickness perturbation profiles in figure 13(a) and indeed see that722
three DoF in both 𝑔 and 𝐹 are sufficient to give an excellent polynomial approximation723
to the thickness perturbation that maximises axisymmetric transient growth. This extremal724
perturbation corresponds to the sheet being slightly thicker at the centre and thinner towards725
the edge, and indeed these kinds of perturbations were also found to promote axisymmetric726
buckling in the numerical experiments performed in §5. The corresponding optimal initial727
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Method Eigenvalue
1 DoF -8.3423
2 DoF -8.3132
3 DoF -8.3015
‘optimal’ -8.3014

Table 1: Value of the smallest negative eigenvalue 𝜆∗, computed using the Rayleigh–Ritz
method with 3 degrees of freedom (DoF) in 𝑔 and varying DoF in 𝐹. The ‘optimal’ value

is obtained by solving the boundary-value problem (6.18).
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Figure 13: (a): Plot of the extremal thickness perturbation, ℎ1 (𝜁, 0) = 𝐹′
∗ (𝜁)/𝜁 , versus 𝜁 .

The solid curves are obtained using the Rayleigh–Ritz approximation with 3 degrees of
freedom (DoF) in 𝑔 and varying DoF in 𝐹. The dashed curve is the ‘optimal’ perturbation,

given by the solution of (6.18). (b): Plot of the optimal initial centre-surface profile,
𝐻1 (𝜁, 0) = 𝑔∗ (𝜁) versus 𝜁 .

centre-surface displacement is shown in figure 13(b). This characteristic bowl-like shape is728
very similar to the maximal axisymmetric displacement shown in figure 9(c), illustrating729
again how the results of this section can help us to understand what kinds of centre-surface730
profiles are likely to be selected by the dynamics.731

6.4. Non-axisymmetric eigenvalue problem732

In the limit of large 𝐴, the dynamics can be approximately described by an eigenvalue733
problem also in the non-axisymmetric case. Now when we make the ansatz734

𝐻1(𝜁, 𝜃, 𝑡) = 𝜓(𝑡)−5/4𝐽 (𝑚) (𝜁, 𝑡)ei𝑚𝜃 = 𝜓(𝑡)−5/4 exp
[

6𝐴
5𝜆 (𝑚)

(
𝜓(𝑡)−15/4 − 1

)]
𝑔(𝜁)ei𝑚𝜃 ,

(6.20)735
the centre-surface equation (4.47) is transformed to736

Δ2
𝑚 𝑔(𝜁) = 𝜆 (𝑚)

[
1
𝜁

𝜕

𝜕𝜁

(
𝐹 (𝜁)
𝜁

𝜕𝐽 (𝑚)

𝜕𝜁

)
− 𝑚2

𝜁2
d

d𝜁

(
𝐹 (𝜁)
𝜁

)
𝐽 (𝑚)

]
, (6.21)737

with the boundary conditions738

𝑔(0) = 0, (6.22a)739

𝑔′ (0) = 0, (6.22b)740

2𝑔′′ (1) + 𝑔′ (1) − 𝑚2𝑔(1) = 0, (6.22c)741

2𝑔′′′ (1) − 3(𝑚2 + 1)𝑔′ (1) + 6𝑚2𝑔(1) = 0. (6.22d)742
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As in §6.1, terms of order 𝜓(𝑡)15/4/𝐴 have been neglected in the boundary conditions (6.22c)743
and (6.22d), so this approximation breaks down for sufficiently large 𝑡.744

By taking the inner product of (6.21) with 𝑔, we find that the eigenvalue 𝜆 (𝑚) can be745
expressed as746

𝜆 (𝑚)

𝐴
=

2
∫ 1

0

[
𝜁𝑔′′ (𝜁)2 +

(
1 + 2𝑚2

) 𝑔′ (𝜁)2

𝜁
+ 𝑚2

(
𝑚2 − 4

) 𝑔(𝜁)2

𝜁3

]
d𝜁

+ 𝑔′ (1)2 − 2𝑚2𝑔(1)𝑔′ (1) − 5𝑚2𝑔(1)2

2
∫ 1

0

[
𝜁𝑇1𝑟𝑟 (𝜁, 0)𝑔′ (𝜁)2 + 𝑚2𝑇1𝜃 𝜃 (𝜁, 0)𝑔(𝜁)2

𝜁

]
d𝜁

. (6.23)747

In the limit as 𝑚 → ∞, the formula (6.23) becomes748

𝜆 (𝑚)

𝐴
∼

𝑚2
∫ 1

0
𝑔(𝜁)2/𝜁3 d𝜁∫ 1

0
𝑇1𝜃 𝜃 (𝜁, 0)𝑔(𝜁)2/𝜁 d𝜁

. (6.24)749

Therefore negative eigenvalues can exist, implying that non-axisymmetric buckling is750
possible, whenever the hoop tension 𝑇1𝜃 𝜃 is negative. However, we note that the eigenvalues751
grow like 𝑚2 for large 𝑚, so that the magnitude of any transient growth will decrease752
exponentially for larger mode numbers.753

We now use the eigenvalue approximation to explain the results concerning mode selection754
found in figure 8. Assuming that the behaviour of the centre-surface is dominated by755
the smallest (in magnitude) negative eigenvalue, it follows that the mode with the largest756
deformation amplitude, 𝑑∗, will be that with the smallest negative eigenvalue. Figure 8757
suggests that only modes 𝑚 = 0, 1, 2 can be dominant. Motivated by this observation, we758
calculate the smallest negative eigenvalue for modes 𝑚 = 0, 1, 2 by solving (6.21)–(6.22)759
numerically, for the Gaussian thickness perturbation given by (5.7) with varying 𝜇ℎ. The760
results are shown in figure 14, where we see that the axisymmetric mode dominates (i.e.,761
𝜆 (0) is closest to zero) for 0 ⩽ 𝜇ℎ ≲ 0.6, while the 𝑚 = 2 mode dominates for 𝜇ℎ ≳ 0.6.762
The point of intersection at 𝜇ℎ ≈ 0.6 corresponds to the region in the contour plot in figure 8763
where the dominant mode switches between 𝑚 = 0 and 𝑚 = 2, as 𝜇ℎ varies. The locations764
of the maxima in 𝜆 (0) and 𝜆 (2) (indicated by dashed lines) are also encouragingly consistent765
with the values of 𝜇ℎ that locally maximise 𝑑∗ in figure 8. The maximum value of 𝜆 (2) is766
closer to zero than the maximum in 𝜆 (0) , which explains why larger values of 𝑑∗ are attained767
with 𝑚 = 2 than with 𝑚 = 0.768

We recall that figure 8 shows small regions of parameter values where the 𝑚 = 1 mode769
dominates, which appears to contradict figure 14. In these regions, the initial centre-surface770
displacement is approximately orthogonal to the dominant eigenfunction, allowing other771
subdominant modes to play a role in the dynamics.772

6.5. Maximising non-axisymmetric buckling773

We now ask what thickness perturbation leads to the smallest negative eigenvalue in equa-774
tion (6.21) for a non-axisymmetric centre-surface. We use a Rayleigh–Ritz approximation, as775
in §6.3, to calculate the permissible functions 𝐹 and 𝑔 that give the smallest (in magnitude)776

eigenvalue 𝜆 (𝑚)
∗ for each mode number𝑚, using the formula (6.23). The results are presented777

in figure 15, in which the square root modulus of each extremal eigenvalue is plotted versus𝑚,778
clearly showing that the eigenvalues grow with 𝑚2 for large 𝑚, in agreement with (6.24).779

We see that the closest eigenvalue to zero is 𝜆 (2)∗ ≈ −4.38, with |𝜆 (0)∗ | and |𝜆 (3)∗ | being780
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Figure 14: A plot of the smallest (in magnitude) negative eigenvalue, 𝜆 (𝑚) , satisfying the
eigenvalue problem (6.21)–(6.22), where the thickness perturbation is given by (5.7) with
𝑚 = 0 (blue), 𝑚 = 1 (red) and 𝑚 = 2 (black). The local maxima are indicated by dashed

lines for 𝑚 = 0, 2.
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Figure 15: The square root modulus of the extremal eigenvalues of (6.21)–(6.22) versus
mode number 𝑚.

the next smallest. There is also the special case 𝑚 = 1, where the minimum eigenvalue is781
approximately the same as for 𝑚 = 6. We conclude that 𝑚 = 2 is the easiest mode to excite,782
in that it can undergo transient growth at smaller values of the amplitude 𝐴 than any other783

mode. The corresponding extremal exigenvalue 𝜆 (2)∗ ≈ −4.38 gives a bound on the transient784
growth that can be observed for any initial thickness and centre-surface perturbations. For785

𝑚 ⩾ 3, we calculate that 0 > 𝜆 (2) > 𝜆 (𝑚)
∗ , meaning that, even for the thickness perturbation786

that is optimal for a given 𝑚 ⩾ 3, the mode 𝑚 = 2 will be more dominant. This result787
explains why 𝑚 = 0 and 𝑚 = 2 were shown to be dominant in §5.788

7. Conclusions789

In this paper, we consider a thin sheet of viscous fluid retracting freely under surface790
tension. We obtain exact equations expressing conservation of mass, momentum and angular791
momentum in terms of integrated tensions and bending moments, along with effective792
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boundary conditions that apply at the edge of the sheet. We find a simple base solution where793
the sheet thickness is spatially uniform and the net tensions in the sheet are identically zero. It794
follows that the nonzero tensions caused by small perturbations to the initial sheet thickness795
or viscosity (see Appendix A) can play a significant role in the evolution of transverse796
sheet displacements. Moreover, we show that any thickness perturbation generically causes797
some region of the sheet to be under compression and thus, potentially, subject to transverse798
buckling.799

We apply the general theory to the simple example of a thin viscous disc with small800
axisymmetric thickness perturbations. We show that axisymmetric buckling modes tend to801
dominate when the radial tension 𝑇𝑟𝑟 is negative, while the 𝑚 = 2 azimuthal modes are802
preferred when the hoop tension 𝑇𝜃 𝜃 is negative. In all cases we find that the buckling,803
should it occur, is only transient, with the disc eventually becoming flat.804

This behaviour, observed in numerical experiments, is explained and quantified by805
approximating the centre-surface evolution equation with an eigenvalue problem in the limit806
of (relatively) large amplitude 𝐴 of the thickness perturbations. We show that the buckling807
amplitude, although transient, can be exponentially large in 𝐴. Although this analysis is808
carried out in detail only for an axisymmetric viscous disc, we can see that the same scaling809
argument also works for the general problem (4.30)–(4.31). Thus only logarithmically large810
values of 𝐴 can be sufficient to cause the centre-surface displacement to grow by an order of811
magnitude and invalidate the derivation of the centre-surface equation (4.28). A next step is812
to consider how nonlinear effects modify the predicted buckling behaviour.813

All of our analysis is based on an asymptotic reduction of the governing equations and814
boundary conditions under the assumption that the aspect ratio 𝜖 of the sheet is small. As815
pointed out in §4.1, this assumption must eventually fail as the sheet retracts and thickens816
under surface tension. It is the topic of current work to confirm that the transient buckling817
due to small thickness perturbations predicted by our theory can be reproduced using direct818
numerical simulation of the full Stokes flow free boundary problem.819

Our theory can be compared with previous analyses of a thin viscous sheet under a820
compressive force (e.g., Buckmaster et al. 1975; Howell 1996; Ribe 2002). These studies show821
that the dynamics occurs on two different time-scales, with transverse buckling happening822
much faster than stretching of the sheet, by a factor of 1/𝜖2. By considering thickness823
perturbations of order 𝜖2, which induce dimensionless tensions of order 𝜖2, we identify a824
distinguished limit in which buckling and stretching occur on the same time-scale.825

Unlike those previous papers, our analysis also shows that no external forcing is required826
to induce buckling (albeit transient). At first glance, this behaviour might seem to violate827
energy principles, but we must recall that the base state consists of a retracting disc whose828
surface area decreases like 𝜓(𝑡)−1. Any of the associated surface energy that is not dissipated829
by viscosity in the bulk is available to drive transverse displacements of the sheet.830

Our theory is deliberately pared down to demonstrate the minimal physics required831
to generate compressive forces and excite sinuous disturbances in a thin viscous sheet.832
Nevertheless, it must be acknowledged that our simple model would be difficult to realise in833
practice (except, perhaps, in a microgravity environment). In principle it is straightforward834
to include in our model a hydrostatic support, as in G. I. Taylor’s experiments with syrup835
floating on mercury (Taylor 1969) or the tin bath in the float glass process. Temperature836
effects are also extremely important in the glass industry, where the viscosity variations837
typically encountered are far larger than considered in Appendix A. Nevertheless, we believe838
that the transient instability mechanism uncovered in this paper is universal, and our theory839
may help to explain and control the formation of ripples in the production of sheet glass.840
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Appendix A. Variable viscosity849

The viscosity of glass is strongly temperature-dependent, varying by a factor of 107 in the850
temperature range of interest for manufacturing thin sheets (Shelby 2005). Here we show that851
the theory developed §4 can easily be generalised to describe situations where the viscosity852
(like the initial sheet thickness) is almost constant, with small fluctuations of order 𝜖2. We also853
suppose that the viscosity is convected by the flow, which is true when thermal conduction854
and heat transfer with the surroundings are both negligible. Thus the dimensionless viscosity855
takes the form 𝜂 ∼ 1 + 𝜖2𝜂1( �̃�) as 𝜖 → 0, where �̃� is the in-plane Lagrangian variable856
introduced in §4.1. Proceeding in a similar way to §4, we calculate the tensions induced by857
such a viscosity variation and examine its role in causing buckling of a viscous sheet.858

Perturbing the viscosity changes the Newtonian constitutive relations (4.1), which in turn859
changes the tensions and bending moments (2.10) and (2.14). However, since the perturbation860
to the viscosity is of 𝑂 (𝜖2), we find that the leading-order problem is exactly as in §4.1, so861
that the thickness and velocity are given by (4.8)–(4.9), and the leading-order tensions and862
bending moments are all equal to zero. Using the same process as in §4.2, we calculate the863
constitutive relations for the tension and bending moment corrections to be given by864

T1 = 2
(
𝜓3/2

∇̃ · �̄�1 −
ℎ1
𝜓

− 𝜂1( �̃�)
)
�̃� + 𝜓3/2 (

∇̃�̄�1 + ∇̃�̄�𝑡
1
)
, (A 1)865

with the constitutive relation (4.27) for the bending moment tensor unchanged.866
As in §4.2, it is helpful to introduce a scaled Airy stress function defined by (4.18). Now867

we find that the coupled system (4.19)–(4.20) is modified to868

∇̃4A + 𝜓−1/4∇̃2ℎ1 + 𝜓3/4∇̃2𝜂1 = 0, 6
𝜕ℎ1
𝜕𝑡

+ 𝜓−3/4∇̃2A + 4𝜂1 = 0. (A 2)869

Again we can solve directly for ∇̃2ℎ1 in the form870

∇̃2ℎ1( �̃�, 𝑡) = 𝜓(𝑡)1/4∇̃2 [ℎ1( �̃�, 0) + 𝜂1( �̃�)
]
+ 𝜓(𝑡)∇̃2𝜂1( �̃�). (A 3)871

Thus A now satisfies the boundary-value problem872

∇̃4A + ∇̃2 [ℎ1( �̃�, 0) + 𝜂1( �̃�)
]
= 0 in Ω𝑋 (A 4a)873

A =
𝜕A
𝜕𝑛

= 0 on 𝜕Ω𝑋 . (A 4b)874

As the constitutive relations for the bending moments are unchanged, we find that the875
tensions in the sheet and the governing equation (4.28) for the centre-surface are unchanged,876
except now ℎ1( �̃�, 0) ↦→ ℎ1( �̃�, 0) + 𝜂1( �̃�). All the solutions obtained in §§5–6 for a thin877
viscous disc with small thickness perturbations are thus also valid for viscosity perturbations.878
As we might have guessed, a small local increase in viscosity has the same net effect on the879
dynamics as an increase in thickness. Moreover, the propensity of small thickness variations880
to induce tension in the sheet could in principle be counteracted by heating up the thicker881
regions and cooling the thinner regions.882
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