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Abstract

Smart Separations Limited (SSL) is a UK-based start-up who have devel-
oped a ceramic membrane with micron-sized conical pores distinct to the cylin-
drical pores typically used for filtration. This new technology has the potential
to be highly beneficial to many applications. However to realize its potential,
a comprehensive analysis of the performance and efficiency of the membrane is
vital. We use mathematical modelling to explore and quantify the behaviour
and performance of the membrane and its link to the underlying pore struc-
ture. We derive a reduced model based on the slenderness of the membrane
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pores that allows us to predict the flux through the membrane, the optimal
pore shape that maximizes the amount of contaminant that is trapped. A full
2D numerical framework allows us to study the flow structure within the pores
and the effect of changing the angle of the flow of contaminants as it reaches the
membrane. Finally, a probabilistic model based on expectation values provides
an analytic prediction for the flux decline with time due to membrane blocking.
The outcomes of this work provide a first step to providing the key modelling
insight that will allow SSL to take this new technology to market.

Keywords: microfiltration, fluid dynamics, finite-element methods, network
models

1 Introduction
Membrane separation is a vast industry with a wide range of applications, including
water treatment [16, 17], biopharmaceuticals [3, 15] and food processing [6, 8]. For
example, filters are crucial to remove waste and excess water from the blood in kid-
ney dialysis [11], and yeast and bacteria in beer production [7]. Despite the diverse
industrial applications, an overarching goal of membrane design is to maximize the
product yield. The process of filtering particles with diameters between 0.1–100µm
is called microfiltration. This is a poorly explored field with many important appli-
cations from the filtering of blood to the purification of water and air. Mathematical
modelling can offer key insight into the filtration process and operating conditions,
and thus provide a cost-effective way to optimize filter design.

A common form of membrane separation is depth filtration, in which small par-
ticles (contaminants) are trapped within, and not just on the surface of, the porous
filter material. Such filters often capture the majority of the contaminants in the
initial portion of the filter while leaving the latter portions relatively unused, leading
to premature clogging and reduced filtration efficiency [5].

SSL fabricate ceramic membranes with micron-sized conical pores that offer great
potential in the field of separation of different media/particles, with applications for
the filtration of beers and wines, blood, and removal of dust and pollen from the
air. The membranes are 3–5 mm thick, and can have pore radii in the range 8–
100µm. A fundamental challenge is how to design the pore structure to maximize
performance in a given filtration scenario. For instance, pores that constrict with
depth can offer superior removal performance. However, this must take into account
design constraints. For instance, a critical maximum porosity and a minimal overall
thickness are enforced to ensure the filter does not collapse during operation, while
pores with larger angle are less likely to survive during the manufacturing process.
The balance of energy minimisation and design constraints therefore suggests there
may be an optimum pore angle and number of pores.

Mathematical and computational methods are very useful for investigating the
filtration process at a fraction of the full experimental cost. Full computational fluid
dynamics software provides comprehensive insight, but is time consuming. Further,
although filtration occurs on the scale of the particle or pore size, it is generally
the overall macroscale behaviour, such as the total mass of particles removed, which
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is the main concern in filter design. As such, reduced continuum models provide
a balance between computational expense and insight (see, for example, [4]). In
this report we shall derive a series of reduced models of this nature that provide
predictions for the filter behaviour while allowing for efficient parameter sweeps to
determine optimal operating regimes.

In Section 2 we outline the challenges presented by SSL at the 146th European
Study Group with Industry(ESGI146). In Section 3 we present the underpinning
mathematical model for the filtration process. We then use a combination of analyt-
ical and numerical techniques to solve these in a series of distinct yet complementary
regimes. Specifically, in Section 4 we exploit the fact that the pores are slender to
derive a reduced form of the model. In Section 5 we relax this constraint and solve
the full 2D system using finite-element methods. In Section 6 we propose a new
probabilistic model based on expectation values for predicting the flux decline with
time due to blocking. In Sections 4–6 we solve the models to predict the behaviour
of the filtration device and determine the operating regimes that lead to efficient
filtration. Finally, in Section 7 we conclude our findings in a concise manner and
outline the proposed next steps.

2 Description of the challenges
SSL are interested in understanding the behaviour and performance of their filters.
In particular, they wish to explore the following:

1. Flow rate prediction and maximisation
What is the relationship between the air or liquid flow rate through the filter
and the pore spacing, top pore radius, and conical pore angle? What is the
critical concentration of pores of a specific diameter per unit area and the
contribution of the remaining porosity of the skeleton?

2. Filtration performance
The filters may be used to filter a variety of fluids: Biological fluids: e.g.,
blood, urine, tears, sweat, saliva (characterised by deformable cells); beverage
fluids: e.g., wines, juices, beer, fermented liquids, dairy products (larger de-
bris); molten metals: e.g. molten aluminium (hard microparticles); air: e.g.,
pollen and dust.

• Given a filter structure (characterised as in Challenge 1), how fast will
the membrane become clogged with different types of particles? What
role does the fluid being filtered play (e.g., viscosity, temperature)?

• What role does volume of required fluid play? e.g., higher volumes of
beverages are required than biological fluids.

• How can we modify the filter protocol (e.g., changing membrane orienta-
tion relative to the flow field) to reduce clogging?

• How do the filters behave when operating in a diffusive rather than con-
vective mode? For example, how do glucose and H3O+ molecules diffuse
between two chambers separated by our membrane filters? This mode
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may also be used to selectively filter elements (e.g., bacteria, red cells,
white cells, carcinogenic cells).

3 Mathematical model
The pores are of conical shape, with radius at the inlet rin and radius at the outlet
rout. We define the geometry of the pores in cylindrical coordinates (r, θ, z) in three
dimensions, with r = 0 corresponding to the centreline of the pore, z = 0 at the inlet
and z = L at the outlet of the pore (figure 1). An incompressible and Newtonian
fluid of viscosity µ enters the pore with velocity u.

r

θ

z

Ω
h(z, t)

n

L

rin

rout

Figure 1: Sketch of the geometry of the interior of a pore.

In what follows, we assume that the pores and the fluid flow are axisymmetric and
we formulate a two-dimensional mathematical model in the computational domain
Ω (see figure 1). The fluid flow is described by the incompressible Stokes equations

−∇p+ µ∇2u = 0, (1a)
∇ · u = 0. (1b)

Here, u(r, z, t) = uer + wez denotes the fluid velocity, where er and ez are unit
vectors in the r and z directions respectively, and p(r, z, t) denotes the pressure. The
operator ∇ is defined in the axisymmetric coordinates.

In addition to the Stokes equations above, we impose the following boundary
conditions

u = 0,
∂w

∂r
= 0 at r = 0, (2a)

u = w = 0 at r = h(z, t), (2b)

where equation (2a) expresses the symmetry boundary condition on the centreline
and equation (2b) express no slip and no flux at the pore walls.

The flow rate into the pore is defined by

Q(z, t) =

∫ h

0
2πrw(r, z, t) dr. (3)
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The fluid is contaminated with particles whose transport is described by the
advection–diffusion equation

∂c

∂t
−D∇2c+ u · ∇c = 0, (4)

where c is the contaminant concentration and D is the diffusion coefficient. We also
supplement the transport equation with the following boundary conditions at the
centreline of the pore and the wall

∂c

∂r
= 0 at r = 0, (5a)

−∇c · n = K1c at r = h(z, t), (5b)

where K1 is the adsorption rate of contaminants onto the wall via diffusive transport
and n is the normal to the wall. The boundary condition (5b) describes the reaction
process according to which particles adhere to the wall at a rate proportional to their
local concentration.

The deposition of particles at the wall changes the shape of the pore wall at
r = h(z, t), according to the equation

∂h

∂t
= −K2c, (6)

where K2 is the adsorption rate that defines how the adsorbed contaminant changes
the pore geometry. This equation assumes that the pore radius shrinks in time in
response to the deposition, with linear rate K2.

The problem is written in dimensionless form by performing the following trans-
formation of variables

z = L z̃, (r, h) = R (r̃, h̃), w = W w̃, u = U ũ, t = T t̃,

p = P p̃, c = C c̃, (7)

with W the axial fluid velocity at the inlet, R = (rin+rout)/2 the average pore radius,
and C the particle concentration at the inlet. The pressure scale is chosen as P =
µWL/R2 in order to balance the axial component of the momentum equation (1a).
For the time scale T , there is more than one choice but here we choose the diffusive
time scale T = L2/D.

The tildes are suppressed henceforth and the following length and velocity ratios
are introduced:

R
L

=
U
W

= ϵ, (8)

where the latter condition is such that to balance the continuity equation (1b). We
will later solve the governing equations for two different cases: (a) in the long-and-
thin approximation, in which case the ratio ϵ � 1, and (b) in the general scenario
with ϵ = O(1).
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The dimensionless model is given below in equations (9)–(11): the fluid velocities
and pressure are described by

−pr + ϵ2
(
1

r
(rur)r + ϵ2uzz

)
= 0, (9a)

−pz +
1

r
(rwr)r + ϵ2wzz = 0, (9b)

1

r
(ru)r + wz = 0, (9c)

with the boundary conditions (2). Here, subscripts denote differentiation. The
particle concentration satisfies

∂c

∂t
+ Pe (ucr + wcz) =

1

ϵ2
1

r
(rcr)r + czz, (10a)

∂c

∂r
= 0 at r = 0, (10b)

cr − ϵ2hzcz√
1 + ϵ2h2z

= −ϵ2k1c at r = h(z, t), (10c)

and the pore wall deformation is

∂h

∂t
= −k2c, (11)

with dimensionless parameters

Pe =
WL
D

, k1 =
K1L2

R
, k2 =

K2CL2

RD
, (12)

corresponding respectively to: the Péclet number, which measures the relative rate
of advective to diffusive transport, an adsorption parameter corresponding to the
strength of removal of contaminant, and a shape change parameter corresponding
to the effect of the particle deposition on the shape of the pore.

In this report we are interested in initial pore profiles that are conical in nature.
We thus define the initial profile as

h(z, 0) = 1 + (β − 1)z, (13)

where β is the dimensionless slope of the pore. If β > 1, then we refer to this as an
expanding pore, when β < 1 we have a constricting pore, and when β = 1 we have
a cylinder.

4 Lubrication model

4.1 Lubrication model for the fluid flow

The pores are typically long and thin and therefore the parameter ϵ � 1. For
the fluid flow, we solve the lubrication equations, found by considering only the
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leading-order terms in ϵ in the dimensionless Stokes equations (9), which are given
by

−pr = 0, (14a)

−pz +
1

r
(rwr)r = 0, (14b)

1

r
(ru)r + wz = 0. (14c)

Equation (14a) yields that the pressure is independent of r, i.e., p = p(z, t). The
momentum equation (14b) can hence be integrated in r twice, and after using condi-
tions (2a) and (2b) to fix the constants of integration, we find the following expression
for the axial velocity

w(r, z, t) =
1

4
pz
(
r2 − h2

)
. (15)

Using the continuity equation (14c), we obtain the solution for the radial velocity,
given by

u(r, z, t) = −r

8
pzz

(
r2

2
− h2

)
+

r

4
pzhhz. (16)

We note that the constant of integration in the calculation of u was determined from
the symmetry condition (2a). Imposing the no-flux condition (2b) yields that

h4pz = F (t), (17)

for some function of time F (t) to be determined. Substituting the solution for w
in (15) and evaluating the integral in (3) gives the flow rate into the pore,

Q(t) = −π

8
h4pz = −π

8
F (t). (18)

To determine F (t), we assume that there is a constant, known pressure drop along
the pore, ∆p = p(0, t)−p(1, t) and use (17) to obtain an expression for the flow rate

Q(t) =
π

8
|∆p|

(∫ 1

0
h−4 dz

)−1

. (19)

However, if ∆p is not known, we may alternatively fix the inlet speed along the
pore’s centreline, win. In this case, from (15) we find win = −pz(0, t)h

2(0, t)/4,
which, when combined with (17), gives

Q(t) =
π

2
winh

2(0, t). (20)

We will use these results in our time-dependent simulations that follow in the next
sections.



Ceramic membranes ESGI146/co-creation event with society (ESGI146)

4.2 Lubrication model for the particle concentration

At leading-order, the dimensionless particle concentration equation and correspond-
ing boundary conditions (10) are given by

1

r
(rcr)r = 0, and cr = 0 at r = 0, h(z, t),

which can be solved to give that c = c(z, t). This motivates introducing an expansion
of the form

c(r, z, t) = c0(z, t) + ϵ2c1(r, z, t) + · · · , (21)

in which case the leading-order system becomes

c0t + Pewc0z =
1

r
(rc1r)r + c0zz, (22a)

with boundary conditions

c1r − hzc0z = −k1c0 at r = h(z, t), (22b)
c0r = c1r = 0 at r = 0. (22c)

Averaging equation (22a) over the cross-section of the pore, i.e., integrating it as
follows,

1

πh2

∫ h

0
2πr ( · ) dr,

allows us to use the boundary conditions (22b)–(22c) for c1r at r = 0 and r = h,
resulting in an equation for the leading-order particle concentration c0(z, t) [14].
This needs to be solved in conjunction with the equation for the growth of the pore
surface and relevant boundary conditions

c0t +
Q

πh2
Pec0z =

(h2c0z)z
h2

− 2

h
k1c0 (23a)

ht + k2c0 = 0, (23b)
c0 = cin at z = 0, (23c)

∂c0
∂z

= 0 at z = 1 (23d)

where the flow rate Q is given at each instant in time by (20).

4.3 Numerical simulations

In this section we perform time-dependent simulations of the lubrication model pre-
sented in Section 4. The physical parameter values and corresponding dimensionless
parameters used in the simulations can be found in Table 1.

Figure 2 shows the clogging times (in minutes) as a function of the geometry for
Pe = 1, 10 and 1000 (which could be interpreted as variations in the inlet speed
or the contaminant particle diffusivity). The mean pore radius is kept fixed at
30µm, whereas the inlet pore diameter is allowed to range between 3 and 57µm.
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Figure 2: Cross-section of pores and clogging times (in minutes) when Rin = 23.7µm
(left plot), Rin = 30.0µm (middle plot) and Rin = 36.3µm (right plot) for (a)
Pe = 1 and (b) Pe = 1000, plotted in dimensionless units. The blue-shaded region
shows the material deposited on the walls of the pore until clogging occurs. (c)
Clogging time as a function of the inlet radius for different Pe computed by solving
the one-dimensional lubrication model and compared with the estimate in (24).
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Pore diameter (30-100 µm), R 30 µm
Pore length (3-4 mm), L 3 mm
Concentration at inlet 100 mol/m3

Axial speed, W 1 m/s
Clogging rate, K2 3.33×10−10 m4/(s mol)
Adsorption rate, K1 1 m−1

Diffusivity, D 3× 10−3 m2/s
Pe 1
k1 0.3
k2 3.33× 10−6

Table 1: Input parameters taken for the one-dimensional lubrication simulations.
Values are estimated from experiments, apart from K1 and D, for which values were
taken that yield the richest system behaviour.

For the parameters chosen, the clogging times obtained are consistent with the
times observed in experiments, but calibration with experimental data is essential
to establish the precise values for the parameters k1 and k2 [12].

For Pe = O(1) we find increased clogging times for constricting pores. As Pe
increases, better performance is observed for the cylindrical pores. In fact, the clog-
ging times in the large-Pe limit can be estimated from (23b), by arguing that, in this
limit, the concentration within the pore does not vary appreciably from the concen-
tration at the inlet. In doing so, we find the clogging time, t∗ = min(rin, rout)/k2,
or, in dimensional units

T∗ =
min(Rin,Rout)

K2C
. (24)

This estimate is shown as the dashed curve in figure 2(c). Since good agreement is
observed for expanding pores for all Pe, in practice, a pore that widens with depth
may be used experimentally to estimate K2 from (24), given the clogging time and
the concentration at the inlet. It is also important to highlight the effect of the
parameter K1, which is a measure of the rate of particle adsorption at the walls of the
pore. We found that as K1 → 0 the regime of applicability of (24) extends to lower
values of Pe. As a result, if the value of K1 is lowered sufficiently, both the Pe = 1
and 10 cases collapse onto the dashed curve in figure 2(c). This is a consequence
of the fact that for lower K1 the walls interact less with the contaminants, which is
also expected to occur when the fluid passes through the pore at high speeds in the
high-Pe limit.

A measure of the performance of the pore is an estimate of the amount of con-
taminant removed from the flow until clogging occurs, which can be found from∫ t∗

0
Q(t) [c(0, t)− c(1, t)] dt.

Figure 3 demonstrates the pore efficiency in removing a contaminant as the inlet
radius varies, for three different values of the Péclet number, Pe = 1, 10 and 1000.
This calculation assumes that K1 and K2 remain independent of the flow character-
istics, which may not hold true in general. Therefore comparing simulations with
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Figure 3: Moles of contaminant removed until clogging occurs for different values
of Pe. Constricting pores (wider inlets) tend to outperform the expanding ones
(narrower inlets).

different Pe may not be appropriate in this case. What the calculation highlights,
however, is that for lower Pe, better efficiency is achieved for constricting pores than
expanding pores, given that for any two configurations that yield identical clogging
times, the constricting pore is able to remove a greater amount of the contaminant.
This effect diminishes as Pe increases, where the cylindrical pore outperforms the
conical configurations.

4.4 Non-Newtonian effects

When considering the filtering of rheologically complex fluids, the extra stress tensor
is no longer a linear, isotropic function of the components of the velocity gradients,
but it requires more complicated constitutive equations. For example, blood exhibits
non-Newtonian properties, i.e., shear-thinning, viscoelasticity, thixotropy and yield
stress [18]. As a first attempt to study the performance of a pore for non-Newtonian
liquids, we consider a simple power-law model based on the Ostwald–de Waele consti-
tutive equation [10], which incorporates shear-thickening and shear-thinning effects.
Although its main limitation is that it predicts an unbounded stress in regions where
the shear-rate is zero, this model is commonly invoked as a starting point for more
complex models, e.g. the Herschel-Bulkley model [18].

The extra stress tensor is defined in terms of the rate-of-strain tensor γ̇ = ∇u+
(∇u)T and the shear rate γ̇ =

√
γ̇ij γ̇ji/2 as

τ = µ (γ̇) γ̇, (25)

where µ(γ̇) is the (non-constant) fluid viscosity. For power-law fluids, we take

µ (γ̇) = kγ̇n−1,
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where k is the consistency constant (units: Pa sn) and n the power-law index (di-
mensionless). In the special case of n = 1 we recover the Newtonian law. For n < 1
we obtain the shear-thinning (or pseudo-plastic) behaviour, i.e., the viscosity is a
monotonically decreasing function of the shear-rate. When n > 1 the fluid is shear-
thickening and the viscosity is a monotonically increasing function of the shear-rate.
For such fluids, the equation for conservation of mass remains the same as in (1a),
but the momentum equation (1b) becomes

−∇p+∇ · τ = 0, (26)

with τ given by (25). The boundary conditions, (2), remain unchanged.
We non-dimensionalise in the same way as for a Newtonian fluid, as outlined in

(7), apart from the pressure, which is scaled by P = kWnL/Rn+1, the corresponding
momentum equation under the lubrication approximation becomes

− pz +
1

r

(
r(wr)

n
)
r
= 0, (27)

supplemented by (14a), (14c) and the same boundary conditions as before. Following
the same steps as previously, we find

w(r, z, t) =
n

1 + n

(
−1

2
pz

)1/n [
h(n+1)/n − r(n+1)/n

]
(28)

and that (17) generalises to

h1/n+3 (−pz)
1/n = F (t). (29)

For a constant inlet centreline velocity, the flow rate Q(t) is given by

Q(t) =
nπF (t)

21/n(3n+ 1)
=

π(n+ 1)

3n+ 1
h(0, t)2win, (30)

which is combined with (23). Note that when n = 1, (30) reduces to the Newtonian
version, (20).

Our preliminary studies for non-Newtonian fluids (n 6= 1) did not yield appre-
ciable differences to the Newtonian (n = 1) case studied in Section 4.3. However, we
expect that more complex fluids (e.g. viscoplastic fluids) will exhibit significantly
different behaviours, which may be a suitable topic for future investigation.

4.5 Filter pores coated with a catalyst

One useful application of the ceramic filters is when the pore surface is coated
with a chemical catalyst. The catalyst triggers a chemical reaction involving the
contaminant, turning this into a less harmful substance. We assume the phase of
the reactant and the product to be gaseous. The relevant equations in this case are
those presented in Section 4.2, where now k2 = 0, since we assume the product does
not accumulate on the surface of the pores but is carried away. Furthermore, we
study the situation when the system is at steady state.
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Figure 4: Plots of contaminant concentration for β = 0.1 (constricting pore) (green),
β = 1 (cylinder) (blue), β = 10 (expanding pore) (orange).

In figure 4, we show plots of the contaminant concentration c versus the depth
of the pore z for three different values of pore constriction parameter β defined in
(13). In all three plots, we keep the mean radius, R = 1, the same, and we take
Pe = 0.1, k1 = 1 for our base case with cylindrical pores.

The best removal efficiency is achieved by the constricting pore (β < 1), identified
by the lowest concentration of contaminant at the outlet. This is due to the fact that
a constricting pore has a higher surface area near the top, where the contaminant
concentration is highest. As the contaminant concentration falls due to its removal
from the flow, the pore area available for chemical reaction reduces accordingly. We
also see that for the constricting pore the removal rate is more uniform (i.e., the
drop in contaminant is closest to linear) than the other two configurations.

4.6 The effect of number of pores

All of the above analysis presented so far is for a single pore. To model a membrane,
which consists of multiple pores, it is important to explore the effect of the geometry
on the possible distribution of these pores. To this end, we consider a very simple
illustrative comparison between a 2-cylinder-pore (β = 1 in (13)) and a 3-cone-pore
(β = 0.9) configuration (see figure 5). We keep the same cross-sectional area of the
filter and total influx of contaminant, Q, in both cases. Thus, we have

Q = 2Q2 = 3Q3, (31)

where Q2 and Q3 are the corresponding fluxes through the pores in the 2-pore
and 3-pore configuration, respectively. In figure 6, we show plots of the contaminant
concentration versus the depth of the pore for the two configurations. The difference
between the performance in the two cases is minimal, with a slight advantage for the
3-pore case over the 2-pore case. Further investigation is necessary when arbitrary
numbers and shapes of pores are used. In addition, any structural limitations of the
filter, i.e., how close the pores can be to each other, must also be taken into account.
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Figure 5: Two different pore configurations, where the filter has the same cross-
sectional area and total influx of contaminant.
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Figure 6: Plots of contaminant concentration for 2-cylinder-pore (blue) and 3-cone-
pore configurations (orange).

5 2D simulations

5.1 Introduction

So far we have performed simulations that exploit the slenderness of the pore geom-
etry by employing a lubrication approach. In this section we relax the assumption
of pore slenderness, and use two-dimensional simulations to model the changes in
the pore geometry as contaminant particles are absorbed onto the pore walls. We
investigate the shape of the pores that provides the longest lifetime of the mem-
brane before the pore clogging occurs. In this section we consider two-dimensional
Cartesian configurations rather than axisymmetric.
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We consider the dimensionless model discussed in Section 3. Since we do not
make any assumptions on the pore size or shape, we simply choose the lengthscales
as L = R = (rin + rout)/2 and the velocity scales as U = W = win(0), where win(r)
is the inflow velocity profile. Then, we supplement the fluid-flow problem (9) with
the following boundary conditions:

u = (0, win(r))
T at z = 0, (32a)

(∇u− Ip) · n = 0 at z = L, (32b)

where n is the outward unit normal to the boundary of the computational domain,
∂Ω (see figure 1). Equation (32a) is a Dirichlet boundary condition for the inflow
velocity, while (32b) enforces no stress on the outflow boundary.

Similarly, equation (10) for the concentration of contaminant is supported by
the following initial condition and boundary conditions on the inflow and outflow
boundaries:

c = c0(r, z) at t = 0, (33a)
c = cin(r) at z = 0, (33b)

−∇c · n = 0 at z = L. (33c)

The initial condition for equation (11), which determines the shape of the pore
wall before contaminant adsorption occurs is given by (13).

5.2 Free-boundary problem discretisation

The final system of equations consists of (2), (9)–(11), (32)–(33) and represents
a free-boundary-value problem: the contaminant, by depositing on the free surface
h(z) as time progresses, modifies the geometry of the domain considered. This would
force a re-discretisation of the domain at every time step. To circumvent this issue,
we treat modifications to the domain geometry implicitly, by considering a simple
linear map F from a simplified reference domain Ω̂, (a unit square), to the deformed
physical computational domain Ω. This map, whose action is sketched in figure 7,
is defined as follows:

F : Ω̂ → Ω(
ẑ
r̂

)
7→

(
ẑL

r̂h(ẑ)

)
, with Jacobian JF =

(
L 0

r̂ ∂ĥ(ẑ)
∂ẑ ĥ(ẑ)

)
. (34)

Here and below, we mark with a hat all variables and operators defined in the
reference domain.

Introducing F allows us to solve the target equations on the fixed reference
domain Ω̂, encapsulating modifications to the geometry directly within the map.
In order to take into account the effect of these modifications, though, the target
equations need to be modified accordingly. The variational form of the flow problem
in the reference domain Ω̂ reads∫

Ω̂

(
∇̂û : J−1

F J−T
F ∇̂v̂ − p̂

(
∇̂ ·
(
J−1
F v̂

)
+
[
J−1
F v̂

]
1

)
+q̂
(
tr
(
J−T
F ∇̂û

)
+
[
J−T
F û

]
1

))
r̂ĥ|det(JF )|dx̂ = 0,

(35)
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Ω̂ Ω

F

Figure 7: Sketch of the action of a map F , deforming a reference domain Ω̂ and
mapping it to Ω.

where [f ]1 = f1 denotes the vector component if f = (f0, f1)
T , while v̂ and q̂ are

the test functions. For the mass transport equation we have instead∫
Ω̂

(
∂ĉ

∂t
ŝ+ ∇̂ĉ · J−1

F J−T
F ∇̂ŝ+ ŝPe J−T

F ∇̂ĉ · û
)

r̂ĥ|det(JF )| dx̂

= −
∫ 1

0
k1ĉ(1, ẑ, t)ŝ(1, ẑ)ĥ|det(JF )| dẑ,

(36)

where ŝ is the test function.
We discretise the problem using finite-element library FEniCS [1]. A mixed finite-

element method is employed to solve the flow problem with linear and quadratic
Lagrange elements for the pressure and velocity, respectively. The mass-transport
problem is discretised using quadratic Lagrange elements.

5.3 Pore clogging

The purpose of the numerical experiments conducted in this section is to investigate
how the clogging occurs for pores with different initial shape and under different
operational conditions. Table 2 shows the set of dimensionless parameters used for
the simulations.

Inflow velocity win(r) 1− (r/rin)
2

Inflow concentration cin 1
Adsorption rate k1 0.4
Adsorption rate k2 0.8
Péclet number Pe 10, 103
Pore height L 5
Inlet radius rin 0.75, 1, 1.25
Outlet radius rout 1.25, 1, 0.75

Table 2: Dimensionless input parameters for 2D simulations.

Figure 8 presents concentration distributions with the flow streamlines in three
pore geometries with Péclet number Pe = 10. We find that the pore shape with
rin = 1.25 and rout = 0.75 provides the best usage of the pore space and, when
the pore is clogged, the whole pore volume has been used for the contaminant
adsorption. On the other hand, the other two pore shapes have a lot of unused pore
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Figure 8: Concentration distributions with the flow streamlines in three pore ge-
ometries with Péclet number Pe = 10. In the left panel the three configurations are
shown at the initial time t = 0. On the right, each pore shape is shown at its final
time when the pore is clogged, with the time indicated individually for each shape.

space left after the clogging has taken place. This arises as a result of the fact that
the contaminant concentration decreases with depth due to adsorption. The final
times also indicate the preferential shapes: t = 1.72 for the pore with the larger
inflow radius than outflow, t = 1.36 for the straight pore, and t = 1.02 for the pore
with the smaller inflow radius than outflow.

A faster flow regime, Péclet number Pe = 103, is considered in figure 9. Simi-
larly to the previous case, we show the concentration distributions with the velocity
streamlines for the three different shapes at initial and final times. In this case, we
observe that the best performing pore shape is the straight one with rin = rout = 1,
which has the final time t = 1.26, while the other two pore shapes both last until
t = 0.96. This is because at higher flow rates, the concentration of contaminant is
approximately constant throughout the pore and does not fall with depth as was
observed in the slower-flow case. Thus we conclude that the optimal shape depends
on the operating conditions.

As future work, one should consider other performance characteristics as well,
such as pressure drop and the efficiency, in addition to the pore lifetime before
clogging.

5.4 Effect of flow angle

In this section, we investigate how the angle of the fluid velocity at the inflow affects
the pressure drop and the membrane performance with different pore shapes. Here
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Figure 9: Concentration distributions with the flow streamlines in three pore ge-
ometries with Péclet number Pe = 103.

we consider only the initial membrane performance, namely before the shape of
the pore starts changing due to the contaminant adsorption. Then, the problem
consists of equations (1), (2b), (4), (5b) and dimensional form of the inflow and
outflow boundary conditions (32) and (33). To perform the simulation, we use an
in-house software tool developed and discussed in [13].

inflow angle

membrane
computational
domain

Figure 10: Set-up of the 2D simulations of different inflow angles.

Figure 10 shows the 2D set-up of the problem with the inclined inflow velocity
and the conical shape of the pores. Due to the periodicity of the membrane mor-
phology, we consider the computational domain shown in dark blue colour, which



Ceramic membranes ESGI146/co-creation event with society (ESGI146)

represents a periodic unit. The filtration parameters used for the simulations are
shown in table 3.

Inflow velocity magnitude |u| 10 cm/s
Inflow concentration cin 1014 particle count/m3

Adsorption rate K1 10−5 m/s
Viscosity µ 1.85× 10−5 Pa s
Porosity ϕ 60 %
Pore height L 200 µm
Inlet radius rin 40, 60, 80 µm
Outlet radius rout 80, 60, 40 µm

Table 3: Input parameters for 2D simulations of different inflow angles.

We consider seven different inflow angles α = 0°, 10° . . . 60°. Figure 11 shows
the velocity streamlines coloured with the velocity magnitude with the inflow angle
α = 30° for three different pore geometries, which we will refer to as constricting,
straight or expanding. Corresponding concentration profiles are shown in figure 12
while figure 13 shows the pressure drop. We define the initial efficiency via

Efficiency = 1− outlet concentration
inlet concentration

(37)

and plot this in figure 14 for different inflow angles for the three types of the ge-
ometries. We observe that the straight pore has the lowest pressure drop, while the
expanding pore has the highest one. On the other hand, while having the interme-
diate pressure drop, the constricting pore provides the largest filtration efficiency.
The straight pore exhibits the second best efficiency. The worst performance is dis-
played by the expanding pore in terms of both the pressure drop and the filtration
efficiency. For the different inflow angles, we observe that pressure drop decreases
and the efficiency increases slightly as the inflow angle increases.

In summary, the numerical experiments show that the straight and constricting
pores exhibit promising behaviour in terms of the pressure drop and the efficiency
especially when applying inclined inflow velocity. In future work, using numerical
simulations one can further investigate how the inclined velocity influences particles
deposition on top of the membrane and on the pore walls and how it can be used
to clean the contaminant fouling on the surface of the membrane. Furthermore, to
obtain a more accurate picture of this kind of filtration experiments the problem
needs to be extended and considered in 3D.

6 Discrete model
All of the models we have analysed so far (mostly) consider a single pore, and assume
that the overall filter behaviour is simply given by multiple pores all behaving in
an identical manner. For small particles, this assumption is valid, but for larger
particles, where only a small number of particles are needed to block a pore, this
breaks down. In figure 15 we show a schematic diagram of the situation we consider.
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Figure 11: Velocity distributions with the flow streamlines in three pore geometries
with the inflow angle α = 30°.

Figure 12: Concentration distributions in three pore geometries with the inflow angle
α = 30°.

In our model, we assume that the simple membrane has uniform thickness, which
comprises an array of m regularly spaced uniform holes of radii r0, called pores.
These pores run from one side of the membrane to the other. This type of structure,
for example, describes track-etched membranes, where the pores are cylindrical or
cone-shaped (see for instance [2]). As the fluid passes through the pores of the
membrane the particles are potentially retained with some probability. The retention
mechanisms are rather complex and depend on properties of the membrane and the
particles themselves, and they could even change during the filtration process. In
what we consider here, we assume that the probability of a particle sticking within
the membrane is 1, so every particle is retained by the membrane.
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Figure 13: Pressure drop in three pore
geometries for different inflow angles.
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Figure 14: Efficiency in three pore ge-
ometries for different inflow angles.

Figure 15: Schematic diagram of a conical shaped filter with three pores with equal
radii, and six particles adhering to the walls of the pores.

A stochastic simulation is proposed in Griffiths et al. [9]. The authors consider
a three-step blocking process in a constant-pressure filtration setting. In each pore,
uniformly sized particles first constrict the pore by adhesion on the pore wall. Then,
as the radius of the pore decreases, they partially cover the pore and finally form a
layer of particles on the membrane surface, termed a filtercake. The same blocking
process occurs in all of the pores, and therefore, the flux through a given pore is only
dependent on the number of particles it has retained. However, crucially, each pore
may contain a different number of particles. In [9], multiple stochastic simulations
were run to compute the flux decline for the entire membrane. The probability of a
particle landing in a pore at a given iteration step depends on the flux through that
pore, and the flux through the entire membrane is obtained by summing over the
fluxes of the individual pores.

The number and order of arrival of the retained particles for a given pore rep-
resents the state of the pore. In this section we adopt an alternative approach
and calculate the expected flux through the membrane. Our analytic model based
on expectation values extracts the correct smooth result that would be observed
experimentally.

We begin by forming the so-called state matrices, denoted by g, which represent
the state of the system, i.e., the pore in which each particle goes in, and the order
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in which this happens. These state matrices have binary entries. Each row of the
matrix g represents a particle and each column of matrix g represents a pore. We
assume that there are m pores and n particles, so there are a total of mn distinct
state matrices. For instance, for the case m = 3, n = 4, we can have a state matrix
of the form

g =


g11 g12 g13
g21 g22 g23
g31 g32 g33
g41 g42 g43

 =


1 0 0
0 1 0
0 0 1
1 0 0

 , (38)

which implies that the first particle goes into pore 1, the second particle goes into
pore 2, the third particle goes into pore 3 and finally, the fourth particle goes into
pore 1 again. From the nature of g, we can infer that there can be at most one 1 in
each row.

Next, we form the flux matrix, M . Each row of M represents the flux after the
jth particle has entered a pore, which we define as Q(j). For a system of three
pores, the flux matrix is then of the following form

M =



Q(1) +Q(1) +Q(1)
Q(1 + g11) +Q(1 + g12) +Q(1 + g13)

Q(1 + g11 + g21) +Q(1 + g12 + g22) +Q(1 + g13 + g23)
...

Q(1 +
j∑

k=1

gk1) +Q(1 +
j∑

k=1

gk2) +Q(1 +
j∑

k=1

gk3)

...


. (39)

We define the probability vector, P , whose jth entry corresponds to the probability
of the jth event happening. This is given by

P =



g11Q(1) + g12Q(1) + g13Q(1)

M1
g21Q(1 + g11) + g22Q(1 + g12) + g23Q(1 + g13)

M2
g31Q(1 + g11 + g21) + g32Q(1 + g12 + g22) + g33Q(1 + g13 + g23)

M3...

gj+1,1Q

(
1 +

j∑
k=1

gk1

)
+ gj+1,2Q

(
1 +

j∑
k=1

gk2

)
+ gj+1,3Q

(
1 +

j∑
k=1

gk3

)
Mj
...



,

(40)
and so, the expectation of flux then after l particles is given by

El =
∑

all g’s
Pl ×Ml+1, (41)

where subscripts denote the entry of that vector. We claim that it is sufficient to
consider only a few pores to provide a good prediction and so we only consider three
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Figure 16: We consider a flux that has the following form Q = [10, 9, 7, 3, 0]. The
red line depicts the flux as we would naively expect it to decline if the filter blocked
by first filling each pore with a single particle before depositing a second particle in
each pore, and so on, i.e., Qexp = [30, 27, 21, 9] for n = [0, 3, 6, 9]. The blue line
shows our expectation-value prediction using the procedure described above, which
already expresses a smoothed-out version despite us only considering three pores.

pores for our simulations here. In figure 16 we consider a scenario where the flux in
a pore is defined by Q = [10, 9, 7, 3, 0], so that the flux drops by one unit when the
first particle is accepted, a further two units when the second particle is accepted, a
further four units when the third particle is accepted, and a further three units when
the last particle is accepted. We present here the naive prediction if we assumed
that the particles were to deposit in the pores in a uniform manner, i.e., one particle
occupies each individual pore before the pores accept a second particle, and so on.
This prediction (shown in red in figure 16) shows clear jumps in the predicted flux
decline, which would not be observed in practice. Our expectation value approach,
despite only here applying to a membrane comprising three pores, already predicts
how the real experimental curve would appear smoothed out.

While we have only presented a simple model for the expectation value of the
membrane at a given instant in time, this model demonstrates clear potential in
the ability to predict the smoothed flux versus throughput curve that would be
observed experimentally. Increasing the number of pores considered would improve
the smoothness of this prediction.
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7 Conclusions and recommendations
In this report we have considered a series of distinct yet complementary models to
gain insight into the behaviour of the SSL ceramic membranes. Here, we summarise
our conclusions:

• By exploiting the slenderness of the pores in the membrane we may make a
lubrication approximation to the governing equations. The resulting model
is amenable to analytical techniques, and allows us to predict how the flux
through the membrane will vary with pore profile, (19).

• Numerical simulations in the lubrication regime provide a prediction for how a
pore will clog due to contaminants adhering to the pore walls. We can predict
the time to clogging of the membrane as a function of the pore angle. We find
that a membrane comprising pores that constrict with depth takes longer to
clog (figure 2).

• Numerical simulations in the lubrication regime provide a prediction for how
much contaminant is removed before the membrane clogs. We find that a mem-
brane comprising pores that constrict with depth removes the most material
(figure 3).

• We can generalise the lubrication model to add non-Newtonian effects. While
we presented the framework here, more work is needed to study the behaviour
in a particular case.

• Numerical simulations in the lubrication regime provide a prediction for how
the filter behaves when removing contaminant through a catalytic reaction
(which does not clog the membrane). We find that a membrane comprising
pores that constrict with depth removes the contaminant in the most uniform
manner with depth (figure 4).

• Numerical simulations in the lubrication regime provides insight into how the
arrangement of pores affects the removal efficiency (figure 6). A more compre-
hensive parameter sweep is required to understand the role of pore arrangement
fully.

• We may relax our assumption of slender pores and derive a fully 2D framework.
To account for the changing pore shape due to blocking we use a moving-
boundary mesh formulation. The results provide detailed insight into how the
flow behaves in the pore and how the pore evolves due to surface deposition
at both low speeds (figure 8) and high speeds (figure 9).

• The full numerical simulation also allows us to explore the effect of flowing
the contaminant feed at an angle to the membrane surface. We find that
the pressure drop is highest in a constricting pore and lowest in a straight
pore, irrespective of the inflow angle. A widening pore has an intermediate
pressure drop (figure 13). The efficiency is also highest for a constricting pore.
However, the widening pore has the lowest efficiency and the straight pore has
an intermediate efficiency (figure 14).
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• Finally, we presented a probabilistic model based on expectation values for
the membrane as particles deposit into the filter. The model is able to provide
analytic predictions for how the flux through the filter falls with time, captur-
ing the variability in the number of particles that are contained within each
pore in the membrane, without the need for time-consuming stochastic Monte
Carlo simulations (figure 16).

In terms of next steps, we have:

• Developed a 10-week mini-project in the Industrially Focused Mathematical
Modelling (InFoMM) Centre for Doctoral Training (CDT) at the Mathematical
Institute, University of Oxford which followed on with this work.

• Submitted a proposal and secured an EPSRC Impact Acceleration Account
Award at the Mathematical Institute, University of Oxford, to explore in more
detail the probabilistic and numerical models presented in this report.

• Had preliminary discussions on modelling aspects of this challenge with non-
Newtonian flows, at the School of Mathematics, Cardiff University.
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