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We study the buoyancy-driven spreading of a thin viscous film over a thin elastic
membrane. Neglecting the effects of membrane bending and the membrane weight,
we study the case of constant fluid injection and obtain a system of coupled partial
differential equations to describe the shape of the air–liquid interface, and the
deformation and radial tension of the stretched membrane. We obtain self-similar
solutions to describe the dynamics. In particular, in the early-time period, the
dynamics is dominated by buoyancy-driven spreading of the liquid film, and
membrane stretching is a response to the buoyancy-controlled distribution of liquid
weight; the location of the liquid front obeys the power-law form rf (t)∝ t1/2. However,
in the late-time period, the system is quasi-steady, the air–liquid interface is flat, and
membrane stretching, due to the liquid weight, causes the spreading of the liquid
front; the location of the front obeys a different power-law form rf (t)∝ t1/4 before the
edge effects of the membrane become significant. In addition, we report laboratory
experiments for constant fluid injection using different viscous liquids and thin elastic
membranes. Very good agreement is obtained between the theoretical predictions and
experimental observations.
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1. Introduction

Interactions between fluids and elastic materials arise in a wealth of situations
from everyday life, such as the clumping of fibres in a paintbrush (Boys 1959;
Bico et al. 2004), to environmental challenges, such as the spreading of oil within
the fibres of bird feathers (Duprat et al. 2012), and in the geosciences, where
fluid–elastic interactions are responsible for the intrusion of magma under the Earth’s
crust (Bunger & Cruden 2011; Michaut 2011; Lister, Peng & Neufeld 2013; Hewitt,
Balmforth & De Bruyn 2015). The effect of fluids on compliant materials also
impacts new technologies, for example, in the fabrication and failure of MEMS
devices (Mastrangelo & Hsu 1993a,b; Tanaka, Morigami & Atoda 1993; Unger et al.
2000; Rogers, Someya & Huang 2010) and in printing processes (see, e.g, Yin &
Kumar 2005, 2006). An important biological example of fluid flow on an elastic
substrate is in neonatal respiratory distress syndrome, where the flow of the liquid
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lining the walls of the lungs can induce airway closure (see, e.g., Macklem, Proctor
& Hogg 1970; Grotberg 2011).

In all of these examples, the interplay between the fluid motion and the elastic
material determines the system behaviour. As a result of their ubiquitous nature,
these interactions have long received attention (see, e.g., Gohar 2001). In many cases,
reduced-order models that provide insight into the dynamics are highly desirable so
as to provide a better understanding of how the behaviour depends on the system
parameters. Here, we are interested in simplifications that allow analytical descriptions
for the case of deformation of an elastic medium as fluid is poured onto its surface.
Such a situation could, for example, describe the pooling and spreading of water on
a flexible roof.

It is well known that, by using the lubrication approximation for thin-film flows, it
is possible to derive similarity solutions that give insight into the system behaviour
for the spreading of fluid as it is poured onto a rigid surface (see, e.g., Smith
1969; Didden & Maxworthy 1982; Huppert 1982; Zheng, Rongy & Stone 2015).
Consideration of the flow on an elastic substrate exposes a rich variety of behaviours
depending on the system parameters, such as the flexibility of the material used or
the rate at which fluid is injected onto the surface. For example, for the flow of
fluid on an elastic beam that is clamped at one end, distinct families of asymptotic
solutions can be classified mathematically depending on the operating regime (Howell,
Robinson & Stone 2013). For a tilted elastic substrate, the coupling of gravity and
elasticity gives rise to instabilities if the elastic medium is suitably flexible, offering
potential strategies for promoting interfacial instabilities and mixing (see, e.g., Matar
& Kumar 2004, 2007; Matar, Craster & Kumar 2007). In the case of fluid flow in
the lung airways, Halpern & Grotberg (1992, 1993) use fluid mechanics models to
explain the mechanisms that give rise to the observed airway collapse in newborns,
and show the effect of pulmonary surfactant in delaying or halting airway closure.

Despite the everyday occurrence of free-surface flows of fluids on elastic materials,
the number of studies is relatively limited. Many authors instead focus on the
behaviour of a constrained fluid beneath an elastic medium. These set-ups arise in,
for example, the gravitational flow of magma intrusions beneath the Earth’s crust (see,
e.g., Michaut 2011; Lister et al. 2013; Hewitt et al. 2015) and in liquid blister tests
where fluid is injected beneath an elastic medium, which provides information on the
adhesive strength of the elastic medium (see, e.g., Chopin, Vella & Boudaoud 2008;
Lister et al. 2013). The compliance of the constraining surface can also be shown
to modify the flow properties, such as the well-known viscous fingers observed in
Hele-Shaw cells (see, e.g., Pihler-Puzović et al. 2012, 2013).

In this paper, we use lubrication theory and elasticity theory (see, e.g., Balmforth,
Cawthorn & Craster 2010; Howell et al. 2013; Lister et al. 2013) to form a simplified
model to describe the dynamic response of a circular elastic extensible membrane
pinned at its edge as fluid is injected onto its surface, as shown in figure 1. We
exploit geometrical and material properties such as the thinness of the membrane and
its weak bending stiffness and use asymptotic analysis to consider the behaviour in
the early and late time periods to further simplify the problem. In particular, we seek
similarity solutions in these regimes to describe the time-dependent spreading of the
fluid, to complement those for flow on a rigid substrate (see, e.g., Huppert 1982)
and for the fluid flow constrained by an elastic medium (see, e.g., Lister et al. 2013;
Hewitt et al. 2015). The resulting model is used to identify the key parameters that
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FIGURE 1. (Colour online) A viscous thin film spreads on an elastic membrane; the red
thick arrows indicate the direction of spreading. Both the membrane and the liquid are
exposed to the air with a reference pressure pa at height ha. The film thickness is denoted
by h(r, t) and the membrane deformation is characterized by w(r, t). The extent of the
liquid film is described by rf (t), and the outer radius of the membrane is `, which is fixed
with w(`)= 0. The pressure, density and viscosity of the liquid are denoted by p(r, z, t),
ρ and µ respectively, and the vertically averaged horizontal velocity is denoted by u(r, t);
g is the gravitational constant.

control the spreading behaviour. In § 2, we present a mathematical model that couples
the equations for the flow of fluid on the surface with those for the deflection of an
elastic membrane. In § 3, we investigate analytically the behaviour in the early and
late stages of injection. In § 4, we perform a series of laboratory experiments with a
range of viscous fluids and elastic membranes to test and validate our theory. In § 5,
we summarize the major findings and discuss several model assumptions.

2. Theoretical model
2.1. Governing equations

We study the spreading of a viscous liquid of density ρ and viscosity µ over an
elastic membrane of radius `, thickness d and Young’s modulus E, as shown in
figure 1. We consider a cylindrical coordinate system (r, z) to describe the dynamics.
The membrane is deflected downward by the gravitational force exerted by the liquid;
the shape of the elastic membrane is denoted by −w(r, t) and the thickness of the
liquid film is h(r, t). We assume that the liquid film is long and thin so that we may
apply the lubrication approximation: the flow is mainly horizontal and the vertical
velocity is negligible. Neglecting the effect of surface tension, the pressure p(r, z, t)
in the liquid has a hydrostatic distribution. We assume that the air has a reference
pressure pa at height ha, and we obtain

p(r, z, t)= pa + ρag(ha +w(r, t)− h(r, t))+ ρg(−z−w(r, t)+ h(r, t)), (2.1a)
∂p
∂r
=1ρg

∂(h−w)
∂r

, (2.1b)

where 1ρ ≡ ρ − ρa > 0 is the density difference between the liquid and the air.
Following standard steps in the lubrication description of the flow, the vertically
averaged horizontal velocity u(r, t) is

u(r, t)=− h2

3µ
∂p
∂r
. (2.2)
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The continuity equation gives an evolution for the film shape

∂h
∂t
+ 1

r
∂(rhu)
∂r
= 0. (2.3)

Substituting (2.1) and (2.2) into (2.3), we obtain

∂h
∂t
+ 1ρg

3µ
1
r
∂

∂r

[
rh3 ∂(w− h)

∂r

]
= 0. (2.4)

For constant liquid injection of volumetric flow rate q, the global mass conservation
equation gives

2π

∫ rf (t)

0
rh(r, t) dr= qt, (2.5)

where rf (t) denotes the location of the propagating front of liquid (see figure 1) and
h(rf (t), t)= 0. In fact, h(r, t)= 0 for rf (t)6 r 6 `, where ` denotes the radius of the
membrane.

In addition, we can apply a force balance on an elastic membrane of Young’s
modulus E and thickness d. We neglect the weight of the membrane and the effects
of surface tension and moving contact lines. When the elastic sheet is very thin, the
effect of bending is negligible compared with the stretching effect (see, e.g., Landau
& Lifshitz 1959; Vella, Adda-Bedia & Cerda 2010; Lister et al. 2013). Thus, for
0 6 r 6 rf (t), the balance of the liquid weight and membrane stretching provides

−1
r
∂

∂r

(
rσ
∂w
∂r

)
=1ρgh, (2.6)

where σ(r, t) is the radial tension produced by stretching of the membrane (see, e.g.,
Jensen 1991; Lister et al. 2013), which satisfies

1
r
∂

∂r

(
r3 ∂σ

∂r

)
=−Ed

2

(
∂w
∂r

)2

. (2.7)

For rf (t)6 r 6 `, there exists no liquid over the membrane. The force balance on the
membrane provides

1
r
∂

∂r

(
rσ
∂w
∂r

)
= 0, (2.8)

where σ(r, t) and w(r, t) are also related through (2.7).
Thus, within the extent of the liquid film, i.e. 0 6 r 6 rf (t), (2.4), (2.6) and (2.7)

provide a coupled system for the film thickness h(r, t), the membrane shape w(r, t)
and the radial tension σ(r, t). Outside the extent of the liquid film, i.e. rf (t)6 r 6 `,
(2.7) and (2.8) form a coupled system for w(r, t) and σ(r, t), while h(r, t)= 0 always
holds in this region. For both regions, it is necessary to provide the appropriate initial
and boundary conditions to complete the problem statement.
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2.2. Initial and boundary conditions

We assume that liquid injection begins at t = 0, and there is no initial stress in the
membrane. Thus, for all r, the initial conditions for h(r, t), w(r, t) and σ(r, t) are

h(r, 0)= 0, w(r, 0)= 0 and σ(r, 0)= 0. (2.9a−c)

We note that these initial conditions satisfy the quasi-steady governing equations for
the membrane, i.e. (2.6)–(2.8).

Within the extent of the liquid film, 0 6 r 6 rf (t), at r= 0 two symmetry boundary
conditions apply for w(r, t) and σ(r, t):

∂w
∂r
(0, t)= 0 and

∂σ

∂r
(0, t)= 0, (2.10a,b)

and also there are two boundary conditions for the thickness of the liquid h(r, t):

h(rf (t), t)= 0 and rh3 ∂h
∂r

∣∣∣∣
r→0+
=− 3µq

2π1ρg
. (2.11a,b)

We note that the boundary condition (2.11b) comes from an integration of (2.4)
from r = 0 to r = rf (t), while using the global mass conservation equation
(2.5) and boundary condition (2.10a). The condition (2.11b) can be used instead
of (2.5). We also assumed that (w − h) is not too singular at the front, i.e.
rh3(∂(w− h)/∂r)|r=rf (t) = 0.

Outside the extent of the liquid film, rf (t) 6 r 6 `, the boundary conditions for
w(r, t) and σ(r, t) are

w(`, t)= 0 and
1

Ed

[
(1− ν)rσ + r2 ∂σ

∂r

]∣∣∣∣
r=`
= 0, (2.12a,b)

where ν is the Poisson ratio, and we assume ν = 1/2 in this work. Equation (2.12b)
indicates that the horizontal displacement is zero at the outer boundary of the
membrane (see, e.g., Jensen 1991).

The equations are second order in space, so conditions on the function and first
derivative are placed at the location of the liquid front rf (t). Therefore, four more
boundary conditions for w(r, t) and σ(r, t) can be obtained by matching the solutions
for w(r, t) and ∂w/∂r from 0 6 r 6 rf (t) and rf (t)6 r 6 `:

w|r→r−f =w|r→r+f and
∂w
∂r

∣∣∣∣
r→r−f

= ∂w
∂r

∣∣∣∣
r→r+f

, (2.13a,b)

and by matching the solutions for σ(r, t) and ∂σ/∂r from both sides:

σ |r→r−f = σ |r→r+f and
∂σ

∂r

∣∣∣∣
r→r−f

= ∂σ

∂r

∣∣∣∣
r→r+f

. (2.14a,b)
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2.3. Non-dimensionalization
By scaling it is possible to eliminate all of the physical variables from the differential
equations. We define dimensionless variables T = t/tc, R= r/rc, H = h/hc, W = w/hc
and Σ = σ/σc based on characteristic scales:

tc =
(

3πµEd
q1ρ2g2

)1/2

, rc =
(

3µqE2d2

8π1ρ3g3

)1/8

, (2.15a,b)

hc =
(

3µq
2π1ρg

)1/4

, σc =
(

3µqE2d21ρg
8π

)1/4

. (2.15c,d)

The characteristic scales in (2.15) are chosen such that the coefficients for each term
of the rescaled equations (2.16) are unity. Then, within the extent of the liquid film,
i.e. 0 6 R 6 Rf (T) with Rf (T) ≡ rf (t)/rc, (2.4), (2.6) and (2.7) can be rewritten in
dimensionless form:

∂H
∂T
+ 1

R
∂

∂R

[
RH3 ∂(W −H)

∂R

]
= 0, (2.16a)

1
R
∂

∂R

(
RΣ

∂W
∂R

)
=−H, (2.16b)

1
R
∂

∂R

(
R3 ∂Σ

∂R

)
=−

(
∂W
∂R

)2

. (2.16c)

Outside the extent of the liquid film, i.e. Rf (T) 6 R 6 L with L ≡ `/rc, the
dimensionless form of (2.8) is

1
R
∂

∂R

(
RΣ

∂W
∂R

)
= 0. (2.17)

We note that L enters the problem statement as an independent parameter, and
represents the dimensionless size of the elastic membrane.

In addition, the initial and boundary conditions can be rewritten in dimensionless
forms based on (2.15). Specifically, the initial conditions (2.9) become

H(R, 0)= 0, W(R, 0)= 0 and Σ(R, 0)= 0, (2.18a−c)

the boundary conditions (2.10) at the centre of the membrane R= 0 become

∂W
∂R

(0, T)= 0 and
∂Σ

∂R
(0, T)= 0, (2.19a,b)

and the boundary conditions for H(R, T) from (2.11) are

H(Rf , T)= 0 and RH3 ∂H
∂R

∣∣∣∣
R→0+
=−1. (2.20a,b)

The corresponding boundary conditions (2.12) at the edge of the membrane R= L are

W(L, T)= 0 and
[
(1− ν)Σ + R

∂Σ

∂R

]∣∣∣∣
R=L

= 0. (2.21a,b)



Propagation of a viscous thin film over an elastic membrane 449

Further, the matching conditions (2.13a,b) can be rewritten as

W|R→R−f =W|R→R+f and
∂W
∂R

∣∣∣∣
R→R−f

= ∂W
∂R

∣∣∣∣
R→R+f

, (2.22a,b)

and the matching conditions (2.14a,b) can be rewritten as

Σ |R→R−f =Σ |R→R+f and
∂Σ

∂R

∣∣∣∣
R→R−f

= ∂Σ

∂R

∣∣∣∣
R→R+f

. (2.23a,b)

To summarize, within the extent of the liquid film, i.e. 06R6Rf (T), the governing
equations are (2.16a–c), while outside the extent of the liquid film, i.e. Rf (T)6R6 L,
the thickness of the liquid film is zero, and the membrane deformation W(R, T) and
radial tension Σ(R, T) are governed by a coupled system (2.16c) and (2.17). The
initial conditions are (2.18a–c). The boundary conditions for H(R, T) are (2.20); the
boundary conditions for W(R, T) and Σ(R, T) are (2.19) at R = 0, (2.21) at R = L,
and the matching conditions (2.22) and (2.23) at R= Rf (T).

It should be noted that, based on the scaling (2.15), (2.16a) suggests that when
T = O(1) both the unsteady and the diffusive terms are important for the dynamics
of the thin liquid film. In addition, (2.16b) indicates that when T = O(1) both
the buoyancy and the stretching terms are important for the force balance on the
membrane. However, the balance for the liquid film and the membrane can change in
the early-time period, T� 1, and in the late-time period, T� 1, as will be discussed
in § 3.

3. Early-time and late-time behaviours
In this section, we discuss the early-time (T� 1) and late-time (T� 1) approximate

solutions for the shape of the air–liquid interface H(R, T), the deformation of the
membrane W(R,T) and the radial tension within the membrane Σ(R,T). In particular,
we obtain a gravity current regime in the early-time period, when the spreading is
driven by buoyancy and membrane stretching is the response to the buoyancy-
controlled distribution of liquid weight; in the late-time period, we obtain a membrane
stretching regime, when the flow is quasi-steady and the air–liquid interface is flat.

3.1. Early time: gravity current regime
In the early-time period, i.e. T�1, the deformation of the membrane W(R,T) is much
smaller than the thickness of the liquid film H(R, T). Let us define dimensionless
variables T̂ , R̂, Ĥ, Ŵ and Σ̂ , using εtc, ε1/2rc, hc, ε2/3hc and ε1/3σc, with ε� 1. Then,
within the extent of the liquid film, i.e. 0 6 R̂ 6 R̂f with R̂f ≡ Rf /ε

1/2, the governing
equations (2.16) become

∂Ĥ

∂T̂
− 1

R̂

∂

∂R̂

(
R̂Ĥ3 ∂Ĥ

∂R̂

)
=O(ε2/3), (3.1a)

1

R̂

∂

∂R̂

(
R̂Σ̂

∂Ŵ

∂R̂

)
=−Ĥ, (3.1b)

1

R̂

∂

∂R̂

(
R̂3 ∂Σ̂

∂R̂

)
=−

(
∂Ŵ

∂R̂

)2

. (3.1c)
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Outside the extent of the liquid film, i.e. R̂f 6 R̂ 6 L̂ with L̂≡ L/ε1/2, the governing
equation (2.17) becomes

1

R̂

∂

∂R̂

(
R̂Σ̂

∂Ŵ

∂R̂

)
= 0, (3.2)

and we note that (3.1c) also holds in this region.
Thus, in the limit of 0 < ε � 1, the leading-order terms of (3.1a) reduce to the

well-known nonlinear diffusion equation of Ĥ(R̂, T̂) for the spreading of a viscous
gravity current on a rigid horizontal plane (see, e.g., Smith 1969; Barenblatt 1979;
Huppert 1982):

∂Ĥ

∂T̂
− 1

R̂

∂

∂R̂

(
R̂Ĥ3 ∂Ĥ

∂R̂

)
= 0. (3.3)

Together with the global mass conservation equation rescaled from (2.5),∫ R̂f (T̂)

0
R̂Ĥ(R̂, T̂) dR̂= T̂, (3.4)

a self-similar solution of the first kind can be obtained for the time evolution of the
interface shape Ĥ(R̂, T̂) with R̂∼ T̂1/2 and Ĥ ∼ 1 for constant liquid injection.

Specifically, a similarity variable can be defined as ξ ≡ R̂/T̂1/2, and the location of
the liquid front is R̂f (T̂)= ξf T̂1/2, where ξf is a constant to be determined. Following
standard steps, we define s ≡ ξ/ξf , and the liquid thickness can be expressed as
Ĥ(R̂, T̂)= ξ 2/3

f f (s). Equation (3.3) is transformed to the ordinary differential equation
(ODE)

(sf 3f ′)′ + 1
2 s2f ′ = 0, (3.5)

where primes denote differentiation with regard to s. We note that f (1)= 0, and the
asymptotic behaviour of (3.5) near s→ 1− can be identified as

f (s)∼ (3/2)1/3(1− s)1/3 as s→ 1−, (3.6)

which provides the values of f (1 − λ) and f ′(1 − λ), with λ� 1, as two boundary
conditions for (3.5). A shooting procedure is then used to obtain the numerical
solution for f (s), which is shown in figure 2(a). In addition, the global mass
conservation equation (3.4) is transformed to

ξf =
(∫ 1

0
sf (s) ds

)−3/8

, (3.7)

and we can determine the constant ξf ≈ 1.43. Further details of this self-similar
solution can be found in Huppert (1982).

We can also seek the corresponding self-similar solutions for Ŵ(R̂, T̂) and Σ̂(R̂, T̂).
In particular, we expect that Ŵ(R̂, T̂) = ξ 14/9

f T̂2/3m(s) and Σ̂(R̂, T̂) = ξ 10/9
f T̂1/3n(s).

Then, within the extent of the liquid film, i.e. 0 6 s 6 1, (3.1b,c) are transformed to

(snm′)′ + sf = 0, (3.8a)
(s3n′)′ + s(m′)2 = 0, (3.8b)
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FIGURE 2. (Colour online) Numerical solutions for the similarity functions for the film
height, f , membrane shape, m, and radial tension, n, in the early-time gravity current
regime. In (a), f (s) describes the shape of the air–liquid interface. Our numerical solution
agrees well with the calculation of Huppert (1982). In (b), m(s) − m(1) represents the
shape of the stretched membrane. In (c), n(s) represents the distribution of radial tension
in the membrane. As s∞ increases, the numerical solutions of m(s) − m(1) and n(s)
converge to the self-similar solutions, which correspond to s∞→+∞.

where f (s) is already known from solving (3.5). Outside the extent of the liquid film,
the domain is 1 6 s 6 s∞, where s∞ ≡ L/(ξf T1/2)= L/Rf (T). In the early-time period,
s∞→+∞ as T→ 0+, and (3.2) and (3.1c) are now transformed to

(snm′)′ = 0, (3.9a)
(s3n′)′ + s(m′)2 = 0. (3.9b)

The four appropriate boundary conditions for (3.8) and (3.9) can also be transformed
in terms of m(s) and n(s) from (2.19) and (2.21):

m′(0)= 0, m(s∞)= 0, n′(0)= 0 and [(1− ν)n(s)+ sn′(s)]|s=s∞ = 0. (3.10a−d)

We note that s∞, by definition, is time-dependent. However, in the early-time period,
L/Rf � 1, so we take s∞→+∞. The solution of m′(s) (or, alternatively, m(s)−m(1)
for the deformation of the membrane) and n(s) for 0 6 s 6 1 have negligible
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FIGURE 3. (Colour online) Numerical solutions of the air–liquid interface and membrane
shape in the early-time gravity current regime. We show the solutions for L = 1 at
T = 1/20 (dashed-curves) and T = 1/10 (solid-curves) as an example. It should be noted
that there is a singularity as R→ 0 for the air–liquid interface, where the self-similar
solution fails to capture the interface shape (Huppert 1982).

dependence on the value of the large number s∞. Numerical solutions of (3.8)
and (3.9) for different choices of s∞ are obtained for m(s) and n(s), and we find that
the influence of s∞ is very small even when s∞ =O(1), as shown in figure 2(b,c).

To obtain some representative values, we set s∞ = 10. We note that we can
use as large a value as we choose for s∞, but this must remain finite numerically.
Nevertheless, we observe convergence of the solution as s∞ becomes larger:

m(0)≈ 4.12 and n(0)≈ 0.61. (3.11a,b)

We can also calculate the shape of the air–liquid interface and the membrane, as
shown in rescaled variables in figure 3. As an example, we have chosen the membrane
size to be L= 1, and we calculate the air–liquid interface and membrane deformation
at two different early times, T= 1/20 (s∞≈ 3.1) and T= 1/10 (s∞≈ 2.2). It should be
noted that there is a singularity as R→ 0 for the air–liquid interface, where the self-
similar solution fails to capture the interface shape, as discussed in Huppert (1982).

3.2. Late time: membrane stretching regime
In the late-time period, i.e. T� 1, we expect stretching of the membrane to become
important. We now define dimensionless variables T̃ , R̃, H̃, W̃ and Σ̃ using ε−1tc,
ε−1/4rc, ε−1/2hc, ε−1/2hc and ε−1/2σc, with ε� 1. Then, within the extent of the liquid
film, i.e. 06 R̃6 R̃f with R̃f ≡ ε1/4Rf , the governing equations of the problem (2.16a–c)
become

1
R̃

∂

∂R̃

[
R̃H̃3 ∂(W̃ − H̃)

∂R̃

]
=O(ε2), (3.12a)

1
R̃

∂

∂R̃

(
R̃Σ̃

∂W̃

∂R̃

)
=−H̃, (3.12b)

1
R̃

∂

∂R̃

(
R̃3 ∂Σ̃

∂R̃

)
=−

(
∂W̃

∂R̃

)2

. (3.12c)
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Outside the extent of the liquid film, i.e. R̃f 6 R̃ 6 L̃ with L̃ ≡ ε1/4L, the governing
equation (2.17) becomes

1
R̃

∂

∂R̃

(
R̃Σ̃

∂W̃

∂R̃

)
= 0, (3.13)

and we note again that (3.12c) also holds in this region. We also note that the rescaled
global mass equation becomes ∫ R̃f (T̃)

0
R̃H̃(R̃, T̃) dR̃= T̃. (3.14)

In this reduced set-up, time now appears only in the condition expressing the volume
of fluid deposited on the membrane (3.14). As such, we may alternatively view the
set-up as a steady-state configuration of a constant volume of fluid residing on a
membrane, where the time variable is equated to the volume of fluid.

Equation (3.12a) indicates that W̃ − H̃ is independent of R̃, so is only a function
of time T̃ . Physically, this indicates that the air–liquid interface is horizontal, and the
location and extent of this flat interface increase with time. In particular, within the
extent of the liquid film, from boundary conditions (2.20a) and (2.22a), we obtain

W̃(R̃, T̃)− H̃(R̃, T̃)= W̃(R̃f (T̃), T̃)≡ W̃f (T̃). (3.15)

Substituting (3.15) into (3.12b,c), we obtain a coupled system of equations for the
membrane deformation W̃(R̃, T̃) and radial tension Σ̃(R̃, T̃):

1
R̃

∂

∂R̃

(
R̃Σ̃

∂W̃

∂R̃

)
= W̃f − W̃, (3.16a)

1
R̃

∂

∂R̃

(
R̃3 ∂Σ̃

∂R̃

)
=−

(
∂W̃

∂R̃

)2

. (3.16b)

Equations (3.12b), (3.14) and (3.16a,b) suggest the scaling arguments of R̃ ∼ T̃1/4,
W̃ ∼ T̃1/2 and Σ̃ ∼ T̃1/2, before the edge effect of the membrane becomes important,
i.e. as long as L̃≡ ε1/4L� 1. We note again that L is an independent parameter that
represents the dimensionless size of the membrane, and our scaling argument for the
late-time period holds when 1� T� L4.

Thus, we define a similarity variable as η ≡ R̃/T̃1/4, and ηf ≡ R̃f (T̃)/T̃1/4 which
indicates the position of the liquid front. Following standard steps, we also write
y≡η/ηf . Then, the solutions can be written as W̃(R̃, T̃)=η2

f T̃1/2ψ(y), W̃f (T̃)=η2
f T̃1/2ψ(1)

and Σ̃(R̃, T̃) = η2
f T̃1/2φ(y). Consequently, for 0 6 y 6 1, (3.16) can be rewritten as

ODEs:

(yφψ ′)′ + yψ − yψ(1)= 0, (3.17a)
(y3φ′)′ + y(ψ ′)2 = 0. (3.17b)

Outside the extent of the liquid film, i.e. 16 y6 y∞, where y∞≡L/(ηf T1/4)=L/Rf (T)
and we assume that y∞→+∞ holds for large membranes, (3.13) and (3.12c) are now
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FIGURE 4. (Colour online) As y∞ increases, the numerical solutions of ψ(y) and φ(y)
converge to the self-similar solutions, which correspond to y∞ → +∞. In (a), ψ(y)
represents the shape of the stretched membrane. In (b), φ(y) describes the distribution
of radial stress in the membrane.

transformed to

(yφψ ′)′ = 0, (3.18a)
(y3φ′)′ + y(ψ ′)2 = 0. (3.18b)

The appropriate boundary conditions for (3.17) and (3.18) can also be written in terms
of ψ(y) and φ(y) from (2.19) and (2.21):

ψ ′(0)= 0, ψ(y∞)= 0, φ′(0)= 0 and [(1− ν)φ(y)+ yφ′(y)]|y=y∞ = 0.
(3.19a−d)

Meanwhile, the constant ηf can be determined using the global mass conservation
equation (3.14):

ηf =
(∫ 1

0
y[ψ(y)−ψ(1)] dy

)−1/4

. (3.20)

Again, we note that y∞, by definition, is time-dependent. However, we study the
time period before the edge effect becomes important, i.e. L/Rf � 1, and we take
y∞→+∞. We numerically solve (3.17) and (3.18) using different values of y∞, and
we find that the solution of ψ(y) and φ(y) has negligible dependence on y∞ when
y∞ is large enough. In fact, our numerical solutions show that the influence of y∞ is
actually quite small even when y∞=O(1), as shown in figure 4. The solutions appear
to converge to the self-similar solutions that correspond to y∞→+∞.

To obtain some representative values, we set y∞ = 10. Again, we can use as large
a value as we choose for y∞. Convergence of the solution is observed as y∞ becomes
larger, and y∞ = 10 is large enough to produce the representative values

ψ(0)≈ 2.329, ψ(1)≈ 2.041, φ(0)≈ 0.2047 and φ(1)≈ 0.1561. (3.21a−d)
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FIGURE 5. (Colour online) Numerical solutions of the air–liquid interface and membrane
shape in the late-time membrane stretching regime. We show the solutions for L = 10
at T = 10 (dashed-curves) and T = 20 (solid-curves) as an example. We note that the
air–liquid interface is horizontal in the late-time period.

From (3.20), we also obtain ηf ≈1.97. The representative time-dependent shapes of the
air–liquid interface and stretching membrane are shown in figure 5, where we choose
L= 10 as the membrane size, and we show profile shapes at two different late times,
T = 10 and T = 20.

4. Experimental observations
We have designed and conducted a series of bench-top experiments on viscous

thin films spreading over thin elastic membranes under constant liquid injection.
The experimental set-up is shown in figure 6. Before liquid injection, various thin
elastic membranes were carefully glued to copper round shims with inner radius of
0.102 m and outer radius of 0.127 m. Then, the membranes were placed horizontally
below a syringe needle, and silicone oils of varying viscosity were injected at a
constant flow rate onto the elastic membranes through a syringe pump (Harvard
Apparatus). The injection rate and the physical properties of the liquids (silicone oils:
Sigma–Aldrich) and membranes (silicone rubber sheets, smooth finish: McMaster-Carr
86435K41, 9010K121) used in each experiment are listed in table 1. The thickness
of the membranes was measured using a stainless steel dial calliper with a precision
of 0.02 mm. The Young’s modulus for the elastic membrane was measured using
Hooke’s law by recording the change of length of a rectangular piece of the material
when known weights were hanging from it. We stayed in the linear regime below the
limit where wrinkling occurs. The Poisson ratio was taken to be ν = 1/2. We used
new membranes after each experiment.

The time evolution of the front location of the air–liquid interface was captured
by a USB camera (IDS uEye) installed directly above the shims and membranes,
with sample pictures shown in figure 7(a). The air–liquid interface could be clearly
identified and remained roughly circular during the entire spreading process. The
deflection of the membrane was also recorded using a second digital camera
(Nikon 7100) taking pictures from the side (sample pictures shown in figure 7b).
In our experiments, we first turned on the cameras and confirmed that they were
working correctly. Then, we turned on the syringe pump, and started the fluid
injection process; t= 0 corresponds to the time when we observed the first deposition
of liquid on the membrane. The experiments were found to be reproducible by
comparing the time-dependent locations of the propagating front for experiments with
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FIGURE 6. (Colour online) Experimental set-up: propagation of a viscous liquid above
a stretching membrane. Silicone oil was injected through a syringe pump system onto a
thin elastic membrane. This picture was taken from experiment no. 10 in table 1. We have
adjusted the brightness and contrast of this picture to highlight the liquid pool.

the same parameters (not listed in table 1). For example, the difference for the frontal
location was found to be less than 1 % at the half time of repeated experiments for
condition no. 10. The experimental data for the front locations of the air–liquid
interface and the shape of the deformed membrane were used to compare with the
theoretical predictions, and verify the approximate analytical solutions and our model,
which was developed in § 3.

4.1. Front location
As described in § 3, from our theoretical model, we have identified a transition from
an early-time gravity current regime to a late-time membrane stretching regime during
the fluid injection process. In particular, in the early-time period, the gravity current
model (§ 3.1) predicts that the front location of the air–liquid interface obeys

Rf (T)= ξf T1/2, with ξf ≈ 1.43, (4.1)

while in the late-time period, the membrane stretching model (§ 3.2) predicts that the
front propagates in the form of

Rf (T)= ηf T1/4, with ηf ≈ 1.97. (4.2)

The time transition happens at T ≈ 1 or t≈ tc, as defined in (2.15a). The scalings in
(2.15) indicate how to rescale the experimental data with varying parameters.

To clearly show the effect of individual parameters, we select representative
experiments and demonstrate the effects of the liquid injection rate (figure 8a,b), the
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Experiment Young’s modulus Membrane thickness Kinematic viscosity Injection rate
no. E (106 Pa) d (10−3 m) µ/ρ (10−3 m2 s−1) q (10−6 m3 s−1)

1 0.22± 0.02 0.26± 0.02 1.00± 0.05 1
2 0.22± 0.02 0.26± 0.02 1.00± 0.05 2
3 0.22± 0.02 0.26± 0.02 1.00± 0.05 5
4 0.22± 0.02 0.26± 0.02 10.0± 0.5 1
5 0.22± 0.02 0.26± 0.02 10.0± 0.5 2
6 0.22± 0.02 0.26± 0.02 10.0± 0.5 5
7 0.22± 0.02 0.26± 0.02 0.50± 0.03 2
8 0.22± 0.02 0.55± 0.02 1.00± 0.05 1
9 0.22± 0.02 0.55± 0.02 1.00± 0.05 2
10 0.22± 0.02 0.55± 0.02 1.00± 0.05 5
11 0.25± 0.01 1.51± 0.02 1.00± 0.05 1
12 0.25± 0.01 1.51± 0.02 1.00± 0.05 2
13 0.25± 0.01 1.51± 0.02 1.00± 0.05 5
14 0.42± 0.04 0.26± 0.02 1.00± 0.05 1
15 0.42± 0.04 0.26± 0.02 1.00± 0.05 2
16 0.42± 0.04 0.26± 0.02 1.00± 0.05 5
17 0.76± 0.07 0.25± 0.02 1.00± 0.05 1
18 0.76± 0.07 0.25± 0.02 1.00± 0.05 2
19 0.76± 0.07 0.25± 0.02 1.00± 0.05 5

TABLE 1. Summary of the experimental parameters of viscous gravity currents spreading
on a stretching membrane. Elastic membranes of different Young’s modulus E and
thickness d were used. Silicone oils of different viscosity µ were injected at different
volumetric rates q. The kinematic viscosity and its error for the silicone oils were obtained
from the Sigma–Aldrich product description, and we confirmed the values from our own
measurements using a rheometer (Physica MCR 301). The density of the silicone oils was
ρ ≈ 970 kg m−3. The injection rate was read from the syringe pump (Harvard Apparatus)
with a ±0.35 % error, reported by the company.

viscosity of the injected liquid (figure 8c,d), the thickness of the elastic membrane
(figure 8e,f ) and the Young’s modulus of the membrane (figure 8g,h). The theoretical
predictions in the gravity current (GC) regime, i.e. (4.1), and membrane stretching
(MS) regime, i.e. (4.2), are also shown in the subfigures of rescaled parameters based
on (2.15). We have also provided error bars in the plots.

Data collapse has been clearly observed for all of the experimental parameters
we tested. The scaling argument based on (2.15) appears to capture the spreading
behaviour through the entire liquid injection period. In particular, the influence of the
injection rate spans the entire injection process (figure 8a,b), the effect of the liquid
viscosity is important only in the early-time period (figure 8c,d) and the effects of the
membrane thickness and Young’s modulus become important in the late-time period
(figure 8e–h).

Finally, the data for experiments 1–19 in table 1 are plotted all together in figure 9.
The raw data for rf (t) are plotted versus time t in figure 9(a), and the rescaled front
location Rf (T) and time T based on (2.15) are plotted in figure 9(b). The transition
from the early-time Rf ∝ T1/2 to the late-time Rf ∝ T1/4 is evident.
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5 cm

5 cm

FIGURE 7. (Colour online) Typical experimental observations: (a–f ) from the top and
(g–l) from the side. The pictures are captured from experiment no. 5 listed in table 1.
It should be noted that the brightness and contrast of the pictures have been adjusted to
provide a clearer image of the propagating liquid front and membrane deflection. Images
captured at t = 0 s (a,g); t = 10 s (b,i); t = 50 s (c,k); t = 200 s (d,h); t = 500 s (e,j);
t= 1500 s (f,l).

4.2. Membrane deformation

The time evolution of the shape of the deformed membrane was also recorded in the
experiments (see figure 7b for example). The resolution of the Nikon camera for the
side-view images was 960×768 in a representative experiment. When the deformation
was small, the measurement error became significant. In particular, the centre of the



Propagation of a viscous thin film over an elastic membrane 459

10–1

10–2

10–3

10–1

10–2

10–3

10–1

10–2

10–3

10–1

10–2

10–3

100

101

100

101

100

101

100

101

100 104102 10–1 103101

100 104102 10–1 103101

100 104102 10–1 103101

100 104102 10–1 103101

Tt (s)

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

GC
MS

GC
MS

GC
MS

GC
MS

FIGURE 8. (Colour online) Time evolution of the front location in different experiments
with varying liquid or membrane properties: (a,b) liquid injection rate (10−6 m3 s−1),
(c,d) liquid viscosity (10−3 m2 s−1), (e,f ) membrane thickness (10−3 m−1) and
(g,h) Young’s modulus (106 Pa). Panels (b,d,f,h) are the dimensionless versions of
panels (a,c,e,g). The theoretical predictions of the front location in the gravity current
(GC) and membrane stretching (MS) regimes are also shown.
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FIGURE 9. (Colour online) Time evolution of the front location for a viscous liquid
injection above a stretching membrane. Transition from an early-time gravity current
regime, i.e. Rf ∝ T1/2, to a late-time membrane stretching regime, i.e. Rf ∝ T1/4, has been
observed.

camera had to be precisely placed in the same horizontal place as the bottom of the
copper ring, where we attached the membranes. We assume that the error is too large
for a comparison with theoretical predictions in the early-time period. However, the
deflection in the late-time period is large enough for us to compare with the theoretical
predictions of the membrane shape.

A comparison between theory and experiment is shown in figure 10 when the
vertical deflection is large enough for experimental measurements in the late-time
period (T� 1). In this representative experiment (no. 5 in table 1), from T = 10, the
theoretical calculation of the membrane deformation is greater than the experimental
observation; the prediction of the location of the propagating front is also greater than
the experimental measurement, as indicated by the arrows (see also figure 9b), and
the late-time self-similar solution is still under development. As time progresses, the
self-similar solution continues to develop, and the agreement at T = 20 appears to be
very good in both the membrane deformation and the front location. At T = 35, the
theoretical calculations for the membrane deformation and front location also agree
well with the experimental observations. We note that the major difference between
theory and experiment for the membrane shape appears in the region near the centre,
where the theory slightly overpredicts the membrane deformation. We also note that
the edge effect may contribute to the deviation from the predictions of the late-time
self-similar solution, where the size of the membrane is assumed to be much greater
than the location of the liquid front.

4.3. Experimental uncertainties
There are experimental errors in the measurement of time, length, and thickness and
Young’s modulus of the elastic membranes. We have provided error bars in our data
analyses. The error for the time measurement depends on the frame rate we set for
the camera; the representative values for the frame rate are 1 s for the USB camera
that provides the top view (figure 7a) and 10 s for the Nikon camera that generates
the side view (figure 7b). We included a ruler in the images of our experiments for
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FIGURE 10. (Colour online) Shape of the stretched membrane: a comparison between
experimental observations and theoretical predictions at T = 10 (a), 20 (b) and 35 (c).
After T = 10, the experimental observation shows good agreement with the predictions
from the membrane stretching (MS) regime discussed in § 3.2. This example is based
on experiment no. 5 in table 1, where tc ≈ 43.5 s, rc ≈ 10.7 mm and hc ≈ 2.02 mm;
the dimensionless membrane radius is L ≈ 9.55. The arrows indicate the location of the
propagating front from theoretical predictions (below the curves) and experiments (above
the curves).

information on the length scale. The ruler has a precision of 1 mm, so the typical
error in our measurement of length (e.g. front location rf ) is 1 mm. The errors in
the measurements of the Young’s modulus and the thickness of the elastic membranes
are reported in table 1. The error for dimensionless parameters (e.g. dimensionless
time T) includes errors for both measuring the original parameters (e.g. real time t)
and estimating the characteristic scales (e.g. characteristic time tc). For example, for
dimensionless time T , where T ≡ t/tc, we use (1T/T)2 ≈ (1t/t)2 + (1tc/tc)

2, where
1T , 1t and 1tc represent the errors for T , t and tc respectively.

It should be noted that there exist other factors that can contribute to the
experimental uncertainty. For example, the injection point might not be located
exactly at the centre of the membrane, and the air–liquid interface may not spread
in a perfectly circular manner. The effect of surface tension and the moving contact
line can also contribute to the spreading process to some extent, which we comment
on in § 5.3. In addition, the weight and initial tension of the elastic membranes
are neglected in the mathematical model. The effect of membrane bending is also
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neglected in the model, the validity of which we comment on in more detail in § 5.4.
However, it appears that overall the experimental observations agree well with the
approximate analytical solutions in the asymptotic regimes.

5. Conclusions and discussion
5.1. Conclusions

In this paper, we studied the spreading of thin viscous films over an elastic membrane
that is stretched by the weight of the liquid. A coupled system of partial differential
equations was derived, using the lubrication approximation for the dynamics of the
thin film, to describe the time evolution of the film thickness, membrane deflection
and radial tension in the membrane. For constant liquid injection, we obtained distinct
early-time and late-time self-similar regimes. In particular, in the early-time period,
the dynamics is dominated by the buoyancy-driven spreading of the liquid film, and
the membrane stretches to balance the buoyancy-controlled distribution of liquid
weight. In the late-time period, the system is quasi-steady, the air–liquid interface is
flat and membrane stretching is the dominant mechanism, which regulates the speed
of the spreading front. As a result, the location of the front exhibits a transition
from a t1/2 power law in the early-time period to a t1/4 power law in the late-time
period. Laboratory-scale experiments have also been conducted to verify the model
predictions. Our study extends the gravity current literature, and provides insight into
buoyancy-driven spreading problems where the horizontal boundaries are stretchable.

5.2. Influence of injection modes
In this paper we only considered the case of a constant liquid injection rate. However,
we note that the problem can be generalized to a broader range of injection modes,
and various approximate analytical solutions may still be obtained, for example, for
power-law or exponential injection modes. In this case, the global mass conservation
equation (2.5) must be modified for the specific injection mode, as well as the
boundary condition (2.11b). The procedures are analogous to the case of constant
injection, while we note that the appropriate time, length and tension scales in (2.15)
are expected to be different to non-dimensionalize the differential equations, and
boundary and initial conditions. As a result, the scaling laws are also expected to be
different.

5.3. Influence of surface tension
We have neglected the effects of surface tension and the moving contact line in this
work, as mentioned before. We note that the thickness of the liquid film is large
(for example, h= 1 cm) for the bulk part of the film away from the location of the
propagating front, so we expect the effects of surface tension and the moving contact
line to be important only in the region very close to the front. However, the global
spreading rate and the shape of the bulk part of the air–liquid interface can still be
estimated by the gravity current models, as reported before (see, e.g., Huppert 1982).
In addition, the length scale of the liquid film is large (for example, rf = 5 cm) in
this study, such that the effect of surface-tension-induced membrane wrinkling is also
negligible (see, e.g., Huang et al. 2007; Vella et al. 2010).

5.4. Influence of membrane bending
We have neglected the effect of membrane bending in our study. For a deflection w,
the liquid pressure from membrane bending scales as pb∼Bw/`4∼Ed3w/[12(1− ν2)`4],
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with B denoting the bending stiffness and ν the Poisson ratio. On the other hand, the
pressure from membrane stretching scales as ps ∼ σw/`2 ∼ Edw3/`4. Thus, ps/pb ∼
6(1− ν2)w2/d2. In the early-time period, there will always exist a time range in which
the membrane deflection w is small compared with the thickness of the membrane d,
and hence the bending effect is important. However, this time range is very short when
using the very thin membranes in our experiments. For example, in experiment no. 2,
the membrane thickness is d≈ 0.27 mm; at t= 1 s (t≈ 0.1tc), we obtain a deflection
of w≈ 2 mm (w≈ 2hc) at the centre of the membrane, by which time pb/ps is already
≈10−3. Thus, neglecting the effect of membrane bending is a good assumption in this
work.
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