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2Abstract

Using only a simple principle that states that the class of valid systems for statistical

inference should be closed under a certain data-augmentation process and complete in an

obvious sense, we show how Bayesian and other systems of inferences can be generated

in a direct manner from an initial system of point estimators. Using a generalisation of

Gibbs sampling, we construct refinement operators that act on systems of inference to

transform them into preferable systems. Interest then focuses on systems that are fixed

by these operators. In the 1-dimensional setting, we characterise fixed points obtained

from systems of moment estimators, showing that these are Bayesian when the model lies

in the exponential family, with the usual conjugate prior arising as a by-product of the

construction. In other cases, the limiting inferences are pseudo-Bayesian in that param-

eter densities combine a prior with a data-dependent pseudo-likelihood. We also show

that, given sufficiently strong assumptions on the model, the construction, when applied

to an initial system of maximum-likelihood estimators, leads to Bayesian inference with

Hartigan’s maximum likelihood prior as the fixed point, and consider further generalisa-

tions of this. A counter-example is given to show that, for non-regular models, a Bayesian

fixed point may not arise from maximum-likelihood estimation. Inter alia, the results

offer a new perspective on the relationship between Bayesian inference and classical point

estimation whereby the former is generated from the latter without direct reference to the

Bayesian paradigm.



31 Introduction

Let y1, y2, y3, . . . denote a sequence of independently, identically distributed (i.i.d.) sam-

ples from a density νθ(y) with y ∈ Y and parameter θ ∈ K where Y ,K ⊆ R and, for

n ∈ N let xn = (y1, ...., yn) denote the outcome of an experiment that records the first n

values. A system of inferences is defined as

Θ = {pxn(θ) | n ∈ N, xn ∈ Y n},

where pxn(θ) is a density representing the belief about parameter θ given the outcome

xn. Systems of point estimators are obtained on setting pxn(θ) = δ(θ − θ̂(xn)), where

θ̂(xn) denotes the point estimate of θ calculated from data xn. Bayesian systems have

the property that pxn(θ) ∝ π(θ)νθ(xn) for some prior density π(θ). For a given model, we

denote by X the collection of all systems of inference. A system of inferences is essentially

the same as the concept of an inversion as defined in Hartigan (1964).

This paper explores a novel, dynamical-systems approach to investigating the structure

of X and comparing its constituent systems of inferences. Specifically we use a gener-

alised data-augmentation principle introduced in Gibson et al. (2011), in order to define

mappings, Ψ and Φ, called refinement operators in Section 2, from X to itself, which

maps a given system of inferences to one which is preferable in a sense which we make

explicit in Section 2. Interest then focuses on the fixed points of these operators. These

have the property of being preferable to all systems in their domain of attraction and,

arguably, attention should be restricted to these fixed points when selecting appropriate

statistical procedures. Moreover, a refinement operator induces a natural structure on X

by partitioning it into the domains of attraction of the fixed points, with systems lying

in distinct domains being mutually incomparable by our definition of preferability. This

structure provides a means for exploring connections between approaches to inference and



4estimation. When the domain of attraction of a Bayesian fixed point contains a system

of point estimators, then a correspondence between Bayesian and classical approaches is

identified.

Connections between classical and Bayesian inference have been sought by identifying

choices of prior distribution for θ, so that the resulting posterior density satisfies certain

classical criteria, at least asymptotically. Examples include reference priors (see Berger

et al. (2009); Bernardo (1979)), which maximise, in the large-sample limit, the expected

Kullback-Leibler (KL) distance between prior and posterior, making the data maximally

informative in a natural sense. Another example is the Jeffreys prior (Jeffreys (1946))

which attempts to assign equal prior probability to intervals of a given level of confidence.

A decision-theoretic approach is taken by Hartigan (Hartigan (2012)) where the notion

of a risk-matching prior for an estimator is described, this being the prior for which the

corresponding posterior Bayes estimator has the same risk to order n−2 as the given

estimator. Of particular relevance here is the maximum likelihood prior (Hartigan (1964,

1998)), which is the risk-matching prior corresponding to maximum-likelhood estimation.

When θ is the canonical parameter in a distribution from the exponential family, the

maximum-likelihood prior is uniform on the parameter space. More generally, for the

1-dimensional models considered in this paper, the maximum-likelihood prior π(θ) for a

model with density νθ(y) satisfies

∂ log π(θ)

∂θ
=
a(θ)

i(θ)
,

where

a(θ) = E
(
∂ log νθ(Y )

∂θ

∂2 log νθ(Y )

∂θ2

)
and

i(θ) = E
(
−∂

2 log νθ(Y )

∂θ2

)
.



5These approaches establish correspondences by constructing an analysis which is Bayesian

from the outset and which matches the classical analysis according to some external

criterion. By contrast, our approach attempts to generate ’internally’ from a system

of point estimators new systems of inference which are invariant under certain data-

augmentation operations. In some cases, namely when the initial estimators are essentially

maximum-likelihood and sufficient regularity holds, the invariant systems generated are

Bayesian and the Bayesian paradigm arises as a consequence, rather than a premise of

the construction. On the other hand our results demonstrate that non-Bayesian invariant

systems can be generated in this way.

In our main result, Theorem 3.2, we characterise, for a broad class of 1-parameter

models, those points fixed by Ψ whose domains of attraction contain a system of moment-

based estimators. These limiting inferences can be considered to be pseudo-Bayesian in

the sense that the ‘posterior’ densities that arise are exhibited as a product of a data-

independent function and data-dependent function, playing the respective roles of a prior

and pseudo-likelihood. In Example 3.5 we give an example to show that that the limiting

inference, when non-Bayesian, may nevertheless approximate a Bayesian analysis of an

experiment in which only the sample mean were observed. For the models in the exponen-

tial family, given an initial system of maximum-likelihood estimators, a Bayesian analysis

using the maximum-likelihood prior arises as the fixed point, with other priors from the

conjugate family arising for other choices of initial estimators.

In Section 5 we explore the generalisations of the main theorem to fixed points of Φ

arising from systems of maximum likelihood estimators. An argument is presented that

suggests that the Bayesian analysis with the maximum-likelihood prior should be obtained

as the fixed point given sufficiently strong regularity. Moreover, a counter-example based

on the uniform distribution is included to demonstrate that the Bayesian limit does not



6arise in general.

2 Generalised data augmentation, validity and prefer-

ability

Throughout we take the view that the validity of any statistical procedure is a subjective

judgement on the part of the user or observer. In what follows we do not attempt,

therefore, to define validity in absolute terms. When the term valid is used, this should

be interpreted as valid in the opinion of a given observer. We describe an approach that

draws on the concept of the relative validity of procedures and the related concept of the

preferability of one procedure to another.

In Gibson et al. (2011) a generalised data augmentation principle was proposed and

used to construct, or refine, inferences in the form of posterior-like summaries of belief.

This asserts that the set of all systems of inference for θ that are considered valid by a

given observer, should be closed under a data-augmentation operation as described by

Principle 2.1.

Augmentation Principle 2.1. Let

Θ = {pxn(θ)|n ∈ N, xn ∈ Y n},

denote a valid system of inferences. Then for any n,m ∈ N, the system Θn,m is valid,

where Θn,m is obtained from Θ by replacing pxn(θ) with

p(n,m)
xn (θ) =

∫ ∫
pxn(θ′)νθ′(xn+m|xn)pxn+m(θ)dxn+mdθ

′ (1)

and νθ′(xn+m|xn) denotes the conditional density of x2 given x1 for the model with pa-

rameter θ′ .



7Principle 2.1 implies that, if Θ is valid, then so is Θn,m but not the converse. This

leads us to define the notion of preferability as follows. We say that Θ2 is preferable to Θ1

if any observer who considers Θ1 to be valid also considers Θ2 to be valid. If we consider

only observers who accept Principle 2.1 then the principle itself provides a mechanism for

identifying inferences that are preferable to any given system.

Informally, Principle 2.1 states that a valid inference given xn is obtained by taking

a mixture of valid inferences based on xn+m, in a manner analogous to Bayesian data

augmentation, where the n samples in xn are augmented by the next m samples in the

sequence. Of course, when Θ is a Bayesian system of inferences, then Θ and Θn,m coincide.

Our main interest will be in the application of Principle 2.1 more generally, to transform

(or refine) a system of inferences into a preferable one. This leads to the refinement

operators formulated using Principle 2.1 below.

First note that p
(n,m)
xn = pxnP , where P is the transition kernel of a Markov chain,

called the generalised data-augmentation chain, on the parameter space, in which updates

to the current state θ(i) are generated by first drawing xn+m ∼ νθ(i)(xn+m|xn) and then

drawing θ(i+1) ∼ pxn+m . Applying Principle 2.1 sequentially, it follows that a valid system

is obtained by replacing pxn with pxnP
k for any k ∈ N. Moreover, if the generalised data-

augmentation chain defined by P is ergodic with stationary density, ψxn , then replacing

pxn with ψxn also yields a valid system of inferences, so long as we allow the class of

valid inferences to be complete. This motivates an additional principle from Gibson et al.

(2011).

Completeness Principle 2.2. Suppose that {Θ(i), i = 1, 2 . . . } denotes a sequence of

valid systems for which

lim
i→∞

p(i)
xn = ψxn , n ∈ N, xn ∈ Y n,



8Then

Ψ = {ψxn(θ)|n ∈ N, xn ∈ Y n}

is also a valid inference. If, for some system of inferences Θ and every i, Θ(i) is preferable

to Θ, then Ψ is preferable to Θ.

We now appeal to Principles 2.1 and 2.2 to formulate a refinement operator, Ψ, that

can be applied to an initial system of inferences

Θ0 = {pxn,0(θ)|n ∈ N, xn ∈ Y n},

to generate a sequence of systems {Θi|i ∈ N} in which Θi+1 = Ψ(Θi) is preferable to Θi.

First denote by P (0,m)(xn) the transition kernel of the generalised data-augmentation

chain arising when the observation xn is augmented by the next m samples from the

distribution. For this chain the state θ(r) is updated by drawing θ(r+1) ∼ pxn+m,0 where

xn+m ∼ νθ(r)(xn+m|xn). We construct a new inference for xn by considering the station-

ary distribution of the chain for each m, and then taking the limit of these stationary

distributions as m→∞ in order to remove dependence on the particular choice of m. On

performing this for each n in ascending order, appealing to Principle 2.2 as required, we

generate the new system Θ1 = Ψ(Θ0).

Generally, we construct Θi+1 = {pxn,i+1(θ)|n ∈ N, xn ∈ Y n} from Θi = {pxn,i(θ)|n ∈

N, xn ∈ Y n} recursively by setting

pxn,i+1 = lim
m→∞

lim
k→∞

pxn,i[P
(i,m)(xn)]k, (2)

where the limits are taken in the sense of weak convergence. Suppose now that limi→∞Θi =

Θ∞. Then Θ∞ is preferable to Θi, for all i, is invariant under Ψ, and is, in a natural

sense, maximally preferable.

Denote by C ⊂X the collection of those systems of inference Θ0 for which the limiting

system Θ∞ exists, and denote by CF ⊂ C the corresponding set of fixed points.



9It is clear that any Bayesian system Θ, for which

pxn(θ) ∝ π(θ)νθ(xn)

for some prior density π(θ), lies in CF . In this case the generalised data-augmentation

chain with transition kernel P (xn, pxn+m) is a Gibbs sampler and the density pxn is fixed

by this kernel for any m > 0 and hence by Ψ. As we demonstrate, CF contains non-

Bayesian systems; therefore the property of invariance under Ψ may be seen as a weak

form of coherence.

When the basin of attraction of a system Θ ∈ CF fixed by Ψ contains a system

of point estimators Θ0, a correspondence between classical and non-classical approaches

follows. When Θ ∈ CF is Bayesian, then a natural link is made between classical and

Bayesian approaches. In the following section, we characterise for a general class of models

the elements of CF whose basins include systems of moment-based point estimators. In

particular, we will show that for the case of the 1-dimensional exponential family with

the mean-value parameterisation, the maximum-likelihood prior of Hartigan (1998) can

be obtained via this correspondence.

We define an alternative refinement operator, and corresponding constructions, by

taking limits with respect to m and k in a different manner. Consider the new operator

Φ for which

pxn,i+1 = lim
k→∞

lim
m→∞

pxn,i[P
(i,m)(xn)]mk. (3)

We may expect, given sufficiently strong conditions on the model, that the same sequence

of systems of inference will arise from the above construction if Ψ or Φ is used; this is the

case for the class of models considered in Theorem 3.2. At points in the paper, it will be

convenient to work with the operator Φ defined by (3).



103 Moment-based estimators and fixed points

We retain the notation of the previous section and let y1, y2, y3, . . . denote a sequence

of i.i.d observations from a measure with density νθ(y) with a 1-dimensional parameter

θ ∈ (l, r) (where l, r ∈ [−∞,∞] ) and let xn = (y1, ...., yn). We suppose that νθ(y) has

mean θ and variance σ2(θ) and satisfies Assumption 3.1.

Assumption 3.1. We assume that the following conditions hold:

1. The function σ2 is locally Lipschitz continuous in that there is a constant KU such

that

|σ2(θ)− σ2(θ′)| ≤ KU |θ − θ′|, ∀|θ|, |θ′| < U.

2. The function σ2 satisfies a linear growth condition in that there exists a constant Cl,

which we assume satisfies Cl <
√

2n, such that

σ2(θ) ≤ Cl(1 + θ2).

3. There exists an ε > 0 such that

∫
(x− θ)2+ενθ(x)dx <∞.

We now investigate those Θ ∈ CF whose basins of attraction contain moment-based

point estimators. The next result generalises Gibson et al. (2011), Example 2.3, which

considered the special case of the Normal distribution. We write f(θ), g(θ), for θ ∈ (l, r),

for the indefinite integral of σ−2(θ) and θσ−2(θ) respectively. We note that by the Lipschitz

continuity these functions are locally integrable at θ whenever σ(θ) > 0.

Theorem 3.2. Suppose that νθ satisfies Assumption 3.1 and let

Θ0 = {pxn,0(θ) = δ(θ − x̄n) | n ∈ N, xn ∈ Y n}.



11For i = 1, 2, 3, . . . , let ci = 2− 2−(i−1). Then the systems Θi, i = 1, 2, 3, ... exist and are

given by

Θi = {pxn,i(θ) ∝
1

σ2(θ)
exp{ 2

ci
n(f(θ)x̄n − g(θ))} | n ∈ N, xn ∈ Y n}.

Moreover, the limiting system Θ∞ is specified by

Θ∞ =

{
pxn,∞(θ) ∝ 1

σ2(θ)
exp{n(f(θ)x̄n − g(θ))} | n ∈ N, xn ∈ Y n

}
.

The proof is given in Section 4. It exploits the property that, as m→∞ the generalised

data-augmentation chains that arise converge weakly to solutions to stochastic differential

equations whose stationary measures can be identified.

We now consider the conditions for Θ∞ to be a Bayesian system, and the nature of

the corresponding prior.

Corollary 3.3. Under Assumption 3.1, Θ∞ is Bayesian if and only if νθ(y) is a member of

the 1-parameter exponential family (with the mean-value parameterisation) and sufficient

statistic x̄n.

Proof. Clearly Θ∞ is Bayesian only if the likelihood νθ(xn) satisfies

νθ(xn) = K1(xn)K2(θ) exp{n(f(θ)x̄n − g(θ))}.

identifying it as a member of the 1-parameter exponential family with mean value θ and

sufficient statistic x̄n.

Conversely, suppose that νθ(x) is a density from the 1-parameter exponential family

with sufficient statistic x, mean θ and canonical parameter a(θ), then

νθ(x) = K(x) exp{a(θ)x− c(θ)}.

From the score function a′(θ)x−c′(θ) we obtain the information function i(θ) = σ−2(θ) =

a′(θ) implying that a(θ) =
∫
σ−2dθ and c′(θ) = a′(θ)θ in which case c(θ) =

∫
θσ−2(θ)dθ.



12It follows that pxn,∞(θ) ∝ 1
σ2(θ)

exp (n(a(θ)x̄n − c(θ)}; hence Θ∞ represents a Bayesian

analysis with prior density π(θ) ∝ σ−2(θ). Note that π(θ) ∝ σ−2(θ) induces a uniform

measure on the canonical parameter a(θ). This corresponds to the maximum-likelihood

prior distribution of Hartigan (1998). �

For the 1-parameter exponential family with mean-value parameterisation and suffi-

cient statistic x̄n, Bayesian analyses with alternative priors from the conjugate family are

obtained by specifying Θ0 appropriately in the construction. Given prior experience of a

sample of size k with mean value a, then a natural system of point estimators is

Θ0 = {pxn,0(θ) = δ(θ − nx̄n + ka

n+ k
) | n ∈ N, xn ∈ Y n}.

In this case Θ∞ corresponds to a Bayesian analysis using the the prior

π(θ) ∝ σ−2(θ) exp{k(f(θ)a− g(θ)},

and the correspondence between ‘shrinkage’ estimators and the choice of conjugate prior

is obtained.

We now discuss distributions outside the 1-parameter exponential family. In this case,

Theorem 3.2 demonstrates that CF contains both Bayesian and non-Bayesian systems of

inference that are fixed by Ψ. As in the exponential-family case, Theorem 3.2 predicts

that the general system of estimators for which

pxn,0(θ) = δ(θ − nx̄n + ka

n+ k
)

lies in the basin of attraction of the fixed point for which

pxn,∞(θ) ∝ σ−2(θ) exp{k(f(θ)a− g(θ)} × exp{n(f(θ)x̄n − g(θ))}.

The first and second factors play roles analogous to a ‘prior’ density and a pseudo-

likelihood respectively. In particular, the pseudo-likelihood exp{n(f(θ)x̄n−g(θ))} may be



13considered to approximate the true likelihood with one of exponential-family form. Since

x̄n is not generally sufficient for θ, then pxn,∞(θ) may not coincide with π(θ|xn) for any

prior π(θ). Nevertheless, we might expect pxn,∞(θ) to give a reasonable approximation to

π(θ|x̄n) for some π(θ). We illustrate this in the following examples.

Example 3.4. The double exponential distribution has density given by

νθ(x) =
1

2
exp{−|x− θ|}, x ∈ R

with mean given by θ and constant variance 2. In this case, Theorem 3.2 states that when

pxn,0(θ) = δ(θ − x̄n)

pxn,∞(θ) ∝ exp{−n
4

(x̄n − θ)2}.

Clearly, for large sample sizes, this is ‘close’ to a Bayesian analysis, with improper uniform

prior, for an experiment recording the sample mean x̄n since the likelihood νθ(x̄n) can be

approximated by the density of N(θ, 2
n).

Example 3.5. The Uniform(0, 2θ) distribution has mean θ and variance σ2(θ) = θ2

3 , and

satisfies Assumption 3.1. In this case, Theorem 3.2 states that when pxn,0(θ) = δ(θ− x̄n)

Θ∞ = {pxn,∞ ∝ θ−3n−2 exp(−3nx̄n/θ)|n ∈ N, xn ∈ Y n},

so that pxn,∞(θ) ∼ IGamma(3n + 1, 3nx̄n). We compare the density pxn,∞(θ) with the

Bayesian posterior density π(θ|x̄n) for the prior π(θ) ∝ σ−2(θ) ∝ θ−2.

The likelihood L(θ; x̄n) is not convenient to work with directly being proportional to

the (n− 1)-dimensional volume V (A) of the set

A =
{

(y1, y2, , ..., yn) ∈ Rn |
∑

yi = nx̄n

}
∩ [0, 2θ]n.

Therefore we estimate π(θ|x̄n) using Gibbs sampling, treating the unobserved y1, ...yn as

additional unknown parameters.



14From Figure 1 we see that pxn,∞(θ) approximates the Bayesian posterior π(θ|x̄n) in

the case where n = 30. Thus, although not precisely Bayesian, Θ∞ represents a system

which makes use of knowledge of the sample mean in an approximately Bayesian manner.

θ

Figure 1: Comparison between π(θ|x̄n = 10) as estimated by Gibbs sampling and pxn,∞(θ) for

sample size n = 30.

4 Proof of Theorem 3.2

We retain the notation of earlier sections and consider the family of probability measures

with density νθ where the parameter space is a subset K of R. Recall that θ is the

distribution mean and σ2(θ) the variance. Under the conditions of Assumption 3.1, we

will show, using an induction argument, that the construction of Theorem 3.2 indeed

converges to the system Θ∞ given in the statement of the theorem. In Section 4.1 we



15consider the first step whereby Θ1 is constructed from Θ0, before considering the inductive

step in Section 4.2. First we give some key auxiliary results required for the proof.

Suppose that we have already constructed the systems Θ0, ...,Θi−1. Now fix n, and the

observed sample xn, and consider the Markov chain θ
(k)
i,m with transition kernel P (i−1,m)

as described after Principle 2.2. We assume that, for all possible observed samples xn, the

sample mean x̄n is constrained to lie in the allowable parameter space K. We first define

a continuous-time process from θ
(k)
i,m by interpolation, setting θmi (t) = θ

(bmtc)
i,m , noting that

θ
(k)
i,m and θmi (t) are identical so far as the existence and nature of the stationary distribution

is concerned.

The main work in proving Theorem 3.2 lies in establishing the following theorem. We

will write σi(θ) =
√

2− 2−(i−1)σ(θ).

Theorem 4.1. For i = 1, 2, . . . , under Assumption 3.1, there exists a unique solution

θi = {θi(t); t ≥ 0} to the one dimensional stochastic differential equation

dθi = n(x̄n − θi)dt+ σi(θi)dW
i. (4)

θi(0) = ξ

where W i is a standard Brownian motion and ξ ∈ K.

For each i, we have that the sequence of Markov chains θmi , with θmi (0) = ξ, converges

weakly to the diffusion process θi as m→∞.

Note that it is enough to have a weak solution to the equation (4) for our purposes.

This result in essence enables one to demonstrate that the second refinement operator Φ,

introduced in Section 2, has Θ∞ in Theorem 3.2 as a fixed point. With a little more work

we can deduce the following version of Theorem 3.2 to show that Θ∞ is the fixed point

of Ψ as required by the Theorem.



16Theorem 4.2. The Markov chains θmi have stationary distributions πmi , the diffusion

process θi has a stationary distribution πi and

πmi → πi, weakly as m→∞.

A consequence of Theorem 4.1 is that we can characterise the limiting systems arising

from the generalised data-augmentation constructions by considering the properties of

diffusion processes. Concerning these properties we have the following results.

Lemma 4.3. (1) There exists a unique solution to the SDE (4), {θi(t) : t ≥ 0} which

can be written in integral form as

θi(T ) = x̄n + (ξ − x̄n)e−nT +

∫ T

0
e−n(T−t)σi(θi(t))dWt. (5)

(2) The moments of θi(t) are bounded up to a level depending on n in that there exist

constants Ck such that E|θi(t)|k ≤ Ck(1 ∨ |x̄n|k ∨ |ξ|k) for all t ≥ 0 and 1 ≤ k ≤

(2n+ Cl)/Cl.

(3) If
√

2n > Cl, the stationary distribution of (4) exists and is given by

pi(θ) ∝
1

σi(θ)2
exp(2n(fi(θ)x̄n − gi(θ))),

where

fi(θ) =

∫
σ−2
i (θ)dθ, gi(θ) =

∫
θσ−2

i (θ)dθ.

The proof of this lemma can be found in the Appendix. Together Theorems 4.1, 4.2

and Lemma 4.3 lead to the following result.

Corollary 4.4. In the construction of Theorem 3.2 the limiting system of inferences has

a density given by

pxn,∞(θ) ∝ 1

σ(θ)2
exp(n(f(θ)x̄n − g(θ))),

where

f(θ) =

∫
σ−2(θ)dθ, g(θ) =

∫
θσ−2(θ)dθ.



17A key tool in establishing Theorem 4.1 is Corollary 7.4.2 of Ethier and Kurtz (1986),

which specifies conditions sufficient for the existence of a diffusion approximation to a

sequence of Markov chains. We state a version of the result suited to our purposes. We

denote by P(R) the set of probability measures on R.

Theorem 4.5 (Ethier and Kurtz). Let X = {X(t); t ≥ 0} be a diffusion process satisfying

the SDE

dXt = b(Xt)dt+ σ(Xt)dWt, X(0) ∼ φ

where b is a continuous function and σ is also continuous and X0 is drawn according to

a measure φ ∈ P(R). Let Ym = {Ym(k); k ≥ 0} be a discrete time Markov chain and set

Xm(t) = Ym([mt]). Let

µm(x) = mE(Ym(1)− x)

σ2
m(x) = mE(Ym(1)− x)2

Suppose that the law of Xm(0) converges weakly to φ and that for each r > 0 and ε > 0

we have

lim
m→∞

sup
|x|<r

|µm(x)− b(x)| = 0, (6)

lim
m→∞

sup
|x|<r

|σ2
m(x)− σ2(x)| = 0, (7)

and

lim
m→∞

sup
|x|<r

mP(|Ym(1)− x| ≥ ε) = 0. (8)

Then Xm converges weakly to X.

We are now in a position to proceed with the inductive proof of Theorem 3.2.



184.1 The case i = 1.

We note that here and throughout the paper the notation c, c′ will be used to denote

arbitrary constants which may change from line to line, whereas labelled constants with

an upper case C will be fixed. When our observation xn is augmented by a further m

samples we obtain a generalised data-augmentation chain with updates specified by

θ
(k+1)
1,m =

nx̄n +mȲ
(k)
m

n+m
,

where Ȳ
(k)
m = 1

m

∑m
j=1 Y

(k)
j , with Y

(k)
j samples from the measure with density ν

θ
(k)
1,m

. To

simplify the notation we suppress the subscript i = 1 and write θ
(k)
1,m as θ

(k)
m . We now

establish the conditions of Theorem 4.5 with θ
(k)
m in place of Ym(k) and with the limiting

diffusion process given by (4).

Suppose now that θ
(0)
m = x, then

θ(1)
m = x+

n

n+m
(x̄n − x) +

Rm(x)

n+m
,

where Rm(x) =
∑m

j=1(Y
(0)
j − x), with Y

(0)
j independent and identically distributed with

mean x. Thus

µm(x) = mE(θ(1)
m − x) =

nm

n+m
(x̄n − x),

and hence with µ(x) = n(x̄n − x) we have

sup
|x|<r

|µn(x)− µ(x)| = sup
|x|<r

∣∣∣∣n2(x̄n − x)

n+m

∣∣∣∣→ 0, as m→∞,

which establishes (6).

By construction we have

σ2
m(x) = mE(θ(1)

m − x)2

= mE
(

n

n+m
(x̄n − x)− 1

n+m
Rm(x)

)2

= m

((
n

n+m

)2

(x̄n − x)2 +
1

(n+m)2
ERm(x)2

)

=
mn2

(n+m)2
(x̄n − x)2 +

(
m

n+m

)2

σ2(x).



19Thus σ2
m(x)→ σ2(x) as m→∞. We establish our condition (7) as

sup
|x|<r

|σ2
m(x)−σ2(x)| ≤ sup

|x|<r

(
mn2

(n+m)2
(x̄n − x)2 +

(
2mn+ n2

(n+m)2

)
σ2(x)

)
→ 0, as m→∞.

To handle the tail condition (8) we observe that by Assumption 3.1 there is an ε > 0

such that E(Y1 − x)2+ε <∞. Letting p = 2 + ε we see that

E|θ(1) − x|p ≤ 2p−1

((
n

n+m

)p
|x̄n − x|p +

ERm(x)p

(n+m)p

)
.

As Rm(x) is the value at time m of a discrete martingale, we can apply the Burkholder-

Davis-Gundy inequality to see that

E|Rm(x)|p = E

∣∣∣∣∣
m∑
i=1

(Y
(0)
i − x)

∣∣∣∣∣
p

≤ cpE

∣∣∣∣∣
m∑
i=1

(Yi − x)2

∣∣∣∣∣
p/2

≤ cpm
p/2−1E

m∑
i=1

|Yi − x|p

= cpm
p/2E|Y (0)

1 − x|p = Cpm
p/2. (9)

Thus we have, by Markov’s inequality and (9),

mP(|θm(1)− x| ≥ ε) ≤ sup
|x|<r

m
E|θ(1) − x|p

εp

≤ sup
|x|<r

(
2p−1mnp

(n+m)p
|x̄n − x|p +

2p−1mp/2+1Cp
(n+m)p

)
≤ C1m

1−p + C2m
1−p/2,

which tends to 0 as m→∞ since p > 2.

Thus we have satisfied the conditions of Theorem 4.5 and we have proved

Proposition 4.6. Under Assumption 3.1 the process θm1 converges weakly to θ1, the

pathwise unique strong solution to

dθ1 = n(x̄n − θ1)dt+ σ(θ1)dW.

with θ1(0) = ξ ∈ K.

From Lemma 4.3 (3) we have established the form of Θ1 as given in Theorem 3.2.



204.2 The inductive step

To complete our induction we need to consider the general case. We assume that we have

generated the system of inferences up to i. Again we fix n, and the observed sample xn,

and consider the Markov chain θ
(k)
i+1,m with transition kernel P (i,m) as described after Prin-

ciple 2.2, where θ
(k+1)
i+1,m ∼ pi,xn+m(θ) with the augmented sample xn+m ∼ νθ(k)i+1,m

(xn+m|xn).

The draw θ
(k+1)
i+1,m ∼ pi,xn+m(θ) is a sample from the stationary distribution pi,xn+m(θ)

of the diffusion θn,m,ki , given by (4) with n+m and x̄n+m replacing n and x̄n respectively.

An approximate sample θn,m,ki (τm) can be obtained by running the diffusion, with initial

value θn,m,ki (0) = x̄n+m, for a sufficiently long time τm. We note that

x̄n+m =
nx̄n +mȲm(k)

n+m
,

where Ȳm(k) =
∑m

i=1 Yi and the Yi are i.i.d. samples with mean θ
(k)
i+1,m.

Thus we have an approximate Markov chain given by

θ
(k+1)
i+1,m = θ

(k)
i+1,m+

n

n+m
(x̄n−θ(k)

i+1,m)+
1

m+ n
Rm(θ

(k)
i+1,m)+

∫ τm

0
e−(n+m)(τm−t)σi(θ

n,m,k
i (t))dW k

t ,

(10)

where the first two terms in the expression appeared in the previous case (i = 1).

For the one-step evolution of our Markov chain, from initial state x, we can write (10)

as

θ
(1)
i+1,m = x+

n

n+m
(x̄n − x) +

1

m+ n
Rm(x) +Nm(0)(τm),

where

Nm(0)(τm) =

∫ τm

0
e−(n+m)(τm−t)σi(θ

n,m,0
i (t))dWt.

We will write θn,mi for θn,m,0i and Nm(t) for Nm(0)(t). We also note that exp((n +

m)t)Nm(t) is a continuous local martingale and in the proof of the moment estimates

in Lemma 4.3 we showed that it is in fact an L2 bounded martingale under our assump-

tion 0 ≤ t ≤ τm. Abusing notation we continue to use E both for expectation with respect
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ple. We note that the Brownian motion driving Nm(τm) is independent of Rm(x) so that

we can treat the term Nm(τm) separately. The quadratic variation process for Nm(t) is

given by

〈Nm〉t =

∫ t

0
e−2(n+m)(t−s)σ2

i (θ
n,m
i (s))ds.

Thus we note ENm(t) = 0 and

ENm(t)2 = E〈Nm〉t =

∫ t

0
e−2(n+m)(t−s)Eσ2

i (θ
n,m
i (s))ds. (11)

Proposition 4.7. Under Assumption 3.1 and for τm > logm/2(m+n), the process θmi (t)

converges weakly to θi(t), the pathwise unique strong solution to

dθi = n(x̄n − θi)dt+ σ(θi)dW.

with θi(0) = ξ ∈ K.

Proof. We establish the conditions of Theorem 4.5. Firstly the mean is given by

µm,i(x) = mE(θ
(1)
i+1,m − x) =

mn

m+ n
(x̄n − x).

This is the same as in the i = 1 case and it therefore satisfies condition (6).

For the variance we have by independence and the fact that Rm and Nm are mean 0,

σ2
m,i+1(x) = mE

(
n

n+m
(x̄n − x) +

1

m+ n
Rm(x) +Nm(τm)

)2

=
mn2

(n+m)2
(x̄n − x)2 +

m

(n+m)2
ER2

m(x) +mEN2
m(τm).

Recall that σ2
i+1(x) = σ2(x) + 1

2σ
2
i (x). Thus we can write

|σ2
m,i(x)−σ2

i+1(x)| ≤ n2m

(n+m)2
(x̄n−x)2+| m

(m+ n)2
ERm(x)2−σ2(x)|+|mEN2

m(τm)−1

2
σ2
i (x)|.

From the calculations in the i = 1 case we can control the first two terms to show that

they go to 0 as m→∞ on the region where |x| < r.



22For the last term we need to do some work. Firstly we observe that

|EmN2
m(τm)− σ2

i (x)

2
|

=
m

2(m+ n)
|
(
E
∫ τm

0
2(n+m)e−2(n+m)(τm−t)σ2

i (θ
n,m
i (t))dt− m+ n

m
σ2
i (x)

)
|

≤ m

2(n+m)

∫ τm

0
2(m+ n)e−2(n+m)(τm−t)E

∣∣σ2
i (θ

n,m
i (t))− σ2

i (x)
∣∣ dt

+
n

2(m+ n)
σ2
i (x) + Ee−2(n+m)τmσ2

i (x). (12)

Now, as σ2
i (θ) is locally Lipschitz, we have a constant KU such that for |x| < U

E|σ2
i (θ

n,m
i (t))− σ2

i (x)| ≤ KUE (|θn,mi (t)− x|; |θn,mi (t)| < U)

+E
(
|σ2
i (θ

n,m
i (t))− σ2

i (x)|; |θn,mi (t)| ≥ U
)
. (13)

We can estimate the first term on the right hand side using

θn,mi (t)− x =
n

n+m
(x̄n − x) +

1

m+ n
Rm(1) +Nm(t).

Taking expectations we have

E|θn,mi (t)− x| ≤ | n

n+m
(x̄n − x)|+ E

1

m+ n
|Rm(1)|+ E|Nm(t)|

≤ O(
1

m
) +

1

m+ n
(ERm(1)2)1/2 + (E|Nm(t)|2)1/2.

We observe that, by the linear growth condition and the bounds on Eθ2
i from Lemma 4.3,

and our sample for the diffusion starting at x̄n+m we have

ENm(t)2 ≤
∫ t

0
e−2(m+n)(t−s)ECl(1 + E(θn,mi (s))2)ds

≤
∫ t

0
e−2(m+n)(t−s)ECl(1 + C2(1 ∨ x̄2

n+m))ds

≤ Cl(1 + c(1 ∨ x̄2
n))

m+ n
= O(

1

m
),

where we have used that there is a constant such that Ex̄2
n+m ≤ cx̄2

n. From this, and the

expression for ERm(x)2, we know that there is a further constant c such that

E|θn,mi (t)− x| ≤ c√
m
, ∀t ≤ T.



23For the second term on the right hand side of (13) we have by the linear growth bound,

Hölder’s and Markov’s inequalities, that

E
(
|σ2
i (θ

n,m
i (t))− σ2

i (x)|; |θn,mi (t)| ≥ U
)
≤ (Cl + σ2

i (x))P(|θn,mi (t)| ≥ U)

+ClE
(
|θn,mi (t))|2I{|θn,mi (t)|≥U}

)
≤ (Cl + σ2

i (x))U−pE|θn,mi (t)|p + ClU
2−pE|θn,mi (t)|p

From the estimates for the diffusion started from x̄n+m in Lemma 4.3(2) and following

(9) we have E|θn,mi (t)|p ≤ cpE(1 ∨ |x̄n+m|p) ≤ c′pm−p/2 and hence

E
(
|σ2
i (θ

n,m
i (t))− σ2

i (x)|; |θn,mi (t)| ≥ U
)

= O(m−p/2).

Thus, substituting into (12) and using our condition on τm we have e−2(m+n)τm ≤ 1/m,

which gives

E|mN2
m −

σ2
i (x)

2
| ≤ c/m

and we have the result.

To show the last condition of Theorem 4.5, as in the i = 1 case, we need a little more

than second moments. For this we note that by Burkholder-Davis-Gundy and Hölder’s

inequality

ENm(τm)p ≤ cpE〈Nm〉p/2τm

= cpE
(∫ τm

0
e−2(n+m)(τm−s)σ2

i (θ
m,n
i (s))ds

)p/2
≤ cp(

∫ τm

0
e−p(n+m)(τm−s)/(p−2)ds)p/2−1

∫ τm

0
e−p(n+m)(τm−s)/2Eσpi (θ

m,n
i (s))ds

= cp(
p− 2

p(n+m)
)p/2−1(1− e−p(n+m)τm/(p−2))p/2−1

∫ τm

0
e−p(n+m)(τm−s)/2Eσpi (θ

m,n
i (s))ds

≤ cp(
p− 2

p(n+m)
)p/2−1

∫ τm

0
e−p(n+m)(τm−s)/2Eσpi (θ

m,n
i (s))ds

As we have a linear growth condition for σ and, by Assumption 3.1(3), the moments of the

process θm,ni exist, at least up to p = 2 + ε, we have Eσp(θm,ni (s)) ≤ Ecp(1∨ |x̄n+m|p) ≤ c′p



24for all s and m using (9). Thus

∫ τm

0
e−p(n+m)(τm−s)/2Eσpi (θ

m,n
i (s))ds ≤ c′p

2

p(m+ n)
(1− e−p(m+n)τm/2),

and hence for a constant C we have

ENm(τm)p ≤ C

(m+ n)p/2
.

Thus, by Markov’s inequality, we have

sup
|x|<r

mP(|θ(1)
i − x| > ε) ≤ sup

|x|<r

mE|θ(1)
i − x|p

εp

= sup
|x|<r

mE
(

n
n+m(x̄n − x) + 1

m+nRm(x) +Nm(τm)
)p

εp

≤ sup
|x|<r

cpm
(

np

(n+m)p (x̄n − x)p + 1
(m+n)pERm(x)p + ENm(τm)p

)
εp

≤ C1

εpmp−1
+

C2

εpmp/2−1
+

C3

εpmp/2−1
.

As p > 2, this tends to 0 as m→∞ and we have the third condition of Theorem 4.5.

Proof of Theorem 4.1. We have established all the conditions of Theorem 4.5 and

hence the weak convergence is proved. �

Proof of Theorem 4.2. In order to prove this theorem we need to show that the

stationary distributions for the Markov chains converge to that of the diffusion.

In the appendix we use the Lyapunov function technique to show that the chains

and the diffusions have stationary distributions πi,m and πi and they are geometrically

and exponentially ergodic respectively. The fact that the stationary distributions πi,m

converge to πi is a consequence of the weak convergence we have already established plus

the geometric ergodicity. The proofs can be found in Theorem A.3 and Corollary A.4. �



255 Fixed points arising from maximum-likelihood

estimation

5.1 The regular case

We consider the application of refinement operators to systems of maximum-likelihood

rather than moment estimators, noting the coincidence of the two in the exponential-

family setting. In particular we ask whether the construction leads to a Bayesian analysis

beyond the exponential-family case and, if so, whether the maximum-likelihood prior

is recovered. We find it convenient to work with the operator Φ rather than Ψ and to

consider the fixed points of the former as the limiting - and maximally preferable - systems

of inference. This avoids the need to derive any correspondence between these and the

fixed points of Ψ as was done via Theorem 4.2 and Lemma 4.3 when proving Theorem 3.2.

We will also make some stronger assumptions than in the moment-estimator case.

Retaining the notation from earlier sections, consider the model νθ(y) and let l(θ, y) =

log νθ(y), i(θ) = EY
(
− ∂2l
∂θ2

)
, a(θ) = EY

(
∂2l
∂θ2

∂l
∂θ

)
, and c(θ) = EY

(
− ∂3l
∂θ3

)
. Suppose that

νθ satisfies regularity conditions that allow change of order of integration with respect to

y and differentiation with respect to θ. We can then easily verify the identity

∂i(θ)

∂θ
+ a(θ) + c(θ) = 0. (14)

Now let

Θ0 = {pxn,0(θ) = δ(θ − θ̂(xn)) | n ∈ N, xn ∈ Y n}.

where θ̂(xn) denotes the maximum-likelihood estimate. For observations xn = (y1, ..., yn)

denote by ln(θ) and Ln(θ) the resulting log-likelihood and likelihood respectively. Consider

the data-augmentation chain {θ(k)
1,m | k = 0, 1, 2, ...} arising in the construction of Θ1 from

Θ0, where m is large. Denote the log-likelihood function for the additional m samples,



26generated when updating θ
(k)
1,m, by lm(θ) which is maximised by θ̂m. As in the proof of

Theorem 3.2 we are interested in the case where θm1 (t) = θ
(bmtc)
1,m converges to a diffusion

process as m→∞ and where pxn,1(θ) can then be derived as the stationary distribution

of this process. We identify a candidate for this limiting diffusion by considering the

increment θ
(k+1)
1,m −θ(k)

1,m in the augmented chain. From standard results on the asymptotic

mean, variance and normality of maximum-likelihood estimators for sufficiently regular

models, (see e.g. Cox and Snell (1968)), we have

E(θ̂m − θ(k)
1,m) =

1

i2(θ
(k)
1,m)m

(
a(θ

(k)
1,m) +

c(θ
(k)
1,m)

2

)
+ o(1/m)

and

E(θ̂m − θ(k)
1,m)2 =

1

i(θ
(k)
1,m)m

+ o(1/m).

Since

θ
(k+1)
1,m − θ̂m = l′n(θ

(k)
1,m)i(θ

(k)
1,m) + o(1/m),

the form of the candidate limiting diffusion is given by

dθ1 =
1

i2(θ1)

(
a(θ1) +

c(θ1)

2
+ l′n(θ1)i(θ1)

)
dt+

√
1

i(θ1)
dB. (15)

We assume the following conditions hold.

Assumption 5.1.

1. The stochastic differential equation

dθ1 =
1

i2(θ1)

(
a(θ1) +

c(θ1)

2
+ l′n(θ1)i(θ1)

)
dt+

√
1

i(θ1)
dB,

where B is a Brownian motion and θ1(0) = ξ ∈ K, has a unique solution.



272. The Markov chain θ
(k)
1,m satisfies

E(θ
(k+1)
1,m − θ(k)

1,m) =
1

i2(θ
(k)
1,m)m

(
a(θ

(k)
1,m) +

c(θ
(k)
1,m)

2
+ l′n(θ

(k)
1,m)i(θ

(k)
1,m)

)
+ o(1/m)

E(θ
(k+1)
1,m − θ(k)

1,m)2 =
1

i(θ
(k)
m )m

+ o(1/m)

E(θ
(k+1)
1,m − θ(k)

1,m)2+ε ≤ C

m1+ε′

Theorem 5.2. 1. Under Assumption 5.1, the interpolated chain θm1 converges weakly

to θ1.

2. The associated system of inferences, obtained from the stationary measure of the

diffusion in (15), is given by

Θ1 = {pxn,1(θ) ∝ π(θ)Ln(θ;xn)2 | n ∈ N, xn ∈ Y n}

where ∂
∂θ log π = a(θ)

i(θ) .

Proof. Under Assumption 5.1 we can satisfy the conditions of Theorem 4.5 and hence

we can deduce the i = 1 case, in a manner analogous to the Proof of Theorem 3.2 given

in Section 4. To verify the form of Θ1 we solve the associated Fokker-Planck equation to

show that the stationary measure, p(θ), satisfies

p(θ) ∝ i(θ) exp

(
2

∫
a(θ)

i(θ)
+

c(θ)

2i(θ)
+ l′n(θ)dθ

)
,

From (14) this can be written as

p(θ) ∝ i(θ) exp

(
2

∫
a(θ)

2i(θ)
− i′(θ)

2i(θ)
+ l′n(θ)dθ

)
∝ exp

(∫
a(θ)

i(θ)
dθ

)
L2
n(θ).

It follows that

Θ1 = {pxn,1(θ) ∝ π(θ)L2
n(θ;xn) | n ∈ N, xn ∈ Y n}.



28where ∂
∂θ log π = a(θ)

i(θ) , so that π(θ) is the maximum-likelihood prior. �

We proceed to the inductive step. Suppose now that

Θj−1 = {pxn,j(θ) ∝ π(θ)L
γj−1
n (θ;xn) | n ∈ N, xn ∈ Y n},

where γi = 1/(1− 2−i), i = 1, 2, . . . , and consider the construction of Θj from Θj−1. Let,

xn, Ln(θ) and ln(θ) be as above and let πL = π(θ)L
γj−1
n (θ).

Consider the chain θ
(k)
j,m and the continuous-time interpolation θmj (t) = θ

(bmtc)
j,m . We seek

the form of a limiting diffusion for this process and consider, therefore, the increment to

θ
(k)
j,m when m is large. As before θ̂m denotes the MLE for θ given the m additional samples

generated using the current value θ
(k)
j,m, and Lm(θ) denotes the likelihood function for

these samples. We appeal to standard results regarding the asymptotic Bayesian posterior

distribution of θ about the MLE, θ̂m for regular models.

From Chapter 5 of Ghosh (1994) it follows that, using prior density πL(θ), and given

observations y1, ..., ym, then, the posterior π(θ|y1, ..., ym) ∝ πL(θ)Lm(θ) satisfies

E(θ − θ̂m|y1, ..., ym) =

[
−∂

2lm
∂θ2

]−2

θ̂m

(
1

2

[
∂3lm
∂θ3

]
θ̂m

−
[
∂2lm
∂θ2

]
θ̂m

[
∂ log πL
∂θ

]
θ̂m

)
+ o(1/m)

(16)

and has variance
[
−∂2lm

∂θ2

]−1
+ o(1/m). Replacing Lm(θ) with Lm(θ)γj−1 , so that θ̂m is

unaffected, the corresponding expectation for the ‘posterior’ with density proportional to

πL(θ)Lm(θ)γj−1 becomes

E(θ − θ̂m|y1, ..., ym) =
1

γj−1

[
−∂

2lm
∂θ2

]−2

θ̂m

(
1

2

[
∂3lm
∂θ3

]
θ̂m

−
[
∂2lm
∂θ2

]
θ̂m

[
∂ log πL
∂θ

]
θ̂m

)
(17)

with approximate variance is 1
γj−1

[
−∂2lm

∂θ2

]−1
.

We discern two components to the increment θ
(k+1)
j,m −θ(k)

j,m - one given by θ̂m−θkj,m and

the other arising when we sample θk+1
j,m from a density proportional to πL(θ)Lm(θ)γj−1. We



29approximate expectations over y1, ..., ym in (17) by setting the derivatives of lm to their

expected values at θ = θ
(k)
j,m, and combine the two increments to show that

E(θ
(k+1)
j,m −θ(k)

j,m) =
1

i2(θ
(k)
j,m)

(
a(θ

(k)
j,m) +

c(θ
(k)
j,m)(γj−1 + 1)

2γj−1
+
i(θ

(k)
j,m)

γj−1

[
∂ log πL
∂θ

]
θ
(k)
j,m

)
1

m
+o(1/m)

and

Var(θ
(k+1)
j,m |θ(k)

j,m) =
γj−1 + 1

i(θ
(k)
j,m)γj−1

1

m
+ o(1/m).

We can now discern the candidate for the limiting diffusion to be

dθj =
1

i2(θj)

(
a(θj) +

c(θj)(γj−1 + 1)

2γj−1
+
i(θj)

γj−1

∂ log πL
∂θj

)
dt+

√
γj−1 + 1

γj−1i(θj)
dB. (18)

We make the following assumptions for j ≥ 2.

Assumption 5.3.

1. The stochastic differential equation

dθj =
1

i2(θj)

(
a(θj) +

c(θj)(γj−1 + 1)

2γj−1
+
i(θj)

γj−1

∂ log πL
∂θj

)
dt+

√
γj−1 + 1

γj−1i(θj)
dB,

where B is a Brownian motion and θj(0) = ξ ∈ K, has a unique solution.

2. The Markov chain θ
(k)
j,m satisfies

E(θ
(k+1)
j,m − θ(k)

j,m) =
1

i2(θ
(k)
j,m)

(
a(θ

(k)
j,m) +

c(θ
(k)
j,m)(γj−1 + 1)

2γj−1
+
i(θ

(k)
j,m)

γj−1

[
∂ log πL
∂θ

]
θ
(k)
j,m

)
1

m

+o(1/m)

E(θ
(k+1)
j,m − θ(k)

j,m)2 =
γj−1 + 1

i(θ
(k)
j,m)γj−1

1

m
+ o(1/m)

E(θ
(k+1)
j,m − θ(k)

j,m)2+ε ≤ C

m1+ε′

Theorem 5.4. Under Assumption 5.3, for j ≥ 2, the process θmj converges weakly to θj,

the solution to (18). The associated system Θj exists and is given by

Θj = {pxn,j(θ) ∝ π(θ)Ln(θ;xn)γj | n ∈ N, xn ∈ Y n}



30and the limiting system is given by

Θ∞ = {pxn,∞(θ) ∝ π(θ)Ln(θ;xn) | n ∈ N, xn ∈ Y n}

Proof. Since Assumption 5.3 implies that the conditions of Theorem 4.5 hold, it suffices

to confirm that form of the stationary density, p(θ), which is given by

∂ log p

∂θ
=

i′(θ)

i(θ)
+

2a(θ)γj−1

(γj−1 + 1)i(θ)
+
c(θ)

i(θ)
+

2

γj−1 + 1

∂ log πL
∂θ

=
i′(θ)

i(θ)
+

2a(θ)γj−1

(γj−1 + 1)i(θ)
+
c(θ)

i(θ)
+

2

(γj−1 + 1)

(
a(θ)

i(θ)
+ γj−1l

′
n(θ)

)
=

a(θ)

i(θ)
+

2γj−1l
′
n(θ)

γj−1 + 1

by (14). It follows that

Θj = {pxn,i(θ) ∝ π(θ)Ln(θ;xn)
2γj−1

(γj−1+1) | n ∈ N, xn ∈ Y n},

and the result follows since
2γj−1

(γj−1 + 1) = γj . In the limit we obtain

Θ∞ = {pxn,∞(θ) ∝ π(θ)Ln(θ;xn) | n ∈ N, xn ∈ Y n}.

�

We note that alternative priors to the maximum-likelihood could be obtained in the

limiting system by initialising the construction with a ‘bias-adjusted’ system of the form

Θ0 = {pxn,0(θ) = δ(θ − θ̂(xn)− b(θ̂(xn))

n
) | n ∈ N, xn ∈ Y n}.

The construction can be treated as above on replacing l′(θ) with a term l′(θ) + i(θ)b(θ)

when specifying the drift term in diffusions such as (15), leading to a limiting system in

which

pxn,∞(θ) ∝ πb(θ)Ln(θ;xn),



31where b(θ) and π(θ) are related by

∂

∂θ
log πb =

a(θ)

i(θ)
+ i(θ)b(θ).

5.2 An irregular model

We give an example to show that a Bayesian limiting system does not arise from the

construction if the model is not sufficiently regular.

Consider again the uniform distribution of Example 3.5 reparameterised for conve-

nience so that π(y|θ) = θ−1, 0 < y < θ and the system of (maximum likelihood) estimators

ΘMLE = {pxn,i(θ) = δ(θ − x(n))| n ∈ N}.

Now ΘMLE is trivially a fixed point of Ψ. Therefore consider a more general system of

estimators of the form

Θa = {pxn,i(θ) = δ(θ − anx(n))| n ∈ N},

with an = n+1
n giving, for example, a system of unbiased MLE-based estimators. We

now investigate whether a Bayesian limit arises when Ψ is applied to Θa for suitably

chosen a = (a1, a2, ....). For simplicity we restrict attention to sequences a for which

limn→∞ an = 1, so that the system of estimators is consistent. Subject to this assumption

we make the following claim:

(i) If, for all n ≥ 1, m log an+m < 1 for all but finitely many m then

Θ∞ = lim
k→∞

ΘaΨk = ΘMLE .

(ii) Otherwise Θ∞ does not exist.

Proof. We will make use of the following standard result on random walks from Kingman

(1962).



32Lemma 5.5. Let Xi, i = 1, 2, 3... denote a sequence of i.i.d. random variables with mean

0 and variance 1, such that X1 has an exponential moment. Let S
(a)
r =

∑r
i=1Xi − ra,

where a > 0, and let M (a) = supr≥1 S
(a)
r . Then

lim
a→0

Pr(aM (a) > z) = e−2z,

so that aM (a) converges weakly to an Exp(2) distribution as a→ 0.

Now consider the construction of Θ
(1)
a = ΘaΨ. Fix n, suppose we have data xn and

suppose without loss of generality that x(n) = max(y1, .., yn) = 1. Consider the generalised

data augmentation chain {θ(k)
m | k = 0, 1, 2, ...} when we augment xn with m additional

observations. For this chain, for k = 1, 2, 3, . . .

θ(k)
m = an+m sup{1, ηkθ(k−1)

m },

where {ηk} are i.i.d. Beta(m, 1), and ηkθ
(k−1)
m represent the supremum of the m additional

samples imputed during the update process. The corresponding chain for λ = log θ has

update

λ(k)
m = log an+m + sup{0, λ(k−1)

m − ξk}

= sup{log an+m, λ
(k−1)
m − ξk + log an+m}

where the {ξk} are i.i.d. Exp(m) . Set cm = m log an+m, ν
(k)
m = mλ

(k)
m − cm and write the

update as

ν(k)
m = sup{0, ν(k−1)

m + ζ(k)
m } (19)

where the ζ
(k)
m = cm −mξk, are i.i.d. with mean and variance cm − 1 and 1 respectively.

Now let

Sr =

r∑
i=1

ζi, (20)



33It follows from standard results that νm ∼ M (m) = supr≥1 Sr where νm denotes the

stationary distribution of the Markov chain (19).

If cm ≥ 1 then the random walk Sr is not positive recurrent and proper stationary

distributions do not exist for the Markov chains {ν(k)
m } and {λ(k)

m }. Therefore we must

assume that cm < 1 for all but finitely many m for Θa to lie in C . Part (ii) of the

claim follows. Assuming this condition we identify distinct cases according to the limiting

behaviour of cm.

1. If limm→∞ cm < 1 then, for sufficiently large m, ν
(k)
m → νm where νm is stochastically

dominated by some random variable, τ , independent of m. It is then immediate that

λ
(k)
m → λm and the λm must tend to 0 in probability as m→∞.

2. Suppose now limm→∞ cm = 1. By 5.5 it follows that, as m→∞,

(1− cm)M (m) ∼ (1− cm)νm →M

where M ∼ Exp(2).

Now consider the large-m behaviour of

λm ∼
cm
m

+
νm
m
∼ cm

m
+

(1− cm)νm
m(1− cm)

,

which in turn is determined by that of m(1− cm). Writing this as

m(1− cm) =
m

m+ n
(n+m(1− (m+ n) log an+m)) ,

we see that limm→∞m(1− cm) = n+ limm→∞m(1−m log am) ≥ n. There are two

cases to consider

(a) If limm→∞m(1−m log am) =∞, then λm → 0 weakly.

(b) If limm→∞m(1−m log am) = µ, where 0 ≤ µ <∞, then

λm → Exp(2(n+ µ)).



34In either case (1) or (2)(a) our system of inferences (for the log-transformed parameter)

is Λ(1) = {pxn,i(λ) = δ(λ)} with corresponding system for θ, for the case of general x(n),

given by

Θ
(1)
a = {pxn,i(θ) = δ(θ − x(n))| n ∈ N} = ΘMLE.

Thus a single application of Ψ maps Θa to the fixed point ΘMLE.

In case (2)(b) it can be shown that

Θ
(1)
a = {pxn,1(θ) ∝ θ−2nθ−2µ−1}. (21)

In particular, if an = n+1
n , then µ = 1/2 and

Θ
(1)
a = {pxn,1(θ) ∝ σ(θ)−2L(θ;xn)2},

as was the case for models in the exponential family.

However, any hopes of ultimate convergence to a Bayesian solution are dashed by

further applications of Ψ. We show that for case (2)(b) Ψ maps Θ
(1)
a to ΘMLE. Working

in the λ parameterisation we apply Ψ to the system

Λ
(1)
a = {pxn,1(λ) ∝ 2(n+ µ)e−2(n+µ)(λ−log x(n)), λ > x(n)},

Assuming x(n) = 1, the level-m data-augmentation chain is defined by

λ(k)
m = sup{η1,k, λ

(k−1)
m − η2,k + η1,k},

where the {η1,k} are i.i.d. Exp(2(m+n+µ) and the {η2,k} are i.i.d. Exp(m). For common

initial value λ
(0)
m , this process is stochastically dominated by a process

ζ(k)
m = sup{η′1,k, ζ(k−1)

m − η2,k + η′1,k},

where the {η′1,k} are i.i.d. Exp(2m). It is clear that {mζ(k)
m } has the same proper stationary

distribution for all m, so ζm → 0 in distribution as m→∞ where ζm follows the stationary

distribution of the unscaled chain {ζ(k)
m }. The result is then immediate.



356 Discussion

In this paper we have shown how the generalised data augmentation principles introduced

in Gibson et al. (2011) can be applied to elicit connections between classical point esti-

mation and Bayesian (or Bayesian-like) inference where the latter is constructed from the

former by repeated application of a refinement operator based on the principles. This

contrasts with other approaches to defining connections, for example, by defining point

estimators from Bayesian analyses using decision-theoretic ideas. A key notion in our

treatment is that of preferability of one system of inferences over another and of fixed

points of the refinement operators representing maximally preferable inferences. Our re-

sults show that for sufficiently regular models parameterised by their mean, the limiting

systems of inferences is Bayesian when the model lies in the exponential family and oth-

erwise takes the form of a pseudo-Bayesian analysis in which the true model likelihood

is replaced by one with an exponential-family form. More generally, subsequent investi-

gations suggest that limiting systems derived from initial systems of maximum-likelihood

estimators correspond to Bayesian inference using Hartigan’s maximum-likelihood prior

specification, given sufficiently strong regularity conditions on the model.

The results of the paper do not lead to new statistical methodology but, rather, a

fresh perspective on established approaches to inference. It is arguably surprising that,

by applying principles that require only that the class of acceptable inferences be closed

under a certain data augmentation operation and that it be complete in a natural sense,

the Bayesian paradigm can be constructed from a starting point that considers only point

estimators. The property that a system of inferences is invariant under Ψ or Φ, though

not necessarily by the transition kernels in the finite-m data-augmentation chains involved

in the formulation of these operators, may be seen as a weak form of coherence. Our

results show that when we attempt to construct weakly coherent systems by seeking fixed



36points of Φ or Ψ, then these fixed points may nevertheless be strongly coherent Bayesian

systems when their basin of attraction contains the system of maximum-likelihood point

estimators. There are several natural extensions to the ideas of the paper that would be

worthy of investigation, the most obvious of which is to generalise the results to models

beyond the 1-dimensional case.
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A Proofs of Lemma 4.3 and Theorem 4.2

We first recall Lemma 4.3

Lemma A.1. (1) There exists a unique solution to the SDE (4), {θi(t) : t ≥ 0} which

can be written in integral form as

θi(T ) = x̄n + (ξ − x̄n)e−nT +

∫ T

0
e−n(T−t)σi(θi(t))dWt.

(2) The moments of θi(t) are bounded up to a level depending on n in that there exist

constants Ck such that E|θi(t)|k ≤ Ck(1 ∨ |ξ|k ∨ |x̄n|k for all t ≥ 0 and 1 ≤ k ≤

(2n+ Cl)/Cl.

(3) If
√

2n > Cl, the stationary distribution of (4) is given by

pi(θ) ∝
1

σi(θ)2
exp(2n(fi(θ)x̄n − gi(θ))),

where

fi(θ) =

∫
σ−2
i (θ)dθ, gi(θ) =

∫
θσ−2

i (θ)dθ, θ ∈ (l, r).



37Proof. (1) By Engelbert and Schmidt (1991) Theorem (4.53) the existence of a unique

weak solution follows in our setting if

N := {x ∈ R : σ(x) = 0} = S := {x ∈ R :

∫ x+

x−
σ−2(y)dy =∞}.

As σ2 is (Lipschitz) continuous we see that for any point x such that σ2(x) > 0 we have

that σ−2 is locally integrable at x and hence S ⊂ N giving the existence of a weak solution.

We also see that if x ∈ N , then by the Lipschitz condition, for any open set G

containing x there is a KG such that

∫
G
σ−2(y)dy =

∫
G

1

|σ2(y)− σ2(x)|
≥
∫
G

1

KG
|y − x|−1dy =∞.

Thus N ⊂ S and we have the uniqueness in law of the solution.

It is a simple exercise to establish the integral form.

(2) In order to show this we first need to establish some crude moment bounds to

ensure that the stochastic integral in the integral representation for θ is a martingale.

The stochastic integral is a local martingale and thus if we define the stopping times

Tm := inf{t : |θ(t)− x̄n| > m} we have for k ≥ 2 using (5),

φm,kt := E|en(t∧Tm) (θ(t ∧ Tm)− x̄n) |k = E|(θi(0)− x̄n) +

∫ t

0
ensσi(θi(s))dWs|k.

Applying the Burkholder-Davis-Gundy inequality, Hölder’s inequality and the linear growth

condition on σi we see that

φm,kt ≤ 2k−1|θi(0)− x̄n|k + 2k−1E|
∫ t∧Tm

0
e2nsσi(θi(s))

2ds|k

≤ ck + 2k−1c′kE|
∫ t∧Tm

0
e2nsσi(θi(s))

2ds|k/2

≤ ck + C ′kET
k/2−1

∫ t∧Tm

0
e−knsσk(θ(s))ds

≤ c′k + ckT
k/2−1E

∫ t

0
ekn(s∧Tm)(C ′k + Ck(θ(s ∧ Tm)− x̄n)k)ds

≤ c′′kT
k/2−1enkt + ckT

k/2−1

∫ t

0
φm,ks ds.



38A simple application of Gronwall’s inequality gives that for 0 ≤ t ≤ T

φm,kt ≤ c′′kT k/2−1 exp(ckT
k/2−1t) ≤ c′′kT k/2−1 exp(ckT

k/2).

As this bound is independent of m we can apply the dominated convergence theorem and

let m→∞ to see that for k ≥ 2

E|θ(t)|k ≤ c′kT k/2−1 exp(CkT
k/2), 0 ≤ t ≤ T.

Equipped with this we can improve the estimates on the moments. Using Ito’s formula

we have

dθk = (kn(x̄n − θ)θk−1 +
1

2
k(k − 1)θk−2σ2(θ))dt+ kθk−1σ(θ)dW.

Applying the moment estimates above we can see that for 0 ≤ t ≤ T

E(

∫ t∧Tm

0
θk−1σ(θ)dW )2 ≤ E

∫ t∧Tm

0
θ2k−2σ2(θ)ds

≤ E

∫ t∧Tm

0
Clθ

2k−2 + Clθ
2kds

≤
∫ t

0
ClEθ

2k−2 + ClEθ
2kds

≤ ckT
kecT

k

independent of m. Again letting m→∞ we see that the stochastic integral term is a true

martingale and hence we have the following expression for the moments φkt = E|θ(t)|k,

φkt = φk0 + E

∫ t

0
(kn(x̄n − θ(s))θ(s)k−1 +

1

2
k(k − 1)θ(s)k−2σ2(θ(s)))ds. (22)

We proceed by induction noting that φ0
t = 1 and Eθt = x̄n so that using k = 2 and the

linear growth bound we have

φ2
t ≤ (Cl − 2n)

∫ t

0
φ2
sds+ (2nx̄2

n + Cl)t.

Assume that n is large enough so that 2n > Cl, then in differential form we have

dφ2

dt
≤ (Cl − 2n)φ2 + 2nx̄2

n + Cl,



39this can be solved to get

φ2
T ≤

2nx̄2
n + Cl

2n− Cl
+

(
ξ2 − 2nx̄2

n + Cl
2n− Cl

)
e−(2n−Cl)T .

Thus we have the uniform bound for all T > 0,

φ2 ≤ C2(1 ∨ ξ2 ∨ x̄2
n).

For the general case, using the linear growth of σ, we have

φkt ≤ |ξ|k +

∫ t

0
(knx̄nφ

k−1
s + (

1

2
k(k − 1)Cl − kn)φks +

1

2
k(k − 1)Clφ

k−2
s ds. (23)

Now assume that φpt ≤ Cp(1 ∨ |ξ|p ∨ |x̄n|p) for all p ≤ k − 1 and t > 0. Using this in

(23) we get

φkt ≤ |ξ|k+kCk−1nx̄n(1∨|ξ|k−1∨|x̄n|k−1)t+

∫ t

0
k(

1

2
(k−1)Cl−n)φksds+ClCk−2(1∨|ξ|k−2∨|x̄n|k−2)t.

For n > 1
2(k − 1)Cl we have, by solving the associated differential inequality, that there

is a Ck such that

φkt ≤ Ck(1 ∨ |ξ|k ∨ |x̄n|k).

Thus we have the general case provided that (k − 1)Cl < 2n as required.

(3) The generator of the diffusion is

Af = n(x̄n − θ)
∂f

∂θ
+

1

2
σ2
i (θ)

∂2f

∂θ2
.

Under the condition that
√

2Cl < 2n we can use the Lyapunov function technique to

show that we have convergence to a stationary distribution at an exponential rate. Let

V (x) = 1 + x2, then

AV (x) = 2n(x̄n − x)x+ σ2
i (x).

Using the linear growth bound σ2
i (x) ≤

√
2ClV (x) for all i, we have

AV (x) = −(2n−
√

2Cl)V (x) + 2n(x̄nx+ 1).



40Hence, if β = (2n−
√

2Cl)/2, b = (n2(1 + x̄2
n)− C2

l /2)/β, we have

AV (x) = −βV (x) + bIC ,

with C = {x : |x− nx̄n
β | ≤

√
b
β}. By Meyn and Tweedie (2009) 20.3.2, this condition gives

the existence of, and exponential convergence to, the stationary distribution pi.

To find the stationary distribution we just need to solve

A∗pi = − ∂

∂θ
(n(x̄n − θ)pi) +

1

2

∂2

∂θ2
(σ2
i (θ)pi) = 0. (24)

We can check that the solution as given satisfies equation (24). �

As a consequence of the moment estimates for the diffusion and the fact that it will

converge to a stationary distribution, we have immediately that

Corollary A.2. The stationary distribution of the SDE has moments of order up to

2n+Cl
Cl

.

We now give the estimates needed to establish that each Markov chain in the sequence

has a stationary distribution and that these converge to the stationary distribution for

the diffusion. We assume the generalized data augmentation chain is suitably irreducible.

Theorem A.3. For each i,m ∈ N, the Markov chain {θ(k)
i,m, k = 0, 1, 2, . . . } is ergodic

with a unique stationary distribution πi,m. There exists ri < 1 and Ri < ∞ independent

of m such that for any Borel set A and all t > 0

sup
x

|Px(θ
(bmtc)
i,m ∈ A)− πi,m(A)|

1 + x2
≤ Rirti .

Proof. We give the proof for the i = 1 case and then discuss the extensions required

for the general case. In order to establish the positive recurrence we use the Lyapunov

function technique. Let V (x) = 1 + x2. From Meyn and Tweedie (2009), Chapter 15, we



41have convergence to stationarity if there exists a petite set C as well as a β, b > 0 such

that

∆V (x) := ExV (θ(1)
m )− V (x) ≤ −βV (x) + bIC .

From our above estimates and linear growth assumption we have

ExV (θ(1)) = 1 + E
(
x+

n(x̄n − x)

n+m
+
Rm(x)

n+m

)2

= V (x) + 2x(
n(x̄n − x)

n+m
) + E

(
n(x̄n − x)

n+m
+
Rm(x)

n+m

)2

= V (x) +
2nx(x̄n − x)(n+m) + n2(x̄n − x)2 +mσ2(x)

(n+m)2

≤ V (x)− n2 + (2n− C)m

(n+m)2
x2 +

2nmx̄n
(n+m)2

x+
n2x̄2

n +mC

(n+m)2

∆V (x) ≤ −αx2 + βx+ γ

with

α =
n2 + (2n− C)m

(n+m)2
, β =

2nm|x̄n|
(n+m)2

, γ =
n2x̄2

n +mC

(n+m)2
.

Thus, provided 2n > C, we have that α > 0 and

∆V (x) ≤ −1

2
αV (x) + γ + βx− 1

2
αx2 +

1

2
α.

A simple calculation gives

∆V (x) ≤ −1

2
αV (x) + (γ +

1

2
α+

β2

2α
)I
{|x− β

α
|<

√
2γ
α

+1+ β2

α2
}
.

It is easy to see that if the chain has a transition kernel with full support the set

C = {x : |x− β

α
| <

√
2γ

α
+ 1 +

β2

α2
}

is petite for a suitable multiple of Lebesgue measure on a subset of C. If the chain has

support on a discrete subset Dm of R, then the chain will be petite for a suitable multiple

of the discrete uniform measure on Dm ∩ C.

We now note that the Markov process θm(t) is the original chain sped up by a factor

m. Thus, its generator ∆m = m∆ and as C is invariant under the time change, we have

∆mV (x) ≤ −1

2
mαV (x) +m(γ +

1

2
α+

β2

2α
)IC .



42By the definition of α, β, γ we see that, for our sped up process, we have the existence of

constants α0, β0, γ0 > 0, independent of m, such that

∆mV (x) ≤ −1

2
α0V (x) + (γ0 +

1

2
α0 +

β2
0

2α0
)IC .

We can now apply the result on V -uniform ergodicity in Meyn and Tweedie (2009) The-

orem 16.0.1, to deduce the estimate, with coefficients independent of m.

The general case where i > 1 is a simple extension of the i = 1 case. We first observe

that, by the linear growth condition and the bounds on Eθ2 from Lemma 4.3, we have

ENm(τm)2 ≤ E
∫ τm

0
e−2(n+m)(τm−s)σ2

i (θ
n,m
i (s))ds

≤ E
∫ τm

0
e−2(n+m)(τm−s)Cl(1 + E(θn,mi (s))2)ds

≤ E
Cl(1 + c2x̄

2
n+m)

2(n+m)

≤
Cl(1 + c2E(x+ n

n+m(x̄n − x) + 1
n+mRm(x))2)

2(n+m)

Thus we keep the same Lyapunov function and from our above estimates and linear

growth assumption, we obtain the following uniform control

ExV (θ
(1)
i ) = 1 + E

(
x+

n(x̄n − x)

n+m
+
Rm(x)

n+m
+Nm(τm)

)2

= 1 + E
(
x+

n(x̄n − x)

n+m
+
Rm(x)

n+m

)2

+ E (Nm(τm))2

≤ 1 +
Cl

2(m+ n)
+ (1 +

Clc2

2(m+ n)
)E
(
x+

n(x̄n − x)

n+m
+
Rm(x)

n+m

)2

= V (x) +
Cl

2(m+ n)
+

(
1 +

Clc2

2(m+ n)

)
2nx(x̄n − x)(n+m) + n2(x̄n − x)2 +mσ2(x)

(n+m)2

+
Clc2x

2

2(m+ n)

∆(i)V (x) ≤ −αix2 + βix+ γi

with

αi =
2n− Cl(1 + 1

2c2)

m
+O(

1

m2
), βi = (1 +

Clc2

2(m+ n)
)

2nmx̄n
(n+m)2

,
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γi =

Cl
2(m+ n)

+

(
1 +

Clc2

2(m+ n)

)
n2x̄2

n +mC

(n+m)2
.

Thus, incorporating the time change, and provided 2n > C∗ = Cl(1 + 1
2c2), we have that

αi, βi, γi > 0, independent of m, and

∆(i)
m V (x) ≤ −1

2
αiV (x) + γi + βix−

1

2
αix

2 +
1

2
αi.

The same calculations as before give

∆(i)
m V (x) ≤ −1

2
αiV (x) + (γi +

1

2
αi +

β2
i

2αi
)ICi ,

and we can proceed along exactly the same lines to deduce the result as there is no

dependence on m. �

Corollary A.4. The sequence of stationary distributions πi,m for the sped up Markov

chains θm converges to pi, the stationary distribution for the solution θi to the SDE.

Proof. All we need to show now is that the sequence πm converges weakly to π, the

stationary distribution for our limit stochastic differential equation. In order to show this

consider A, a Borel set of R. By stationarity, for any time t,

πi(A) =

∫
πi(dx)Px(θi(t) ∈ A).

By the weak convergence of the processes for any t we have for ε/2 that there exists an

m1 such that for m > m1,

|Pπi(θi,m(t) ∈ A)− Pπi(θi(t) ∈ A)| < ε/2.

By the geometric ergodicity in Theorem A.3 there exists 1 < ri and Ri <∞ independent

of m such that for all t

sup
x

|Px(θ
(bmtc)
i ∈ A)− πi,m(A)|

1 + x2
≤ Rir−ti .



44We can now put these pieces together to prove our result. Let Kε = {x : |x| < K} where

K is chosen such that π(Kε) = 1− ε/4. Then

|πi(A)− πi,m(A)| ≤
∣∣∣∣∫ πi(dx)Px(θi(t) ∈ A)−

∫
πi(dx)Px(θi,m(t) ∈ A)

∣∣∣∣
+

∣∣∣∣∫ πi(dx)Px(θi,m(t) ∈ A)− πi,m(A)

∣∣∣∣
= ε/2 + 1− π(Kε) + sup

x∈Kε
|Px(θi,m(t) ∈ A)− πi,m(A)|

= ε/2 + ε/4 + sup
x∈Kε

|Px(θ
bmtc
i ∈ A)− πi,m(A)|

= 3ε/4 + (1 +K2)Rir
−t
i .

We now take t large enough to ensure that have that for all m > m1

|πi(A)− πi,m(A)| < ε.

As this holds for each A we have weak convergence of the measures. �
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