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Abstract

We consider a class of discrete time stochastic control problems motivated by
a range of financial applications. We develop a numerical technique based on the
dual formulation of these problems to obtain an estimate of the value function which
improves on purely regression based methods. We demonstrate the competitiveness
of the method on the example of a gas storage valuation problem.

1 Introduction

The numerical pricing of options with early exercise features, such as American options,
is a challenging problem, especially when the dimension of the underlying asset increases.
There is a large body of literature which discusses this problem from different points
of view, beginning with techniques aimed at solving the dynamic programming problem
using trees or the associated Hamilton-Jacobi-Bellman equation. Over the past decade,
there has been a lot of activity in developing Monte Carlo techniques for optimal stopping
problems of this type. The most popular have been basis function regression methods
initially proposed in [19] and [27]. If these methods are used to provide an approximate
optimal exercise strategy, they naturally provide lower bounds for prices. Thus they were
soon followed by dual methods [22, 18] designed to find upper bounds. An account of
these methods can be found in [17].

Following on from the development of dual methods for American options, there has
been a strand of research extending these ideas to multiple optimal stopping problems
[21], which correspond to options with multiple exercise features (for general results see
[12]). The dual method proceeds via the idea of pathwise optimization, which originated
in [16]. This pathwise optimization method was developed in a general setting in [23]
where it was applied to more general stochastic control problems. However there was
little emphasis on practical computational issues.

In this paper, our aim is to consider a subclass of such stochastic control problems
for which we can develop a relatively simple dual approach and which leads to numerical
algorithms for the efficient computation of the value function.

A natural setting for such option pricing problems is the electricity market. In that
setting contracts such as swing options give the holder certain rights to exercise variable
amounts through the lifetime of the contract. The dual approach, initiated in [21], used
a simplistic swing contract in which a single exercise was allowed on each day, with the
total number of exercise rights over the lifetime of the contract constrained. In [1, 7], this
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was extended to multiple discrete exercises on a given day. Other recent developments
have seen a move to continuous time [8], a ‘pure martingale’ dual formulation of the
problem [25] and a general version [9]. Other approaches can be found in [11] and [13]
where a similar general result to [9] was derived. These papers use an approach based
on information relaxation. Although [23], [11] and [9] discuss the computation of prices
they need to specialize their approaches to obtain tractable implementations.

We begin by providing a reasonably general formulation of the dual problem in discrete
time which allows exercise of continuous amounts and contains the ‘pure martingale’
approach in a form which enables the development of tractable numerical algorithms and
quantification of the errors.

Our main aim is to provide a useful numerical approach to this type of problem using
these duality ideas. Having moved beyond the multiple optimal stopping problem to
a more general stochastic control formulation, the space of controls is now potentially
of dimension greater than one, and consequently more difficult to handle. Instead of a
purely binary decision (or at most a finite set of decisions) at each time point, we have the
possibility of choosing from a Euclidean space (in the electricity context, this is exercising
a real-valued amount corresponding to a volume of power). Our dual formulation of the
problem leads naturally to an upper bound on the value function. We develop a technique
based on being given an a priori estimate for the value function, say typically an estimate
obtained via basis function regression, and converting this to an improved estimate via
the dual.

In order to produce the a priori estimate, the method uses least squares regression and
Monte Carlo techniques, an extension of the approach due to Longstaff-Schwarz [19] and
Tsitsiklis and van Roy [27]; we use test functions that depend on both the underlying
factor and the control value. We note that this idea has been considered by Boogert
and Jong [10]; however, Boogert and Jong did not develop the extended regression based
method in detail, but worked with regression depending only on the underlying factor for
several discrete values of the control. Belomestny et al. [6] have also developed a family
of least squares regression and Monte-Carlo based numerical algorithms. The algorithm
in [6] can be applied to more general discrete time control problems than the ones we
consider in this paper. However, as in [10], Belomestny et al. regress the conditional
expectation arising in the dynamic programming principle using test functions depending
on the underlying factor only. When applied to the same control problem, with the right
choice of test functions and grid in the space of underlying factor and control, we found
that our extended regression based method performs better than the method in [10] or
the method in [6], especially when the control is high dimensional. Our approach also
allows us to tackle problems such as optimal trade execution for some permanent price
impact models.

The a priori estimate is used as an input to the dual formulation based upper bound.
The implementation of the dual estimate requires the numerical solution of several in-
dependent deterministic optimal control problems. We note that these control problems
can be solved simultaneously, and, hence, it is well suited for a parallel implementation.

As an application, we will focus on one example in this paper, namely natural gas
storage valuation. The owner of a natural gas storage facility is faced with an optimal
control problem in order to maximize the return from running the facility. The demand
for natural gas is seasonal with high demand and prices in the winter, and low demand
in the summer. The operator of a facility will want to buy and store gas when it is
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cheaper over the summer, and then sell gas into the market when the price is higher in
the winter. The operation of the facility is thus a control problem where, on a given day,
the operator has the decision to buy or sell a volume of gas, given the current price of
gas. Thus, we have the set up of a stochastic control problem of the type we consider
here. We chose the particular gas storage problem as a numerical example in order to
compare the results of our probabilistic approach to the results of the partial differential
equation based methods (cf. [14, 26]). In general, we expect the probabilistic approach
to perform better than the PDE methods when the dimension of the underlying factor
and/or the dimension of the control is high.

Our numerical example demonstrates that the dual formulation based upper bound
is sharper than the one we get from the a priori estimate at comparable computational
expense. This empirical observation justifies the potential benefit of computing the dual
formulation based estimate in practice.

The outline of the paper is as follows. We will begin with the setup for the problem
in Section 2 and follow this with the dual formulation in Section 3. We obtain our main
representation in Theorem 3.1, and then derive a version which can be used for the Monte
Carlo based numerical technique in Lemma 3.3. We follow this with a discussion of the
numerical technique itself in Section 4. Finally, we apply the approach to the gas storage
problem in the last section.

2 Discrete time stochastic control problems

We consider an economy in discrete time defined up to a finite time horizon T . We
assume a financial market described by the filtered probability space (Ω,F , (Ft)t∈T ,P),
where T = {0, 1, . . . , T}. We take (Xt)t∈T to be an Rd-valued discrete time Markov
chain representing the price of the underlying assets and any other variables that affect
the dynamics of the underlyings. We assume that the filtration (Ft)t∈T is generated by X.
Moreover, we assume that P is a risk neutral pricing measure, and write Et(X) = E(X|Ft)
for any random variable X on our probability space. Throughout the paper, we will
assume that interest rates are 0.

We phrase our problem in the language of options, even though it is a standard
stochastic control problem of maximizing a reward obtained from a randomly evolving
system. The payoff of the option (or the reward for the position) (Ht)t∈T is given by
Ht = Ht(ht, yt, Xt) at time t = 0, 1, . . . , T − 1 and HT = HT (yT , XT ). Ht is a function of
the underlying Xt, the control process yt ∈ Rk and the exercise amount ht ∈ Rl, where ht
is chosen by the holder of the option subject to certain constraints at time t and k, l ∈ N.
We assume that Ht(h, y,Xt) is measurable with respect to Ft for all t = 0, 1, . . . , T − 1,
h ∈ Rl and y ∈ Rk, moreover HT (y,XT ) is measurable with respect to FT for all y ∈ Rk.
The control process (yt)t∈T is determined by y0 and the recursion yt+1 = yt+1(ht, yt) at
t = 0, 1, . . . , T−1. The set of problems that we can consider includes certain semi-coupled
control problems in which the decision at time t regarding ht may have impact on the
evolution of the underlying state of the economy Xs for s > t via a change of measure
(the trade execution example describes a control problem of this type). In this setting
our underlying process X is conditionally Markov given the control.

The set of admissible exercise decisions available at a given time is defined by a (set-
valued) function K on T ×Rk ×Rd that takes values in the set of subsets of Rl. We will
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write Kt(yt, Xt(ω)), or, if needed, K(t, yt, Xt(ω)), for the given set of admissible exercise
decisions depending on t, the state of the underlyings Xt, and the value of the control
process yt. The initial value y0 and the constraints Kt(·, ·) for t ∈ T are determined by
the option contract.

Definition 2.1 (K-admissible exercise policy). A policy, or exercise strategy, π = (ht, . . . , hT )
started at y has an associated control process (ys)s=t,...,T defined by yt = y and ys+1 =
ys+1(hs, ys) for s = t, . . . , T −1. It is a K-admissible exercise policy on {t, . . . , T} started
at y if it has the following properties.

(i) hs is Fs-measurable for s = t, . . . , T ,

(ii) hs(ω) ∈ Ks(ys, Xs(ω)) for all s = t, . . . , T and for all ω in a set of probability one.

The set of such policies is denoted by PK,y,t.

Thus, a K-admissible exercise policy π on the time-set {t, . . . , T} is defined by the
(Fs)-adapted process (hs)s=t,...,T describing the exercise decisions at times t, . . . , T , and
the value of such an exercise policy π at time t is given by

V π
t (yt, x) = E

[
T∑
s=t

Hs|Xt = x

]
= E

[
T−1∑
s=t

Hs(hs, ys, Xs) +HT (yT , XT )|Xt = x

]
. (2.1)

In the particular examples considered in this paper, the set Kt will be a line segment in
R or a quadrant of R2.

We are now in a position to define the value function V ∗t (yt, Xt) at time t of the option
satisfying the constraints K.

Definition 2.2. We define the value function to be

V ∗t (y, x) = sup
π∈PK,y,t

V π
t (y, x) = sup

π∈PK,y,t

E

[
T∑
s=t

Hs|Xt = x

]
, (y, x) ∈ Rk × Rd.

For simplicity, we make the following assumption.

Assumption 2.3. There exists a set Y K
0 of initial control values and a bound C such

that
E[|Hs(h, y,Xs)|] < C ∀s ∈ {0, 1, . . . , T − 1}, h ∈ Ks(y,Xs),

and
E[|HT (y,XT )|] < C

for all (y,Xs) reachable at time s from Y K
0 × {X0(ω)|ω ∈ Ω} by a K-admissible policy.

This is enough to ensure the existence of the value function and the dynamic pro-
gramming principle. Weaker assumptions which guarantee existence would be possible,
but are not the focus of this paper.

In order to indicate the type of problems that fit into this framework, we give four
examples. In the final section, we will focus on the second.

Bermudan option:
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Although this paper is focused on more general control problems, many of the standard
optimal stopping problems can be formulated in our framework. For instance, in the case
of Bermudan put options, y0 = 1, Xt denotes the spot price of a traded asset, the payoff
function is defined by Ht(ht, yt, Xt) = ht(K−Xt)

+ for some strike K, and the constraint
set Kt(·, ·) is defined as follows.

Kt(y, x) =

{
{0, 1} if y = 1,
{0} otherwise.

Gas storage valuation:

Natural gas storage valuation and optimal operation can be formulated as an option
contract as described above. In particular, let Xt ∈ R+ denote the spot price of natural
gas at time t, and let yt ∈ R+ denote the amount of gas stored in the facility at time t,
that is the exercise policy is ht ∈ R, denoting the amount of gas injected or withdrawn
from time t to t+ 1, so that yt+1 = yt − ht for t = 0, 1, . . . , T − 1. The payoff is defined
by

Ht(ht, yt, Xt) = htXt, and HT (yT , XT ) = 0.

Other features can easily be incorporated such as taking into account the loss of gas
occurring at injection.

At time t, the set Kt(yt, Xt) is determined by the maximum and minimum capacity
of the gas storage facility, and by the injection/production rate depending on the stored
amount Xt. A continuous time description of this problem was given in [20] and in [26].
In section 5.1, we present a time-discretized version.

Swing option pricing:

In the electricity market it is possible for the spot price of electricity to spike; that is
to rise substantially for a short period due to network outages or sudden increases in
demand. A swing option enables the holder to protect themselves against the risk of such
price spikes if they are exposed to the spot price of electricity X. The simplest versions
give their holder the right, for a specified period of time, to purchase each day (on- or
off- peak time) electricity at a fixed price K (strike price). In this case the payoff at any
exercise time is that of a call option (Xt − K)+. When exercising a swing option at a
time t, the amount purchased may vary (or swing) between a minimum volume, mt, and
a maximum volume, Mt, while the total quantity purchased for the period must remain
within minimum m̄ and maximum M̄ volume levels. Thus our exercise policy is ht, the
volume to be exercised for the fixed price K, which gives a control process yt+1 = yt− ht
for t = 0, 1, . . . , T − 1 and payoff

Ht(ht, yt, Xt) = ht max(Xt −K, 0), and HT (yT , XT ) = 0,

with mt ≤ ht ≤ Mt and m̄ ≤
∑T

t=0 ht ≤ M̄ . The set Kt is the line segment determined
by these constraints.

Optimal liquidation:

A similar approach can be pursued to model the problem of the optimal liquidation
of a large holding in a given asset. That is, given n shares, we aim to sell them all
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within a given time frame while minimising the loss due to price impact or adverse price
movements. In particular, when a market participant is selling an asset in large quantities,
the market price tends to drop, hence typically at any given time only a limited part of
the portfolio can be sold at the best bid price.

Let (Xt)t∈T , with values in Rd, denote the process of some observable market factors;
one of its components is the best bid price. Suppose that for any fixed t ∈ [0, T ] and
x ∈ Rd the density pθ(s,Xs|Xt = x) of the conditional law of Xs for s ∈ [t, T ] depends on
a parameter θ. The long term impact of large trades can be modelled as an impact on θ,
that is large trades may change the dynamics of the market. In particular, we define the
process θt, which deterministically depends on its previous value and the action of the
large trader but mean reverts:

θt+∆t = (θt + ut(ht, Xt)) exp(−γ∆t) + θ∗, (2.2)

where ut(·) is the impact function, γ is the mean reversion speed, θ∗ is the mean reversion
level of the parameter of the distribution and ∆t ∈ [0, 1). By adding positive random
jumps to θt one could model the impact of other large traders. In this approach, the
exercise policy ht is the number of shares to be sold at time point t, the control process
is yt = (nt, θt), with nt+1 = nt − ht.

A wide class of price impact models can be represented within this framework. In
particular, the model of Alfonsi et al. ([4, 5]) can be embedded into our framework as
follows. The actual stock price Xt = S0

t + θt is a sum of the price S0
t without the impact

of the large trader, and θt is the price impact. In [4, 5], θt is of the form (2.2), with
θ∗ = 0, and the impact function ut(·) is derived from the (deterministic) shape of the
order book. Hence, given θt

pθs(s,Xs|Xt = x) = p(s,Xs − θs|S0
t + θt = x),

where p(s, S0
s |S0

t ) is the conditional transition density of the process S0
t . Alfonsi et al.

[4, 5] assume that the process S0
t is a martingale, and the shape function of the order

book is centered around S0
t in which case the optimal execution strategy is deterministic.

Our framework allows more general price dynamics and price-impact models in which the
optimal execution strategy can be non-deterministic.

The value of the policy at t is written as

V π
t (yt, x) = E

[
T∑
s=t

pθs(s,Xs|Xt = x)

pθ∗(s,Xs|Xt = x)
Hs|Xt = x

]
(2.3)

where the expectation is taken under the reference measure pθ∗ . One can rewrite the
policy value (2.3) in the form of (2.1) by using the effective payoff Ĥs centered at (x, t):

Ĥs(hs, ys, Xs) =
pθs(s,Xs|Xt = x)

pθ∗(s,Xs|Xt = x)
Hs(hs, ys, Xs).

In order to incorporate instantaneous price impact, the payoff function Ht(ht, yt, Xt)
is defined to have a decreasing slope in ht, which penalises large orders. The particular
form might be derived from an order book shape function (ref.: [4, 5]).

The constraint set is determined by whether roundtrips/price manipulations are al-
lowed.
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3 Dual formulation

Definition 2.2 represents the value of the option as the supremum over the set of admissible
exercise policies. We now develop a dual for this problem that represents the option value
as an infimum over a space of martingale-valued functions. Our formulation is essentially
a special case of the results of Rogers [23]; the proof of the special case is included here for
the sake of completeness. Let M denote the space of functions defined on Rk and taking
values in the space M0 of martingales which are adapted to the filtration (Ft)t∈T and
null at time 0. For M ∈M, y ∈ Rk, t ∈ T , My

t denotes the time-t value of M(y) ∈M0.

Theorem 3.1. Let K be a function defined on T ×Rk ×Rd and taking values in the set
of subsets of Rl. Then, for all y ∈ Y K

0 , the value V ∗0 (y,X0) of the option at time 0 almost
surely satisfies the following.

V ∗0 (y, x) = inf
M∈M

E

[
sup

π∈PK,y,0

T−1∑
t=0

(Ht(ht, yt, Xt)−Myt+1

t+1 +M
yt+1

t ) +HT (yT , XT )

∣∣∣∣X0 = x

]
.

(3.1)
Moreover, the infimum is attained for M∗,y ∈M0, where

M∗,yt+1 := M∗,yt + V ∗t+1(y,Xt+1)− Et
[
V ∗t+1(y,Xt+1)

]
.

Proof. We follow a similar approach to that of Rogers [23]. We have

V ∗0 (y, x) = sup
π∈PK,y,0

E

[
T−1∑
s=0

Hs(hs, ys, Xs) +HT (yT , XT )

∣∣∣∣X0 = x

]

= sup
π∈PK,y,0

E

[
T−1∑
s=0

(
Hs(hs, ys, Xs)−Mys+1

s+1 +Mys+1
s

)
+HT (yT , XT )

∣∣∣∣X0 = x

]

≤ E

[{
sup

π∈PK,y,0

T−1∑
s=0

(
Hs(hs, ys, Xs)−Mys+1

s+1 +Mys+1
s

)
+HT (yT , XT )

}∣∣∣∣X0 = x

]
.

As this holds for all martingales Mw, we then have

V ∗0 (y, x) ≤ inf
M∈M

E

[
sup

π∈PK,y,0

T−1∑
s=0

(
Hs(hs, ys, Xs)−Mys+1

s+1 +Mys+1
s

)
+HT (yT , XT )

∣∣∣∣X0 = x

]
.

To see that the inequality holds the other way around, we consider a particular family
of martingales. The one that we take is {M∗,ytt , t ∈ T \{T}} from the Doob decomposition
of the value function. Thus, its increments are given by

∆M
∗,yt+1

t = M
∗,yt+1

t+1 −M∗,yt+1

t = V ∗t+1(yt+1, Xt+1)− Et
[
V ∗t+1(yt+1, Xt+1)

]
.
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Using this martingale, we have

inf
M∈M

E

[
sup

π∈PK,y,0

{
T−1∑
s=0

(Hs(hs, ys, Xs)−Mys+1

s+1 +Mys+1
s ) +HT (yT , XT )

}∣∣∣∣X0 = x

]

≤ E

[
sup

π∈PK,y,0

{
T−1∑
s=0

(Hs(hs, ys, Xs)−∆M∗,ys+1
s ) +HT (yT , XT )

}∣∣∣∣X0 = x

]

= E

[
sup

π∈PK,y,0

{
T−1∑
s=0

(
Hs(hs, ys, Xs)− V ∗s+1(ys+1, Xs+1) + Es

[
V ∗s+1(ys+1, Xs+1)

]
+HT (yT , Xt)

}∣∣∣∣X0 = x

]
.

By the definition of the value function V ∗t (·, ·), for any (y, x) ∈ Rk × Rd, t ∈ T , and
h ∈ Kt(y, x), we have

V ∗t (y, x) ≥ Ht(h, y, x) + sup
π∈PK,yt+1(h,y),t+1

E

[
T−1∑
s=t+1

Hs(hs, ys, Xs) +HT (yT , XT )
∣∣Xt = x

]
,

and, therefore,

V ∗t (y, x) ≥ Ht(h, y, x) + E
[
V ∗t+1(yt+1(h, y), Xt+1)|Xt = x

]
.

Hence,

inf
M∈M

E

[
sup

π∈PK,y,0

{
T−1∑
s=0

(Hs(hs, ys, Xs)−Mys+1

s+1 +Mys+1
s ) +HT (yT , XT )

}∣∣∣∣X0 = x

]

≤ E

[
sup

π∈PK,y,0

{
T−1∑
s=0

(
V ∗s (ys, Xs)− V ∗s+1(ys+1, Xs+1)

)
+HT (yT , XT )

}∣∣∣∣X0 = x

]

= V ∗0 (y, x) + E

[
sup

π∈PK,y,0

{
HT (yT , XT )− V ∗T (yT , XT )

}]
.

Now, using the fact that at T we must have V ∗T (y, x) = HT (y, x), we have

inf
M∈M

E

[
sup

π∈PK,y,0

{
T−1∑
s=0

(Hs(hs, ys, Xs)−Mys+1

s+1 +Mys+1
s ) +HT (yT , XT )

}∣∣∣∣X0 = x

]
≤ V ∗0 (y, x)

as required.

Remark 3.2. We can use this result to recover some previous dual formulations. Con-
sider the specification of the multiple stopping problem in [25]. The payoff function is
Ht(h, y, x) = hx for t ∈ T , the control satisfies 0 < y0 ≤ T + 1 and takes non-negative
integer values, and the constraint sets are defined by

Kt(y, x) = Kt(y) =


{1} if y ≥ T − t+ 1,
{0, 1} if T − t+ 1 > y > 0,
{0} if y = 0.
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In this special case, the payoff value is either 0 or Xt. Hence, (3.1) simplifies to the
following.

V ∗0 (y0, x) = inf
M1,...,Mk∈M0

E

[
max

0≤t1<···<ty0≤T

y0∑
k=1

(Xtk −M
y0−k
tk+1

+My0−k
tk

)

∣∣∣∣X0 = x

]
.

The dual formulation in this form coincides with the result obtained in [25].

In general, we need to solve the deterministic control problem along the path in order
to use this approach. If we have a good approximation to the value function, then we can
use the martingale arising from its Doob decomposition, as this will be an approximation
to the optimal martingale.

We note that, if we are given a set of approximations to the value function, we can
bound the error made in the upper bound arising from the dual formulation in terms of
what are essentially the errors in the dynamic programming equations. More specifically,
let Vt(y, x), t = 0, . . . , T be a set of (a priori) approximations to the value function, and
let the family of martingales My be generated by Vt(y, x) as follows

My
t+1 −M

y
t = Vt+1(y,Xt+1)− Et [Vt+1(y,Xt+1)] . (3.2)

Then, we define the upper bound V ↑t (y, x) associated with Vt(y, x) by the conditional
expectation:

V ↑t (y, x) = E

[
sup

π∈PK,y,t

T−1∑
s=t

{
Hs(hs, ys, Xs)−Mys+1

s+1 +Mys+1
s

}
+HT (yT , XT )

∣∣∣∣Xt = x

]
.(3.3)

Note that Theorem 3.1 and (3.1) in particular imply that V ↑t (y, x) is almost surely an

upper bound for V ∗t (y, x). We now quantify the difference between V ↑t (y, x) and V ∗t (y, x).

Lemma 3.3. The difference between the a priori estimate for the value function and the
associated estimate arising from the dual formulation can be expressed as

V ↑t (y, x)− Vt(y, x) =

E

[
sup

π∈PK,y,t

T−1∑
s=t

Hs(hs, ys, Xs) + Es [Vs+1(ys+1, Xs+1)]− Vs(ys, Xs)

∣∣∣∣Xt = x

]
.

Proof. Let My denote the family of martingales associated with the a priori estimate
Vt(y, x) as defined in (3.2). By the definition (3.3) of V ↑t (y, x), we have

V ↑t (y, x) = E

[
sup

π∈PK,y,t

T−1∑
s=t

{
Hs(hs, ys, Xs)−Mys+1

s+1 +Mys+1
s

}
+HT (yT , XT )

∣∣∣∣Xt = x

]

= E
[

sup
π∈PK,y,t

T−1∑
s=t

{Hs(hs, ys, Xs)− Vs+1(ys+1, Xs+1) + Es [Vs+1(ys+1, Xs+1)]}

+HT (yT , XT )

∣∣∣∣Xt = x

]
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= E
[

sup
π∈PK,y,t

T−1∑
s=t

{
Hs(hs, ys, Xs)− Vs+1(ys+1, Xs+1) + Vs(ys, Xs)

+ Es [Vs+1(ys+1, Xs+1)]− Vs(ys, Xs)
}

+HT (yT , XT )

∣∣∣∣Xt = x

]
= E

[
sup

π∈PK,y,t

T−1∑
s=t

{Hs(hs, ys, Xs) + Es [Vs+1(ys+1, Xs+1)]− Vs(ys, Xs)}

+ Vt(yt, Xt)− VT (yT , XT ) +HT (yT , XT )

∣∣∣∣Xt = x

]
= Vt(y, x) + E

[
sup

π∈PK,y,t

T−1∑
s=t

{Hs(hs, ys, Xs) + Es [Vs+1(ys+1, Xs+1)]− Vs(ys, Xs)}
∣∣∣∣Xt = x

]

as VT (yT , XT ) = HT (yT , XT ), giving the required result.

4 The numerical approach

We now present a numerical implementation of the dual upper bound derived in Lemma
3.3. The lemma gives a representation of the difference between an upper bound V ↑0 (y, x)
and another (a priori) approximation Vt(y, x) of V ∗t (y, x). In Section 4.1, we present a

numerical method that approximates V ↑0 (y, x) given that approximations of the functions
Vt(y, x) and

(y, x) 7→ E [Vt+1(y,Xt+1)|Xt = x] (4.1)

are available.
In Section 4.2, we introduce an approach to generate an a priori estimate Vt(y, x) and

an approximation of the conditional expectation (4.1).

4.1 Estimating the dual upper bound

In this section, we assume that a set of a priori approximations Vt(y, x) is available,
i.e., for t = 0, . . . , T − 1, the function Vt(y, x) represents an approximation of V ∗t (y, x).
Furthermore, we assume that, for t = 0, . . . , T − 1, the function Vt(y, x) and (an estimate
of) the continuation value

(y, x) 7→ E [Vt+1(y,Xt+1)|Xt = x]

can be computed for any time-t reachable pair (x, y).
Under such assumptions, we introduce a numerical method that implements the upper

estimate V ↑0 (y, x) derived in Lemma 3.3. Lemma 3.3 requires the estimation of a path-
wise optimum. Hence, given a trajectory x· = {x0, . . . , xT }, we aim to approximate the
function

Ft(y, x·) := sup
π∈PK,y,t

T−1∑
s=t

{
Hs(hs, ys, xs) + E [Vs+1(ys+1, Xs+1)|Xs = xs]− Vs(ys, xs)

}

10



recursively for t = T, T − 1, . . . , 0. The optimization algorithm is based on the following
path-wise dynamic programming principle.

FT (y, x·) = 0,

Ft(y, x·) = sup
π∈PK,y,t

{
T−1∑
s=t

{
Hs(hs, ys, xs) + E [Vs+1(ys+1, Xs+1)|Xs = xs]− Vs(ys, xs)

}}
= sup

h∈Kt(y,xt)

{
Ht(h, y, xt) + E [Vt+1(yt+1(h, y), Xt+1)|Xt = xt]

− Vt(y, xt) + Ft+1(yt+1(h, y), x·)
}
, (4.2)

and
V ↑0 (y, x) = V0(y, x) + E [F0(y,X·)|X0 = x] . (4.3)

Based on (4.2) and (4.3), we are now in a position to formulate the following algorithm.

Algorithm 4.1. Generate N independent trajectories xi· , i = 1, . . . , N of the process X
started at a fixed X0. For i = 1, . . . , N

1. Set t = T , and define y 7→ F̂T (y, xi·) = 0.

2. Set t− 1→ t.

3. Define a finite grid Gyt ⊆ Dom(F̂t(·, xi·)) ⊆ Rk (see Remark 4.2), and for each y ∈ Gyt
solve the optimization problem

F t(y, x
i
·) = sup

yt+1(h,y)∈Dom(F̂t+1(·,xi·))
h∈Kt(y,xit)

{
Ht(h, y, x

i
t) + E

[
Vt+1(yt+1(h, y), Xt+1)|Xt = xit

]
− Vt(y, xit) + F̂t+1(yt+1(h, y), xi·)

}
4. Given the set {(y, F t(y, xi·))|y ∈ G

y
t }, define F̂t(·, xi·) on the whole domain Dom(F̂t(·, xi·))

by interpolation (see Remark 4.2).

5. If t ≥ 1, continue with 2, otherwise finish.

Once y 7→ F̂0(y, xi·) is defined for all i = 1, . . . , N , we approximate V ↑0 (y,X0) by the
Monte-Carlo average

V0(y,X0) + 1
N

N∑
i=1

F̂0(y, xi·).

The complexity of Algorithm 4.1 is proportional to N
∑T

t=1 |G
y
t |.

Clearly, the main challenge in the implementation of Algorithm 4.1 is the solution of
the optimization problem in step 3.

Remark 4.2. The particular implementations of the above algorithm differ in

(i) the specification of the domain Dom(F̂t(·, xi·)),

(ii) the definition of Gyt ,
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(iii) the approximation of the solution to the optimization problem in point 3 of the
algorithm,

(iv) and the method applied in point 4 of the algorithm.

Two possible versions of Algorithm 4.1 are presented in Sections 4.1.1 and 4.1.2.

4.1.1 Implementation I: Discretization of the control

One possible approach is to discretize the problem in the control. We define Gy0 as
an (equidistant) grid contained in the set of initial control values of interest. Then,
recursively for t = 0, . . . , T − 1, we define Gyt+1 to be an (equidistant) grid contained in
the set

{yt+1(h, y)|y ∈ Gyt , h ∈ Kt(y, xt)}.
Furthermore, Dom(F̂t(·, xi·)) is defined to be the same as Gyt ; this specification implies
that the optimization problem in step 3 of Algorithm 4.1 is an optimization over a finite
set; moreover, F t(·, ·) = F̂t(·, ·) for t = 0, . . . , T .

Remark 4.3. The choice of Gyt depends on the constraints of the problem. For instance,
in the case of the gas storage problem, there is a well defined lower and upper limit of y;
Gyt can be an equidistant grid in this region.

4.1.2 Implementation II: Parametric curve fitting

We define Gyt in a similar manner to the previous version. However, we assume F̂t(·, ·) to
be a parametric surface of the following form.

F̂t(y, x
i
·) =

R∑
r=1

λit,rφr(y)

for some vector of parameters Λit = (λit,1, . . . , λ
i
t,R) depending on the trajectory xi· and

for some set of test functions (φ1, . . . , φR) with domains in Rl, implying

Dom(F̂t(·, xi·)) =
R⋂
r=1

Dom(φr).

The accuracy of the algorithm is sensitive to the choice of test functions; more specifically,
different settings may have different optimal sets of test functions, and the (numerical)
solution of the optimization problem in step 3 of Algorithm 4.1 should be adapted to the
particular choice of test functions.

Point 4 of Algorithm 4.1 is implemented via a least squares regression, i.e., we define
Λit to minimize the expression

∑
y∈Gyt

[
F t(y, x

i
·)−

R∑
r=1

λit,rφr(y)

]2

.

Remark 4.4. As we increase the number R of independent test functions and the number
N of simulated trajectories, we anticipate that F̂t(·, ·) converges to Ft(·, · · · ) for t =
0, . . . , T . However, since F t(·, ·) is a numerical approximation of the supremum, it is
likely to estimate Ft(·, · · · ) from below, and, therefore, our method may result in a low-
biased estimate of the dual formulation based upper bound.

12



4.2 An a priori estimate

As stated at the beginning of Section 4.1, the solution of (4.2) requires computable
functions Vt(y, x) and

Gt(y, x) := E [Vt+1(y,Xt+1)|Xt = x]

approximating V ∗t (y, x) and E
[
V ∗t+1(y,Xt+1)|Xt = x

]
, respectively, for t = 0, . . . , T − 1.

We suggest the following method, which is based on the dynamic programming formula-
tion.

Definition 4.5. (Dynamic Programming Formulation)

V ∗t (y, x) :=

{
suph∈KT (y,x)HT (y, x) if t = T,

suph∈Kt(y,x)

{
Ht(h, y, x) + E

[
V ∗t+1(yt+1(h, y), Xt+1)|Xt = x

]}
if 0 ≤ t ≤ T − 1.

(4.4)

For the computation of the conditional expectation in the above formulation, we
introduce a slightly extended version of the standard least squares regression based Monte
Carlo method [19, 27, 15]. Our construction yields an a priori estimate V0(·, ·) that
approximates V ∗0 (·, ·) for a bounded set S of initial X0 values, where S is contained in
the support of the law of X0.

Algorithm 4.6. Define a set Gx0 of distinct initial values of X in S (see Section 4.2.1)
and generate independent trajectories xi· , i = 1, . . . , N , of the process X, with xi0 = x
for each x ∈ Gx0 . Define Gxt = {xit | 1 ≤ i ≤ N} for t = 1, . . . , T , where N = |Gx0 |.
Furthermore, for t = 1, . . . , T , define a finite set

Gyxt ⊆ Dom(Vt(·, ·)) ⊆ Rk × Rd

such that, for all (y, x) ∈ Gyxt , we have x ∈ Gxt . Then, proceed as follows.

1. Set t = T and define
VT (y, x) = HT (y, x).

2. Set t− 1→ t.

3. Given the set {(
y, xt, xt+1, Vt+1(y, xt+1)

)
| (y, xt+1) ∈ Gyxt+1

}
,

define a function Ĝt(y, x) approximating Gt(y, x) on Dom(Ĝt(·, ·)).

4. For each (y, x) ∈ Gyxt , solve the optimization problem

V t(y, x) = sup
h∈Kt(y,x)

(yt+1(h,y),x)∈Dom(Ĝt(·,·))

{
Ht(h, yt+1(h, y), x) + Ĝt(yt+1(h, y), x)

}
. (4.5)

5. V t(·, ·) is only defined on Gyxt . Given the set{(
y, x, V t(y, x)

)
| (y, x) ∈ Gyxt

}
,

define the function Vt(·, ·) on its domain.
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6. If t ≥ 1, then continue with step 2; else, V0(y, x) results in an a priori approxima-
tion.

The complexity of Algorithm 4.6 is proportional to N
∑T

t=1 |G
yx
t |.

The above outline of Algorithm 4.6 leaves some choice as to how certain things are
done in detail; in particular, this includes the following points.

Remark 4.7. The particular implementations of Algorithm 4.6 differ in

(i) the construction of the set Gyxt ,

(ii) the construction of the function Ĝt(·, ·) in step 3,

(iii) and the construction of the function Vt(·, ·) in step 5.

In Section 4.2.1, we implement a particular version of Algorithm 4.6 for the a priori
estimate.

4.2.1 Choosing an implementation

Since the three items described in Remark 4.7 are closely connected, we discuss them
together.

In a similar way to the standard least squares regression based approach (cf. [19, 27,
15]), we approximate the function Gt(·, ·) by an orthogonal projection onto a function
space spanned by a set of test functions {ψ1, . . . , ψQ}, where, for q = 1, . . . , Q, ψq is
defined on Dom(Gt(·, ·)) ⊆ Rl × Rd, and

Ĝt(y, x) =

Q∑
q=1

γt,qψq(y, x) ≈ Gt(y, x) = E [Vt+1(y,Xt+1)|Xt = x] . (4.6)

In contrast to [19, 27, 15], where the orthogonal projection at time t is determined by
the distribution of Xt, we have to deal with the control variable as well. We define the
projection to minimize

EY,Z

E[Vt+1(Y,Xt+1)|Xt = Z]−
Q∑
q=1

γt,qψq(Y,Z)

2 , (4.7)

where Z and Y are independent random variables. In most applications, the set reachable
by yt+1 is bounded, and, therefore, in order to try to obtain uniform accuracy across the
reachable set, we will take Y to be uniformly distributed on this bounded set. The
distribution of Z can be defined to coincide with the distribution of Xt. However, in
many applications, such as the numerical example in Section 5, only the distribution of
Xt conditioned on particular values of X0 is specified; here, we assume that the law of
X0 is uniform on a certain set S which represents the set of possible initial gas prices.

Formula (4.7) suggests that, by increasing the number of appropriately chosen test
functions ψ1, ψ2, . . . , Ĝt(·, ·) approximates the conditional expectation

(y, x) 7→ E[Vt+1(y,Xt+1)|Xt = x]
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in the mean square sense with respect to the joint measure of Y and Z; for our particular
choice of test functions, see Section 5.2.

As opposed to the least squares regression based function approximations described
in the previous sections, in (4.7) the conditional expectation, the function to be approxi-
mated, is not directly observable at any point of its domain. Moreover, the minimisation
problem of the classical least squares regression based methods (cf. [15, 19, 27]) estimates
a function that depends on the underlying random process only, whereas in (4.7) we work
with functions which depend on the value of the control process as well. Therefore it is
worth specifying how the regression coefficients γt,q for q = 1, . . . , Q are estimated. In
particular, for r = 1, . . . , Q, we observe that, when (4.7) is minimized, we have

∂

∂γt,r
EY,Z

E[Vt+1(Y,Xt+1)|Xt = Z]−
Q∑
q=1

γt,qψq(Y, Z)

2
= 2EY,Z

[
E[Vt+1(Y,Xt+1)|Xt = Z]ψr(Y,Z)

]
− 2EY,Z

 Q∑
q=1

γt,qψq(Y,Z)ψr(Y,Z)


= 2EY,Z

[
Vt+1(Y,Xt+1)ψr(Y, Z)

]
− 2

Q∑
q=1

γt,qEY,Z [ψq(Y, Z)ψr(Y, Z)] = 0.

Hence, γt = (γt,1, . . . , γt,Q)T satisfies the linear equation

BV,ψ = Bψγt, (4.8)

where
BV,ψ = EY,Z

[
Vt+1(Y,Xt+1)ψ(Y,Z)

]
and

Bψ = EY,Z
[
ψ(Y,Z)ψ(Y,Z)T

]
for ψ(x, y) = (ψ1(x, y), . . . , ψQ(x, y))T .

When estimating the regression coefficients, we replace BV,ψ and Bψ in (4.8) with
their Monte-Carlo estimates

B̂V,ψ := 1
|Gyxt+1|

∑
(y,xt+1)∈Gyxt+1

Vt+1(y, xt+1)ψ(y, xt) (4.9)

and B̂ψ := 1
|Gyxt+1|

∑
(y,xt+1)∈Gyxt+1

ψ(y, xt)ψ(y, xt)
T . (4.10)

The choice of Gx0 and Gyxt , t = 0, . . . , T , determines how accurately B̂V,ψ and B̂ψ
approximate BV,ψ and Bψ, respectively. When implementing the method, we consider

i) Gx0 to be randomly sampled from the law of X0, or Gx0 to be a low discrepancy
sequence (cf. [17]) in S,

ii) xt to be randomly sampled from the conditional distribution Xt|X0,
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iii) and y to be independent of xt and randomly sampled from the uniform distribution
on the support of yt, or to be a low discrepancy sequence4 in the support of yt; we
generated a small number (1 to 10) of y items for each x.

Remark 4.8. Initially, we looked at defining Gyxt = Gyt × Gxt , for some set Gyt . However,
the numerical results showed that to achieve a given accuracy, a large enough Gyt is
required, resulting in a set Gyt × Gxt significantly larger than the size of Gyxt constructed
in the version described prior to this remark (calibrated to yield the same accuracy).

Figure 1 demonstrates the difference between Gyt ×Gxt and the set Gyxt described before
this remark. We observe that Gyxt yields a better coverage with fewer grid points.
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(a) Gyxt grid, y points generated by rank-1 lattice
rule (4000 points in total, 8 y-items per each x item)
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(b) Gyxt = Gyt ×Gxt (12500 points in total, 25 y-items
per each x item)

Figure 1: Different constructions of Gyxt based on the same Gxt , assuming equidistant
Gx0 ⊂ [−0.5, 0.5] grid and Gaussian conditional distribution (Xt|X0).

What remains to be specified are the particulars of step 5 of Algorithm 4.6, i.e., to
define Vt(·, ·) given {(

y, x, V t(y, x)
)
| (y, x) ∈ Gyxt

}
.

To do this, one can use interpolation, or one can fit a parametric surface to the graph of
V t(·, ·); we consider the parametric representation

Vt(y, x) =

Q∑
q=1

βt,qψq(y, x),

choosing βt,q, q = 1, . . . , Q, to minimize the mean square error

∑
(y,x)∈Gyxt

V t(y, x)−
Q∑
q=1

βt,qψq(y, x)

2

,

i.e., we define Vt(·, ·) by another least squares regression.

4We tested rank-1 lattices, see Section 5.
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4.2.2 Other choices in the implementation

Multivariate regression similar to (4.6) has been mentioned in [10]. However, [10] does not
pursue the same route as presented above, but rather restricts attention to a least squares
regression that uses test functions depending only on the underlying factor X, and, for
each value of y in a finite set Gy ⊂ Rk, a separate simpler regression is computed. The
extension of V t(·, ·) to the whole domain of Vt(·, ·) is not considered (step 5 in Algorithm
4.6). [10] restricts the optimization problem (4.5) in step 5 to Gy.

Computing regressions which are based on test functions depending only on X is
less expensive than a regression with high number of (y,X)-dependent test functions
(see Section 5.2 for the implementation of the a priori method). However, for accurate
estimates, a fine grid Gy is required, and, hence, a high number of simple regressions needs
to be computed. With a carefully chosen Gyxt -grid (see Remark 4.8) and a suitable set
of (y,X)-dependent test functions, our version attains the same accuracy at significantly
lower cost.

4.2.3 A note on low biased methods

Since the backward recursion uses anticipative information, the a priori estimates Vt(y, x)
and E[Vt+1(y,Xt+1)|Xt = x], described above, may result in a high biased estimate of the
value function. However, the outcome of the a priori method can be applied to generate
an estimate that is low biased up to statistical error. In particular, since by definition, for
any y0 ∈ Y K

0 and for any policy π ∈ PK,y0,0, V π
0 (y0, ·) is a low biased estimate of V ∗0 (y0, ·),

the value V π̂
0 (y0, ·) that is based on the policy π̂ generated by the a priori method is low

biased. This value can be estimated by the following algorithm.

Algorithm 4.9. Fix y0 ∈ Y K
0 and ε > 0. Generate N independent trajectories xi· ,

i = 1, . . . , N , of the process X started at a fixed X0. For i = 1, . . . , N ,

1. set t = 0, and V i = 0,

2. for x = xit and y = yt, find a ĥt that satisfies (??),

3. set V i +Ht(ĥt, y, x
i
t)→ V i.

4. and, if t = T , then stop; else, set t+ 1→ t, and continue with step 2.

Once this routine has been executed for all i = 1, . . . , N , the Monte-Carlo average

V ↓0 (y0, X0) := 1
N

N∑
i=1

V i

approximates (up to statistical error due to sampling variance) a low biased estimate at
time 0 for initial control value y0 and initial factor value x.

5 Numerical results

In this section, we discuss the gas storage example following [26], and we compare the
numerical performance of the implementation of both the a priori method and the method
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based on the dual formulation. We use their results as a benchmark to test the accuracy
of the methods we introduce here.

The gas storage problem, as well as related probabilistic numerical methods, have also
been discussed in a number of other papers including [20] and in [10].

5.1 The gas storage problem

The natural gas storage problem addresses the optimal utilization of certain types of
storage facilities. We assume relatively high deliverability and high injection rates. In
particular, given the price Xt of gas and the amount yt of working gas in the inventory
at time t, we aim to optimize the production (injection) amount for the given day, for
each day over a year.

We introduce the following notation.

• c, the rate of production if c > 0, or the rate of injection if c < 0. The rate is
measured in million cubic feet per day (MMcf/day).

• ybase, base gas requirement (built into the facility and cannot be removed).

• ymax, the maximum storage capacity of the facility on top of the base gas level.

• cmax(y), the maximum production rate at storage level y.

• cmin(y), the maximum injection rate at storage level y.

• a(y, c), the rate of gas that is lost given production at rate c > 0 or injection at
rate c < 0.

• r, the discount rate.

As in [26], we consider a facility with working gas capacity of ymax = 2000MMcf and
with base gas requirement ybase = 500MMcf. The maximum production rate (attainable
at maximum capacity) is known to be cmax(ymax) = 250MMcf/day, whereas the maximum
injection rate (attainable at minimum capacity) is cmin(0) = −80MMcf/day. The facility
is available for one year, and a decision on gas production/injection is made daily, i.e.,
T = {0, 1, . . . , 365}.

We assume that the loss rate satisfies

a(y, c) = a(c) =

{
0 if c ≥ 0,

1.7 if c < 0.

In the discrete-time formulation5, we approximate the daily delivered/injected amount
by

ht = yt − yt+1 ≈ c∆t, (5.1)

i.e., the unit of time is assumed to be a day (including weekend days), which means
∆t = 1.

5In [26], the continuous time production/injection is described by an ordinary differential equation.
The discrete-time formulation is an approximation of the solution to that ODE.
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Figure 2: A priori estimate of the value of the option at time 0.
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Figure 3: A priori estimate of the optimal rate of production at time 0.
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The daily constraints on gas production and injection are derived from the ideal
gas law and Bernuolli’s law (the reader is referred to Section 3 in [26] for details6). In
particular,

cmax(y) = C0
√
y, (5.2)

where C0 = cmax(ymax)/
√
ymax. Moreover,

cmin(y) = −C1

√
1

y + ybase
+ C2, (5.3)

where C2 = −1/(ymax + ybase) and

C1 = cmin(0)/

√
1

ybase
+ C2.

Combining (5.2) and (5.3) with (5.1), we get the constraint set for the amount of gas
that can be produced/injected during a day:

Kt(y, x) = K(y) = [−min{cmin(y)∆t, ymax − y},min{cmax(y)∆T, y}]. (5.4)

The payoff function is defined by Ht(·, ·) = 0 for t = T , and

Ht(ht, Xt) =

{
e−rthtXt if ht ≥ 0,
e−rt(ht − a(ht)∆t)Xt if ht < 0,

(5.5)

for t = 0, . . . , T − 1, incorporating the value of the loss of gas at injection. The discount
rate r is assumed to be constant 10%; the discounting is incorporated into the payoff
function (5.5). This formulation of the gas storage problem complies with our assumptions
(ref. section 2). Thus we have a value function V as given by Definition 2.2 for the option
to invest in such a facility.

In practice, gas prices are quoted in “dollars per million British thermal units”
($/MMBtus). We note that 1000 MMBtus are roughly equivalent to 1 MMcf.

The calculations in [26] are based on the gas price model

dXt = α(β −Xt)dt+ γXtdBt + (Jt −Xt)dqt, (5.6)

where t 7→ qt is a Poisson process with intensity rate λ and independent of the Brownian
motion Bt. Moreover, Jt is normally distributed with mean µ and variance σ2 independent
of Bt and qt. In our implementation, we rescaled the parameters of [26] to daily time-scale:
α = 0.25/365, β = 2.5, γ = 0.2/

√
365, λ = 2/365, µ = 64, and σ2 = 4.

Remark 5.1. Since the payoff function is piecewise linear in h and the constraint sets
are bounded (uniformly in t) for any K-admissible policy π, the following bounds are
satisfied for all t ∈ T , x ∈ R+, y ∈ [0, ymax].

−∞ < (−cmin(0)− a(−1))∆t

T∑
s=t

E[Xs|Xt = x]

≤ V π
t (y, x) ≤ cmax(ymax)∆t

T∑
s=t

E[Xs|Xt = x] <∞.

These inequalities imply that the value function is well defined, and the dynamic pro-
gramming principle holds for this particular formulation of the gas storage problem.

6Note that, in this paper, the time unit is daily, whereas in [26] the time is measured in years.
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Range of

X0 V0(y0, X0)− V ↓0 (y0, X0) stdev(V0(y0, X0)) stdev(V ↓0 (y0, X0))

3 [1.224, 3.781] [0.115, 0.121] [0.188, 0.208]
6 [1.758, 3.677] [0.116, 0.128] [0.121, 0.133]
9 [2.174, 4.276] [0.060, 0.076] [0.115, 0.118]

Table 1: Comparison of a priori estimate V0 (algorithm 4.6) and low-biased estimates V ↓0
(algorithm 4.9): ranges of differences and ranges of estimated standard deviation over
the domain y0 ∈ [0, 20] measured in $/MMBtus.

5.2 The a priori estimate

We computed the a priori estimate as follows.
First, we ran the method using an equidistant initial grid Gx0 in the price region

[0, 12] of interest ([26] presents results in this price interval). However, we found that the
absolute value of the second derivative of V0(·, ·) with respect to gas price was large in the
price interval [5, 7], and close to zero otherwise; therefore, we decided to refine the grid
in the middle region. In particular, we chose an initial grid Gx0 that had 2500 equidistant
points in the interval [0, 5], 5000 equidistant points in [5, 7], and 2500 equidistant points
on [7, 12].
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Figure 4: Comparison of three methods, X0 = 3$/MMBtus.

The gas price trajectories xi· for i = 1, . . . , 10000 were simulated using the Euler
time-discretisation

xit+1 = xit + α(β − xit)∆t+ γxit∆B
i
t + (J it − xit)∆qit,

where ∆Bi
t are independent Brownian increments on a unit time step (∆t = 1), J it are

drawn from the distribution of Jt, and ∆qit drawn from the distribution

∆qit =

{
0 with probability 1− λ∆t,
1 with probability λ∆t.
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Figure 5: Comparison of three methods, X0 = 6$/MMBtus.

In order to generate the grid Gyxt , at each time step, we generated a low discrepancy
sequence (using a rank 1 lattice rule with random offset, see [17]) of length |Gxt | × Ny,
and assigned Ny y-points to each of the elements in Gxt . We tested the method with
Ny = 3, 6, 21.

Since smooth functions can be approximated locally by polynomials, initially, we
considered using polynomial test functions for the regression. However, we found that
these test functions did not capture well neither the conditional expectation function nor
the value function. Therefore, we decided to use test functions that are polynomial on
patches and constant outside the patches. We partitioned the (y, x) domain [0, 20]×[0, 12]
into smaller rectangles as shown in Figure 6.
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Figure 6: Partitioning the domain.

On each rectangle, we used the following polynomials: 1, x, y, x2, y2, xy, x2y, y2x,
and x2y2. In addition to these polynomials, on the patches in the second row, we also
used x3, x3y, and x3y2. Although defining functions locally on small rectangles leads to
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a relatively high number of test functions, the matrix (4.10) is sparse, and the evaluation
is tractable.

In step 4 of Algorithm 4.6, we simply compared the outcome of three scenarios: h = 0,
h = minKt(y, x), and h = maxKt(y, x); i.e., we assumed bang-bang controls. We also
tested replacing the supremum with the maximum over finer grids in Kt(y, x); however,
these tests did not result in significantly different option values.

The numerical results corresponding to t = 0, Ny = 6, and bang-bang controls are
shown in Figures 2 and 3. Comparing these figures to the plots on page 235 in [26], we
find that our a priori method slightly overestimates the option value. Given that, in order
to estimate the values at time 0, the a priori method uses information from later times, it
is likely to be a high biased method (see comments on the least squares regression based
methods in [17]).

For each case (X0 = 3, 6, 9), Table 1 describes the range of differences of the high-
biased and low-biased estimates over the range of control y ∈ [0, 20]. We also provide the
range of estimated standard deviations to indicate the order of magnitude of the statistical
error, that can be used to fit confidence intervals and derive conservative bounds on these
ranges. We note that the difference between the a priori and low biased estimates in
many cases is not particularly low; with the dual upper bound we aim to obtain narrower
ranges and sharper estimates of the optimal values.

5.3 The dual upper bound

We implemented the version of the method based on the dual formulation as speci-
fied in Section 4.1.2 for three different initial gas prices (3$/MMBtus, 6$/MMBtus and
9$/MMBtus). In each case, we generated N = 10000 gas price trajectories. For Gyt , we
used a fixed equidistant grid in [0, 20] with Ny = 320 points.

For the parametric curve fitting component, we partitioned the control interval [0, 20]
into three shorter intervals ([0, 7], [7, 14], and [14, 20]), and on each small interval we used
the following polynomials as test functions: 1, y, y2, and y3.

In order to compute the optimization in step 3 of Algorithm 4.1, we approximated
the supremum with the maximum on a finite grid in Kt(y, x). This grid can be chosen
to be finer than Gyt .

In order to estimate the accuracy of the method, we ran the algorithm using finer Gyt
grids but the same set of gas price trajectories, more test functions defined locally on finer
partitions, and more accurate optimization. Since the refined specifications resulted in
absolute differences that were around 10%−15% of the standard deviation of the results,
we consider the refined estimates numerically equivalent to our reference results.

We also computed low biased estimates following the method described in Section
4.2.3 using the a priori value functions and a sample of 50000 gas price trajectories.

The results are plotted in Figures 4, 5, and 7.
Although we have not proved a convergence result for the numerical scheme, the

plots provide evidence that the dual formulation method based estimate results in a
sharper upper bound compared to the estimates of the a priori method. In particular, by
replacing the a priori estimate with the upper bound estimated from the dual formulation,
we reduce the width of the range of possible option values by 30− 70%. The upper and
lower estimates we have obtained are consistent with the numerical results of [26].
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Figure 7: Comparison of three methods, X0 = 9$/MMBtus.
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