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Sugihara algebras generalise Boolean algebras and provide algebraic semantics for the
propositional relevant logic known as R-mingle. These semantics enable logical problems
to be translated into algebraic form.

This strategy necessitates working with free Sugihara algebras, which play the role that
the Lindenbaum–Tarski algebra does for classical Propositional Calculus. Such algebras
are finite but get monstrously large and computational techniques are ruled out.

Duality theory comes to the rescue, by linking algebraic and relational models. To give
the flavour:

• A viable strategy is developed for investigating admissible rules for R-mingle: small
‘admissibility algebras’ take the place of free algebras. For example,

a 3-generated free algebra of size 244 · 336 · (1 + 2−3 · 3−4)6

is replaced by

an algebra with 16 elements.

• A pictorial, order-theoretic, representation is found for finitely generated free Sugihara
algebras. This is based on finite trees, and the structures are built in a recursive way
which makes them easy to understand.

Below, Oxford mathematician Hilary Priestley reports on this recent work with collab-
orators Leonardo Cabrer, George Metcalfe and Joshua Wrigley. Leo is a former Oxford
postdoc, George gained his first degree from Oxford in Mathematics & Philosophy and
is now Professor of Mathematics at the University of Bern, Switzerland, and Joshua is a
current MMath undergraduate who undertook a 2019 Summer Project. A [presentation]
was given at the conference TACL 2019 (Topology, Algebras and Categories in Logic) in
Nice.

The project combines aspects of logic, algebra, ordered structures, enumerative combi-
natorics and issues of computational complexity. Category theory, by way of dual equiva-
lences, underpins the methodology and hands-on computer programming has pointed the
way from special cases to general theory. It illustrates how, in 21st century mathematics
and its applications, different techniques can work in partnership.

At the heart of the project are two classes of algebras, Sugihara algebras and Sugihara
monoids. The name honours Takeo Sugihara, a Japanese philosopher who in the 1950s
explored the logical notion of implication. A century earlier, George Boole had brought
algebraic thinking to bear on logical reasoning. (Google acknowledged the influence of
Boole’s work on modern mathematical logic and on computer science on 2 November, 2015,
the 200th anniversary of his birth: it amended its logo for the day and posted a Doodle.)

Loosely, algebraic semantics for a logic enable logical notions to be faithfully recast in
algebraic form with, for example, axioms corresponding to algebraic laws (equations). In

1

https://people.maths.ox.ac.uk/hap/
https://people.maths.ox.ac.uk/hap/TACLslides-web0507.pdf
https://math.unice.fr/tacl/2019/


this sense, Boolean algebras model classical Propositional Calculus. In CPC the connec-
tives → (implication), ¬ (negation), ∧ (and) and ∨ (or) are closely tied together. The
relationships of inter-definability can be weakened in a multitude of ways. The driver here
may be philosophical or mathematical curiosity or the quest for models in computer sci-
ence. In general, propositional logics can be studied syntactically, in terms of a formal
language, or semantically, in terms of models, which might be algebras or relational struc-
tures. (Valuable information may be obtained by semantic means: for example, the study
of modal logics was revolutionised by Kripke’s introduction of relational (possible world)
semantics.)

The logic R-mingle comes within the ambit of relevant logics. Its algebraic language
includes symbols →, ¬, ∨ and ∧ and formulas are constructed in the usual way. The logic
is specified by a consequence relation ` from finite sets of formulas to formulas. The notion
that the consequence relation respects ‘relevance’ is open to many interpretations but is
regarded as less contentious in the presence of the mingle axiom: φ → (φ → φ). It has
long been known that the class SA of Sugihara algebras provides algebraic semantics for
R-mingle. (The class SM of Sugihara monoids is defined similarly. It models R-mingle
afforced with Ackermann’s truth constant, interpreted on the integers as 1. There are close
affinities between the two scenarios and the same methodologies apply to both.)

Sugihara algebras are built from an algebra Z which plays a role analogous to that
the two-element Boolean algebra 2 (the ‘truth value algebra’) plays for CPC. Like 2, the
algebra Z has operations →, ¬, ∧ and ∨, to model logical connectives. But, reflecting
the greater generality, Z is a richer algebra than 2. Its universe is Z, the set of integers.
Regarding Z as equipped with its usual total order, ∧ and ∨ are min and max (lattice
operations). The operation ¬ is given by a 7→ −a and the operation → by

a→ b =

{
(−a) ∨ b if a 6 b,
(−a) ∧ b otherwise.

The class SA of Sugihara algebras is then HSP(Z) (viz. homomorphic images of subalge-
bras of powers of Z, defined as expected). General theory implies that SA is the variety
(equational class) consisting of all algebras of the same type as Z which satisfy all the laws
that hold in Z. It will be important that SA is locally finite, meaning that any finitely
generated algebra is finite.

Now let Z2n+1 ∈ S(Z) have universe Z ∩ [−n, n], for n > 1. Let SA 2n+1 be the
quasivariety ISP(Z2n+1), the class of isomorphic copies of subalgebras of powers of Z2n+1.
In general a quasivariety is characterised by the quasi-identities it satisfies; a quasi-identity
takes the form Σ⇒ ϕ≈ψ, where Σ is a finite set of terms and ϕ and ψ are terms. In fact
SA 2n+1 is a variety but focusing on quasi-identities rather than equations will allow the
consequence relation on the logic side to be captured algebraically.

Pro tem, suppose L is any deductive system. A rule Γ . φ for L consists of a finite
set Γ of premises and a conclusion φ. It is admissible if adding it to L introduces no
new theorems. In CPC, admissibility and derivability coincide. In relevant logics the rule
{¬p, p ∨ q} . q (disjunctive syllogism), for example, is admissible but not derivable. In
general, studying admissible rules can yield valuable information about a logic, linking to
notions of completeness, and connecting to areas of applied logic such as unification.

Assume L has algebraic semantics given by a quasivariety A . Then admissibility of a
quasi-identity can be defined so that the logical and algebraic notions tally. Moreover, a
quasi-identity Σ ⇒ ϕ≈ψ is admissible if and only if Σ FA (ω) ϕ≈ψ; here FA (ω) is the
free algebra on countably many generators. It can be deduced that the logical problem
of testing L-rules for admissibility translates into that of validating quasi-identities on a
suitable family of free algebras.
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For Sugihara algebras, FSA (k) = FSA 2n+1(k) so long as 2n + 1 > 2k. This confines
attention to finitely generated quasivarieties. It can be shown that admissibility of quasi-
identities can be tested on the particular free algebras FSA 2n+1(n + 1). Here n + 1 arises
because this is the number of elements needed to generate Z2n+1. Metcalfe & Röthlisberger
(2013) devised a general algorithmic method which, applied to Sugihara algebras, finds an
algebra An of minimum size to substitute for FSA 2n+1(n + 1). Potentially this result is
powerful. But can it be exploited in practice? An associated computer package TAFA
succeeded for n = 1, so finding A1, but failed for n > 2. (In general TAFA is feasible only
when free algebras have a few million elements at most.)

A new technique is needed to overcome the complexity issues of the admissible rules
problem for R-mingle. It is well known that Stone duality for Boolean algebras and Priestley
duality for distributive lattices have a “logarithmic” feature. The functor taking a finite
object to its dual structure acts like a logarithm, in particular as regards cardinalities. So,
for quasivarieties of algebras which have an underlying distributive lattice structure, might
there exist dualities which enable the Metcalfe–Röthlisberger algorithms to be recast in an
equivalent dual form? The requirements are stringent and an arbitrary dual equivalence
of categories would not meet them, so that a Kripke-style semantics based on enriched
Priestley duality would not do the job. Fortunately, the theory of strong dualities, for
which Stone and Priestley duality provide prototypes, is just what is wanted. Crucially,
such dualities give direct access to the structures dual to free algebras. Cabrer & Priestley
drew on an extensive literature to set up a strong duality for each quasivariety SA 2n+1.
The dualities were derived by the piggyback method, which exploits Priestley duality for
the lattice reducts. Simple cases were treated with computer assistance, capitalising on
logariihmicity. Many advances in duality theory in the past 30 years began this way.

The Test Spaces Method of Cabrer, Freisberg,
Metcalfe & Priestley (2019) translates the
Metcalfe–Röthlisberger algorithms into dual
form. This enabled Cabrer & Priestley to
describe explicitly the admissibility algebra
An for SA 2n+1 for arbitrary n. For SA 5

(n = 2), it is the 16-element algebra trailed
at the start.

SA 3

SA 5

SA 7

SA 9

SA

Algebraically,
using TAFA

SA 3

SA 5

SA 7

SA 9

SA

By duality, using
Test Spaces Method

Finding admissibility algebras: comparisons
Red labels: failure. Green labels: success
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Sugihara algebras are interesting in their own right. The piggyback dualities for the
quasivarieties SA 2n+1 encode a method for translating from the duals of free algebras
FSA 2n+1(s), for any s, to a pictorial dual representation of their lattice reducts, based on
the Birkhoff/Priestley duality between finite distributive lattices and finite pointed ordered
sets.

Here pleasant surprises appear: the focus switches to the combinatorics of ordered sets.
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For the free algebra
FSA 2n+1

(n+ 1)
related to admissibility algebra

An

Stylised pictures of mirrored trees
Squares indicate glued pairs of points,

circles those min/max points which are not glued

The Birkhoff/Priestley dual of
FSA (s) = FSA 2s+1(s) is a ‘mir-
rored tree’. This is formed from a
downward-growing finite tree and
its upward-growing reflection (that
is, the order dual), glued together
by identifying minimal points in
the upper layer to corresponding
maximal points in the lower layer,
as shown. For FSA 2s−1(s), which
arose with admissibility algebras,
the picture is similar, but with less
glueing between layers.

Attention then focuses on describing an upper layer
tree in detail. It turns out that this can always be built
from an easily specified subtree, the skeletal tree. The
mirroring construction applied to this gives a skeleton
for the entire mirrored tree.
The skeletal tree carries a canonical labelling. Exploit-
ing this, the entire upper layer tree can be obtained re-
cursively, with multiple copies of subtrees of the skele-
tal tree.

[000]

[001]

[111]�

[011]

[012]•

[112]�[122]�

[000]∂

[001]∂[011]∂

[012]∂•

Mirrored skeletal tree for FSA 5(3)

[Solid symbols denote the points which determine
how to glue the layers.]

Specifically, the upper layer tree, Tn,s, is determined by letting Tk,t = 1 (a single
element) if k = 0 and/or t = 0 and otherwise

Tk,t = ·⋃ t
r=1

(
2r
(
t
r

)
Tk−1,t−r

)
⊕>;

cP denotes the disjoint union of c copies of a poset P and > is a newly-added top element.
Below, this process is illustrated pictorially for n = 2 and s = 3, the situation in

which the 16-element admissibility algebra SA 2 could not be obtained algebraically from
FSA 5(3) by computer. The size of this free algebra is the large number given in the trailer.
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Skeletal tree for FSA 5(3)
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The upper layer tree T2,3 recursively
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Revealing secrets

What can then be deduced about free algebras? Any finitely generated free algebra in
some SA 2n+1 or in SA has an associated mirrored tree and hence its underlying lattice
can be accessed using elementary properties of Birkhoff/Priestley duality. For k > 0 let
Lk,0 = 1, the 1-element lattice, and for k > 1 and t > 1 let

Lk,t =

t∏
r=1

(
Lk−1,t−r

]
)2r(t

r)
.

Here ] denotes the addition of bottom and top elements. To take an example, FSA (s) =
L2s,s. The powers which appear in the recursion indicate why, and more significantly how,
free algebras get so enormous. These algebras, and the associated tree-based structures,
invite further investigation, both structurally and combinatorially. Work is on-going!
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