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Outline: Part II

with principal sources

Canonical extensions of unital semilattices and bounded
lattices: a fast-track approach
(Gouveia and Priestley, 2012)

Canonical extensions of bounded lattices and Choice Principles
(Erné, 2012)

The natural extension construction: Bohr compactifications of
discrete structures
(Davey, Gouveia, Haviar and Priestley, 2011→)

Natural dualities via Ind- and Pro-completion? Some brief
comments
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The historical development of the theory of
canonical extensions

Motivation came from study of ordered algebras. But shall focus
here on the underlying ordered structures.

B Boolean algebras Jónsson and Tarski 1951

D Bounded distributive lattices Gehrke and Jónsson 1994

Bounded lattices Gehrke and Harding 2001

P Posets Dunn, Gehrke and 2005
Palmigiano

But what about (unital) semilattices?



The historical development of the theory of
canonical extensions

† B Boolean algebras Jónsson and Tarski 1951

† D Bounded distributive lattices Gehrke and Jónsson 1994

Bounded lattices Gehrke and Harding 2001

†

{
S∧ ∧-semilattices with 1

S∨ ∨-semilattices with 0
Gouveia and Priestley 2012

P Posets Dunn, Gehrke and 2005
Palmigiano

† : finitely generated varieties having natural dualities



Canonical extensions of semilattices and lattices: a
fast-track approach

(Gouveia and Priestley, 2012, with acknowledgements to Cabrer
and to Jipsen & Moshier)

Let S ∈ S∧—meet semilattices with 1. Then let

Filt(S) = filters of S non-empty up-sets closed under ∧,
Idl(S) = ideals of S directed down-sets

We have order-reversing principal filter embeddings of S into
Filt(S) denoted by ↑ and of Filt(S) into
Filt2(S) = Filt(Filt(2(S)), denoted by ⇑.

We can embed S in Filt2(S) (right way up) via e : a 7→ ⇑(↑a).

Note Filt2(S) is an algebraic closure system: complete lattice in
which meet is given by intersection and directed join by union.
(Filt2(S) concretely models the free join completion of the free
meet completion of S.)



Properties of the completion (e,Filt2(S))
Operations in Filt2(S):

d
e(F ) = ⇑F if F ∈ Filt(S),⊔
e(J) =

⋃
e(J) if J is directed.( d

,
⊔

used for directed join and down-directed meet.
)

Theorem
(2/3-canonicity property of Filt2(S)) The completion
(e,Filt2(S)) of S is

compact: for F ∈ Filt(S) and J ∈ Idl(S),

d
e(F ) 6

⊔
e(J) =⇒ F ∩ J 6= ∅;⊔d

-dense.

For a canonical extension we need also
∧∨

-density. Let’s enforce
this by restricting to a subset of Filt2(S).
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The canonical extension of a unital semilattice

Theorem
Let S ∈ S∧. Let

Sδ = {F ∈ Filt(Filt(S)) | F is a meet of directed joins of

elements from e(S) }.

Then

e is an S∧-embedding of S into Sδ;

In Filt2(S) and in Sδ, meets are given by
⋂

and directed joins
by
⋃

.

(e,Sδ) is a canonical extension of S (here e denotes e with
codomain restricted to Sδ).

Sδ coincides with the Galois-closed sets for the polarity
(Filt(S), Idl(S), R), where F R J iff F ∩ J = ∅.

Final statement is a CONSEQUENCE of earlier ones.



Canonical extensions of bounded lattices: relating
iterated free completions of semilattice reducts

Let L be a bounded lattice, with unital semilattice reducts L∧
and L∨.

In the diagram, Φ and Ψ define an adjunction. Restriction maps
Φδ and Ψδ set up mutually inverse isomorphisms—they are the
maps from the usual polarity (Filt(L), Idl(L), R).

In general the inclusion maps ι∧ and ι∨ are not surjectve.

Filt(Filt(L)) Lδ∧

L

(Filt(Idl(L)))∂ Lδ∨

e∨

e∧

ι∧

ι∨

Ψδ Φδ = (Ψδ)−1Ψ Φ

1



Back to semilattices: incarnations of Filt2(S)

Duality strikes again!

Hofmann–Mislove–Stralka duality for S∧: Let

S∧ = ISP(2) 2 = 〈{0, 1};∧, 1〉,
S∧T = IScP+(2∼T) 2∼T = 〈{0, 1};∧, 1,T〉.

Then S∧T gives the category of compact 0-dimensional topological
semilattices alias algebraic lattices with maps preserving

⊔
and

∧
.

The hom-functors D = S∧(−,2) and E = S∧T(−, 2∼T) yield a full
duality between S∧ and S∧T.

Via characteristic functions we can identify

Filt2(S) and (D(D(S)[))[ —denote this by Ŝ.

Here [ is the functor which forgets topology.



Canonical extensions, functorially

Easy to show that

a S∧ morphism f : S→ T lifts to f̂ : Ŝ→ T̂ preserving
⊔

and∧
;

by restriction, a S∧ morphism f : S→ T lifts to f δ : Sδ → Tδ;
this preserves

∧
and directed joins of elements from e(S);

a bounded lattice morphism f : L→ K lifts to a complete
lattice homomorphism f δ : Lδ → Kδ.
(Proof by looking at both semilattice reducts and doing a
simple diagram-chase.)
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Canonical extensions of distributive lattices, with
Choice

If L ∈D, then in [ZFC] we know, by Priestley duality, that the
canonical extension Lδ is the up-set lattice of its prime filters
(under ⊆) and so is a complete ring of sets. As such, it is

(1) completely distributive;

(2) superalgebraic: it satisfies one, and hence all, of the
equivalent conditions:

(a) the completely join-prime elements are join-dense;
(b) Lδ is a frame and the completely join-irreducibles are

join-dense;
(c) [splitting pairs] a 
 b in Lδ implies ∃p, κ(p) such that

a 
 p, b 
 κ(p) and ↓p ∪ ↑κ(p) = Lδ;

(3) weakly atomic.



Canonical extensions of bounded lattices, with and
without Choice

For sure, existence and uniqueness of Lδ for a bounded lattice L
need only [ZF].

FACTS:
Let L be a bounded lattice.

• L ∈D implies Lδ ∈D (Gehrke & Harding, 2001, implicitly).

• L ∈D implies Lδ a frame (Gehrke, 2011)

QUESTION: What choice principles are required in order that Lδ

should have the properties of a complete ring of sets, for L ∈D?
What can be said for general bounded lattices?

ANSWERS: given below (Erné, 2012)



Separating filters and ideals

Given a bounded lattice L let F = Filt(L) and I = Idl(L).
Given F ∈ F and I ∈ I with F ∩ I = ∅, there exist P ∈ F and
Q ∈ I such that F ⊆ P, I ⊂ Q and

Q = L \ P Prime Separation Property

F ∩Q = ∅, P ∩ I = ∅ and P ∪Q = L Normal Separation Property.

Lemma
[ZF] NSP =⇒ PSP =⇒ L distributive.

Theorem
In [ZF ]:

(i) A bounded lattice L satisfies (PSP) iff Lδ is superalgebraic.

(ii) A bounded lattice L satisfies (NSP) iff Lδ satisfies the
choice-free formulation of complete distributivity.



Equivalents of the Ultrafilter Principle

Theorem
The Ultrafilter Principle is equivalent to each of the following:

(1) Any bounded distributive lattice satisfies (PSP).

(2) Any bounded distributive lattice satisfies (NSP).

(3) Any bounded distributive lattice has a canonical extension
with property (?).

(4) Any Boolean lattice has a canonical extension with property
(?).

Here the property (?) may be any of:
superalgebraic, spatial frame, algebraic, weakly atomic;
completely distributive, or versions of this restricted to families of
2-element sets or of finite sets.
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Residually finite (pre)-varieties

Suppose M is a set (not necessarily finite) of finite algebras of
common type and let A = ISP(M). Except that the term is
usually used for varieties, this is residual finiteness.
Let

M∼ T = 〈
⋃
{M ∈M };R,T〉,

where union is disjoint(ified) and R is a set of finitary algebraic
relations. Let XT = IScP+(MT). This would be an appropriate
set-up for a multisorted natural duality except that now we don’t
assume M is finite.
We have well-defined hom-functors

D : A→ XT and E : XT → A.

Moreover ED and DE are embeddings, and given by (multisorted)
evaluation maps.



The natural extension functor, for a class ISP(M) of
algebras

Let A = ISP(M) (as above) and let AT = IScP+(M∼ T). Then
there exists a covariant functor nA : A→ AT with the following
properties:

nA(A) is a Boolean-topological algebra whose algebra reduct
belongs to A;
nA is a reflector into a (non-full) subcategory of AT and is
left-edjoint to the forgetful functor [ from AT to A.

But where does this comes from?
We haven’t involved the hom functors D and E yet . . .



The natural extension via paired adjunctions

A XT

AT X

Here the lower adjunction works

just the same way as the upper one,

except that the topology has been

moved from M∼ to M:

AT = IScP(MT) and X = ISP(M).

D

E

nA [

F

G

[.

Paired Adjunctions Theorem: TFAE, if M∼ is of finite type:

(1) outer square commutes, i.e, nA(A) = G(D(A)[), ∀A ∈ A.

(2) nA(A) consists of all multisorted maps
α :
⋃

M∈MA(A,M)→M that preserve the structure of M∼ ,
for all A ∈ A [no topology!].

And If M is finite, (1) and (2) are equivalent to

(3) M∼ yields a multisorted duality between A and XT.

Given (3), we can use (2) to describe nA(A) for A ∈ A.



So what is this natural extension gadget?

The profinite completion ProA(A) of an algebra A in a finitely
generated variety of the form A is the projective limit of the finite
quotients of A. The residual finiteness assumption implies that
each A ∈ A has a profinite completion ProA(A). If A is a
residually finite pre-variety, but not a variety, we just restrict to
finite quotients which belong to A.
FACT: there is a canonical embedding µA : A→ ProA(A).

[Profinite objects in a category, are, loosely, those which are built
from (discretely topologised) finite ones by means of filtered
colimits. In context of algebras, profinite objects should be viewed
as topological algebras.]

Theorem
Let A = ISP(M) be a residually finite pre-variety. Then nA(A)
and ProA(A) are isomorphic as topological algebras.



Examples and comments I

The Paired Adjunctions Theorem gives access to nA(A), and in a
quite explicitl way if we have M finite and a set R yielding a
natural duality on A. Profinite completions are hard to describe
directly.

Lattices:

Take A = D = ISP(2). Then nD(L), as calculated from the
Paired Adjunctions Theorem, is exactly the canonical
extension Lδ, as the latter was defined by Gehrke and Jónsson.
So we can re-obtain the known result that Lδ ∼= ProD(L)[.

If A is a finitely generated lattice-based variety of finite type,
then Aδ ∼= Pro[A

[ (Harding, 2006 + Gouveia 2009). nA(A)
provides another description.



Examples and comments II

Semilattices, and beyond:

Consider S∧. Then HMS duality tells us that nS∧(S)[ ∼= Filt2(S).
As a topological algebra, nS∧(S) ∼= ProS∧(S) is known as the
Bohr compactification of S ∈ S∧.

Note that HMS duality is special in that the algebra persona and
the alter ego persona are the same, apart from the topology. (cf.
Pontryagin duality for abelian groups, where same phenomenon
occurs—this is a rare instance of a natural duality with an infinite
generating algebra, in this case the circle group.)



Examples and comments III

Lattices and their unital semilattice reducts: completions
compared

For S ∈ S∧, the profinite completion ProS∧(S) = Ŝ and the
canonical extension Sδ in general do NOT coincide—indeed, Ŝ
may have strictly larger cardinality than Sδ.

Now let L be a bounded distributive lattice. Then the canonical
extensions Lδ, Lδ∧ and Lδ∨ are all the same. (Canonical extension
uniquely determined by the underlying poset.)

The profinite completions ProD(L), ProS∧(L∧) and ProS∨(L∨) all
exist, but may differ:—

Theorem
(Gouveia and Priestley, 2012) For L ∈D, the three profinite
completions coincide if and only if the Priestley dual space H(L)
contains no infinite antichain.

Proof relies on HMS and Priestley dualities and a lot of theory of
continuous lattices.



Two dualities in partnership: Priestley duality and
Banaschewski duality revisited: paired adjunctions

D := ISP(2), P := ISP(2∼) (posets),

PT := IScP+(2∼T), DT := IScP(2T) (Boolean-topological DLs)

D PT

DT P

H

K

nD [

F

G

[

Here the top adjunction gives Priestley duality. The bottom one
gives the duality between P and DT (Banaschewski, 1976).
Symbol [ denotes the functor forgetting topology.



From algebras to structures

The term Bohr compactification suggests we are thinking in
terms of structures rather than algebras. Indeed we should. As
hinted in first talk, taking Banaschewski duality as a potential
example, the natural duality framework extends to this wider
setting.

Compatibility: M and M∼ are compatible structures on the
same finite set M (operations, relations and partial operations
allowed) if the structure of M∼ is preserved by the operations and
partial operations of M and the relations are substructures.

• This notion is symmetric.
• No presumption that M is “algebraic” and M∼ “relational”.
• We can extend this to the multisorted setting.

[A little care is needed over the inclusion, or not, in the discrete or
topologised generated classes. Not a big issue, and we slur over it
here.]



A unifying framework: the natural extension functor
for structures

With a little care, the natural extension functor works, as before,
but now for classes X and Y which are generated by a pair of
mutually compatible structures. We get a Paired Adjunctions
Theorem based on a commuting diagram:

Y XT

YT X

D

E

nY [

F

G

nY [.

CAVEAT: The identification of the natural extension nY(Y) with
a profinite completion is NOT available when Y is a class of
structures with relations as well as operations in the type.



Natural extension: examples

The natural extension functor for classes of structures ISP(M)
should be seen as providing a common umbrella for assorted results
seen variously as belonging to algebra or to topology:

Profinite completions in the context of a residually finite
variety, with an explicit description if the variety has a natural
duality.

Stone-Čech compactification of a discrete space.
ordered Stone-Čech compactification of a poset, or of a
quasi-ordered set.

Hybrid algebraic/relational examples can be found

. . ..



A dual equivalence on the cheap:
Hofmann–Mislove–Stralka duality for semilattices

S = ISP(2) ∧, 1− semilattices

Z = (S∧)T = IScP(2T) compact 0-dimensional semilattices

(Here we have two categories rather than four.)

On discretely topologised, objects the topology does no work, so

Zfin “is” Sfin.

With this identification the evaluation maps are just identities. SO
we have a dual equivalence at the level of finite objects.
Easy:

S is built from Sfin by taking directed (cofiltered) limits,

Z is built from Zfin by taking projective limits (filtered colimits).

and the limits/colimits are preserved by the functors.



Are Ind- and Pro-completions the whole story?
Take a finitely generated quasivariety A = ISP(M).

(1) Assume we can find an alter ego M∼ (of finite type) and
topological quasivariety XT = IScP+(M∼ ) such that there
exists a full duality between Afin and (XT)fin.

(2) IF M∼ is a total structure (i.e. contains no partial operations)
then we get a full duality between A and XT, by lifting via
Ind- and Pro-completions.

BUT

(3) There exist examples in which we cannot achieve (1) without
including partial operations in M∼ and when we do so, XT is
not the Pro-completion of (XT)fin.

CATCH 22!

Moral: There’s more to natural duality theory than abstract
category theory can address.



The inheritance from Marshall Stone?
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