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From Brian Davey’s La Trobe staff profile

Professor Davey’s research interests centre on general (=
universal) algebra and lattice theory. He is interested in the
topological representation of algebras, with an emphasis on natural
duality theory, and is particularly interested in applications of
duality theory in general and Priestley duality in particular to
algebras with an underlying distributive lattice structure.

But how did it all begin?
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Setting the scene

Let D denote the variety of bounded distributive lattices.
Take a finitely generated quasivariety A = ISP(M),
where M is a finite set of finite D-based algebras. (Jónsson’s
Lemma ensures that every finitely generated variety of
lattice-based algebras can be expressed this way.)
Assume we have a forgetful functor U : A→D.

Priestley duality supplies a dual equivalence between

D = ISP(2) and P = IScP+(2∼) (≡ Priestley spaces)

set up by hom-functors H = D(−,2) and K = P(−, 2∼). Here

2 = 〈{0, 1};∧,∨, 0, 1〉 and 2∼ = 〈{0, 1};6,T〉.

Here, and henceforth, T denotes the discrete topology.
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Objective

To find an alter ego M∼ for M so there exists a dual equivalence
between

A = ISP(M) and X = IScP+(M∼ )

set up by hom-functors D = A(−,M) and E = X(−,M∼ ), with ED
and DE given by natural evaluation maps.

Can we do this?: YES!

Case in which M contains one algebra, M, is probably familiar.



Quick recap: single-sorted case
Let A = ISP(M), where M is finite, D-based. Take
M∼ = 〈M ;R,H,T〉 where

R = S(M2) (all algebraic binary relations on M)

H = some suitable set of (partial or total) algebraic

operations, with a bound on the arities.

The algebraicity requirements guarantee the hom- functors D
and E are well defined, and are embeddings;
M lattice-based, hence the specified R yields a duality:
A ∼= ED(A) for all A [by the NU Duality Theorem].
Upgrading: with a suitably chosen set H, the duality is
strong and hence full: X ∼= DE(X) for all X ∈ X.

Multisorted case, |M| > 1 (Davey and Priestley (1984, at LTU)):
All the above carries over: Relations and (partial and total)
operations are algebraic, but now between members of M. The
structure dual of an algebra A is based on the disjoint union of
hom-sets A(A,M), for M ∈M. Example to follow.
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A hierarchy of prioritised default bilattices

(Cabrer, Craig & Priestley, 2013) We set up strong dualities for
ISP(Kn) and (multisorted) for HSP(Kn), where

Kn = (Kn;∧k,∨k,∧t,∨t,¬,>,⊥).

>0 = >
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Kn in knowledge order (left) and truth order (right) with
0 < i < j < n.



Interpretation for default logic
The elements of Kn represent levels of truth and falsity.
Knowledge represented by the truth values at level m+ 1 is
regarded as having lower priority priority than from those at
level m. Also one thinks of tm+1 as being ‘less true’ than tm and
fm+1 as ‘less false’ than fm.

Base cases: K0 and K1 are Ginsberg’s bilattices FOUR and
SEVEN , with ¬ added. In SEVEN , t1 and f1 may be given the
connotation of ‘true by default’ and ‘false by default’.
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Algebraic facts
Every element of Kn is term-definable; Kn has no proper
subalgebras.

For m 6 n there exists a surjective homomorphism
hn,m : Kn → Km.

For 0 6 m 6 n, there exists §n,m ∈ S(K2
n) with elements

§n,m = ∆n ∪ { (a, b) | a, b 6k>m+1 or a 6k b 6k>m }.

where ∆n = { (a, a) | a ∈ Kn }. We have Sn,j $ Sn,i for
0 6 i < j 6 n.

The subalgebras §n,m entail every subalgebra of K2
n via

converses and intersections.

Each Kn is subdirectly irreducible.

ISP(Kn) = HSP(Kn) iff n = 0. For n > 1,

HSP(Kn) = ISP(Kn, . . . ,K0).



Algebraic binary relations
n = 0: ISP(K0) is the variety DB of distributive bilattices. S0,0

is the knowledge order, 6k.

De Morgan algebras, M, and DB compared. M = ISP(M)
where M has elements t.f ,>,⊥, with ∧t,∨t,¬ as in K0. and
constants t and f . Here ]S(M2)] = 55 whereas ]S(K2

0)] = 4. In
both cases, alter ego for an optimal duality includes 6k; for De
Morgan we need also M’s non-identity automorphism.

n = 1: Algebraic relations S1,0 and S1,1 on K1, depicted as
quasi-orders.

f1, t1,>1,⊥

f9 t0

>

⊥

f1 t1

>1

f0 t0

>
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Duality theorems

Theorem
The structure Kn∼ = 〈Kn;Sn,n, . . . , Sn,0,T〉 yields a strong, and
optimal, duality on ISP(Kn).

For n = 0 the dual category IScP+(K0) is P.

Theorem
Write HSP(Kn) as ISP(M), where M = {K0 . . . ,Kn}. Then the
alter ego

M∼ = 〈K0
.∪ . . . .∪Kn; {Sm,m}06m6n, {hi,i−1}16i6n,T〉,

yields a strong, and optimal, duality on HSP(Kn).

The dual categories for ISP(Kn) and HSP(Kn) can be described
for general n—comment on this later.
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D-based varieties: some old favourites
De Morgan algebras;
Kleene algebras;
pseudocomplemented distributive lattices Bω and finitely
generated subvarieties Bn (B1 = Stone algebras);
Heyting algebras, and Gödel algebras, Gn—generated by an
n-element Heyting chain;
n-valued  Lukasiewicz–Moisil algebras;

etc, etc.

Assume A is a variety of D-based algebras.

1 Take the class U(A) (the D-reducts).
2 Seek to equip Z := HU(A) with additional (relational or

functional) structure so, for each A ∈ A, KHU(A) becomes
an algebra in A isomorphic to A;

3 Identify a suitable class of morphisms, making Z into a
category.

If this gives a dual equivalence between A and Z, we say we have
a D-P -based duality. Literature is full of examples!
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Bringing things together

We have:

1 Natural duality theory: for any finitely generated D-based
variety we can call on the NU (Strong) Duality Theorem
(single-sorted or multisorted).

2 D-P -based dualities

3 From, and for, logic: algebraic and relational (Kripke-style)
semantics for non-classical propositional logics.

Both (1) and (2) provide valuable tools for studying algebraic
properties of D-based varieties.

Normally, For a given variety, a discrete duality (as in (3)) differs
from a D-P -based just through the absence or presence of
topology. Canonical extensions provide a systematic approach
to (3).



Rivals?

Pro Con

natural
duality

a strong duality can always
be found

duality may be complicated
(may need entailment to
simplify)

M governs how the duality
works

restriction to finitely gener-
ated classes (usually)

good categorical properties,
notably w.r.t. free algebras:
D(FA)) = M∼

S

concrete representation is via
functions, not sets, if |M | >
2

D-P -
based
duality

close relationship to Kripke-
style semantics

concrete representation via
sets

products seldom cartesian;
free algebras hard to find



or collaborators?

We’d like to be able to toggle between a natural duality and a
D-P -based one.

To get the best of both worlds,

LET’S HITCH A

PIGGYBACK RIDE!



The piggyback strategy: outline
For the case of A = ISP(M), where M is finite and D-based.
Original objective

To choose a subset of S(M2) yielding an economical duality,
so bypassing entailment arguments.

Davey & Werner’ (1982, at LTU) Simple piggybacking achieved
this for certain quasivarieties: De Morgan algebras: 55 relations
reduced to 2. But no good, e.g., for Kleene algebras.

Davey & Priestley (1984, at LTU) removed the restriction on M
demanded for simple piggybacking, by considering multisorted
dualities.

Further objectives: to use piggybacking

1 given A ∈ A, to relate HU(A) to D(A) and
2 given (1), to use it to equip HU(A) with additional structure

so as to set up a D-P -based duality for A.

[Concentrate here on (1), and on duality rather than strong
duality.]
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Davey & Werner’s key idea

Find a 1:1 map ∆ such that diagram commutes. Then εU(A)

surjective =⇒ eA surjective.

Given a X-morphism φ : D(A)→M∼ , we seek a P-morphism
∆(φ) : HU(A)→ 2∼. IF φ 7→ ∆(φ) is 1:1 then eA is surjectve
[elementary!].

A ED(A)

KHU(A)

eA

εU(A)
onto

∆
1:1



Construction of ∆ for generalised piggybacking
Let Ω = HU(M) = D(U(M),2) and ω ∈ Ω.

Idea: hope that, we can choose M∼ so that for each A:

we get a well-defined map ∆ω for each ω ∈ Ω;
the union, ∆ of the maps ∆ω is well defined, has domain
U(A) and has the properties required.

D(A)× {ω} M× {ω}

im Φω 2
⊆ HU(A)

φ× id

∆ω(φ)

Φω =
ω ◦ −

ω ◦ π1



Choosing R
For ωi, ω2 ∈ Ω, consider the sublattice of U(M2):

(ω1, ω2)−1(6) := { (a, b) ∈M2 | ω1(a) 6 ω2(b) }.

Let Rω1,ω2 be the set (possibly empty) of algebraic relations
maximal w.r.t. being contained in (ω1, ω2)−1(6). Let

R =
⋃{Rω1,ω2 | ω1, ω2 ∈ Ω }.

Theorem
Let A = ISP(M), with M D-based. Then R yields a duality
on A.

Key ingredient in proof: the maps Φω, for ω ∈ Ω, jointly map onto
HU(A) for any A ∈ A. This relies on special properties of
Priestley duality.

Fix A ∈ A, The dual space D(A) = A(A,M) is viewed as a
closed substructure of M∼

A and carries relations rD(A), for r ∈ R,
obtained by pointwise lifting.



Relating D(A) and HU(A)
Define 4 on D(A)× Ω by

(x, ω1) 4 (y, ω2)⇐⇒ (x, y) ∈ rD(A) for some r ∈ Rω1,ω2 .

Theorem
Let ≈ be the equivalence relation 4 ∩ <, Then ≈ is ker Φ, where
Φ: (x, ω) 7→ ω ◦ x. Moreover, the map
Ψ: (D(A)× Ω)/≈ → HU(A) given by Ψ([(x, ω)]) = ω ◦ x is well
defined and a Priestley space isomorphism. The map
Ψ: (D(A)× Ω)/≈ → HU(A) given by Ψ([(x, ω)]) = ω ◦ x is well
defined and a Priestley space isomorphism.

D(A) × Ω M× Ω

(D(A) × Ω)/≈

HU(A) 2

φ× id

∆(φ)

[−]≈

∼=
Ψ

Φ



Example 1: prioritised default bilattices revisited
Product representation —and beyond

HSP(K0) is the much-studied variety D of distributive bilattices.
Such bilattices are interlaced: each pair of lattice operations is
monotonic with to the other lattice order.

Bilattice theorists’ favourite theorem: Every interlaced bilattice
with negation decomposes as a product L� L, where L is a
lattice, and the truth operations are those of L×L, the knowledge
operations are those of L× L∂ and ¬(a.b) = (b, a).
In the (bounded) distributive case, the product representation and
our dualities are tied together.

D(A)× {ω1, ω2} HU(A)

>k6k

z 7→ [z]≈



Beyond K0: duality to the rescue!

For n > 0, the bilattice Kn is NOT interlaced. Product
representation FAILS and bilattice theory provides no structure
theorem.
smallskip But in the natural duality for HSP(Kn), we have we have
an explicit description of the dual category X = IScP+(M), where

M∼ = 〈K0
.∪ . . . .∪Kn; {Sm,m}06m6n, {hi,i−1}16i6n,T〉,

Loosely, the objects in X are stratified: each of its (n+ 1) layers is
a Priestley space, and successive layers linked by the maps
HU(hi,i−1).
This gives rise to a generalisation of the product
representation, whereby each A ∈ HSP(Kn) can be realised as
sitting inside a product of distributive bilattices
(L0 � L0)× · · · × (Ln � Ln).



Example 2: Gödel algebras, Gn = ISP(n)
Just a glimpse, to illustrate a point.

The quasivariety generated by the n-element Heyting chain n Is
endodualisable (Davey (1976)); optimised version by Davey &
Talukder (2005). Historically, it has been a mantra: ‘Use
endomorphisms as far as possible; avoid partial operations except
where unavoidable.’
BUT Gn also has a simple piggyback duality using graphs of partial
endomorphisms (Davey & Werner).
We shall deviate from our general strategy above: we dualise via
simple piggybacking, with one endomorphism and two selected
piggyback relations, to give a clear picture. This makes the
translation from natural to D-P -based duality transparent. For an
algebra A ∈ Gn, we can visualise D)A) as having at most (n− 1)
layers: collapsing to HU(A) occurs within layers, and a single
endomorphism gives the ordering between layers.

Application (Cabrer & Priestley, work in progress) : description of
coproducts of finite algebras in Gn.



Illustration: from D(5) to HU(5)
Elements of D(5) are uniquely determined by, and so labelled by,
their ranges.
These relations act on D(5) as shown: endomorphism (black);
piggyback relations (blue and orange, with converses shown
dashed). The transitive closure of the union of these relations gives
the quasi-order ≈.

z 7→ [z]≈

1

2

3

4

5

HU(5)5) D(5) = G5(5,5)

234

24 23 34

2 3 4

1



Coproducts via duality

Cabrer and Priestley, 2012)

Assume A = ISP(M) is a finitely generated D-based quasivariety.
Take Ω ⊆ ·⋃M∈MHU(M) to satisfy

(Sep)M,Ω: for all M ∈M, given a, b ∈M with a 6= b, there exists
Ma,a ∈M, u ∈ A(M,Ma,b) & ω ∈ Ω ∩ HU(Ma,b) such
that ω(u(a)) 6= ω(u(b)).

Ω = ·⋃HU(M) always works
—as we used earlier for piggybacking when M = {M}.
Simple piggybacking needs SepM,ω: ‘one M, one ω’ case.

Given K ⊆ A, there is a D-homomorphism

χ
K:

∐
U(K)→ U(

∐
K),

We can work with the dual map H(χK) to get iff conditions
(E) for χK to be injective (for any K);

(S) χ
K to be surjective (for any K).



Coproduct embedding and surjectivity theorems
Theorem
The following are equivalent to (E):

(1) there exists M ∈ Afin and ω ∈ HU(M) such that
A = ISP(M) and (Sep)M,ω holds;

(2) as (1) but with, additionally, M subdirectly irreducible.

Theorem
The following are equivalent to (S):

(1) for every n-ary A-term t (n > 1) ∃ unary A-terms t1, . . . , tn
and an n-ary D-term s such that for every A ∈ A and every
a1, . . . , an ∈ A

tA(a1, . . . , an) = sA(tA1 (a1), . . . , tAn (an));

(2) |Rω1,ω2 | 6 1 for every ω1, ω2 ∈ Ω;

(3) for A ∈ A and every D-sublattice L of U(A), then either L
contains no A-subalgebra of {B ∈ S(A) | B ⊆ L } is empty
has a top element.
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A medley of examples

EXSX Boolean Algebras
De Morgan algebras
n-valued pre- Lukasiewicz–Moisil algebras
Stone algebras

EXS× Gödel algebra varieties Gn (n > 3)
Varieties Bn (2 6 n < ω)
Q-lattice varieties Dp0 and Dq1 (p > 1, q > 0)

E×SX Kleene algebras
MV-algebra varieties +  Lp·q (whenever p 6= q, primes)
n-valued  Lukasiewicz–Moisil algebras (n > 2)

E×S× Non-singly generated varieties of Heyting algebras
MV-algebra varieties ⊇  Lpq (for some p 6= q, primes)
Q-lattice varieties Dpq (q > 2)



Coproducts and piggybacking

Theorem
Let A be a finitely generated D-based quasivariety.

(i) A admits free products iff it admits a single-sorted duality.

(ii) U satisfies (E) iff A admits a simple piggyback duality.

(iii) U satisfies (S) iff A admits a piggyback duality (single-
sorted or multisorted ), such that |Rω1,ω2 | 6 1 for all
ω1, ω2 ∈ HU(M).

(iv) U preserves coproducts (hat is, (E) and (S) hold) iff A has a
simple piggyback duality that is a D-P -based duality.

Familiar classics: reconciliations

(iv) holds for De Morgan algebras and for Stone algebras.
Can handle coproducts of Kleene algebras via a reflector from
De Morgan algebras. This strategy generalises.



How to sum up?
Brian Davey has gone a very long way in convincing algebraists
that topology and algebra make good bed-fellows.

In this he has followed in the footsteps of Marshall Stone (1938):

A cardinal principle of modern mathematical research may be
stated as a maxim: “One must always topologize.”

10/24/2006 05:54 PMPoster of Stone
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Marshall Stone

lived from 1903 to 1989
Stone is best known for the Stone-Weierstrass theorem on
uniform approximation of continuous functions by
polynomials.

Find out more at:
http://www-history.mcs.st-andrews.ac.uk/history/
Mathematicians/Stone.html
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Like Marshall stone, long may

BRIAN

continue to generate

Ideas,

Inspiration,

Know-how!


