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Introduction. The concept of canonical extension has been defined successively for various
classes of algebras. Some kind of general paradigm arise rather easily: the types of the consid-
ered algebras have a well definite reduct—the “dominant”, or base operations–and the other
operations are somewhat secondary and expected to have some compatibility relations with
respect to the base operations (in case of lattice-based algebras, the extra operations were first
considered to be operators, then isotone functions, and now just arbitrary maps). One can find
in litterature mainly two ways to obtain the canonical exten- sion. It sometimes happens that
the canonical extension comes all in one, by a process in which all operations (base and extra)
receive a single treatment—think of profinite or natural completions. But in other cases, we
need a two step process. First construct the canonical extension of the designated reduct, and
then extend each extra operation by some density procedure. In this case it may happen that
more than one choice is available.

The lattice-based case has been up to now considered at length. But recently Davey, Gou-
veia, Haviar and Priestley have considered canonical extensions (under the name of natural
extensions) of algebras lying in an internally residually finite prevariety A, that is, a class of
the form ISP(M) for some set M of finite algebras. For facility, we suppose here A = ISP(P )
where P is a finite algebra. In this case, the canonical or natural extension is obtained (in a
single step) as a double dual construction. If A ∈ A, its “proto-dual” is A∗ = A(A,P ) and
A naturally embeds into PA by the evaluation map e(a 7→ ea(ϕ) = ϕ(a) for ϕ ∈ A∗). Then
the natural extension Aη of A is the closure of e(A) within PA∗

(with the product topology
of P endowed with the discrete topology). This situation will be the designated reduct of the
situation of our talk. In other words, we consider a map u : A→ B between algebras of A and
see how to lift u to the level of the natural extensions of A and B.

If we want to parallel the lattice-based case, we first have to refine the topology on PA∗
.

1 The δ-topology
Suppose P and X are topological members of a subcategory X of Set. We introduce the δ-
topology on PX as follows. By a partial continuous morphism f : X → P we mean a continuous
morphism f : dom f → P where dom f is a closed subobject of X. The δ-topology on X (X,P )
has as open basis the sets of the form

Of = {x ∈ X (X,P ) | f ⊆ x }.
For instance, let P be the 2-element discrete space. if X has the cofinite topology, then you
get the product topology. If X is the dual space of a Boolean algebra B, then the δ-topology
on 2X coincides with the usual δ-topology (also called σ-topology by Gehrke and Jónsson) on
the canonical extension 2X of B since the latter has for basis the intervals [F,O] where F ⊆ O,
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F closed and O open in X: we have [F,O] = Of for the partial continuous f which sends x to
0 if x ∈ F and to 1 if x /∈ O.

Though obvious, the following observations are essential:

1) if x is a continuous morphism X → P , then x is isolated in X (X,P );
2) if P is injective in X , then the continuous morphisms are dense in X (X,P ).

2 Extensions of maps into finite algebras
In view of the results of the previous section, to make things easy and to avoid technicalities,
we shall have the following standing assumptions for the rest of the paper: We work in a pre-
variety A = ISP(P ) generated by a finite algebra P . The set P is endowed with a topological
structure P∼ in which the topology is discrete and which leads to a natural duality on A. On
the dual class IScP(P∼), we consider two categories. Firstly the dual category X of A, whose
morphisms respect P∼ and in particular are continuous. Secondly, if we denote by P∼

b the non
topological part of P∼, we also have the category X b, whose morphisms only respect P∼

b. In
addition to P∼ leading a natural duality on A, we also assume that P∼ is injective in X .

With these assumptions, we know that each A is isomorphic with its double dual X (A∗, P∼)
(with A∗ = A(A,P )), that the natural extension of A is Aη = X b(A∗, P∼

b), and that the points
of A are isolated and dense in Aη with respect to the product topology on Aη.

We now have a map u : A → B (A,B ∈ A) where B is finite, and we want to extend it to
Aη. Let x ∈ Aη. Then the family of all u(V ∩ A), where V runs through the δ-neighborhoods
of x, is a lower directed family of non-empty finite sets: it has a least member that we shall
denote by

∼
u(x).

Definition. The natural or canonical extension of u : A → B is the map
∼
u : Aη → P(B) :

x 7→ ∼
u(x). Of course if |∼u(x)| = 1 for all x, that is, if u is smooth, then

∼
u may be thought of as

a map A → B. But unfortunately, if u is not smooth, it is not possible to choose continuously
an element u′(x) in each

∼
u(x).

3 Extensions of maps
We now have a map u : A → B where A and B are arbitrary in A. To reduce this situation
to that of the previous section, we fix a finite subset F of the dual B∗ = A(B,P ) of B. Then
uF : A → B → P F defined as the composition with u of the projection prF along F : B ∼=
X (B∗, P∼) ⊆ PB∗ → P F is a map from A into the finite algebra P F , and therefore has an
extension

∼
uF . Let u(x, F ) = { y ∈ PB∗ | prF (y) ∈ ∼

uF (x) }. Then the following can be shown.

Theorem. For each x ∈ Aη,
∼
u(x) :=

⋂
{u(x, F ) | F finite ⊆ B∗ }

is a non-empty closed subset of Bη.

This leads to the following:

Definition. The natural extension of u : A → B is the map
∼
u : Aη → Γ(Bη) : x 7→ ∼

u(x),
where Γ(Bη) is the space of closed subsets of Bη.

Theorem. If Aη is endowed with the δ-topology and Γ(Bη) with the co-Scott topology, then
∼
u

is a continuous extension of u.


