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OVERVIEW

* Domains as computational models
- de facto models for programming semantics
- Many CCCs, can model most constructs
- Applications outside programming language semantics
- Useful tools for topology, fractal seometry, integration. ..

e Probabllistic computation Is a problem
- Probabllistic power domain forms monad, but no known invariant CCC
- No distributive law wrt power domains - nondeterminism models

e Alternative model of random variables
- Coin algebra domain yields monad on BCD (Goubault-Larrecq & Varacca)
- Side-steps Issues around probabilistic power domain

* Stone dudlity reveals structure of random variable monad
- Applicable to probabillistic transition systems
- Classical & guantum information
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DOMAINS

Directed Complete Partial Orders (DCPOs)

- Partial orders in which directed sets have suprema
- Maps preserve sups of directed sets
- Scott Topology:

U ScottopeniffU= TU & supDelU=DnU=#®@

- Scott continuous maps are exactly those preserving directed suprema
- DCPO 1s a CCC with products, sums, etc.

Domains support approximation: Xx € y iff y S sup D = x<d e D

- Domain: ¥y = { x| x <« y } directed & y = sup+¥y (V V)
- Examples:
-Aany set = A =A"UA®; s« tiffsis finite

- X locally compact = ({C € X | C compact}, 2 );C < C'iff C" € C°
- DOM - Not a CCC ; has many CCC full subcategories




FUNDAMENTAL APPLICATION

L ambda Calculus - prototypical programming language

(Lambek) Models of typed lambda calculus are cartesian closed categories.
(Scott) Models of the un- / uni-typed lambda calculus are reflexive objects in CCCs

e A (X X
- Fixed point combinator implies models have fixed point property

Scott’s Deo = [Doo — Des | -Model: Lives in category of (embedding) (To-)injective spaces

- bvery To-space I1s embeddable in a power of Sierpinski space
- Continuous lattices are retracts of powers of Sierpinski space

- Do-Model obtained as bilimit if such spaces

Mogel's (Strong) Monadic Semantics over C, a CCC of domains
- Monads on C give meaning to computational effects, nondeterminism, etc.
- Want monads to compose - requires distributive law (Beck)




PROBABILITY AND COMPUITATION

Probability arises in many places:
 Randomized algorithms
- Prime testing

e Stochastic process calcull

- Include probabilistic choice P +/,2 Q, etc.
- Useful In specification and verification

- Models for Systems Biology

 Cryptography and crypto-protocols
- One-way and trap-door functions
- Lead to probabillistic reasoning about chances of finding key
- Crypto-protocols employ random choices
- Also Involve nondeterminism

e (lassical and guantum information



DOMAINS AND PROBABILITY

Modeled by Valuations: u: O(X) — [0, 1] satistying:

) K@) =0

) uUu V) +plUn V) =p) +uv)

iy U< V= pU)<p(v),and

v) D directed = p(UD) =sup { u(U) | U € D}

V(X) - valuations in pointwise order:;

V1(X) - valuations with total mass 1 - probability measures on X

Theorem (Lawson) Valuations on distributive continuous lattices correspond to

Borel measures

Jones’ Splitting Lemma: All valuations are directec

SU

- Simple valuations on a domain form a

e form monads on DCPO & DOM

Bials

bs of simple valuations 2116 x;

S



THE MONAD THAT WON'I PLAY NICE

Problems: - No known V-invariant CCC of domains
- No distributive law for V and any nondeterminism mondd (. Gautam. 1957

Solutions:
Do nothing: (Morgan, et al, 1992) Added probabllistic choice to CSP models
Result: Nondeterministic choice 1s no longer idempotent.

Form monad from composition: (M, 2000; Tix, 2000; Keimel, Plotkin & Tix, 2005)
Powx = {Px°V} vields monad where all laws of each still hold.

- Probabllistic choice and nondeterministic choice are related.

- P and Pytake COH into BCD, the CCC of bounded complete domains.
50, Pow; and Powy leave BCD invariant.

- Question: Is RB or FS an exponential ideal of COH?

Divide and €enguer Pacify: Use random variables to confine domain of Vj;
Yields distributive law (hence monad); weakens laws of probability: P +, P # P



FLIPPING COINS

Chaum’s Dining Cryptographers (
- Master & Cryptographers L

- Nondeterminism: Master; Adversary
- Probabilistic choice: Cryptographers’
coin flips

Model: [race distributions on events In

brotocol run - 2 riss, s(i) trace

Must support nondeterminism
and probabllistic choice

Problem: Probabillity measure 1s on D.
- V1(D) 1s not well-behaved even if D Is a trace model.

_Jung & Tix: Vi(D) is in RBif D is a tree.

Solution: Probability measure I1s on fixed domain A®™ where Vi 1s well-behaved.
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RANDOM VARIABLES

X - measure space;
U (probability) measure on X

- supp M - complement of largest open set U with p(U) = 0
- X domain implies supp W Scott closed;

-supp Zieitiosy = L{s(i) |iel}

- M 1s concentrated on A it u(B) = 0 (VB ¢ X\A, B measurable)
- 2 1i6si = concentrated on {s(i) | i € | }

Useful fact:
f{0,1}*° = {0,1}" u {0,1}%, then

- A € {0,1}* Scott closed implies 3 T4 : {0,1}060 — A continuous

True for any tree-like domain, in particular, for traces domain.



RANDOM VARIABLES

X, Y - measure spaces:

u (probability) measure on X
Random variable: f : X — ¥ measurable function.

Usual approach:
Push W forward using f:

f(W(A) = u(f '(A)) if A cYis measurable.
This is just action of Vq : Meas — Meas (Giry monad)

Alternative view: E.g, X = {0,1}*° (= {0,1}" u {0,1}%) - flips of a coin

_eave U on X gives outcomes In Y of random choices (Oracle)
Measures are confined to X - for domains X and Y
- order only applied to V4(X)

- require f: X — Y to be Scott continuous




CONTINUOUS RANDOM VARIABLES

101} = {0,1}" u {0,1}% - ideal completion of full binary tree

Random variable f:{0,1} — P - outcome of coin flip; give {0,1} probability distribution

Over course of computation, outco
supp M € {0,1}*° Scott closec

Rand({0,1}*°,P) = {(u {) | [ : supp 4 — P Scott continuous}

(M 1) < (v,
r(M, 1)+ (

g) Iff Msuppu(V) =M & [ oTupp i |suppv < g

-r)(v,g) = (0 + (I-r)vl, 10 + g1), where

_IJO:H-
- 10 1 (sup

‘ransported to (supp )0 = { X0 | X € supp M}
5 W0 — P by fO(x0) = f{x), etc.

- Note: (1, ) <r(u, ) + (1-r) (1)

Defines endofunctor on BCD:

mes of flips define [ :supp 4 — P,
~assume f Scott continuous

g

supp v > P
TUsupp 1 /
Y
supp u

M, W) svg =WMNH VW, 1f)=mxm)fvT)



RANDOM VARIABLE MONAD

Problem: Rand({0,1}°, -) I1s not a monad

Call X risx flatif { x; | i |'}is an antichain; wis flat iff y = sup 2 risx flat, iff tr(u) flat

©ORand({0,1}*°, P) - flat random variables concentrated on compact subsets;

- assume [ defined only on Max(supp W)

Theorem: (Goubault-Larrecq & Varacca, LICS 201 1)
If Pis a BCD domain, then so is ©Rand({0,1}*°, P), where

(M 1) < (V, g iff Msuppu(V) =M & [ eThsuppp| SUPP V < g

In fact, @ORand({0,1}*°, P) forms a monad on BCD, CCC of domains

Question: What does it mean for 4 to be flat’




USING STONE DUALITY

{0,1}*° as completion of full binary tree Is “bottom up’’ construction.

Use Stone Duality to give “top down' construction:

C ={0,1}% Cantor set - Stone space.

Define €(C ) = { P | P partitions C into clopen sets}

-P =< Q iff Q refines P
Stone duality implies C = Max Id(€( C ), <) = lIm(P, igp)p < ¢/ )
{0,1}*° special case - { {0,1}" | n = 0} cofinal in €( C )

Advantages over C = Max KQ(C, <):

|) Scott-closed subsets are retracts of Id(€( C ), <)
2) Scott-continuous mappings f: Id(€( C ), <) — P defined via “layers” P




FACTS ABOUT V4({0,11%)

Theorem: (V. Fedorchuk, 1938 1)
V1: COMP — ACOMP Is pro-continuous

Thus V1({0,1}%) =lim(V1({0,1}"), V1(1T))
{0,1}" finite = V7 ({0,1}") flat = V71 ({0,1}¥) flat.

Lemma: p e V1({0,1}*°) maximal flat iff u concentrated on A ¢ {0,1}% compact
Theorem: Let (u, ) € ORand({0,1}*, P). Then
1) 1) W is concentrated on compact antichain in {0,1}*
1) J = T%x(V),some vV € V1({0,1}%) flat, X Scott closed.
2) supp U € {0,1}% implies { = supn fn With fn: TTh({0,1}%) — P Scott continuous.
Proof: Ad i) pu(w) >0 = u=rdy+ Vvand v(Tw) =0...




MUSINGS ON INFORMATION THEORY

H :V1({0,1}) — [0, 1]°P entropy function:
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Supports embedding i : V1({0,1}") — V1({0,1}"*+!) for m, : {0,1}"+] — {0,1}"

Allows to choose v € V1({0,1}¥) “optimal” with T, (v) = W;



A CONTINUOUS IMAGE

1[0,1] = ({[ab] | @ =< b}, 2) - interval domain

1L[0,1] = ({ [M/2",(m+1)/2"] | m < 2"-1}, 2) - "binary" interval domain
P :{0,1}* — 1,[0,1] Scott continuous quotient map

Vi(e) : V1({0,1}*°) — Vi(15[0,1]) continuous

example: {0,1}% compact group; M Haar measure

- M = SUp Mn, Kn uniform distribution on {0,1}"

Proposition: Vi () (1) is Lebesgue measure on [0, 1]

Proof: Order {0,1}% lexicographically. @l 1w becomes order-isomorphism onto [0, | ].

For X € {0,1}", {X} x {0,1}¥*IX| maps to [X, 1]. []



