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OVERVIEW
• Domains as computational models
               - de facto models for programming semantics
               - Many CCCs, can model most constructs
               - Applications outside programming language semantics
                          - Useful tools for topology, fractal geometry, integration… 

• Probabilistic computation is a problem
               - Probabilistic power domain forms monad, but no known invariant CCC          
               - No distributive law wrt power domains - nondeterminism models

• Alternative model of random variables 
               - Coin algebra domain yields monad on BCD (Goubault-Larrecq & Varacca)
               - Side-steps issues around probabilistic power domain

• Stone duality reveals structure of random variable monad
               - Applicable to probabilistic transition systems 
               - Classical & quantum information
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DOMAINS
Directed Complete Partial Orders (DCPOs)
           - Partial orders in which directed sets have suprema
           - Maps preserve sups of directed sets 
           - Scott Topology:
                    U Scott open iff U = ↑U  &  sup D ∈ U ⇒ D ∩ U ≠ ∅ 

           - Scott continuous maps are exactly those preserving directed suprema 
           - DCPO is a CCC with products, sums, etc. 

Domains support approximation: x ≪ y iff y ≤ sup D ⇒ x ≤ d ∈ D

           - Domain: ↡y = { x | x ≪ y } directed & y = sup↡y  (∀ y)
           - Examples:
                  - A any set ⇒ A∞ = A* ∪ Aω ;  s ≪ t iff s is finite

                  - X locally compact ⇒ ({C ⊆ X | C compact}, ⊇ ); C ≪ C’ iff C‘ ⊆ C○ 

           - DOM - Not a CCC ; has many CCC full subcategories
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FUNDAMENTAL APPLICATION
Lambda Calculus - prototypical programming language

(Lambek) Models of typed lambda calculus are cartesian closed categories. 
(Scott) Models of the un- / uni-typed lambda calculus are reflexive objects in CCCs
                 [X → X] ↣ X ↠ [X → X] 
    - Fixed point combinator implies models have fixed point property

Scott’s D∞ ≅ [D∞ → D∞] -Model: Lives in category of (embedding) (T0-)injective spaces
    - Every T0-space is embeddable in a power of Sierpinski space
    - Continuous lattices are retracts of powers of Sierpinski space
    - D∞-Model obtained as bilimit if such spaces

Moggi’s (Strong) Monadic Semantics over C, a CCC of domains
            - Monads on C give meaning to computational effects, nondeterminism, etc.
            - Want monads to compose - requires distributive law (Beck)
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PROBABILITY AND COMPUTATION
Probability arises in many places:
•  Randomized algorithms    
           - Prime testing

•  Stochastic process calculi
           - Include probabilistic choice P +1/2 Q, etc.
           - Useful in specification and verification 
           - Models for Systems Biology

•  Cryptography and crypto-protocols
           - One-way and trap-door functions
                  - Lead to probabilistic reasoning about chances of finding key
           - Crypto-protocols employ random choices
                   - Also involve nondeterminism

•  Classical and quantum information
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DOMAINS AND PROBABILITY
Modeled by Valuations:  μ : O(X) → [0,1] satisfying:
                         i) μ(∅) = 0
                        ii) μ(U ∪ V) + μ(U ∩ V) = μ(U) + μ(V)
                       iii) U ≤ V ⇒  μ(U) ≤ μ(V), and

                       iv) D directed ⇒  μ(∪D) = sup { μ(U) | U ∈ D}

             V(X) - valuations in pointwise order;
             V1(X) - valuations with total mass 1 - probability measures on X

Theorem (Lawson) Valuations on distributive continuous lattices correspond to 
                            Borel measures

Jones’ Splitting Lemma:  All valuations are directed sups of simple valuations Σriδxi

             - Simple valuations on a domain form a basis

V and V1 form monads on DCPO & DOM 
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THE MONAD THAT WON’T PLAY NICE
Problems:   - No known V-invariant CCC of domains
                - No distributive law for V and any nondeterminism monad (N.D. Gautam. 1957)

Solutions:
Do nothing: (Morgan, et al, 1992) Added probabilistic choice to CSP models
                Result: Nondeterministic choice is no longer idempotent.

Form monad from composition: (M, 2000; Tix, 2000; Keimel, Plotkin & Tix, 2005)  
     PowX =〈PX ∘V〉yields monad where all laws of each still hold. 

      - Probabilistic choice and nondeterministic choice are related.
      - PL and PU take COH into BCD, the CCC of bounded complete domains. 
        So, PowL and PowU leave BCD invariant.
      - Question: Is RB or FS an exponential ideal of COH?

Divide and Conquer Pacify: Use random variables to confine domain of V1; 
    Yields distributive law (hence monad); weakens laws of probability: P +r P ≠ P
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FLIPPING COINS
Chaum’s Dining Cryptographers 
  - Master & Cryptographers

 - Nondeterminism: Master ; Adversary 
 - Probabilistic choice: Cryptographers’ 
         coin flips

Model: Trace distributions on events in 
            protocol run - Σriδs(i),  s(i) trace 

          Must support nondeterminism 
                    and probabilistic choice

Problem: Probability measure is on D. 
            - V1(D) is not well-behaved even if D is a trace model. 
            - Jung & Tix: V1(D) is in RB if D is a tree. 

Solution: Probability measure is on fixed domain A∞ where V1 is well-behaved.
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RANDOM VARIABLES
X - measure space; 
μ (probability) measure on X

       - supp μ  - complement of largest open set U with  μ(U) = 0 
       - X domain implies supp μ Scott closed; 
       - supp Σi ∈ I riδs(i) = ↓{ s(i) | i ∈ I }

      - μ is concentrated on A iff μ(B) = 0   (∀B ⊂ X\A,  B measurable)
      -Σriδs(i) = concentrated on { s(i) | i ∈ I }

Useful fact:
If {0,1}∞ = {0,1}* ∪ {0,1}ω, then

         - A ⊂ {0,1}∞ Scott closed implies ∃ πA : {0,1}∞ → A continuous

           True for any tree-like domain, in particular, for traces domain.
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RANDOM VARIABLES
X, Y - measure spaces; 
        μ (probability) measure on X, 
        Random variable: f : X → Y measurable function.

Usual approach: 
       Push μ forward using f: 
            f(μ)(A) = μ(f- -1(A)) if A ⊂ Y is measurable.
       This is just action of V1 : Meas → Meas (Giry monad)

Alternative view: E..g., X = {0,1}∞ (= {0,1}* ∪ {0,1}ω) - flips of a coin

     Leave μ on X; f gives outcomes in Y of random choices (Oracle)
     Measures are confined to X - for domains X and Y:
                        - order only applied to V1(X)
                        - require f : X → Y to be Scott continuous
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CONTINUOUS  RANDOM  VARIABLES
{0,1}∞ = {0,1}* ∪ {0,1}ω - ideal completion of full binary tree

Random variable f : {0,1} → P - outcome of coin flip; give {0,1} probability distribution
Over course of computation, outcomes of flips define f : supp μ → P, 
          supp μ ⊂ {0,1}∞ Scott closed, assume f  Scott continuous

Rand({0,1}∞, P) ≡ {(μ, f) | f : supp μ → P Scott continuous} 

     (μ, f) ≤ (ν, g) iff  πsupp μ(ν) = μ  &  f º πsupp μ |supp ν ≤ g

     r(μ, f) + (1-r)(ν, g) = (rμ0 + (1-r)ν1, f0 + g1), where
      - μ0 = μ transported to (supp μ)0 ≡ { x0 | x ∊ supp μ}
      - f0 : (supp μ)0 → P by f0(x0) = f(x), etc.
      - Note: (μ, f) ≤ r(μ, f) + (1-r)(μ, f)
        
Defines endofunctor on BCD: 
               (μ, f), (μ’, f ’) ≤ (ν, g) ⇒ (μ, f) ⋁ (μ’, f ’) = (π|X(ν), f ⋁ f ’ )

supp ⌫

⇡suppµ

✏✏

g // P

supp µ

f

77
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RANDOM VARIABLE MONAD

Problem: Rand({0,1}∞, -) is not a monad

CallΣriδxi  flat if { xi | i  I } is an antichain;  μ is flat iff μ = sup Σriδxi  flat, iff trn(μ) flat

ΘRand({0,1}∞, P) - flat random variables concentrated on compact subsets; 

                          - assume f defined only on Max(supp μ)

Theorem: (Goubault-Larrecq & Varacca, LICS 2011)
If P is a BCD domain, then so is ΘRand({0,1}∞, P), where

    (μ, f) ≤ (ν, g) iff  πsupp μ(ν) = μ  &  f º πsupp μ| supp ν ≤ g 

In fact, ΘRand({0,1}∞, P) forms a monad on BCD, CCC of domains

Question: What does it mean for μ to be flat?
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USING STONE DUALITY
{0,1}∞ as completion of full binary tree is “bottom up” construction. 

Use Stone Duality to give “top down” construction:

C = {0,1}ω Cantor set  - Stone space. 

Define C( C ) = { P | P partitions C into clopen sets}
         - P ≤ Q iff Q refines P

Stone duality implies C ≅ Max Id(C( C ), ≤) ≅ lim(P, iQP)P ∈ C( C )

{0,1}∞ special case - { {0,1}n | n ≥ 0} cofinal in C( C ) 

Advantages over C ≅ Max KΩ(C, ≤): 

 1) Scott-closed subsets are retracts of Id(C( C ), ≤)
 2) Scott-continuous mappings f : Id(C( C ), ≤) → P defined via ``layers” P
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FACTS ABOUT V1({0,1}∞)

Theorem: (V. Fedorchuk, 1981) 
V1 : COMP → AffCOMP is pro-continuous

Thus V1({0,1}ω)≅lim(V1({0,1}n), V1(πn)) 

{0,1}n finite ⇒ V1 ({0,1}n) flat ⇒ V1 ({0,1}ω) flat. 

Lemma: μ ∈ V1({0,1}∞) maximal flat iff μ concentrated on A ⊂ {0,1}ω compact

Theorem: Let (μ, f) ∈ ΘRand({0,1}∞, P). Then 

1) i) μ is concentrated on compact antichain in {0,1}∞ 

   ii) μ = πωX(ν), some ν ∈ V1({0,1}ω) flat, X Scott closed. 

2) supp μ ⊂ {0,1}ω implies f = supn fn with fn : πn({0,1}ω) → P Scott continuous. 

Proof: Ad 1i) μ(w) > 0 ⇒ μ = rδw + ν and ν(↑w) = 0… [] 
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MUSINGS ON INFORMATION THEORY
H : V1({0,1}) → [0, 1]op entropy function:

Supports embedding in : V1({0,1}n) → V1({0,1}n+1) for πn : {0,1}n+1 → {0,1}n

Allows to choose ν ∈ V1({0,1}ω) “optimal” with πωn(ν) = μ; 
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A CONTINUOUS IMAGE
I[0,1] = ({ [a,b] | a ≤ b}, ⊇) - interval domain

Ib[0,1] = ({ [m/2n,(m+1)/2n] | m ≤ 2n-1}, ⊇) - “binary” interval domain

φ : {0,1}∞ → Ib[0,1] Scott continuous quotient map

V1(φ) : V1({0,1}∞) → V1(Ib[0,1]) continuous

Example: {0,1}ω compact group;  μ Haar measure

- μ = sup μn , μn uniform distribution on {0,1}n

Proposition:  V1(φ)(μ) is Lebesgue measure on [0,1].

Proof: Order {0,1}ω lexicographically. φ|{0,1}ω becomes order-isomorphism onto [0,1]. 

For x ∈ {0,1}n, {x} x {0,1}ω+|x| maps to [x, 1]. []
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