STONE DUALITY IN UNEXPECTED PLACES

Michael Mislove*
Tulane University

Oxford Duality Workshop June 2012

*: Work supported by the US ONR

OVERVIEW

- Domains as computational models
 - de facto models for programming semantics
 - Many CCCs, can model most constructs
 - Applications outside programming language semantics
 - Useful tools for topology, fractal geometry, integration...
- Probabilistic computation is a problem
 - Probabilistic power domain forms monad, but no known invariant CCC
 - No distributive law wrt power domains nondeterminism models
- Alternative model of random variables
 - Coin algebra domain yields monad on BCD (Goubault-Larrecq & Varacca)
 - Side-steps issues around probabilistic power domain
- Stone duality reveals structure of random variable monad
 - Applicable to probabilistic transition systems
 - Classical & quantum information

DOMAINS

Directed Complete Partial Orders (DCPOs)

- Partial orders in which directed sets have suprema
- Maps preserve sups of directed sets
- Scott Topology:

U Scott open iff
$$U = \uparrow U \& \sup D \in U \Rightarrow D \cap U \neq \emptyset$$

- Scott continuous maps are exactly those preserving directed suprema
- DCPO is a CCC with products, sums, etc.

Domains support approximation: $x \ll y$ iff $y \leq \sup D \Rightarrow x \leq d \in D$

- Domain: $y = \{x \mid x \ll y\}$ directed & $y = \sup y \ (\forall y)$
- Examples:
 - A any set $\Rightarrow A^{\infty} = A^{*} \cup A^{\omega}$; $s \ll t$ iff s is finite
 - X locally compact \Rightarrow ({C \subseteq X | C compact}, \supseteq); C \ll C' iff C' \subseteq C°
- DOM Not a CCC; has many CCC full subcategories

FUNDAMENTAL APPLICATION

Lambda Calculus - prototypical programming language

(Lambek) Models of typed lambda calculus are cartesian closed categories. (Scott) Models of the un- / uni-typed lambda calculus are *reflexive objects* in CCCs $[X \to X] \to X \to [X \to X]$

- Fixed point combinator implies models have fixed point property

Scott's $D_{\infty} \cong [D_{\infty} \to D_{\infty}]$ -Model: Lives in category of (embedding) (T_0 -)injective spaces

- Every To-space is embeddable in a power of Sierpinski space
- Continuous lattices are retracts of powers of Sierpinski space
- D∞-Model obtained as bilimit if such spaces

Moggi's (Strong) Monadic Semantics over C, a CCC of domains

- Monads on C give meaning to computational effects, nondeterminism, etc.
- Want monads to compose requires distributive law (Beck)

PROBABILITY AND COMPUTATION

Probability arises in many places:

- Randomized algorithms
 - Prime testing
- Stochastic process calculi
 - Include probabilistic choice P + 1/2 Q, etc.
 - Useful in specification and verification
 - Models for Systems Biology
- Cryptography and crypto-protocols
 - One-way and trap-door functions
 - Lead to probabilistic reasoning about chances of finding key
 - Crypto-protocols employ random choices
 - Also involve nondeterminism
- Classical and quantum information

DOMAINS AND PROBABILITY

Modeled by Valuations: $\mu: O(X) \rightarrow [0,1]$ satisfying:

- i) $\mu(\emptyset) = 0$
- ii) $\mu(U \cup V) + \mu(U \cap V) = \mu(U) + \mu(V)$
- iii) $U \le V \Rightarrow \mu(U) \le \mu(V)$, and
- iv) D directed $\Rightarrow \mu(UD) = \sup \{\mu(U) \mid U \in D\}$
- V(X) valuations in pointwise order;
- $V_1(X)$ valuations with total mass 1 probability measures on X

Theorem (Lawson) Valuations on distributive continuous lattices correspond to Borel measures

Jones' Splitting Lemma: All valuations are directed sups of simple valuations $\sum r_i \delta_{xi}$ - Simple valuations on a domain form a basis

V and V₁ form monads on DCPO & DOM

THE MONAD THAT WON'T PLAY NICE

- Problems: No known V-invariant CCC of domains
 - No distributive law for V and any nondeterminism monad (N.D. Gautam. 1957)

Solutions:

Do nothing: (Morgan, et al, 1992) Added probabilistic choice to CSP models Result: Nondeterministic choice is no longer idempotent.

Form monad from composition: (M, 2000; Tix, 2000; Keimel, Plotkin & Tix, 2005) $Pow_X = \langle P_X \circ V \rangle$ yields monad where all laws of each still hold.

- Probabilistic choice and nondeterministic choice are related.
- PL and Putake COH into BCD, the CCC of bounded complete domains. So, Powl and Powuleave BCD invariant.
- Question: Is RB or FS an exponential ideal of COH?

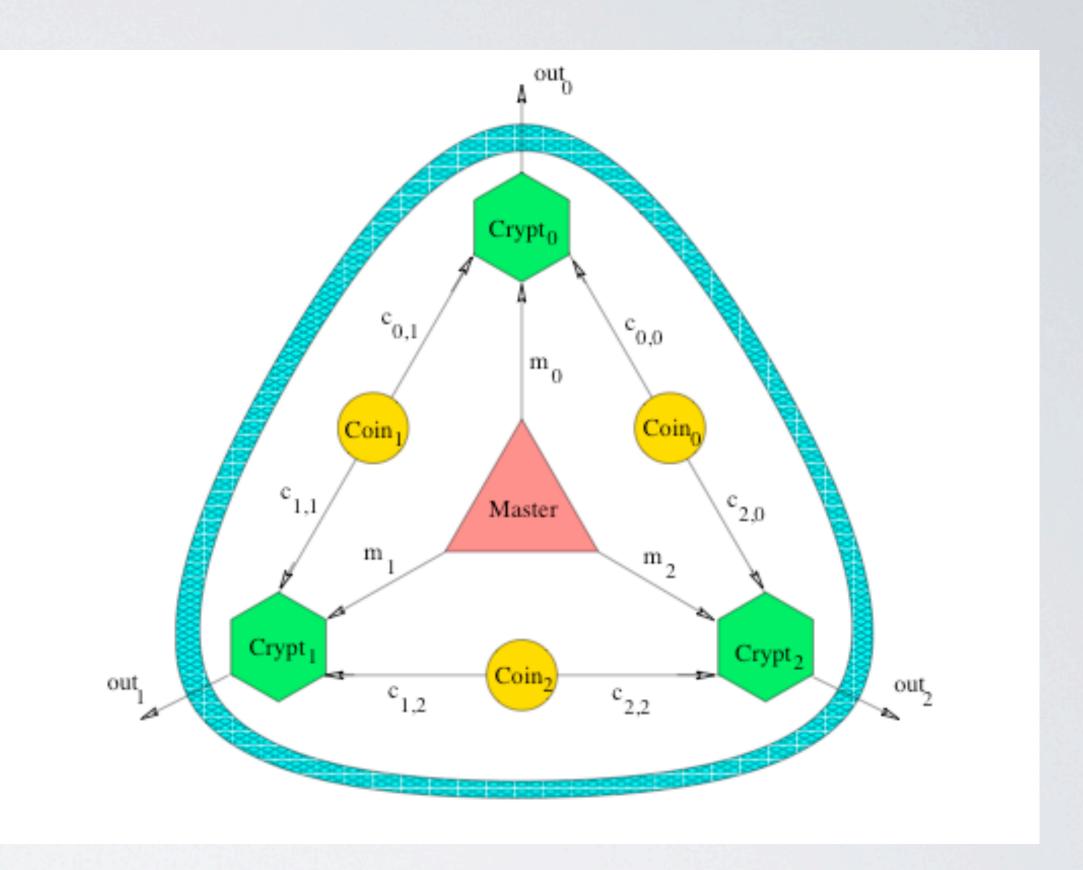
Divide and Conquer Pacify: Use random variables to confine domain of V_1 ; Yields distributive law (hence monad); weakens laws of probability: $P +_r P \neq P$

FLIPPING COINS

Chaum's Dining Cryptographers

- Master & Cryptographers
- Nondeterminism: Master; Adversary
- Probabilistic choice: Cryptographers' coin flips

Model: Trace distributions on events in protocol run - $\sum r_i \delta_{s(i)}$, s(i) trace Must support nondeterminism and probabilistic choice



Problem: Probability measure is on D.

- $V_1(D)$ is not well-behaved even if D is a trace model.
- Jung & Tix: $V_1(D)$ is in RB if D is a tree.

<u>Solution</u>: Probability measure is on fixed domain A^{∞} where V_1 is well-behaved.

RANDOMVARIABLES

X - measure space; µ (probability) measure on X

- supp μ complement of largest open set U with $\mu(U)=0$
- X domain implies supp \(\mu \) Scott closed;
- supp $\sum_{i \in I} r_i \delta_{s(i)} = \downarrow \{ s(i) \mid i \in I \}$
- μ is concentrated on A iff $\mu(B) = 0$ ($\forall B \subset X \backslash A$, B measurable)
- $-\sum r_i \delta_{s(i)} = \text{concentrated on } \{s(i) \mid i \in I\}$

Useful fact:

If
$$\{0,1\}^{\infty} = \{0,1\}^* \cup \{0,1\}^{\omega}$$
, then

- $A \subset \{0,1\}^{\infty}$ Scott closed implies $\exists \pi_A : \{0,1\}^{\infty} \to A$ continuous True for any tree-like domain, in particular, for traces domain.

RANDOMVARIABLES

```
X, Y - measure spaces;

\mu (probability) measure on X,

Random variable: f: X \to Y measurable function.
```

Usual approach:

Push μ forward using f: $f(\mu)(A) = \mu(f^{-1}(A))$ if $A \subset Y$ is measurable. This is just action of V_1 : Meas \rightarrow Meas (Giry monad)

Alternative view: E.g., $X=\{0,1\}^\infty$ $(=\{0,1\}^*$ u $\{0,1\}^\omega)$ - flips of a coin

Leave μ on X; f gives outcomes in Y of random choices (Oracle) Measures are confined to X - for domains X and Y:

- order only applied to $V_1(X)$
- require $f: X \rightarrow Y$ to be Scott continuous

CONTINUOUS RANDOM VARIABLES

 $\{0,1\}^{\infty}=\{0,1\}^{*}$ u $\{0,1\}^{\omega}$ - ideal completion of full binary tree

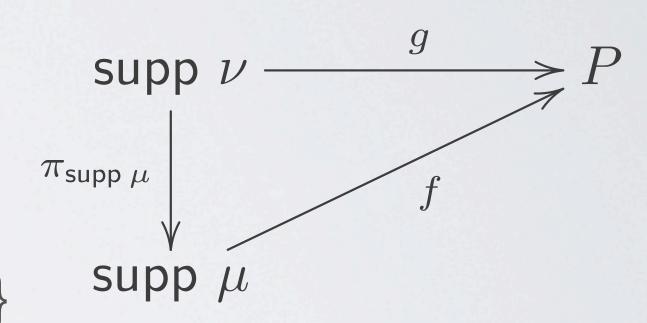
Random variable $f:\{0,1\} \to P$ - outcome of coin flip; give $\{0,1\}$ probability distribution Over course of computation, outcomes of flips define $f: \text{supp } \mu \to P$, supp $\mu \subset \{0,1\}^\infty$ Scott closed, assume f Scott continuous

 $Rand(\{0,1\}^{\infty}, P) = \{(\mu, f) \mid f : supp \mu \rightarrow P Scott continuous\}$

$$(\mu, f) \leq (\nu, g)$$
 iff $\pi_{\text{supp }\mu}(\nu) = \mu \& f \circ \pi_{\text{supp }\mu}|_{\text{supp }\nu} \leq g$

$$r(\mu, f) + (1-r)(\nu, g) = (r\mu 0 + (1-r)\nu 1, f0 + g1)$$
, where

- μ 0 = μ transported to (supp μ)0 = { \times 0 | \times ∈ supp μ }
- f0: (supp μ) $0 \rightarrow P$ by f0(x0) = f(x), etc.
- Note: $(\mu, f) \le r(\mu, f) + (1-r)(\mu, f)$



Defines endofunctor on BCD:

$$(\mu, f), (\mu', f') \le (\nu, g) \Rightarrow (\mu, f) \lor (\mu', f') = (\pi | \times (\nu), f \lor f')$$

RANDOM VARIABLE MONAD

<u>Problem</u>: Rand($\{0,1\}^{\infty}$, -) is not a monad

Call $\sum r_i \delta_{xi}$ flat if $\{x_i \mid i \mid I\}$ is an antichain; μ is flat iff $\mu = \sup \sum r_i \delta_{xi}$ flat, iff $tr_n(\mu)$ flat

 Θ Rand($\{0,1\}^{\infty}$, P) - flat random variables concentrated on compact subsets;

- assume f defined only on Max(supp μ)

Theorem: (Goubault-Larrecq & Varacca, LICS 2011) If P is a BCD domain, then so is Θ Rand($\{0,1\}^{\infty}$, P), where

$$(\mu, f) \leq (\nu, g)$$
 iff $\pi_{\text{supp }\mu}(\nu) = \mu \& f \circ \pi_{\text{supp }\mu}| \text{ supp } \nu \leq g$

In fact, Θ Rand($\{0,1\}^{\infty}$, P) forms a monad on BCD, CCC of domains

Question: What does it mean for μ to be flat?

USING STONE DUALITY

 $\{0,1\}^{\infty}$ as completion of full binary tree is "bottom up" construction.

Use Stone Duality to give "top down" construction:

 $C = \{0,1\}^{\omega}$ Cantor set - Stone space.

Define $C(C) = \{P \mid P \text{ partitions } C \text{ into clopen sets}\}$ - $P \leq Q \text{ iff } Q \text{ refines } P$

Stone duality implies $C \cong \operatorname{Max} \operatorname{Id}(\mathbf{C}(C), \leq) \cong \operatorname{lim}(\mathbf{P}, i_{\mathbf{QP}})_{\mathbf{P} \in \mathbf{C}(C)}$ $\{0,1\}^{\infty}$ special case - $\{\{0,1\}^n \mid n \geq 0\}$ cofinal in $\mathbf{C}(C)$

Advantages over $C \cong Max K\Omega(C, \leq)$:

- I) Scott-closed subsets are retracts of $Id(C(C), \leq)$
- 2) Scott-continuous mappings $f: Id(C(C), \leq) \rightarrow P$ defined via ``layers'' **P**

FACTS ABOUT $V_1(\{0,1\}^{\infty})$

Theorem: (V. Fedorchuk, 1981)

 $V_1: COMP \rightarrow AffCOMP$ is pro-continuous

Thus $V_1(\{0,1\}^{\omega}) \cong \lim (V_1(\{0,1\}^n), V_1(\pi_n))$

 $\{0,1\}^n$ finite $\Rightarrow V_1(\{0,1\}^n)$ flat $\Rightarrow V_1(\{0,1\}^\omega)$ flat.

Lemma: $\mu \in V_1(\{0,1\}^{\infty})$ maximal flat iff μ concentrated on $A \subset \{0,1\}^{\omega}$ compact

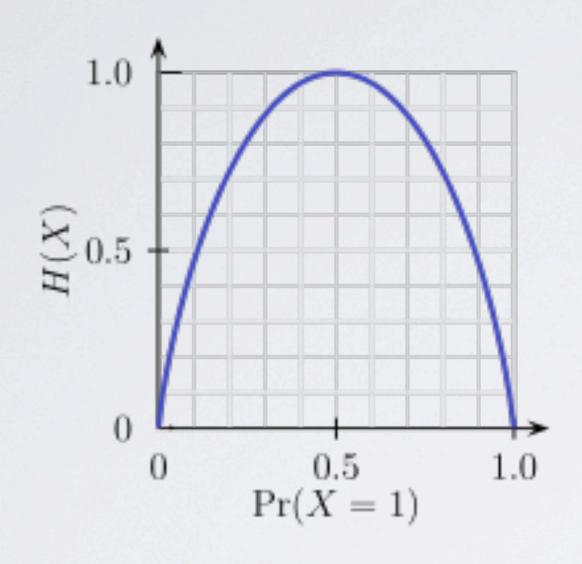
Theorem: Let $(\mu, f) \in \Theta$ Rand $(\{0,1\}^{\infty}, P)$. Then

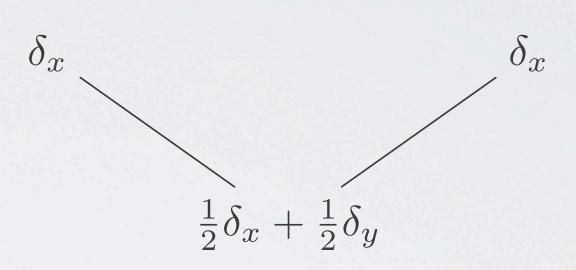
- 1) i) μ is concentrated on compact antichain in $\{0,1\}^{\infty}$
 - ii) $\mu = \mathbf{\pi}^{\omega} \times (\mathbf{v})$, some $\mathbf{v} \in V_1(\{0,1\}^{\omega})$ flat, X Scott closed.
- 2) supp $\mu \subset \{0,1\}^{\omega}$ implies $f = \sup_n f_n \text{ with } f_n : \pi_n(\{0,1\}^{\omega}) \to P \text{ Scott continuous.}$

Proof: Ad Ii)
$$\mu(w) > 0 \Rightarrow \mu = r\delta_w + v$$
 and $v(\uparrow w) = 0...$

MUSINGS ON INFORMATION THEORY

 $H:V_1(\{0,1\}) \rightarrow [0,1]^{op}$ entropy function:





Supports embedding $i_n: V_1(\{0,1\}^n) \to V_1(\{0,1\}^{n+1})$ for $\pi_n: \{0,1\}^{n+1} \to \{0,1\}^n$

Allows to choose $v \in V_1(\{0,1\}^{\omega})$ "optimal" with $\pi^{\omega}_n(v) = \mu$;

A CONTINUOUS IMAGE

 $I[0,1] = (\{ [a,b] \mid a \leq b \}, \supseteq) - interval domain$

 $I_b[0,1] = (\{ [m/2^n,(m+1)/2^n] \mid m \le 2^n-1 \}, \supseteq) - \text{``binary'' interval domain'}$

 $\phi: \{0,1\}^{\infty} \to \mathbb{I}_b[0,1]$ Scott continuous quotient map

 $V_1(\varphi): V_1(\{0,1\}^{\infty}) \rightarrow V_1(\mathbb{I}_b[0,1])$ continuous

Example: $\{0,1\}^{\omega}$ compact group; μ Haar measure

- $\mu = \sup \mu_n$, μ_n uniform distribution on $\{0,1\}^n$

Proposition: $V_1(\varphi)(\mu)$ is Lebesgue measure on [0,1].

Proof: Order $\{0,1\}^{\omega}$ lexicographically. $\boldsymbol{\varphi}|_{\{0,1\}^{\omega}}$ becomes order-isomorphism onto [0,1].

For $X \in \{0,1\}^n$, $\{x\} \times \{0,1\}^{\omega+|x|}$ maps to [x, 1]. []