Adjunctions Induced by the Congruence Lattices of the Free Algebras in a Variety

Vincenzo Marra

Dipartimento di Matematica Federigo Enriques - University of Milan

Let A be a (finitary) variety of algebras, and let \mathcal{F}^{A}_{κ} be the free A-algebra generated by a set of cardinality κ . Fix an A-algebra A. For any subset $R \subseteq \mathcal{F}^{A}_{\kappa} \times \mathcal{F}^{A}_{\kappa}$, define its solution set (in A) to be

 $\mathbb{V}(R) := \{ a \in A^{\kappa} \mid s(a) = t(a) \text{ holds in } A, \text{ for all } (s,t) \in R \}.$

For any subset $S \subseteq A^{\kappa}$, define its *associated congruence* (on $\mathfrak{F}_{\kappa}^{\mathsf{A}}$) to be

 $\mathbb{I}(S) := \left\{ (s,t) \in \mathfrak{F}^{\mathsf{A}}_{\kappa} \times \mathfrak{F}^{\mathsf{A}}_{\kappa} \mid s(a) = t(a) \text{ holds in } A, \text{ for all } a \in S \right\}.$

Then the pair (\mathbb{V}, \mathbb{I}) yields a Galois connection between the powersets of $\mathcal{F}^{\mathsf{A}}_{\kappa} \times \mathcal{F}^{\mathsf{A}}_{\kappa}$ and A^{κ} , for each cardinal κ . That is, we have

$$R \subseteq \mathbb{I}(S)$$
 if, and only if, $S \subseteq \mathbb{V}(R)$.

This, in turn, leads to a dual adjunction between A and the following category $\mathsf{Sub}_{def}^{\mathsf{A}}$ of subsets of A^{κ} and definable maps. An object of $\mathsf{Sub}_{def}^{\mathsf{A}}$ is an inclusion map $S \subseteq A^{\kappa}$, for some set S and some cardinal κ . A morphism between $S \subseteq A^{\kappa}$ and $T \subseteq A^{\mu}$ is a function $f: S \to T$ that agrees over S with some term-definable map $A^{\kappa} \to A^{\mu}$.

The construction above is a rather direct abstraction of the dual adjunction in algebraic geometry between affine varieties in k^n , for an algebraically closed field k, and ideals in the polynomial ring $k[X_1, \ldots, X_n]$. It arose in a recent joint paper with L. Spada, for the special case of MV-algebras. In that setting, it is crucial that two further facts hold. Take A to be the standard MV-algebra [0, 1]. Then the closure operator on $[0, 1]^{\kappa}$ given by the composition $\mathbb{V} \circ \mathbb{I}$ agrees with (and hence *defines*) topological closure in the standard Tychonoff (product) topology on $[0, 1]^{\kappa}$, where [0, 1] carries its Euclidean topology. Moreover, the closure operator on $\mathcal{F}^A_{\kappa} \times \mathcal{F}^A_{\kappa}$ given by $\mathbb{I} \circ \mathbb{V}$ performs the construction of the *radical congruence* generated by R, i.e. the intersection of all maximal congruences extending R. (Compare Hilbert's Nullstellensatz for k-algebras.) This promptly leads to the main result that semisimple MV-algebras are dually equivalent to compact Hausdorff spaces embedded in Tychonoff cubes, endowed with definable (necessarily continuous) maps as morphisms.

I discuss the two basic questions, which conditions on the variety A and the A-algebra A guarantee that the closure operator $\mathbb{V} \circ \mathbb{I}$ is topological, and that the closure operator $\mathbb{I} \circ \mathbb{V}$ constructs the radical congruence in the sense above.

