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MV-algebras

Definition
An MV-algebra is an algebra (A,⊕,¬, 0) such that

I (A,⊕, 0) is a commutative monoid,
I ¬¬x = x , that is, ¬ is an involution,
I x ⊕ 1 = 1 where 1 := ¬0,
I ¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x .

I MV-algebras are bounded distributive lattices in the
term-definable operations:

a ∨ b := ¬(¬a ⊕ b)⊕ b,
a ∧ b := ¬(¬a ∨ ¬b).
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MV-algebras

Examples

I Boolean algebras;

I The unit interval MV-algebra: [0, 1] with

a ⊕ b := min{a + b, 1}, ¬a := 1− a;

The associated ≤ is the natural order on [0, 1]

I For a space X , the MV-algebra C (X , [0, 1]) of continuous
functions from X to [0, 1], operations & order given pointwise;

I Ultrapowers of [0, 1] — which have infinitessimals
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Spaces associated with MV-algebras

The (lattice) dual space

The dual space of an MV-algebra

An MV-algebra A is in particular a bounded distributive lattice. As
such it has a dual space X.

X (∼= HomDL(A, 2) ∼= pFilt(A) ∼= pIdl(A))

with the order

x ≤ y ⇐⇒ Fx ⊇ Fy ⇐⇒ Ix ⊆ Iy

and
â = {x ∈ X | a ∈ Fx}

σ↓ = <â | a ∈ A> σ↑ = <âc | a ∈ A> σp = σ↓ ∨ σ↑
spectral topology dual spectral topology Priestley topology
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Spaces associated with MV-algebras

The (lattice) dual space

Extended duality for MV-algebras

The lattice structure alone does not uniquely determine the
MV-algebra in general. Consequently additional structure on X is
needed to account for the MV-algebraic structure.

Such structure has been identified in work of N. G. Martínez
[1996]; N. G. Martínez & Priestley [1998]; G & Priestley [2008],
but has not interacted much with the representation theory for
MV-algebras in general and geometric duality theory for special
classes, both developed on the basis of MV-spectra.
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Spaces associated with MV-algebras

The MV-spectrum

Principal congruences of an MV-algebra

A simple but important fact in the representation theory of
MV-algebras is that

θ : A −→ Con(A)

a 7−→ θ(a) = <(0, a)>Con(A)

is a bounded lattice homomorphism.

The image of this map is the lattice Confin(A) of finitely generated
MV-algebra congruences of A.

The MV-spectrum of A, is the dual space, Y , of Confin(A)
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Spaces associated with MV-algebras

The MV-spectrum

The MV-spectrum as a subspace of the dual space

Since A −� Confin(A) is a bounded distributive lattice quotient, by
duality, Y ↪→ X may be seen as a closed subspace of X :

Y = {y ∈ X | Iy is closed under ⊕}

We will mainly consider Y in its spectral topology and its dual
spectral topology. These are equal to the subspace topologies for
the spectral and dual spectral topologies on X , respectively.
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Spaces associated with MV-algebras

The MV-spectrum

The MV-spectrum directly from the MV-algebra

The congruences of an MV-algebra are in 1-to-1 correspondence
with MV-ideals: non-empty downsets closed under ⊕.

The MV-spectrum may also be seen as the set of those MV-ideals
that are prime in the sense that one of a 	 b(:= ¬(¬a ⊕ b)) and
b 	 a is a member for all a, b ∈ A. This is the same set Y ⊆ X .

The spectral topology on Y as determined on the previous slide is
also the hull-kernel or spectral topology corresponding to the
MV-ideals of A.
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Spaces associated with MV-algebras

The maximal MV-spectrum

The maximal MV-spectrum
Given an MV-algebra, A, the subspace Z of Y of maximal
MV-ideals of A is called the maximal MV-spectrum. It is compact
Hausdorff, but not in general spectral.

Examples

I If A = the free n-generated MV-algebra, then Z is
homeomorphic to the cube [0, 1]n with the Euclidean topology.

I Freen embeds in C ([0, 1]n, [0, 1]) but the embedding is not
unique.

I If A is a Boolean algebra, then Z is its Stone dual space.
I If A is any chain, then Z is the one-point space.
I If A has infinitesimals, then we do not have A ↪→ C (Z , [0, 1]).
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Relations between Y and Z

Well-known facts from the literature:
I The following are equivalent:

I A bounded distributive lattice D is normal: For all a, b ∈ D, if
a ∨ b = 1 then there are c , d ∈ A with c ∧ d = 0 and
a ∨ d = 1 and c ∨ b = 1.

I Each point in the dual space of D is below a unique maximal
point

I The inclusion of the maximal points of the dual space of D
admits a continuous retraction

I For any MV-algebra A, the lattice Confin(A) is relatively
normal (that is, each interval [a, b] is a normal lattice).

As a consequence Y is always a root-system, that is, ↑y is a chain
for each y ∈ Y . The space Z is always compact Hausdorff, and the
map

m : Y −→ Z , y 7→ unique maximal point above y

is a continuous retraction
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Relations between X and Y

The map k

There is a continuous retraction k : (X , σp) −→ (Y , σ↓) (already
present in the work of Martínez)

This map may be given a simple description:

k(x) = max{z ∈ X | Ix ⊕ Iz ⊆ Ix}

yielding

(Interpolation Lemma) If x ≤ x ′ then there is x ′′ with

x ≤ x ′′ ≤ x ′ and k(x ′′) ≥ k(x) and k(x ′′) ≥ k(x ′)
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Relations between X and Z

From X to Z without using the MV structure
Combining the two earlier retractions we get

m ◦ k : (X , σp) −→ (Z , σ↓)

The kernel of this map is given by the relation x1Wx2 iff there are
x ′1, x

′
2, x0 ∈ X with

x1

x ′1

x0

x ′2

x2

Proof: If mk(x1) = mk(x2), then take x ′i = k(xi ) and x0 = mk(xi ).

For the converse note that if x ≤ x ′, then by (Int) there is x ′′

between with greater k-image than both, but then
mk(x) = mk(x ′′) = mk(x ′). So all the elements of X in one order
component have the same mk-image
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Kaplansky’s theorem

Kaplansky’s theorem

[Kaplansky 1947]
Let Z1, Z2 be compact Hausdorff spaces such that the lattices
C (Z1, [0, 1]) and C (Z2, [0, 1]) are isomorphic. Then Z1 and Z2 are
homeomorphic spaces.
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Kaplansky’s theorem

Kaplansky theorem for arbitrary MV-algebras

Theorem
If A1 and A2 are MV-algebras having isomorphic lattice reducts,
then the max MV-spectra of A1 and A2 are homeomorphic.

I Note that the max MV-spectrum of an MV-algebra of the
form C (Z , [0, 1]) is Z so that our result generalizes
Kaplansky’s result.

Proof (sketch).
The maximal MV-spectrum can be reconstructed from the lattice
spectrum using the relation W .
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Sheaf representations

Sheaf representations over a spectral space
F : CompOp(Y ) −→ MV functor satisfying some unicity and
gluing properties and A ∼= F (Y )

alternatively

e : E −→ Y local homeomorphism with MV-algebra stalks and
A ∼= GlobSec(e)

alternatively

A ↪→ Πy∈YAy subdirect product with
I open equalizers
I a finite patching property

(weak spectral product)
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Sheaf representations

Spectral products and duality

A/y
A/y ′

E

p

Yy y ′

a â

(A/y)∗
(A/y ′)∗

Y

k

X = A∗

y y ′
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Sheaf representations

Spectral sum
Let X (with σ↓) be the dual space of A, and let Y be a spectral
space (with σ↑), then X is a spectral sum over Y provided there is
a continuous surjection k : (X , σp) −→ (Y , σ↓) satisfying:
I For any a, b ∈ A, the equalizer

‖a = b‖ := {y ∈ Y | â ∩ Xy = b̂ ∩ Xy}

is compact open where Xy = k−1(↑y)

I Let (Ui )
n
i=1 be a compact open cover of Y , and (ai )ni=1 ⊆ A

with Ui ∩ Uj ⊆ ‖ai = aj‖. Then there exists a unique element
b ∈ A such that Ui ⊆ ‖ai = b‖

Theorem
If X is a spectral sum over Y , then A is a spectral product over Y
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Sheaf representations

The dual space of an MV-algebra as a spectral sum

Let A be an MV-algebra, and X its dual space. Let Y be the
MV-spectrum of A in its dual spectral topology (that is, with σ↑)

Theorem (G, van Gool, Marra)
X is a spectral sum over Y , and thus, in particular, A has a sheaf
representation over Y .

I The ensuing sheaf representation is the one of [Dubuc &
Poveda, 2010]

I The map k : X −→ Y is used and Xy = k−1(↑y) is the dual of
the quotient Ay = A/Iy for each y ∈ Y

I Our proof uses only elementary facts about MV-algebras and,
crucially, the Interpolation Lemma
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Sheaf representations

Equalizers are compact open
For any a, b ∈ A, the equalizer

‖a = b‖ = {y ∈ Y | â ∩ Xy = b̂ ∩ Xy}
= {y ∈ Y |[a]y = [b]y}
= {y ∈ Y |(a, b) ∈ θy}

where [a]y is the equivalence class of a in the quotient A/Iy and θy
is the corresponding congruence relation on A.
It is well known that

(a, b) ∈ θy ⇐⇒ d(a, b) = (a 	 b)⊕ (b 	 a) ∈ Iy

Thus we have

‖a = b‖ = (d̂(a, b))c
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Sheaf representations

Patching property

E

p

Y

â1

â2

∃!b̂

U1 U2

y

A/y
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Sheaf representations

Patching property
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Sheaf representations

Transparent solution via duality

I There is at most one b ∈ A,
I It must satisfy b̂ =

⋃n
i=1(âi ∩ k−1(Ui )) =: K , and K is closed

I Prove that K is a open: K c =
⋃n

i=1(âi c ∩ k−1(Ui ))

I Prove that K is a downset: Interpolation Lemma!!!
I This also yields a formula for b by compact approximation:

b =
n∨

i=1

(ai � ¬mui ),

where m, n ∈ N and ui ∈ A such that ûi c = Ui .
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