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Sheaf representations of MV-algebras via Priestley duality
LMV—aIgebras

Definition
An MV-algebra is an algebra (A, @, -, 0) such that

» (A,&,0) is a commutative monoid,
» ——x = x, that is, = is an involution,
» x®1 =1 where 1:= -0,

> (x®y) Dy =(-ydx)Dx

» MV-algebras are bounded distributive lattices in the
term-definable operations:
aVb:=-(-a®b)®b,
aAb:=-=(-aV-b).
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LMV—aIgebras

Examples

» Boolean algebras;

» The unit interval MV-algebra: [0, 1] with
a®b:=min{fa+b,1}, —-a:=1-a;

The associated < is the natural order on [0, 1]

» For a space X, the MV-algebra C(X, [0, 1]) of continuous
functions from X to [0, 1], operations & order given pointwise;

» Ultrapowers of [0, 1] — which have infinitessimals
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LSpaces associated with MV-algebras
L The (lattice) dual space

The dual space of an MV-algebra

An MV-algebra A is in particular a bounded distributive lattice. As
such it has a dual space X.

X(=2 Hompy (A, 2) = pFilt(A) = pldI(A))
with the order
x<y <<= FKDOF < LCI

and

a={xeX|ackF}
ot=<3lacA> ol =<3|acA> oP =otvol
spectral topology dual spectral topology Priestley topology
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LSpaces associated with MV-algebras
L The (lattice) dual space

Extended duality for MV-algebras

The lattice structure alone does not uniquely determine the
MV-algebra in general. Consequently additional structure on X is
needed to account for the MV-algebraic structure.

Such structure has been identified in work of N. G. Martinez
[1996]; N. G. Martinez & Priestley [1998]; G & Priestley [2008],
but has not interacted much with the representation theory for
MV-algebras in general and geometric duality theory for special
classes, both developed on the basis of MV-spectra.
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LSpaces associated with MV-algebras

LThe MV-spectrum
|

Principal congruences of an MV-algebra

A simple but important fact in the representation theory of
MV-algebras is that

0:A — Con(A)

at— 6(3) = <(0> a)>Con(A)
is a bounded lattice homomorphism.
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Principal congruences of an MV-algebra

A simple but important fact in the representation theory of
MV-algebras is that

0:A — Con(A)
a +— 0(a) = <(0,a)>con(a)

is a bounded lattice homomorphism.

The image of this map is the lattice Cong,(A) of finitely generated
MV-algebra congruences of A.
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LThe MV-spectrum

Principal congruences of an MV-algebra

A simple but important fact in the representation theory of
MV-algebras is that

0:A — Con(A)
a +— 0(a) = <(0,a)>con(a)

is a bounded lattice homomorphism.

The image of this map is the lattice Cong,(A) of finitely generated
MV-algebra congruences of A.

The MV-spectrum of A, is the dual space, Y, of Cony,(A)
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LSpaces associated with MV-algebras
LThe MV-spectrum

The MV-spectrum as a subspace of the dual space

Since A —» Congn(A) is a bounded distributive lattice quotient, by
duality, Y < X may be seen as a closed subspace of X:

Y ={y € X |, is closed under &}

We will mainly consider Y in its spectral topology and its dual
spectral topology. These are equal to the subspace topologies for
the spectral and dual spectral topologies on X, respectively.
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LSpaces associated with MV-algebras
LThe MV-spectrum

The MV-spectrum directly from the MV-algebra

The congruences of an MV-algebra are in 1-to-1 correspondence
with MV-ideals: non-empty downsets closed under @.

The MV-spectrum may also be seen as the set of those MV-ideals
that are prime in the sense that one of a © b(:= —(—a ® b)) and
b© ais a member for all a,b € A. This is the same set Y C X.

The spectral topology on Y as determined on the previous slide is
also the hull-kernel or spectral topology corresponding to the
MV-ideals of A.
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LSpaces associated with MV-algebras
LThe maximal MV-spectrum

The maximal MV-spectrum

Given an MV-algebra, A, the subspace Z of Y of maximal
MV-ideals of A is called the maximal MV-spectrum. It is compact
Hausdorff, but not in general spectral.

Examples

> If A= the free n-generated MV-algebra, then Z is
homeomorphic to the cube [0, 1]” with the Euclidean topology.

» Free, embeds in C(]0,1]",]0,1]) but the embedding is not

unique.
» If Ais a Boolean algebra, then Z is its Stone dual space.
» If Ais any chain, then Z is the one-point space.
» If A has infinitesimals, then we do not have A — C(Z, 0, 1]).
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L Relations between Y and Z

Well-known facts from the literature:

» The following are equivalent:

» A bounded distributive lattice D is normal: For all a,b € D, if
aV b =1 then there are ¢,d € A with c Ad =0 and
avd=1landcVvb=1

» Each point in the dual space of D is below a unique maximal
point

» The inclusion of the maximal points of the dual space of D
admits a continuous retraction

» For any MV-algebra A, the lattice Cong,(A) is relatively
normal (that is, each interval [a, b] is a normal lattice).

As a consequence Y is always a root-system, that is, Ty is a chain
for each y € Y. The space Z is always compact Hausdorff, and the
map

m:Y — Z, y — unique maximal point above y

is a continuous retraction
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L Relations between X and Y

The map k

There is a continuous retraction k : (X,0P) — (Y, 0%) (already
present in the work of Martinez)

This map may be given a simple description:
k(x)=max{ze X | L&, C L}

yielding

(Interpolation Lemma) If x < x then there is x” with

x<x"<x" and k(x")>k(x) and k(x") > k(x)
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L Relations between X and Z

From X to Z without using the MV structure

Combining the two earlier retractions we get
mok: (X,0P) — (Z,0%)

The kernel of this map is given by the relation x; Wx, iff there are
X1, Xh, X0 € X with

Proof: If mk(x1) = mk(x2), then take x/ = k(x;) and xo = mk(x;).

For the converse note that if x < x’, then by (Int) there is x”
between with greater k-image than both, but then
mk(x) = mk(x") = mk(x"). So all the elements of X in one order

component have the same mk-image
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LKapIansky’s theorem

Kaplansky's theorem

[Kaplansky 1947]

Let Z;, Z> be compact Hausdorff spaces such that the lattices
C(Z1,10,1]) and C(Z,[0,1]) are isomorphic. Then Z; and Z, are
homeomorphic spaces.
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LKapIansky's theorem

Kaplansky theorem for arbitrary MV-algebras

Theorem
If Ay and Ay are MV-algebras having isomorphic lattice reducts,
then the max MV-spectra of Ay and A, are homeomorphic.

» Note that the max MV-spectrum of an MV-algebra of the
form C(Z,[0,1]) is Z so that our result generalizes
Kaplansky's result.

Proof (sketch).

The maximal MV-spectrum can be reconstructed from the lattice
spectrum using the relation W. Ol
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L Sheaf representations

Sheaf representations over a spectral space

F : CompOp(Y) — MV functor satisfying some unicity and
gluing properties and A = F(Y')

alternatively

e : E — Y local homeomorphism with MV-algebra stalks and
A = GlobSec(e)

alternatively

A — MycyA, subdirect product with
» open equalizers

» a finite patching property

(weak spectral product)
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|—Sheaf representations

Spectral products and duality
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- Sheaf representations

Spectral sum

Let X (with o) be the dual space of A, and let Y be a spectral
space (with o), then X is a spectral sum over Y provided there is
a continuous surjection k : (X, 0P) — (Y, 0") satisfying:

» For any a, b € A, the equalizer

la=b|:={yeY|anX, =bnx,}

is compact open where X, = k~1(1y)

> Let (U;)7_; be a compact open cover of Y, and (a;)7_; C A
with U; N U; C ||a; = aj||. Then there exists a unique element
b € A such that U; C ||a; = b||

Theorem
If X is a spectral sum over Y, then A is a spectral product over Y
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The dual space of an MV-algebra as a spectral sum

Let A be an MV-algebra, and X its dual space. Let Y be the
MV-spectrum of A in its dual spectral topology (that is, with o)
Theorem (G, van Gool, Marra)

X is a spectral sum over Y, and thus, in particular, A has a sheaf
representation over Y.

» The ensuing sheaf representation is the one of [Dubuc &
Poveda, 2010]

» The map k: X — Y is used and X, = k~1(1y) is the dual of
the quotient A, = A/l, foreach y € Y

» Our proof uses only elementary facts about MV-algebras and,
crucially, the Interpolation Lemma
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Equalizers are compact open
For any a, b € A, the equalizer

la=bll={yeY|anX, =bnX,}
={y e Y |laly =[b],}
={yeYl(ab)cby}

where [a], is the equivalence class of a in the quotient A//, and 6,

is the corresponding congruence relation on A.
It is well known that

(a,b) e, <= d(a,b)=(acb)®(bca)el,
Thus we have

—

la = bl = (d(a, b))
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Patching property
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Patching property
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L Sheaf representations

Transparent solution via duality

v

There is at most one b € A,

It must satisfy b= J7_,(4; N k~1(U;)) =: K, and K is closed
Prove that K is a open: K¢ = J/_,(4° N k~1(U;))

Prove that K is a downset: Interpolation Lemmall!

v

v

v

v

This also yields a formula for b by compact approximation:

n

b=\/(ai © ~muy),

i=1

where m, n € N and u; € A such that 4;° = U,.
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