Sheaf representations of MV-algebras via Priestley duality

Mai Gehrke (joint work with Sam van Gool and Vincenzo Marra)

15 August 2012 Duality Theory in Algebra, Logic and Computer Science, Oxford

Definition

An MV-algebra is an algebra $(A, \oplus, \neg, 0)$ such that

- ▶ $(A, \oplus, 0)$ is a commutative monoid,
- ▶ $\neg \neg x = x$, that is, \neg is an involution,
- ▶ $x \oplus 1 = 1$ where $1 := \neg 0$,
- $\neg (\neg x \oplus y) \oplus y = \neg (\neg y \oplus x) \oplus x.$
- ► MV-algebras are bounded distributive lattices in the term-definable operations:

$$a \lor b := \neg(\neg a \oplus b) \oplus b,$$

 $a \land b := \neg(\neg a \lor \neg b).$

Examples

- ► Boolean algebras;
- ► The unit interval MV-algebra: [0,1] with

$$a \oplus b := \min\{a+b,1\}, \quad \neg a := 1-a;$$

The associated \leq is the natural order on [0,1]

- For a space X, the MV-algebra C(X, [0,1]) of continuous functions from X to [0,1], operations & order given pointwise;
- Ultrapowers of [0,1] which have infinitessimals

Spaces associated with MV-algebras

The (lattice) dual space

The dual space of an MV-algebra

An MV-algebra A is in particular a bounded distributive lattice. As such it has a dual space X.

$$X \cong Hom_{DL}(A, 2) \cong pFilt(A) \cong pIdl(A)$$

with the order

$$x \leq y \iff F_x \supseteq F_y \iff I_x \subseteq I_y$$

and

$$\widehat{a} = \{x \in X \mid a \in F_x\}$$

$$\sigma^{\downarrow} = \langle \widehat{a} \mid a \in A \rangle$$
spectral topology

$$\sigma^{\uparrow} = <\widehat{a}^c \mid a \in A>$$

spectral topology dual spectral topology

$$\sigma^p = \sigma^{\downarrow} \vee \sigma^{\uparrow}$$
 Priestley topology

Spaces associated with MV-algebras

☐The (lattice) dual space

Extended duality for MV-algebras

The lattice structure alone does not uniquely determine the MV-algebra in general. Consequently additional structure on X is needed to account for the MV-algebraic structure.

Such structure has been identified in work of N. G. Martínez [1996]; N. G. Martínez & Priestley [1998]; G & Priestley [2008], but has not interacted much with the representation theory for MV-algebras in general and geometric duality theory for special classes, both developed on the basis of MV-spectra.

The MV-spectrum

Principal congruences of an MV-algebra

A simple but important fact in the representation theory of MV-algebras is that

$$\theta: A \longrightarrow Con(A)$$

 $a \longmapsto \theta(a) = \langle (0, a) \rangle_{Con(A)}$

is a bounded lattice homomorphism.

Spaces associated with MV-algebras

The MV-spectrum

Principal congruences of an MV-algebra

A simple but important fact in the representation theory of $\mathsf{MV}\text{-}\mathsf{algebras}$ is that

$$\theta: A \longrightarrow Con(A)$$

 $a \longmapsto \theta(a) = \langle (0, a) \rangle_{Con(A)}$

is a bounded lattice homomorphism.

The image of this map is the lattice $Con_{fin}(A)$ of finitely generated MV-algebra congruences of A.

└The MV-spectrum

Principal congruences of an MV-algebra

A simple but important fact in the representation theory of MV-algebras is that

$$\theta: A \longrightarrow Con(A)$$

 $a \longmapsto \theta(a) = \langle (0, a) \rangle_{Con(A)}$

is a bounded lattice homomorphism.

The image of this map is the lattice $Con_{fin}(A)$ of finitely generated MV-algebra congruences of A.

The MV-spectrum of A, is the dual space, Y, of $Con_{fin}(A)$

Spaces associated with MV-algebras

The MV-spectrum

The MV-spectrum as a subspace of the dual space

Since $A \longrightarrow Con_{fin}(A)$ is a bounded distributive lattice quotient, by duality, $Y \hookrightarrow X$ may be seen as a closed subspace of X:

$$Y = \{ y \in X \mid I_y \text{ is closed under } \oplus \}$$

We will mainly consider Y in its spectral topology and its dual spectral topology. These are equal to the subspace topologies for the spectral and dual spectral topologies on X, respectively.

The MV-spectrum directly from the MV-algebra

The congruences of an MV-algebra are in 1-to-1 correspondence with MV-ideals: non-empty downsets closed under \oplus .

The MV-spectrum may also be seen as the set of those MV-ideals that are prime in the sense that one of $a \ominus b (:= \neg(\neg a \oplus b))$ and $b \ominus a$ is a member for all $a, b \in A$. This is the same set $Y \subseteq X$.

The spectral topology on Y as determined on the previous slide is also the hull-kernel or spectral topology corresponding to the MV-ideals of A.

The maximal MV-spectrum

Given an MV-algebra, A, the subspace Z of Y of maximal MV-ideals of A is called the maximal MV-spectrum. It is compact Hausdorff, but not in general spectral.

Examples

- ▶ If A = the free *n*-generated MV-algebra, then Z is homeomorphic to the cube $[0,1]^n$ with the Euclidean topology.
 - ▶ Free_n embeds in $C([0,1]^n,[0,1])$ but the embedding is not unique.
- ▶ If A is a Boolean algebra, then Z is its Stone dual space.
- ▶ If A is any chain, then Z is the one-point space.
- ▶ If A has infinitesimals, then we do not have $A \hookrightarrow C(Z, [0, 1])$.

Well-known facts from the literature:

- ► The following are equivalent:
 - A bounded distributive lattice D is normal: For all $a, b \in D$, if $a \lor b = 1$ then there are $c, d \in A$ with $c \land d = 0$ and $a \lor d = 1$ and $c \lor b = 1$.
 - ► Each point in the dual space of *D* is below a unique maximal point
 - ► The inclusion of the maximal points of the dual space of *D* admits a continuous retraction
- For any MV-algebra A, the lattice Confin(A) is relatively normal (that is, each interval [a, b] is a normal lattice).

As a consequence Y is always a root-system, that is, $\uparrow y$ is a chain for each $y \in Y$. The space Z is always compact Hausdorff, and the map

$$m: Y \longrightarrow Z, y \mapsto$$
 unique maximal point above y

is a continuous retraction

The map k

There is a continuous retraction $k:(X,\sigma^p)\longrightarrow (Y,\sigma^\downarrow)$ (already present in the work of Martínez)

This map may be given a simple description:

$$k(x) = \max\{z \in X \mid I_x \oplus I_z \subseteq I_x\}$$

yielding

(Interpolation Lemma) If $x \le x'$ then there is x'' with

$$x \le x'' \le x'$$
 and $k(x'') \ge k(x)$ and $k(x'') \ge k(x')$

From *X* to *Z* without using the MV structure

Combining the two earlier retractions we get

$$m \circ k : (X, \sigma^p) \longrightarrow (Z, \sigma^{\downarrow})$$

The kernel of this map is given by the relation x_1Wx_2 iff there are $x'_1, x'_2, x_0 \in X$ with

Proof: If $mk(x_1) = mk(x_2)$, then take $x'_i = k(x_i)$ and $x_0 = mk(x_i)$.

For the converse note that if $x \le x'$, then by (Int) there is x'' between with greater k-image than both, but then mk(x) = mk(x'') = mk(x'). So all the elements of X in one order component have the same mk-image

Kaplansky's theorem

[Kaplansky 1947] Let Z_1 , Z_2 be compact Hausdorff spaces such that the lattices $C(Z_1,[0,1])$ and $C(Z_2,[0,1])$ are isomorphic. Then Z_1 and Z_2 are homeomorphic spaces.

Kaplansky theorem for arbitrary MV-algebras

Theorem

If A_1 and A_2 are MV-algebras having isomorphic lattice reducts, then the max MV-spectra of A_1 and A_2 are homeomorphic.

Note that the max MV-spectrum of an MV-algebra of the form C(Z, [0, 1]) is Z so that our result generalizes Kaplansky's result.

Proof (sketch).

The maximal MV-spectrum can be reconstructed from the lattice spectrum using the relation W.

Sheaf representations over a spectral space

 $F: CompOp(Y) \longrightarrow MV$ functor satisfying some unicity and gluing properties and $A \cong F(Y)$

alternatively

 $e: E \longrightarrow Y$ local homeomorphism with MV-algebra stalks and $A \cong GlobSec(e)$

alternatively

 $A \hookrightarrow \Pi_{v \in Y} A_v$ subdirect product with

- open equalizers
- a finite patching property

(weak spectral product)

Spectral products and duality

Spectral sum

Let X (with σ^{\downarrow}) be the dual space of A, and let Y be a spectral space (with σ^{\uparrow}), then X is a spectral sum over Y provided there is a continuous surjection $k:(X,\sigma^p)\longrightarrow (Y,\sigma^{\downarrow})$ satisfying:

▶ For any $a, b \in A$, the equalizer

$$||a=b||:=\{y\in Y\mid \widehat{a}\cap X_y=\widehat{b}\cap X_y\}$$

is compact open where $X_y = k^{-1}(\uparrow y)$

▶ Let $(U_i)_{i=1}^n$ be a compact open cover of Y, and $(a_i)_{i=1}^n \subseteq A$ with $U_i \cap U_j \subseteq ||a_i = a_j||$. Then there exists a unique element $b \in A$ such that $U_i \subseteq ||a_i = b||$

Theorem

If X is a spectral sum over Y, then A is a spectral product over Y

The dual space of an MV-algebra as a spectral sum

Let A be an MV-algebra, and X its dual space. Let Y be the MV-spectrum of A in its dual spectral topology (that is, with σ^{\uparrow})

Theorem (G, van Gool, Marra)

X is a spectral sum over Y, and thus, in particular, A has a sheaf representation over Y.

- ► The ensuing sheaf representation is the one of [Dubuc & Poveda, 2010]
- ▶ The map $k: X \longrightarrow Y$ is used and $X_y = k^{-1}(\uparrow y)$ is the dual of the quotient $A_y = A/I_y$ for each $y \in Y$
- Our proof uses only elementary facts about MV-algebras and, crucially, the Interpolation Lemma

Equalizers are compact open

For any $a, b \in A$, the equalizer

$$||a = b|| = \{ y \in Y \mid \widehat{a} \cap X_y = \widehat{b} \cap X_y \}$$

= \{ y \in Y \| [a]_y = [b]_y \}
= \{ y \in Y \| (a, b) \in \theta_y \}

where $[a]_y$ is the equivalence class of a in the quotient A/I_y and θ_y is the corresponding congruence relation on A.

It is well known that

$$(a,b) \in \theta_y \iff d(a,b) = (a \ominus b) \oplus (b \ominus a) \in I_y$$

Thus we have

$$||a=b||=(\widehat{d}(a,\widehat{b}))^{c}$$

Patching property

Patching property

Transparent solution via duality

- ▶ There is at most one $b \in A$,
- ▶ It must satisfy $\hat{b} = \bigcup_{i=1}^{n} (\hat{a}_i \cap k^{-1}(U_i)) =: K$, and K is closed
- ▶ Prove that K is a open: $K^c = \bigcup_{i=1}^n (\hat{a_i}^c \cap k^{-1}(U_i))$
- ▶ Prove that *K* is a downset: Interpolation Lemma!!!
- ▶ This also yields a formula for *b* by compact approximation:

$$b = \bigvee_{i=1}^{n} (a_i \odot \neg mu_i),$$

where $m, n \in \mathbb{N}$ and $u_i \in A$ such that $\hat{u_i}^c = U_i$.