Mundici's Γ-functor theorem for star-shaped sets via Minkowski's duality with gauge functions.

Andrea Pedrini andrea.pedrini@unimi.it

Università degli Studi di Milano Dipartimento di Informatica e Comunicazione

Duality Theory in Algebra, Logic and Computer Science Workshop II – 15th - 18th August 2012

ℓ-groups

A lattice-ordered abelian group is an algebra

$$\mathbf{G} = (G, +, -, \leq, 0)$$
 such that

- (G, +, -, 0) is an abelian group,
- (G, \leq) defines a lattice structure,
- ▶ for all $t, x, y \in V$, if $x \le y$ then $t + x \le t + y$.

ℓ-groups

A lattice-ordered abelian group is an algebra

$$\mathbf{G} = (G, +, -, \leq, 0)$$
 such that

- (G, +, -, 0) is an abelian group,
- (G, \leq) defines a lattice structure,
- ▶ for all $t, x, y \in V$, if $x \le y$ then $t + x \le t + y$.

A strong (order) unit is an element $u \in G$ such that for all $0 \le x \in G$ there exists an integer $0 \le n$ such that $x \le nu$.

ℓ-groups

A lattice-ordered abelian group is an algebra

$$\mathbf{G} = (G, +, -, \leq, 0)$$
 such that

- (G, +, -, 0) is an abelian group,
- ▶ (*G*, ≤) defines a lattice structure,
- ▶ for all $t, x, y \in V$, if $x \le y$ then $t + x \le t + y$.

A strong (order) unit is an element $u \in G$ such that for all $0 \le x \in G$ there exists an integer $0 \le n$ such that $x \le nu$.

Given two ℓ -groups G and H with units respectively u and v, a unital ℓ -homomorphism is a map $h:G\to H$ which is both a group-homomorphism and a lattice-homomorphism and that preserves the units (h(u)=v).

The functor Γ

Given an ℓ -group G with a unit u, the unital interval is the set

$$[0, u] = \{x \in G : 0 \le x \le u\}.$$

Theorem

The structure $\Gamma(G, u) = \langle [0, u], \oplus, \neg, 0 \rangle$, where

$$x \oplus y = u \wedge (x + y)$$
 and $\neg x = u - x$,

is an MV-algebra.

The functor Γ

Given an ℓ -group G with a unit u, the unital interval is the set

$$[0, u] = \{x \in G : 0 \le x \le u\}.$$

Theorem

$$\Gamma: (G, u) \mapsto \langle [0, u], \oplus, \neg, 0 \rangle$$
$$h \mapsto h|_{[0, u]}$$

is a functor from the category of ℓ -groups with distinguished strong units and the category of MV-algebras.

Good sequences

Given an MV-algebra A, a good sequence is a sequence $(a_i)_{i\in\mathbb{N}}$ of elements of A such that

- 1) there exists an index $j \in \mathbb{N}$ such that, for all $i \geq j$, $a_i = 0$;
- 2) $a_i \oplus a_{i+1} = a_i$, for all $i \in \mathbb{N}$.

Good sequences

Given an MV-algebra A, a good sequence is a sequence $(a_i)_{i\in\mathbb{N}}$ of elements of A such that

- 1) there exists an index $j \in \mathbb{N}$ such that, for all $i \geq j$, $a_i = 0$;
- 2) $a_i \oplus a_{i+1} = a_i$, for all $i \in \mathbb{N}$.

Lemma

Let G be an ℓ -group with unit u and let $A = \Gamma(G, u)$. Then for each $0 \le a \in G$ there exists a unique good sequence $(a_i)_{i \in \mathbb{N}}$ of elements of A such that $a = a_1 + a_2 + \dots$

Mundici's Γ-functor Theorem

Theorem

The functor Γ defines a natural equivalence between the category of ℓ -groups with strong unit, and the category of MV-algebras.

A (real) vector lattice is an algebra $\mathbf{V} = (V, +, \wedge, \vee, \{\lambda\}_{\lambda \in \mathbb{R}}, \mathbf{0})$ such that

- $(V, +, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ is a vector space,
- (V, \wedge, \vee) is a lattice,
- ▶ for all $t, v, w \in V$, $t + (v \land w) = (t + v) \land (t + w)$,
- for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$,

if
$$\lambda \geq 0$$
 then $\lambda(\mathbf{v} \wedge \mathbf{w}) = \lambda \mathbf{v} \wedge \lambda \mathbf{w}$.

A (real) vector lattice is an algebra $\mathbf{V} = (V, +, \wedge, \vee, \{\lambda\}_{\lambda \in \mathbb{R}}, \mathbf{0})$ such that

- $(V, +, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ is a vector space,
- ▶ (V, \land, \lor) is a lattice,
- ▶ for all $t, v, w \in V$, $t + (v \land w) = (t + v) \land (t + w)$,
- ▶ for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$, if $\lambda \geq 0$ then $\lambda(v \wedge w) = \lambda v \wedge \lambda w$.

FVL(n) is the free vector lattice on n generators.

A (real) vector lattice is an algebra $\mathbf{V} = (V, +, \wedge, \vee, \{\lambda\}_{\lambda \in \mathbb{R}}, \mathbf{0})$ such that

- $(V, +, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ is a vector space,
- (V, \wedge, \vee) is a lattice,
- ▶ for all $t, v, w \in V$, $t + (v \land w) = (t + v) \land (t + w)$,
- ▶ for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$, if $\lambda \geq 0$ then $\lambda(v \wedge w) = \lambda v \wedge \lambda w$.

FVL(n) is the free vector lattice on n generators.

The lattice structure induces a partial order (defined as usual):

$$v \le w$$
 if and only if $v \wedge w = v$.

A (real) vector lattice is an algebra $\mathbf{V} = (V, +, \wedge, \vee, \{\lambda\}_{\lambda \in \mathbb{R}}, \mathbf{0})$ such that

- $(V, +, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ is a vector space,
- (V, ∧, ∨) is a lattice,
- ▶ for all $t, v, w \in V$, $t + (v \land w) = (t + v) \land (t + w)$,
- ▶ for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$, if $\lambda \geq 0$ then $\lambda(v \wedge w) = \lambda v \wedge \lambda w$.

FVL(n) is the free vector lattice on n generators.

A strong unit is an element $u \in V$ such that for all $0 \le v \in V$ there exists a $0 \le \lambda \in \mathbb{R}$ such that $v \le \lambda u$.

A (real) vector lattice is an algebra $\mathbf{V} = (V, +, \wedge, \vee, \{\lambda\}_{\lambda \in \mathbb{R}}, \mathbf{0})$ such that

- $(V, +, \{\lambda\}_{\lambda \in \mathbb{R}}, 0)$ is a vector space,
- (V, \wedge, \vee) is a lattice,
- ▶ for all $t, v, w \in V$, $t + (v \land w) = (t + v) \land (t + w)$,
- ▶ for all $v, w \in V$ and for all $\lambda \in \mathbb{R}$, if $\lambda \geq 0$ then $\lambda(v \wedge w) = \lambda v \wedge \lambda w$.

FVL(n) is the free vector lattice on n generators.

A strong unit is an element $u \in V$ such that for all $0 \le v \in V$ there exists a $0 \le \lambda \in \mathbb{R}$ such that $v \le \lambda u$.

A unital vector lattice is a pair (V, u), where V is a vector lattice and u is a strong unit of V.

Representation of FVL(n)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is piecewise linear if there are finitely many linear polynomials w_1, \ldots, w_s such that

$$\forall x \in \mathbb{R}^n \ \exists i \in \{1,\ldots,s\} \ : \ f(x) = w_i(x).$$

Representation of FVL(n)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is piecewise linear if there are finitely many linear polynomials w_1, \ldots, w_s such that

$$\forall x \in \mathbb{R}^n \ \exists i \in \{1,\ldots,s\} \ : \ f(x) = w_i(x).$$

A function $f: \mathbb{R}^n \to \mathbb{R}$ is positively homogeneous if, for each $x \in \mathbb{R}^n$ and for all $0 \le \lambda$,

$$f(\lambda x) = \lambda f(x).$$

Representation of FVL(n)

A function $f: \mathbb{R}^n \to \mathbb{R}$ is piecewise linear if there are finitely many linear polynomials w_1, \ldots, w_s such that

$$\forall x \in \mathbb{R}^n \ \exists i \in \{1, \ldots, s\} \ : \ f(x) = w_i(x).$$

A function $f: \mathbb{R}^n \to \mathbb{R}$ is positively homogeneous if, for each $x \in \mathbb{R}^n$ and for all $0 \le \lambda$,

$$f(\lambda x) = \lambda f(x).$$

Baker-Beynon duality: FVL(n) is isomorphic to the set of all the continuous, piecewise linear and positively homogeneous functions $f: \mathbb{R}^n \to \mathbb{R}$, equipped with min, max, + and products by real scalars.

Vector lattices
Gauge functions
Star-shaped sets
Sum operations and units
Good sequences

Gauge functions

The 1-cut of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the set

$$C_f = \{x \in \mathbb{R}^n : f(x) \leq 1\}.$$

Gauge functions

The 1-cut of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the set

$$C_f = \{x \in \mathbb{R}^n : f(x) \leq 1\}.$$

The gauge function of a subset A of \mathbb{R}^n is the function $g_A : \mathbb{R}^n \to \mathbb{R}$ such that, for all $x \in \mathbb{R}^n$

$$g_A(x) = \inf\{\lambda \geq 0 : x \in \lambda A\},\$$

where
$$\lambda A = \{\lambda y : y \in A\}$$
.

Gauge functions

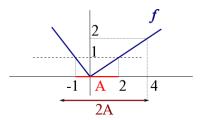
The 1-cut of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the set

$$C_f = \{x \in \mathbb{R}^n : f(x) \leq 1\}.$$

The gauge function of a subset A of \mathbb{R}^n is the function $g_A : \mathbb{R}^n \to \mathbb{R}$ such that, for all $x \in \mathbb{R}^n$

$$g_A(x) = \inf\{\lambda \geq 0 : x \in \lambda A\},\$$

where $\lambda A = \{\lambda y : y \in A\}$.



Gauge functions

The 1-cut of a function $f: \mathbb{R}^n \to \mathbb{R}$ is the set

$$C_f = \{x \in \mathbb{R}^n : f(x) \leq 1\}.$$

The gauge function of a subset A of \mathbb{R}^n is the function $g_A : \mathbb{R}^n \to \mathbb{R}$ such that, for all $x \in \mathbb{R}^n$

$$g_A(x) = \inf\{\lambda \geq 0 : x \in \lambda A\},\$$

where $\lambda A = \{\lambda y : y \in A\}$.

What kind of sets are the 1-cuts of the elements of $FVL(n)^+$? Is $FVL(n)^+$ the set of the gauge functions of some reasonable subsets of \mathbb{R}^n ?

Gauge functions: a simplification

We define the set of the gauge functions as

 $\mathcal{G}^n = \{f : \mathbb{R}^n \to \mathbb{R}^+, \text{ continuous and positively homogeneous}\}$

and we equip it with pointwise defined operations of min, max, + and products by real scalars.

Gauge functions: a simplification

We define the set of the gauge functions as

$$\mathcal{G}^n = \{f : \mathbb{R}^n \to \mathbb{R}^+, \text{ continuous and positively homogeneous}\}$$

and we equip it with pointwise defined operations of min, max, + and products by real scalars.

What kind of sets are the 1-cuts of the elements of \mathcal{G}^n ? Is \mathcal{G}^n the set of the gauge functions of some reasonable subsets of \mathbb{R}^n ?

Star-shaped sets

The ray departing from the origin 0 and through the point $x \neq 0$ is the set

$$\sigma_{\mathsf{X}} = \{\lambda \mathsf{X} : \mathsf{0} \le \lambda \in \mathbb{R}\}.$$

 $A \subseteq \mathbb{R}^n$ is a star-shaped set if and only if

- 1. 0 is in its interior
- 2. for each $x \neq 0$, $\sigma_x \cap A = [0, w]$ or $\sigma_x \cap A = \sigma_x$
- 3. A is closed
- 4. its formal boundary $\operatorname{bd}(A) = \{w : \exists x \neq 0 \text{ such that } \sigma_x \cap A = [0, w]\}$ is closed.

Star-shaped sets

The ray departing from the origin 0 and through the point $x \neq 0$ is the set

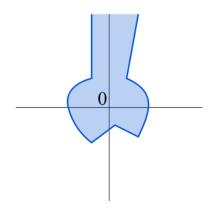
$$\sigma_{\mathsf{X}} = \{\lambda \mathsf{X} : \mathsf{0} \leq \lambda \in \mathbb{R}\}.$$

 $A \subseteq \mathbb{R}^n$ is a star-shaped set if and only if

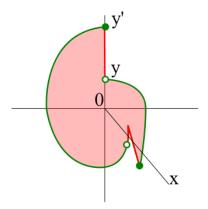
- 1. 0 is in its interior
- 2. for each $x \neq 0$, $\sigma_x \cap A = [0, w]$ or $\sigma_x \cap A = \sigma_x$
- 3. A is closed
- 4. its formal boundary $bd(A) = \{w : \exists x \neq 0 \text{ such that } \sigma_x \cap A = [0, w]\}$ is closed.

The set of all the star-shaped sets of \mathbb{R}^n is denoted by \mathbb{C}^n . It is closed by \cap and \cup .

Star-shaped sets



star-shaped set



set not star-shaped

A first correspondence

Lemma

If $A \in \mathcal{C}^n$, then

- i) $g_A(0) = 0$;
- ii) $g_A(x) = 0$ for each x such that the ray σ_x is completely contained in A;
- iii) for all $x \in \mathbb{R}^n$, $g_A(x) = 1$ if and only if $x \in \mathrm{bd}(A)$.

A first correspondence

Theorem

The functionals $\omega: \mathcal{G}^n \to \mathcal{C}^n$ defined as $\omega(f) = C_f$ and $\gamma: \mathcal{C}^n \to \mathcal{G}$ defined as $\gamma(A) = g_A$ are one the inverse of the other and define a bijection between \mathcal{G}^n and \mathcal{C}^n . They are also order reversing, and they give the correspondences:

$$\omega(f \wedge g) = \omega(f) \cup \omega(g), \qquad \gamma(A \cup B) = \gamma(A) \wedge \gamma(B),$$

 $\omega(f \vee g) = \omega(f) \cap \omega(g), \qquad \gamma(A \cap B) = \gamma(A) \vee \gamma(B),$

and

$$\omega(0) = \mathbb{R}^n, \qquad \gamma(\mathbb{R}^n) = 0.$$

Gauge sum

Given $A, B \in \mathcal{C}^n$, their gauge sum $A +_g B$ is the element $C \in \mathcal{C}^n$ such that, for all $x \in \mathbb{R}^n$,

$$g_C(x) = g_A(x) + g_B(x).$$

Thus,
$$\omega(f+g) = \omega(f) +_g \omega(g)$$
 and $\gamma(A +_g B) = \gamma(A) + \gamma(B)$.

Gauge sum

Given $A, B \in \mathcal{C}^n$, their gauge sum $A +_g B$ is the element $C \in \mathcal{C}^n$ such that, for all $x \in \mathbb{R}^n$,

$$g_C(x) = g_A(x) + g_B(x).$$

Thus,
$$\omega(f+g) = \omega(f) +_g \omega(g)$$
 and $\gamma(A +_g B) = \gamma(A) + \gamma(B)$.

Lemma

Each $A \in C^n$ is completely described by its intersections with the rays in \mathbb{R}^n departing from the origin:

$$A=\bigsqcup_{|x|=1}\sigma_X\cap A.$$

Gauge sum

Given $A, B \in \mathcal{C}^n$, their gauge sum $A +_g B$ is the element $C \in \mathcal{C}^n$ such that, for all $x \in \mathbb{R}^n$,

$$g_C(x) = g_A(x) + g_B(x).$$

Thus,
$$\omega(f+g) = \omega(f) +_{g} \omega(g)$$
 and $\gamma(A +_{g} B) = \gamma(A) + \gamma(B)$.

For each $x \in \mathbb{R}^n$ with |x| = 1,

$$\sigma_{X} \cap (A +_{g} B) = \begin{cases} \sigma_{X} \cap A & \text{if } \sigma_{X} \cap B = \sigma_{X}, \\ \sigma_{X} \cap B & \text{if } \sigma_{X} \cap A = \sigma_{X}, \\ \left[0, \frac{ab}{a+b} x\right] & \text{if } \sigma_{X} \cap A = [0, ax], \ \sigma_{X} \cap B = [0, bx]. \end{cases}$$

The multiplication by a natural scalar is not an iterated gauge sum

$$nA = \{nx : x \in A\}$$

Thus, if $\sigma_X \cap A = [0, a]$, then $\sigma_X \cap nA = [0, na]$.

$$n.A = \underbrace{A +_{g} A +_{g} \dots +_{g} A}_{n \text{ times}}$$

Thus, if $\sigma_X \cap A = [0, a]$, then $\sigma_X \cap n.A = [0, \frac{1}{n}a]$

$$n.A = \frac{1}{n}A$$

Units

A unit of C^n is any element $U \in C^n$ such that for any element $A \in C^n$ there exists a positive integer n such that $n \cdot U \subseteq A$.

A unit is any element which gauge function is a unit of \mathcal{G}^n .

The units of C^n are exactly the compact elements of C^n .

Fixed a unit $U \in \mathcal{C}^n$, the unital interval is the set

$$[U,\mathbb{R}^n]=\{A\in\mathcal{C}^n:U\subseteq A\}.$$

Truncated gauge sum

Given $A, B \in \mathcal{C}^n$ and the unit U, the truncated gauge sum $A \oplus_{q} B$ is the element $C = (A +_{q} B) \cup U \in \mathcal{C}^n$.

Thus,
$$\gamma(A \oplus_g B) = \gamma(A) \oplus \gamma(B)$$
.

$$\sigma_{X} \cap (A \oplus_{g} B) =$$

$$\begin{cases} \sigma_{X} \cap A & \text{if } \sigma_{X} \cap B = \sigma_{X} \text{ and } \sigma_{X} \cap U \subseteq \sigma_{X} \cap A, \\ \sigma_{X} \cap B & \text{if } \sigma_{X} \cap A = \sigma_{X} \text{ and } \sigma_{X} \cap U \subseteq \sigma_{X} \cap B, \\ \sigma_{X} \cap U & \text{if } \sigma_{X} \cap B = \sigma_{X} \text{ and } \sigma_{X} \cap A \subseteq \sigma_{X} \cap U, \\ \sigma_{X} \cap U & \text{if } \sigma_{X} \cap A = \sigma_{X} \text{ and } \sigma_{X} \cap B \subseteq \sigma_{X} \cap U, \\ (\sigma_{X} \cap U) \cup \left[0, \frac{ab}{a+b}\right] & \text{otherwise.} \end{cases}$$

Good sequences of star-shaped sets

Given a fixed unit $U \in \mathcal{C}^n$, a good sequence of star-shaped sets is a sequence $(A_i)_{i \in \mathbb{N}}$ of elements $A_i \in \mathcal{C}^n$ such that

- 1) there exists an index $j \in \mathbb{N}$ such that, for all $i \geq j$, $A_i = \mathbb{R}^n$;
- 2) $U \subseteq A_i$, for all $i \in \mathbb{N}$;
- 3) $A_i \oplus_g A_{i+1} = A_i$, for all $i \in \mathbb{N}$.

Good sequences of star-shaped sets

Given a fixed unit $U \in \mathcal{C}^n$, a good sequence of star-shaped sets is a sequence $(A_i)_{i \in \mathbb{N}}$ of elements $A_i \in \mathcal{C}^n$ such that

- 1) there exists an index $j \in \mathbb{N}$ such that, for all $i \geq j$, $A_i = \mathbb{R}^n$;
- 2) $U \subseteq A_i$, for all $i \in \mathbb{N}$;
- 3) $A_i \oplus_g A_{i+1} = A_i$, for all $i \in \mathbb{N}$.

Lemma

Fixed a unit $U \in \mathcal{C}^n$, for each $A \in \mathcal{C}^n$ there exists a unique good sequence of star-shaped sets $(A_i)_{i \in \mathbb{N}}$ such that

$$A = A_1 +_g A_2 +_g \cdots.$$

Polyhedral star-shaped sets

A closed half-space in \mathbb{R}^n is a subset $H \subset \mathbb{R}^n$ of the form

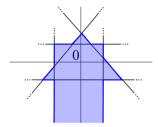
$$H = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n : a \cdot x + b = a_1 x_1 + \dots + a_n x_n + b \ge 0\},\$$

where $0 \neq a = (a_1, \dots, a_n) \in \mathbb{R}^n$ and b is a fixed real number.

Polyhedral star-shaped sets

A star-shaped set $A \in \mathcal{C}^n$ is polyhedral if it is a finite union of finite intersections of closed half-spaces, that is if there exists a finite number of closed half-spaces H_{ij} , such that $A = \bigcup_i \bigcap_i H_{ij}$.

 \mathcal{SP}^n is the set of polyhedral elements in \mathcal{C}^n .



Polyhedral star-shaped sets

A star-shaped set $A \in \mathcal{C}^n$ is polyhedral if it is a finite union of finite intersections of closed half-spaces, that is if there exists a finite number of closed half-spaces H_{ij} , such that $A = \bigcup_i \bigcap_i H_{ij}$.

 \mathcal{SP}^n is the set of polyhedral elements in \mathcal{C}^n .

Theorem (Characterization of SP^n)

The elements of SP^n are exactly those subsets of \mathbb{R}^n that can be written as finite unions of finite intersections of closed half-spaces whose interiors contain the point 0.

Two Lemmas for a polyhedral translation

Lemma

 $FVL(n)^+$ is the subset of FVL(n) of those elements that can be written as finitely many meets of finitely many joins of linear words joined with 0:

$$\mathit{FVL}(n)^+ = \left\{ f \in \mathit{FVL}(n) : f = \bigwedge_{k \in \mathcal{K}} \bigvee_{j \in J} \left(\sum_{i=1}^n \lambda_{ijk} \pi_i \vee 0 \right) \right\}.$$

Lemma

If H is a closed half-space of \mathbb{R}^n which contains 0 in its interior, then g_H is an element of $FVL(n)^+$ of the form $\sum_{i=1}^n \lambda_i \pi_i \vee 0$, and vice versa.

Theorem

 ω and γ provide an isomorphism between $\langle FVL(n)^+, \wedge, \vee, +, \{\lambda\}_{\lambda \in \mathbb{R}}, 0 \rangle$ and $\langle \mathcal{SP}^n, \cup, \cap, +_{\mathsf{g}}, \{\frac{1}{\lambda}\}_{\lambda \in \mathbb{R}}, \mathbb{R}^n \rangle$ which preserves the units.

Theorem (Representation)

Fixed a unit $U \in \mathcal{SP}^n$, for each $A \in \mathcal{SP}^n$ there exists a unique good sequence of polyhedral star-shaped sets $(A_i)_{i \in \mathbb{N}}$ such that $A = A_1 +_g A_2 +_g \cdots$.

Thank you for your attention.

Bibliography

- K. A. Baker, Free Vector Vattices, Canadian Journal of Mathematics. 20 (1968), 58-66.
- W. M. Beynon, Duality Theorems for Finitely Generated Vector Lattices, Proc. London Math. Soc. (3) 31 (1975 part 1), 114-128.
- G. Birkchoff, *Lattice Theory*, third ed., American Mathematical Society Colloquium Publications vol. 25, American Mathematical Society, Providence, R.I., 1979.

Bibliography

- R. L. O. Cignoli, I. M. D'Ottaviano and D. Mundici, *Algebraic Foundations of Many-Valued Reasoning*, Kluwer Academic Publishers, Dordrecht, 2000.
- R. J.Gardner *Geometric Tomography*, second ed., Encyclopedia of Mathematics and Its Applications, vol. 58, Cambridge University Press, Cambridge, 2006.
- D. Mundici, *Interpretation of AF C*-algebras in Łukasiewicz* sentential calculus. J. Funct. Anal. 65 (1986), no. 1, 1563.