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Birkhoff-Urquhart-Hartung duality
Finite case

• Finite distributive lattice D

Dual = poset of join-irreducible
elements with ≤D ;

= poset of meet-irreducible
elements with ≤D .

• Finite lattice L

Dual = polarity (aka context) of
join- and meet-irreducible
elements, with ≤D .
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Urquhart-Hartung duality
Infinite case

• Urquhart (1978): dual of lattice is one space having
maximally disjoint filter-ideal pairs as points;

• Hartung (1992): dual of lattice is a topological polarity;
• Gehrke, Harding (2001): explanation of these results

using canonical extensions.

3 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Urquhart-Hartung duality
Infinite case

• Urquhart (1978): dual of lattice is one space having
maximally disjoint filter-ideal pairs as points;

• Hartung (1992): dual of lattice is a topological polarity;

• Gehrke, Harding (2001): explanation of these results
using canonical extensions.

3 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Urquhart-Hartung duality
Infinite case

• Urquhart (1978): dual of lattice is one space having
maximally disjoint filter-ideal pairs as points;

• Hartung (1992): dual of lattice is a topological polarity;
• Gehrke, Harding (2001): explanation of these results

using canonical extensions.

3 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Canonical extensions
History

• Jónsson, Tarski (1951): algebraic characterization of
double dual of a Boolean algebra as its canonical
extension;

• Gehrke, Jónsson (1994): generalization to distributive
lattices;

• Gehrke, Harding (2001): canonical extensions for arbitrary
bounded lattices.
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Canonical extensions
Existence & uniqueness

Theorem
Any lattice L can be embedded in a complete lattice L

δ
in a

dense and compact way:

• (dense) The lattice L both
��

-generates and��
-generates L

δ
,

• (compact) If S,T ⊆ L and
�

S ≤ �T in L
δ
, then there

exist finite S
� ⊆ S, T

� ⊆ T such that
�

S
� ≤ �T

�
in L.

Moreover, the completion L
δ

is the unique dense and compact

completion of L up to isomorphism.
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Canonical extensions
Deriving duality for lattices

• For a distributive lattice D, the canonical extension of D
δ is

the double dual, i.e.,

• D
δ is isomorphic to the frame of downsets of the poset of

prime filters of D.
• Idea: for an arbitrary lattice L , pretend that L

δ is a double
dual...

• ...and derive from this what the dual must be.
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Topological duality for lattices
Definition of dual object

L
δ

L

X

Y

a

• L a lattice, L � L
δ its canonical

extension.
• X := J

∞(Lδ), Y := M
∞(Lδ).

• For a ∈ L , let â := {x ∈ X : x ≤ a},
ǎ := {y ∈ Y : a ≤ y}.

• Topology on X : {â : a ∈ L} subbasis of
closed sets,

• Topology on Y : {ǎ : a ∈ L} subbasis of
closed sets.

• R: order of L
δ restricted to X × Y .

• L distributive⇒ X � Y are spectral
dual spaces of L .
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• Topology on Y : {ǎ : a ∈ L} subbasis of

closed sets.
• R: order of L

δ restricted to X × Y .
• L distributive⇒ X � Y are spectral

dual spaces of L .

8 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Topological duality for lattices
Definition of dual object

L
δ

L

X

Y

a

• L a lattice, L � L
δ its canonical

extension.
• X := J

∞(Lδ), Y := M
∞(Lδ).
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Comparison with
Urquhart-Hartung duality

Theorem
Let L be a lattice. Then

1 The topological polarity (J∞(Lδ),M∞(Lδ),R) is isomorphic

to Hartung’s topological polarity of maximally disjoint filters

and ideals;

2 Urquhart’s doubly ordered topological space (Z , τ,≤1,≤2)
is isomorphic to the maximal points of the set

R
c ⊆ J

∞(Lδ)×M
∞(Lδ) with respect to the order ≥Lδ × ≤Lδ .
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Application
Ill-behaved dual spaces

Example (Dual space is not sober)

L

.....

• Here, L
δ = L ;

• J
∞(Lδ) � N � M

∞(Lδ) with the cofinite topology;
• this topology is not sober (the entire space is irreducible).
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Ill-behaved dual spaces

Example (Dual space is not coherent)

L

�→ L
δ

J
∞(Lδ)

�b0
c�c0

c

�b0
c ∩ �c0

c

b2 c2

a2b1 c1

a1b0 c0

a0

..
.

..
.

..
.

0

z0z1z2. . .

b

a

c
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• Hartung’s dual spaces may be topologically wild;
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• Can we make the dual spaces spectral/CTOD?
• I.e., can we naturally associate distributive lattices with a
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Distributive envelopes
From Hartung’s dual space

• Recall: topology on (X ,≤) = (J∞(Lδ),≤Lδ) was generated
by taking {â : a ∈ L} as a subbasis for the closed sets;

• Alternatively, consider the sublattice of D(X ,≤) generated
by the elements {â : a ∈ L};

• This lattice froms a basis for the closed sets, and it is
distributive.

• We denote this lattice by D
∧(L) and call it the distributive

∧-envelope of L ;
• Order-dually, the sublattice of D(Y ,≤) generated by
{ǎc : a ∈ L}: D

∨(L), the distributive ∨-envelope of L .
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by taking {â : a ∈ L} as a subbasis for the closed sets;

• Alternatively, consider the sublattice of D(X ,≤) generated
by the elements {â : a ∈ L};
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Algebraic properties

• The distributive envelopes D
∧(L) and D

∨(L) arose
naturally as bases for the dual spaces of L ;

• Question: how to characterize these distributive lattices
algebraically?

• The embedding L � D
∧(L) is ∧-preserving;

• The embedding L � D
∨(L) is ∨-preserving.

• What other properties do the embeddings have?
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Admissible subsets

Remark
If a ∧-embedding of L into a distributive lattice D preserves the
join of a finite S ⊆ L , then:

∀a ∈ L : a ∧
�

S =
�

s∈S
(a ∧ s). (1)

Definition

• A finite S ⊆ L is
�

-admissible if S satisfies (1).
• Order-dually, a finite S ⊆ L is

�
-admissible if

∀a ∈ L : a ∨
�

S =
�

s∈S
(a ∨ s). (2)

16 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Admissible subsets

Remark
If a ∧-embedding of L into a distributive lattice D preserves the
join of a finite S ⊆ L , then:

∀a ∈ L : a ∧
�

S =
�

s∈S
(a ∧ s). (1)

Definition

• A finite S ⊆ L is
�

-admissible if S satisfies (1).
• Order-dually, a finite S ⊆ L is

�
-admissible if

∀a ∈ L : a ∨
�

S =
�

s∈S
(a ∨ s). (2)

16 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Admissible subsets

Remark
If a ∧-embedding of L into a distributive lattice D preserves the
join of a finite S ⊆ L , then:

∀a ∈ L : a ∧
�

S =
�

s∈S
(a ∧ s). (1)

Definition

• A finite S ⊆ L is
�

-admissible if S satisfies (1).

• Order-dually, a finite S ⊆ L is
�

-admissible if

∀a ∈ L : a ∨
�

S =
�

s∈S
(a ∨ s). (2)

16 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Admissible subsets

Remark
If a ∧-embedding of L into a distributive lattice D preserves the
join of a finite S ⊆ L , then:

∀a ∈ L : a ∧
�

S =
�

s∈S
(a ∧ s). (1)

Definition

• A finite S ⊆ L is
�

-admissible if S satisfies (1).
• Order-dually, a finite S ⊆ L is

�
-admissible if

∀a ∈ L : a ∨
�

S =
�

s∈S
(a ∨ s). (2)

16 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Preserving admissible
joins/meets

• So, a ∧-embedding of L into a distributive lattice D can at
most preserve joins of admissible sets.

• Question: Can one preserve all admissible joins?

Theorem (Bruns, Lakser (1970))
Let L be a lattice.

1 There exists a ∧-embedding of L into a distributive lattice

D which preserves all joins of
�

-admissible subsets of S.

2 There exists a ∨-embedding of L into a distributive lattice

E which preserves all meets of
�

-admissible subsets of S.

Proof (Variant).
Take D := D

∧(L) and E := D
∨(L). �
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Characterization by universal property

Theorem
The extension (̂·) : L → D

∧(L) is the free distributive ∧- and

admissible-
�

-preserving extension of L.

That is, for any f : L → D such that f is (∧,a
�

)-preserving and

D distributive, there is a unique hom. f̄ : D
∧(L)→ D such that

commutes.

The dual statement holds for D
∨(L).
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That is, for any f : L → D such that f is (∧,a
�

)-preserving and

D distributive, there is a unique hom. f̄ : D
∧(L)→ D such that

3.1 Universal property of D∧(L)

Our first objective in this section is to prove that D∧(L) is a universal distributive lattice envelope of

the meet-semilattice reduct of L. We first make this statement precise.

Definition 1. Let L be a lattice. We call a finite1 subset M ⊆ L join-admissible if, for every c ∈ L,

c ∧
�

M =
�

m∈M

(c ∧m).

We say that a function f : L → K between lattices L and K preserves admissible joins2 if, for any

join-admissible M ⊆ L, f(
�

M) =
�

m∈M f(m).

Theorem 2. Let L be a lattice and D a distributive lattice. If f : L → D preserves meets and

admissible joins, then there exists a unique homomorphism f̄ : D∧(L) → D such that f̄ ◦ (̂·) = f .

L D∧(L)

D

f
f̄

(̂·)

Moreover, if f is injective, then so is f̄ .

Before we prove the theorem, let us make a few remarks.

Remark 3. 1. Of course, an order-dual universal property holds for the distributive lattice D∨(L)

of finite unions of the sets ǎ which form a basis for the topology of closed sets on Y .

2. This result is a finitary analogue of the injective hull of a meet-semilattice given by Bruns and

Lakser [?].

3. By definition, the image of (̂·) is join-dense in the lattice D∧(L). Therefore, the following

characterisation of D∧(L) easily follows from the Theorem:

Corollary 4. If f : L → D is an injective (∧, a∨)-preserving map such that f [L] is join-dense

in D, then D is isomorphic to D∧(L), via the isomorphism f̄ .

To prove the Theorem, we will first connect the concept of join-admissible subset with the lattice

D∧(L).

Lemma 5. Let a ∈ L and M ⊆ L a finite subset. If â ⊆
�

m∈M m̂, then a =
�
{a∧m | m ∈ M}, and

{a ∧m | m ∈ M} is join-admissible.

Proof. To prove that a =
�
{a ∧ m | m ∈ M}, the inequality ≥ is clear. To prove ≤, let x ∈ â be

arbitrary. By assumption, we may pick m ∈ M such that x ∈ m̂. Then x ≤ a∧m ≤
�
{a∧m | m ∈ M}.

The required inequality now follows since (̂·) is an order-embedding.

1We will mainly be concerned with finite joins and meets in this section, and thus often drop the adjective ‘finite’.
2We will also write: “f is a∨-preserving”.

2

commutes.

The dual statement holds for D
∨(L).

18 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Distributive envelopes
Characterization by universal property

Theorem
The extension (̂·) : L → D

∧(L) is the free distributive ∧- and

admissible-
�

-preserving extension of L.

That is, for any f : L → D such that f is (∧,a
�

)-preserving and

D distributive, there is a unique hom. f̄ : D
∧(L)→ D such that

3.1 Universal property of D∧(L)

Our first objective in this section is to prove that D∧(L) is a universal distributive lattice envelope of

the meet-semilattice reduct of L. We first make this statement precise.

Definition 1. Let L be a lattice. We call a finite1 subset M ⊆ L join-admissible if, for every c ∈ L,

c ∧
�

M =
�

m∈M

(c ∧m).

We say that a function f : L → K between lattices L and K preserves admissible joins2 if, for any

join-admissible M ⊆ L, f(
�

M) =
�

m∈M f(m).

Theorem 2. Let L be a lattice and D a distributive lattice. If f : L → D preserves meets and

admissible joins, then there exists a unique homomorphism f̄ : D∧(L) → D such that f̄ ◦ (̂·) = f .

L D∧(L)

D

f
f̄

(̂·)

Moreover, if f is injective, then so is f̄ .

Before we prove the theorem, let us make a few remarks.

Remark 3. 1. Of course, an order-dual universal property holds for the distributive lattice D∨(L)

of finite unions of the sets ǎ which form a basis for the topology of closed sets on Y .

2. This result is a finitary analogue of the injective hull of a meet-semilattice given by Bruns and

Lakser [?].

3. By definition, the image of (̂·) is join-dense in the lattice D∧(L). Therefore, the following

characterisation of D∧(L) easily follows from the Theorem:

Corollary 4. If f : L → D is an injective (∧, a∨)-preserving map such that f [L] is join-dense

in D, then D is isomorphic to D∧(L), via the isomorphism f̄ .

To prove the Theorem, we will first connect the concept of join-admissible subset with the lattice

D∧(L).

Lemma 5. Let a ∈ L and M ⊆ L a finite subset. If â ⊆
�

m∈M m̂, then a =
�
{a∧m | m ∈ M}, and

{a ∧m | m ∈ M} is join-admissible.

Proof. To prove that a =
�
{a ∧ m | m ∈ M}, the inequality ≥ is clear. To prove ≤, let x ∈ â be

arbitrary. By assumption, we may pick m ∈ M such that x ∈ m̂. Then x ≤ a∧m ≤
�
{a∧m | m ∈ M}.

The required inequality now follows since (̂·) is an order-embedding.

1We will mainly be concerned with finite joins and meets in this section, and thus often drop the adjective ‘finite’.
2We will also write: “f is a∨-preserving”.

2

commutes.

The dual statement holds for D
∨(L).
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Distributive envelopes
The constructive way

• Call a subset I of L an a-ideal if it is a downset which is
closed under taking joins of

�
-admissible sets.

Proposition
The poset of finitely generated a-ideals forms a distributive

lattice, and the assignment sending a ∈ L to ↓a is isomorphic

to the distributive ∧-envelope L � D
∧(L).

• Order-dually, D
∨(L) can be constructed as the finitely

generated a-filters of L .
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Comparison with injective hull

• Bruns and Lakser (1970) construct the injective hull of a
meet-semilattice;

• Our ideals are very much inspired by theirs, except that we
only allow finitary joins;

• The injective hull of L (viewed as a meet-semilattice) can
be recovered as the free dcpo completion of D

∧(L).
• Thus, our construction decomposes Bruns and Lakser’s

as a finitary construction followed by a dcpo completion
(cf. Jung, Moshier, Vickers 2009).
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Distributive envelopes
A categorical view

Definition
A function f : L1 → L2 between lattices is

�
-admissible if

• f preserves ∧ and admissible
�

, and
• For any

�
-admissible S ⊆ L1, the set f [S] ⊆ L2 is�

-admissible.

Let Lat∧,a∨ denote the category of lattices with
�

-admissible
functions.

Order-dually, we define the notion of
�

-admissible function and
the category Lat∨,a∧.

• Beware: not every lattice homomorphism is
�

-admissible.
• However: every surjective lattice homomorphism, and

every homomorphism into a distributive lattice, is both�
-admissible and

�
-admissible (i.e., admissible).
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Corollary

1 The assignment L �→ D
∧(L) extends to a functor

D
∧ : Lat∧,a∨ → DLat which is left adjoint to the inclusion

functor U
∧ : DLat→ Lat∧,a∨.

2 The assignment L �→ D
∨(L) extends to a functor

D
∨ : Lat∨,a∧ → DLat which is left adjoint to the inclusion

functor U
∨ : DLat→ Lat∨,a∧.
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Recap

• Hartung’s topological polarity (X ,Y ,R) of a lattice L is
isomorphic to

(J∞(Lδ),M∞(Lδ),≤Lδ).

• The sublattice of D(J∞(Lδ),≤Lδ) generated by {â : a ∈ L}
is D

∧(L).
• The sublattice of D(M∞(Lδ),≤Lδ) generated by
{ǎc : a ∈ M} is D

∨(L).
• Thus, we have two spectral spaces X̂ := (D∧(L))∗ and

Ŷ := (D∨(L))∗ naturally associated to L .
• The adjunction � : D

∧(L)� D
∨(L) : �, which is defined

by requiring that �(â) := ǎ
c , dually gives a relation

R ⊆ X̂ × Ŷ .
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Questions at this point

• Question 1: What are the spaces X̂ and Ŷ , in terms of L?

• Question 2: How do X̂ and Ŷ relate to X = J
∞(Lδ) and

Y = M
∞(Lδ), respectively?

• Question 3: Which morphisms between lattices dualize?
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Admissibly prime filters

Definition

• We call a proper filter F ⊆ L admissibly prime if, for any
admissible S ⊆ L such that

�
S ∈ F , we have F ∩ S � ∅.

• For a ∈ L , we define â := {F adm. prime | a ∈ F}.
• Order-dually, we define admissibly prime ideals, and

ǎ := {I adm. prime | a ∈ I}.
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• For a ∈ L , we define â := {F adm. prime | a ∈ F}.
• Order-dually, we define admissibly prime ideals, and
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X̂ and Ŷ directly from L

Proposition

• The space X̂ is homeomorphic to the space of admissibly

prime filters of L with the topology generated by taking

{â : a ∈ L} as a subbasis for opens.

• The space Ŷ is homeomorphic to the space of admissibly

prime ideals of L with the topology generated by taking

{ǎ : a ∈ L} as a subbasis for opens.

• Under these homeomorphisms, the relation R ⊆ X̂ × Ŷ is

given by x R y iff Fx ∩ Iy � ∅.
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• The space Ŷ is homeomorphic to the space of admissibly

prime ideals of L with the topology generated by taking
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given by x R y iff Fx ∩ Iy � ∅.

26 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

X̂ as a completion

• Observe that X = J
∞(Lδ) naturally embeds in X̂ .

• On X , consider the quasi-uniformity generated by setting
as basic entourages, for a ∈ L ,

(âc × X) ∪ (X × â) = {(x, y) | x ∈ A → y ∈ A }.

• Then the space X̂ is the (topological reduct of) the
bicompletion of X , viewed as a quasi-uniform space.

• This follows from the following general result:

Theorem (Gehrke, Gregorieff, Pin (2010))
Let D ⊆ P(X) be a sublattice of a power set lattice. Then the

Stone dual space of D is homeomorphic to the bicompletion of

the quasi-uniform space X equipped with the Pervin

quasi-uniformity defined from D.
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Characterizing the dual objects

• From a lattice L , we get a topological polarity (X̂ , Ŷ ,R).

• Question: which topological polarities arise as duals?
• Easy answer: the ones in the image of (·)∗ ◦ �D∧,D∨� . . .
• Work in progress: ‘nice’ characterization.
• For this, we think of X̂ , Ŷ as (ordered) Boolean spaces,

i.e., we use the patch topologies.
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• For this, we think of X̂ , Ŷ as (ordered) Boolean spaces,

i.e., we use the patch topologies.

28 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Morphisms
• Recall: D

∧ is left adjoint to I : DLat→ Lat∧,a∨.

• It also follows that

Lat∧,a∨(L1, L2) � DLat(D∧(L1),D
∧(L2)).

• By Stone/Priestley duality, the latter is naturally isomorphic
to

Stone(X̂(L2), X̂(L1)) � Priestley(X̂(L2), X̂(L1)).

• Thus, the
�

-admissible maps from L1 to L2 are exactly
those maps which have functional duals from X̂(L2) to
X̂(L1).

• Order-dual statements hold for
�

-admissible maps and
functions from Ŷ(L2) to Ŷ(L1).

• For admissible maps, we may combine the two.
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• For admissible maps, we may combine the two.

29 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Morphisms
• Recall: D

∧ is left adjoint to I : DLat→ Lat∧,a∨.
• It also follows that

Lat∧,a∨(L1, L2) � DLat(D∧(L1),D
∧(L2)).

• By Stone/Priestley duality, the latter is naturally isomorphic
to

Stone(X̂(L2), X̂(L1)) � Priestley(X̂(L2), X̂(L1)).

• Thus, the
�

-admissible maps from L1 to L2 are exactly
those maps which have functional duals from X̂(L2) to
X̂(L1).

• Order-dual statements hold for
�

-admissible maps and
functions from Ŷ(L2) to Ŷ(L1).

• For admissible maps, we may combine the two.

29 / 30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Morphisms
• Recall: D

∧ is left adjoint to I : DLat→ Lat∧,a∨.
• It also follows that

Lat∧,a∨(L1, L2) � DLat(D∧(L1),D
∧(L2)).

• By Stone/Priestley duality, the latter is naturally isomorphic
to

Stone(X̂(L2), X̂(L1)) � Priestley(X̂(L2), X̂(L1)).

• Thus, the
�

-admissible maps from L1 to L2 are exactly
those maps which have functional duals from X̂(L2) to
X̂(L1).

• Order-dual statements hold for
�

-admissible maps and
functions from Ŷ(L2) to Ŷ(L1).
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