Gehrke & van Gool

Urquhart-Hartung duality Distributive

envelopes Recap &

Questions
New dual

spaces

Morphisms

Topological duality for lattices via canonical extensions

Mai Gehrke and Sam van Gool

LIAFA and CNRS, Université Paris-Diderot 7 (FR) Radboud Universiteit Nijmegen (NL)

> DTALC 13 June 2012 Oxford, United Kingdom

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes
Recap &

Questions

New dual spaces

Morphisms

Birkhoff-Urquhart-Hartung duality

Finite case

Gehrke & van Gool

Urquhart-Hartung duality

envelopes
Recap &
Questions

New dual spaces

Morphisms

Birkhoff-Urquhart-Hartung duality Finite case

• Finite distributive lattice D

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual

spaces

Morphisms

Birkhoff-Urquhart-Hartung duality Finite case

Finite distributive lattice D

Dual = poset of join-irreducible elements with \leq_D ;

Gehrke & van Gool

Urguhart-Hartung duality

envelopes Recap &

Questions New dual

spaces Morphisms

Distributive

Birkhoff-Urquhart-Hartung duality

Finite case

Finite distributive lattice D

Dual = poset of join-irreducible elements with \leq_D ;

= poset of meet-irreducible elements with \leq_D .

Urquhart-Hartung duality

envelopes Recap &

Questions

New dual

spaces Morphisms

Birkhoff-Urquhart-Hartung duality

Finite case

Finite distributive lattice D

Dual = poset of join-irreducible elements with \leq_D ;

= poset of meet-irreducible elements with \leq_D .

Finite lattice L

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces
Morphisms

Birkhoff-Urquhart-Hartung duality

Finite case

Finite distributive lattice D

Dual = poset of join-irreducible elements with \leq_D ;

= poset of meet-irreducible elements with \leq_D .

Finite lattice L

Dual = polarity (aka context) of join- and meet-irreducible elements, with \leq_D .

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual

spaces Morphisms

Birkhoff-Urquhart-Hartung duality

Finite case

Finite distributive lattice D

Dual = poset of join-irreducible elements with \leq_D ;

= poset of meet-irreducible elements with \leq_D .

Finite lattice L

Dual = polarity (aka context) of join- and meet-irreducible elements, with \leq_D .

Birkhoff-Urquhart-Hartung duality

Finite case

Finite distributive lattice D

Dual = poset of join-irreducible elements with \leq_D ;

= poset of meet-irreducible elements with \leq_D .

Finite lattice L

Dual = polarity (aka context) of join- and meet-irreducible elements, with \leq_D .

Gehrke &

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Urquhart-Hartung duality

Infinite case

 Urquhart (1978): dual of lattice is one space having maximally disjoint filter-ideal pairs as points; Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Urquhart-Hartung duality

Infinite case

- Urquhart (1978): dual of lattice is one space having maximally disjoint filter-ideal pairs as points;
- Hartung (1992): dual of lattice is a topological polarity;

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual

Morphisms

Urquhart-Hartung duality

Infinite case

- Urquhart (1978): dual of lattice is one space having maximally disjoint filter-ideal pairs as points;
- Hartung (1992): dual of lattice is a topological polarity;
- Gehrke, Harding (2001): explanation of these results using canonical extensions.

Gehrke &

Urquhart-Hartung duality

Distributive envelopes
Recap &

Questions

New dual spaces

Morphisms

Canonical extensions History

 Jónsson, Tarski (1951): algebraic characterization of double dual of a Boolean algebra as its canonical extension; Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes
Recap &

Questions

New dual

spaces

Morphisms

Canonical extensions History

- Jónsson, Tarski (1951): algebraic characterization of double dual of a Boolean algebra as its canonical extension;
- Gehrke, Jónsson (1994): generalization to distributive lattices;

Distributive envelopes

Recap & Questions

New dual

spaces Morphisms

Canonical extensions History

- Jónsson, Tarski (1951): algebraic characterization of double dual of a Boolean algebra as its canonical extension;
- Gehrke, Jónsson (1994): generalization to distributive lattices;
- Gehrke, Harding (2001): canonical extensions for arbitrary bounded lattices.

Gehrke &

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual

Morphisms

Canonical extensions

Existence & uniqueness

Theorem

Any lattice L can be embedded in a complete lattice L^{δ} in a dense and compact way:

Moreover, the completion L^{δ} is the unique dense and compact completion of L up to isomorphism.

Canonical extensions

Existence & uniqueness

Theorem

Any lattice L can be embedded in a complete lattice L^{δ} in a dense and compact way:

Moreover, the completion L^{δ} is the unique dense and compact completion of L up to isomorphism.

Canonical extensions

Existence & uniqueness

Theorem

Any lattice L can be embedded in a complete lattice L^{δ} in a dense and compact way:

- (compact) If $S, T \subseteq L$ and $\bigwedge S \subseteq \bigvee T$ in L^{δ} , then there exist finite $S' \subseteq S$, $T' \subseteq T$ such that $\bigwedge S' \subseteq \bigvee T'$ in L.

Moreover, the completion L^{δ} is the unique dense and compact completion of L up to isomorphism.

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Canonical extensions

Deriving duality for lattices

• For a distributive lattice D, the canonical extension of D^{δ} is the double dual, i.e.,

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Canonical extensions

- For a distributive lattice D, the canonical extension of D^{δ} is the double dual, i.e.,
- D^{δ} is isomorphic to the frame of downsets of the poset of prime filters of D.

Recap & Questions

New dual

Morphisms

Canonical extensions

- For a distributive lattice D, the canonical extension of D^{δ} is the double dual, i.e.,
- D^δ is isomorphic to the frame of downsets of the poset of prime filters of D.
- Idea: for an arbitrary lattice L, pretend that L^{δ} is a double dual...

Recap &

New dual

Morphisms

Canonical extensions

- For a distributive lattice D, the canonical extension of D^{δ} is the double dual, i.e.,
- D^δ is isomorphic to the frame of downsets of the poset of prime filters of D.
- Idea: for an arbitrary lattice L, pretend that L^{δ} is a double dual...
- ...and derive from this what the dual must be.

Gehrke & van Gool

Urquhart-Hartung duality Distributive

envelopes Recap &

Questions New dual

spaces

Morphisms

Canonical extensions

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes
Recap &

Questions New dual

spaces Morphisms

Canonical extensions

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Canonical extensions

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Canonical extensions

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Canonical extensions

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Canonical extensions

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Topological duality for lattices

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Topological duality for lattices

Definition of dual object

• L a lattice, $L \rightarrow L^{\delta}$ its canonical extension.

•
$$X := J^{\infty}(L^{\delta}), Y := M^{\infty}(L^{\delta}).$$

- L a lattice, $L \rightarrow L^{\delta}$ its canonical extension.
- $X := J^{\infty}(L^{\delta}), Y := M^{\infty}(L^{\delta}).$
- For $a \in L$, let $\hat{a} := \{x \in X : x \le a\}$, $\check{a} := \{y \in Y : a \le y\}$.

- L a lattice. $L \rightarrow L^{\delta}$ its canonical extension.
- $X := J^{\infty}(L^{\delta}), Y := M^{\infty}(L^{\delta}).$
- For $a \in L$, let $\hat{a} := \{x \in X : x \le a\}$, $\check{a} := \{ y \in Y : a \le y \}.$
- Topology on X: $\{\hat{a} : a \in L\}$ subbasis of closed sets.

- L a lattice. $L \rightarrow L^{\delta}$ its canonical extension.
- $X := J^{\infty}(L^{\delta}), Y := M^{\infty}(L^{\delta}).$
- For $a \in L$, let $\hat{a} := \{x \in X : x \le a\}$, $\check{a} := \{ y \in Y : a \le y \}.$
- Topology on X: $\{\hat{a} : a \in L\}$ subbasis of closed sets.
- Topology on $Y: \{\check{a}: a \in L\}$ subbasis of closed sets.

- L a lattice, $L \rightarrow L^{\delta}$ its canonical extension.
- $X := J^{\infty}(L^{\delta}), Y := M^{\infty}(L^{\delta}).$
- For $a \in L$, let $\hat{a} := \{x \in X : x \le a\}$, $\check{a} := \{y \in Y : a \le y\}$.
- Topology on X: {â : a ∈ L} subbasis of closed sets,
- Topology on Y: {ă : a ∈ L} subbasis of closed sets.
- R: order of L^{δ} restricted to $X \times Y$.

Recap &

New dual spaces

Morphisms

Topological duality for lattices

Definition of dual object

- L a lattice, $L \rightarrow L^{\delta}$ its canonical extension.
- $X := J^{\infty}(L^{\delta}), Y := M^{\infty}(L^{\delta}).$
- For $a \in L$, let $\hat{a} := \{x \in X : x \le a\}$, $\check{a} := \{y \in Y : a \le y\}$.
- Topology on X: {â : a ∈ L} subbasis of closed sets,
- Topology on Y: {ă : a ∈ L} subbasis of closed sets.
- R: order of L^{δ} restricted to $X \times Y$.
- L distributive ⇒ X ≅ Y are spectral dual spaces of L.

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Comparison with Urquhart-Hartung duality

Theorem
Let L be a lattice. Then

Gehrke &

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Comparison with Urquhart-Hartung duality

Theorem

Let L be a lattice. Then

1 The topological polarity $(J^{\infty}(L^{\delta}), M^{\infty}(L^{\delta}), R)$ is isomorphic to Hartung's topological polarity of maximally disjoint filters and ideals;

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Comparison with Urquhart-Hartung duality

Theorem

Let L be a lattice. Then

- **1** The topological polarity $(J^{\infty}(L^{\delta}), M^{\infty}(L^{\delta}), R)$ is isomorphic to Hartung's topological polarity of maximally disjoint filters and ideals;
- ② Urquhart's doubly ordered topological space $(Z, \tau, \leq_1, \leq_2)$ is isomorphic to the maximal points of the set $R^c \subseteq J^\infty(L^\delta) \times M^\infty(L^\delta)$ with respect to the order $\geq_{L^\delta} \times \leq_{L^\delta}$.

Gehrke & van Gool

Urquhart-Hartung duality

envelopes Recap &

Questions

New dual

spaces Morphisms

Application

III-behaved dual spaces

Example (Dual space is not sober)

Application

Ill-behaved dual spaces

Example (Dual space is not sober)

• Here, $L^{\delta} = L$;

Application

III-behaved dual spaces

Example (Dual space is not sober)

- Here, $L^{\delta} = L$;
- $J^{\infty}(L^{\delta}) \cong \mathbb{N} \cong M^{\infty}(L^{\delta})$ with the cofinite topology;

Application

Ill-behaved dual spaces

Example (Dual space is not sober)

- Here, $L^{\delta} = L$;
- $J^{\infty}(L^{\delta}) \cong \mathbb{N} \cong M^{\infty}(L^{\delta})$ with the cofinite topology;
- this topology is not sober (the entire space is irreducible).

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

spaces Morphisms

Application

III-behaved dual spaces

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Application

III-behaved dual spaces

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Application

III-behaved dual spaces

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Application

III-behaved dual spaces

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Application

III-behaved dual spaces

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Using Stone/Priestley duality for non-distributive lattices

Hartung's dual spaces may be topologically wild;

Gehrke &

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Using Stone/Priestley duality for non-distributive lattices

- Hartung's dual spaces may be topologically wild;
- Question: Can we get 'nicer' topologies on the duals?

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Using Stone/Priestley duality for non-distributive lattices

- Hartung's dual spaces may be topologically wild;
- Question: Can we get 'nicer' topologies on the duals?
- Can we make the dual spaces spectral/CTOD?

Gehrke &

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual

spaces

Morphisms

Using Stone/Priestley duality for non-distributive lattices

- Hartung's dual spaces may be topologically wild;
- Question: Can we get 'nicer' topologies on the duals?
- Can we make the dual spaces spectral/CTOD?
- I.e., can we naturally associate distributive lattices with a lattice L?

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

From Hartung's dual space

 Recall: topology on (X, ≤) = (J[∞](L^δ), ≤_{L^δ}) was generated by taking {â : a ∈ L} as a subbasis for the closed sets; Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

- Recall: topology on (X, ≤) = (J[∞](L^δ), ≤_{L^δ}) was generated by taking {â : a ∈ L} as a subbasis for the closed sets;
- Alternatively, consider the sublattice of D(X, ≤) generated by the elements {â : a ∈ L};

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

- Recall: topology on (X, ≤) = (J[∞](L^δ), ≤_{L^δ}) was generated by taking {â : a ∈ L} as a subbasis for the closed sets;
- Alternatively, consider the sublattice of D(X, ≤) generated by the elements {â : a ∈ L};
- This lattice froms a basis for the closed sets, and it is distributive.

New dual spaces

Morphisms

Distributive envelopes

- Recall: topology on (X, ≤) = (J[∞](L^δ), ≤_{L^δ}) was generated by taking {â : a ∈ L} as a subbasis for the closed sets;
- Alternatively, consider the sublattice of D(X, ≤) generated by the elements {â : a ∈ L};
- This lattice froms a basis for the closed sets, and it is distributive.
- We denote this lattice by D[^](L) and call it the distributive ^-envelope of L;

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

- Recall: topology on (X, ≤) = (J[∞](L^δ), ≤_{L^δ}) was generated by taking {â : a ∈ L} as a subbasis for the closed sets;
- Alternatively, consider the sublattice of D(X, ≤) generated by the elements {â : a ∈ L};
- This lattice froms a basis for the closed sets, and it is distributive.
- We denote this lattice by D[^](L) and call it the distributive ^-envelope of L;
- Order-dually, the sublattice of $\mathcal{D}(Y, \leq)$ generated by $\{\check{\mathbf{a}}^c : a \in L\}: D^{\vee}(L)$, the distributive \vee -envelope of L.

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

Gehrke & van Gool

Urquhart-Hartung duality Distributive

envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

Gehrke & van Gool

Urquhart-Hartung duality Distributive

envelopes

Recap & Questions
New dual

spaces

Morphisms

Distributive envelopes

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions
New dual

spaces Morphisms

Distributive envelopes

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions
New dual

spaces Morphisms

Distributive envelopes

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions
New dual

spaces Morphisms

Distributive envelopes

Gehrke & van Gool

Urquhart-Hartung duality Distributive

envelopes
Recap &

Questions

New dual spaces

Morphisms

Distributive envelopes

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions
New dual

spaces Morphisms

Distributive envelopes

Gehrke & van Gool

Urquhart-Hartung duality Distributive

envelopes
Recap &

Recap & Questions
New dual

spaces Morphisms

Distributive envelopes

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Algebraic properties

 The distributive envelopes D[∧](L) and D[∨](L) arose naturally as bases for the dual spaces of L; Gehrke & van Gool

Urguhart-Hartung duality

Distributive envelopes

Recap & Questions New dual

spaces

Morphisms

Algebraic properties

- The distributive envelopes $D^{\wedge}(L)$ and $D^{\vee}(L)$ arose naturally as bases for the dual spaces of L;
- Question: how to characterize these distributive lattices algebraically?

Recap & Questions

spaces Morphisms

Algebraic properties

- The distributive envelopes D^(L) and D^(L) arose naturally as bases for the dual spaces of L;
- Question: how to characterize these distributive lattices algebraically?
- The embedding $L \rightarrow D^{\wedge}(L)$ is \wedge -preserving;

Recap & Questions

spaces Morphisms

Algebraic properties

- The distributive envelopes D[^](L) and D[^](L) arose naturally as bases for the dual spaces of L;
- Question: how to characterize these distributive lattices algebraically?
- The embedding $L \rightarrow D^{\wedge}(L)$ is \wedge -preserving;
- The embedding $L \rightarrow D^{\vee}(L)$ is \vee -preserving.

Urquhart-Hartung duality

envelopes

Recap & Questions

New dual

spaces Morphisms

Algebraic properties

- The distributive envelopes D[∧](L) and D[∨](L) arose naturally as bases for the dual spaces of L;
- Question: how to characterize these distributive lattices algebraically?
- The embedding $L \rightarrow D^{\wedge}(L)$ is \wedge -preserving;
- The embedding $L \rightarrow D^{\vee}(L)$ is \vee -preserving.
- What other properties do the embeddings have?

Morphisms

Admissible subsets

Remark

If a \land -embedding of L into a distributive lattice D preserves the join of a finite $S \subseteq L$, then:

$$\forall a \in L : a \land \bigvee S = \bigvee_{s \in S} (a \land s). \tag{1}$$

Morphisms

Admissible subsets

Remark

If a \land -embedding of L into a distributive lattice D preserves the join of a finite $S \subseteq L$, then:

$$\forall a \in L : a \land \bigvee S = \bigvee_{s \in S} (a \land s). \tag{1}$$

Definition

Admissible subsets

Remark

If a \land -embedding of L into a distributive lattice D preserves the join of a finite $S \subseteq L$, then:

$$\forall a \in L : a \land \bigvee S = \bigvee_{s \in S} (a \land s). \tag{1}$$

Definition

• A finite $S \subseteq L$ is \bigvee -admissible if S satisfies (1).

Admissible subsets

Remark

If a \land -embedding of L into a distributive lattice D preserves the join of a finite $S \subseteq L$, then:

$$\forall a \in L : a \land \bigvee S = \bigvee_{s \in S} (a \land s). \tag{1}$$

Definition

- A finite $S \subseteq L$ is \bigvee -admissible if S satisfies (1).
- Order-dually, a finite $S \subseteq L$ is \land -admissible if

$$\forall a \in L : a \lor \bigwedge S = \bigwedge_{s \in S} (a \lor s). \tag{2}$$

Top. duality for lattices

Gehrke & van Gool

Urquhart-Hartung duality

envelopes

Recap & Questions

New dual spaces

Morphisms

Preserving admissible joins/meets

 So, a ∧-embedding of L into a distributive lattice D can at most preserve joins of admissible sets. Gehrke &

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual

spaces Morphisms

Preserving admissible joins/meets

- So, a ∧-embedding of L into a distributive lattice D can at most preserve joins of admissible sets.
- Question: Can one preserve all admissible joins?

Urquhart-Hartung duality

envelopes
Recap &
Questions

New dual

Morphisms

Distributive

Preserving admissible joins/meets

- So, a ∧-embedding of L into a distributive lattice D can at most preserve joins of admissible sets.
- Question: Can one preserve all admissible joins?

Theorem (Bruns, Lakser (1970)) Let L be a lattice.

Recap & Questions

New dual

spaces Morphisms

Preserving admissible joins/meets

- So, a ∧-embedding of L into a distributive lattice D can at most preserve joins of admissible sets.
- Question: Can one preserve all admissible joins?

Theorem (Bruns, Lakser (1970))

Let L be a lattice.

There exists a ∧-embedding of L into a distributive lattice D which preserves all joins of ∨-admissible subsets of S. Gehrke &

Urquhart-Hartung duality

envelopes
Recap &

Recap & Questions New dual

spaces Morphisms

Preserving admissible joins/meets

- So, a ∧-embedding of L into a distributive lattice D can at most preserve joins of admissible sets.
- Question: Can one preserve all admissible joins?

Theorem (Bruns, Lakser (1970))

Let L be a lattice.

- There exists a ∧-embedding of L into a distributive lattice D which preserves all joins of ∨-admissible subsets of S.
- ② There exists a ∨-embedding of L into a distributive lattice E which preserves all meets of ∧-admissible subsets of S.

Gehrke &

Urquhart-Hartung duality

Recap &

New dual spaces

Morphisms

Preserving admissible joins/meets

- So, a ∧-embedding of L into a distributive lattice D can at most preserve joins of admissible sets.
- Question: Can one preserve all admissible joins?

Theorem (Bruns, Lakser (1970))

Let L be a lattice.

- There exists a ∧-embedding of L into a distributive lattice D which preserves all joins of ∀-admissible subsets of S.
- 2 There exists a ∨-embedding of L into a distributive lattice E which preserves all meets of ∧-admissible subsets of S.

Proof (Variant).

Take
$$D := D^{\wedge}(L)$$
 and $E := D^{\vee}(L)$.

Top. duality for lattices

Gehrke &

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

Characterization by universal property

Theorem

The extension $(\hat{\cdot}): L \to D^{\wedge}(L)$ is the free distributive \wedge - and admissible- \vee -preserving extension of L.

Gehrke &

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

spaces Morphisms

Distributive envelopes

Characterization by universal property

Theorem

The extension $(\hat{\cdot}): L \to D^{\wedge}(L)$ is the free distributive \wedge - and admissible- \vee -preserving extension of L.

That is, for any $f:L\to D$ such that f is $(\land,a\bigvee)$ -preserving and D distributive, there is a unique hom. $\bar f:D^{\land}(L)\to D$

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual

spaces Morphisms

Distributive envelopes

Characterization by universal property

Theorem

The extension $(\hat{\cdot}): L \to D^{\wedge}(L)$ is the free distributive \wedge - and admissible- \vee -preserving extension of L.

That is, for any $f:L\to D$ such that f is $(\land,a\lor)$ -preserving and D distributive, there is a unique hom. $\bar f:D^\land(L)\to D$ such that

commutes.

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual

spaces Morphisms

Distributive envelopes

Characterization by universal property

Theorem

The extension $(\hat{\cdot}): L \to D^{\wedge}(L)$ is the free distributive \wedge - and admissible- \vee -preserving extension of L.

That is, for any $f:L\to D$ such that f is $(\land,a\lor)$ -preserving and D distributive, there is a unique hom. $\bar f:D^\land(L)\to D$ such that

commutes.

The dual statement holds for $D^{\vee}(L)$.

Top. duality for lattices

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

The constructive way

 Call a subset I of L an a-ideal if it is a downset which is closed under taking joins of √-admissible sets. Top. duality for lattices

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

The constructive way

 Call a subset I of L an a-ideal if it is a downset which is closed under taking joins of

√-admissible sets.

Proposition

The poset of finitely generated a-ideals forms a distributive lattice, and the assignment sending $a \in L$ to $\downarrow a$ is isomorphic to the distributive \land -envelope $L \rightarrowtail D^{\land}(L)$.

Recap & Questions

Morphisms

New dual spaces

Distributive envelopes

The constructive way

 Call a subset I of L an a-ideal if it is a downset which is closed under taking joins of

√-admissible sets.

Proposition

The poset of finitely generated a-ideals forms a distributive lattice, and the assignment sending $a \in L$ to $\downarrow a$ is isomorphic to the distributive \land -envelope $L \rightarrowtail D^{\land}(L)$.

 Order-dually, D^V(L) can be constructed as the finitely generated a-filters of L. Top. duality for lattices

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Comparison with injective hull

 Bruns and Lakser (1970) construct the injective hull of a meet-semilattice; Gehrke &

Urquhart-Hartung duality

envelopes

Recap & Questions

New dual spaces

Morphisms

Comparison with injective hull

- Bruns and Lakser (1970) construct the injective hull of a meet-semilattice;
- Our ideals are very much inspired by theirs, except that we only allow finitary joins;

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Comparison with injective hull

- Bruns and Lakser (1970) construct the injective hull of a meet-semilattice;
- Our ideals are very much inspired by theirs, except that we only allow finitary joins;
- The injective hull of L (viewed as a meet-semilattice) can be recovered as the free dcpo completion of D[^](L).

Gehrke &

Urquhart-Hartung duality

envelopes

Recap & Questions

New dual

spaces Morphisms

Comparison with injective hull

- Bruns and Lakser (1970) construct the injective hull of a meet-semilattice;
- Our ideals are very much inspired by theirs, except that we only allow finitary joins;
- The injective hull of L (viewed as a meet-semilattice) can be recovered as the free dcpo completion of $D^{\wedge}(L)$.
- Thus, our construction decomposes Bruns and Lakser's as a finitary construction followed by a dcpo completion (cf. Jung, Moshier, Vickers 2009).

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

A categorical view

Definition

A function $f: L_1 \to L_2$ between lattices is \bigvee -admissible if

Let $\mathbf{Lat}_{\wedge,a\vee}$ denote the category of lattices with \vee -admissible functions.

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

A categorical view

Definition

A function $f: L_1 \to L_2$ between lattices is \bigvee -admissible if

• f preserves \land and admissible \lor , and

Let $\mathbf{Lat}_{\wedge,a\vee}$ denote the category of lattices with \vee -admissible functions.

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

A categorical view

Definition

A function $f: L_1 \to L_2$ between lattices is \bigvee -admissible if

- f preserves \land and admissible \lor , and
- For any *V*-admissible *S* ⊆ *L*₁, the set *f*[*S*] ⊆ *L*₂ is *V*-admissible.

Let $\textbf{Lat}_{\wedge,a\vee}$ denote the category of lattices with \vee -admissible functions.

Recap & Questions

spaces Morphisms

Distributive envelopes

A categorical view

Definition

A function $f: L_1 \to L_2$ between lattices is \bigvee -admissible if

- f preserves \land and admissible \lor , and
- For any *V*-admissible *S* ⊆ *L*₁, the set *f*[*S*] ⊆ *L*₂ is *V*-admissible.

Let $\mathbf{Lat}_{\wedge,a\vee}$ denote the category of lattices with \vee -admissible functions.

Order-dually, we define the notion of \land -admissible function and the category **Lat** $_{\lor,a\land}$.

Distributive envelopes

A categorical view

Definition

A function $f: L_1 \to L_2$ between lattices is \bigvee -admissible if

- f preserves \land and admissible \lor , and
- For any *V*-admissible *S* ⊆ *L*₁, the set *f*[*S*] ⊆ *L*₂ is *V*-admissible.

Let $\textbf{Lat}_{\wedge,a\vee}$ denote the category of lattices with \vee -admissible functions.

Order-dually, we define the notion of \land -admissible function and the category $\mathbf{Lat}_{\lor,a\land}$.

Beware: not every lattice homomorphism is

√-admissible.

Distributive envelopes

A categorical view

Definition

A function $f: L_1 \to L_2$ between lattices is \bigvee -admissible if

- f preserves \land and admissible \lor , and
- For any *V*-admissible *S* ⊆ *L*₁, the set *f*[*S*] ⊆ *L*₂ is *V*-admissible.

Let $\textbf{Lat}_{\wedge,a\vee}$ denote the category of lattices with \vee -admissible functions.

Order-dually, we define the notion of \land -admissible function and the category $\mathbf{Lat}_{\lor,a\land}$.

- Beware: not every lattice homomorphism is
 √-admissible.
- However: every surjective lattice homomorphism, and every homomorphism into a distributive lattice, is both √-admissible and ∧-admissible (i.e., admissible).

Top. duality for lattices

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

A categorical view

Corollary

Urquhart-Hartung duality

envelopes
Recap &

Recap & Questions

New dual spaces

Morphisms

Distributive envelopes

A categorical view

Corollary

1 The assignment $L \mapsto D^{\wedge}(L)$ extends to a functor $D^{\wedge} : \mathbf{Lat}_{\wedge,a\vee} \to \mathbf{DLat}$ which is left adjoint to the inclusion functor $U^{\wedge} : \mathbf{DLat} \to \mathbf{Lat}_{\wedge,a\vee}$.

Urquhart-Hartung duality

Distributive envelopes
Recap &

Recap & Questions

New dual

spaces Morphisms

Distributive envelopes

A categorical view

Corollary

- 1 The assignment L → D^(L) extends to a functor D^: Lat_{A,a∨} → DLat which is left adjoint to the inclusion functor U^: DLat → Lat_{A,a∨}.
- 2 The assignment $L \mapsto D^{\vee}(L)$ extends to a functor $D^{\vee} : \mathbf{Lat}_{\vee,a\wedge} \to \mathbf{DLat}$ which is left adjoint to the inclusion functor $U^{\vee} : \mathbf{DLat} \to \mathbf{Lat}_{\vee,a\wedge}$.

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Recap

 Hartung's topological polarity (X, Y, R) of a lattice L is isomorphic to

$$(J^{\infty}(L^{\delta}), M^{\infty}(L^{\delta}), \leq_{L^{\delta}}).$$

Morphisms

Recap

 Hartung's topological polarity (X, Y, R) of a lattice L is isomorphic to

$$(J^{\infty}(L^{\delta}), M^{\infty}(L^{\delta}), \leq_{L^{\delta}}).$$

The sublattice of D(J[∞](L^δ), ≤_{L^δ}) generated by {â : a ∈ L} is D[∧](L).

Recap

 Hartung's topological polarity (X, Y, R) of a lattice L is isomorphic to

$$(J^{\infty}(L^{\delta}), M^{\infty}(L^{\delta}), \leq_{L^{\delta}}).$$

- The sublattice of D(J[∞](L^δ), ≤_{L^δ}) generated by {â : a ∈ L} is D[∧](L).
- The sublattice of $\mathcal{D}(M^{\infty}(L^{\delta}), \leq_{L^{\delta}})$ generated by $\{\check{\mathbf{a}}^c : \mathbf{a} \in M\}$ is $D^{\vee}(L)$.

Morphisms

Recap

 Hartung's topological polarity (X, Y, R) of a lattice L is isomorphic to

$$(J^{\infty}(L^{\delta}), M^{\infty}(L^{\delta}), \leq_{L^{\delta}}).$$

- The sublattice of D(J[∞](L^δ), ≤_{L^δ}) generated by {â : a ∈ L} is D[∧](L).
- The sublattice of $\mathcal{D}(M^{\infty}(L^{\delta}), \leq_{L^{\delta}})$ generated by $\{\check{\mathbf{a}}^c : \mathbf{a} \in M\}$ is $D^{\vee}(L)$.
- Thus, we have two spectral spaces $\hat{X} := (D^{\wedge}(L))_*$ and $\hat{Y} := (D^{\vee}(L))_*$ naturally associated to L.

Morphisms

New dual spaces

Recap

• Hartung's topological polarity (X, Y, R) of a lattice L is isomorphic to

$$(J^{\infty}(L^{\delta}), M^{\infty}(L^{\delta}), \leq_{L^{\delta}}).$$

- The sublattice of $\mathcal{D}(J^{\infty}(L^{\delta}), \leq_{L^{\delta}})$ generated by $\{\hat{a} : a \in L\}$ is $D^{\wedge}(L)$.
- The sublattice of $\mathcal{D}(M^{\infty}(L^{\delta}), \leq_{l} \delta)$ generated by $\{\check{\mathbf{a}}^c: \mathbf{a} \in M\} \text{ is } D^{\vee}(L).$
- Thus, we have two spectral spaces $\hat{X} := (D^{\wedge}(L))_*$ and $\hat{Y} := (D^{\vee}(L))_*$ naturally associated to L.
- The adjunction $\diamondsuit: D^{\land}(L) \leftrightarrows D^{\lor}(L) : \Box$, which is defined by requiring that $\diamondsuit(\hat{a}) := \check{a}^c$, dually gives a relation $R \subset \hat{X} \times \hat{Y}$

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Questions at this point

• Question 1: What are the spaces \hat{X} and \hat{Y} , in terms of L?

Urguhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Questions at this point

- Question 1: What are the spaces \hat{X} and \hat{Y} , in terms of L?
- Question 2: How do \hat{X} and \hat{Y} relate to $X = J^{\infty}(L^{\delta})$ and $Y = M^{\infty}(L^{\delta})$, respectively?

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Questions at this point

- Question 1: What are the spaces \hat{X} and \hat{Y} , in terms of L?
- Question 2: How do \hat{X} and \hat{Y} relate to $X = J^{\infty}(L^{\delta})$ and $Y = M^{\infty}(L^{\delta})$, respectively?
- Question 3: Which morphisms between lattices dualize?

Gehrke & van Gool

Urquhart-Hartung duality Distributive

envelopes Recap &

Questions

New dual spaces

Morphisms

Admissibly prime filters

Definition

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Admissibly prime filters

Definition

• We call a proper filter $F \subseteq L$ admissibly prime if, for any admissible $S \subseteq L$ such that $\bigvee S \in F$, we have $F \cap S \neq \emptyset$.

Recap & Questions

New dual spaces

Morphisms

Admissibly prime filters

Definition

- We call a proper filter $F \subseteq L$ admissibly prime if, for any admissible $S \subseteq L$ such that $\bigvee S \in F$, we have $F \cap S \neq \emptyset$.
- For $a \in L$, we define $\hat{a} := \{F \text{ adm. prime } | a \in F\}$.

Admissibly prime filters

Definition

- We call a proper filter $F \subseteq L$ admissibly prime if, for any admissible $S \subseteq L$ such that $\bigvee S \in F$, we have $F \cap S \neq \emptyset$.
- For $a \in L$, we define $\hat{a} := \{F \text{ adm. prime } | a \in F\}$.
- Order-dually, we define admissibly prime ideals, and
 ă := {I adm. prime | a ∈ I}.

Gehrke & van Gool

Urquhart-Hartung duality Distributive

envelopes Recap &

Questions New dual

spaces

Morphisms

\hat{X} and \hat{Y} directly from L

Proposition

Gehrke &

Urquhart-Hartung duality Distributive

envelopes

Recap & Questions

New dual spaces

Morphisms

\hat{X} and \hat{Y} directly from L

Proposition

 The space X̂ is homeomorphic to the space of admissibly prime filters of L with the topology generated by taking {â: a ∈ L} as a subbasis for opens.

Recap & Questions

spaces

Morphisms

\hat{X} and \hat{Y} directly from L

Proposition

- The space X̂ is homeomorphic to the space of admissibly prime filters of L with the topology generated by taking {â: a ∈ L} as a subbasis for opens.
- The space Ŷ is homeomorphic to the space of admissibly prime ideals of L with the topology generated by taking {ă : a ∈ L} as a subbasis for opens.

Recap & Questions

New dual spaces

Morphisms

\hat{X} and \hat{Y} directly from L

Proposition

- The space X̂ is homeomorphic to the space of admissibly prime filters of L with the topology generated by taking {â: a ∈ L} as a subbasis for opens.
- The space Ŷ is homeomorphic to the space of admissibly prime ideals of L with the topology generated by taking {ă : a ∈ L} as a subbasis for opens.
- Under these homeomorphisms, the relation $R \subseteq \hat{X} \times \hat{Y}$ is given by x R y iff $F_x \cap I_y \neq \emptyset$.

Recap & Questions

New dual spaces

Morphisms

\hat{X} as a completion

• Observe that $X = J^{\infty}(L^{\delta})$ naturally embeds in \hat{X} .

Recap & Questions

spaces Morphisms

\hat{X} as a completion

- Observe that $X = J^{\infty}(L^{\delta})$ naturally embeds in \hat{X} .
- On X, consider the quasi-uniformity generated by setting as basic entourages, for a ∈ L,

$$\left(\hat{a}^c\times X\right)\cup\left(X\times\hat{a}\right)=\{\left(x,y\right)\mid x\in A\rightarrow y\in A\}.$$

Morphisms

\hat{X} as a completion

- Observe that $X = J^{\infty}(L^{\delta})$ naturally embeds in \hat{X} .
- On X, consider the quasi-uniformity generated by setting as basic entourages, for a ∈ L,

$$(\hat{a}^c \times X) \cup (X \times \hat{a}) = \{(x, y) \mid x \in A \rightarrow y \in A\}.$$

• Then the space \hat{X} is the (topological reduct of) the bicompletion of X, viewed as a quasi-uniform space.

Questions

New dual

spaces

Morphisms

\hat{X} as a completion

- Observe that $X = J^{\infty}(L^{\delta})$ naturally embeds in \hat{X} .
- On X, consider the quasi-uniformity generated by setting as basic entourages, for a ∈ L,

$$(\hat{a}^c \times X) \cup (X \times \hat{a}) = \{(x, y) \mid x \in A \rightarrow y \in A\}.$$

- Then the space \hat{X} is the (topological reduct of) the bicompletion of X, viewed as a quasi-uniform space.
- This follows from the following general result:

Questions

New dual

spaces Morphisms

\hat{X} as a completion

- Observe that $X = J^{\infty}(L^{\delta})$ naturally embeds in \hat{X} .
- On X, consider the quasi-uniformity generated by setting as basic entourages, for a ∈ L,

$$(\hat{a}^c \times X) \cup (X \times \hat{a}) = \{(x, y) \mid x \in A \rightarrow y \in A\}.$$

- Then the space \hat{X} is the (topological reduct of) the bicompletion of X, viewed as a quasi-uniform space.
- This follows from the following general result:

Theorem (Gehrke, Gregorieff, Pin (2010))

Let $D \subseteq \mathcal{P}(X)$ be a sublattice of a power set lattice. Then the Stone dual space of D is homeomorphic to the bicompletion of the quasi-uniform space X equipped with the Pervin quasi-uniformity defined from D.

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

Characterizing the dual objects

• From a lattice L, we get a topological polarity (\hat{X}, \hat{Y}, R) .

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

- From a lattice L, we get a topological polarity (\hat{X}, \hat{Y}, R) .
- Question: which topological polarities arise as duals?

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

- From a lattice L, we get a topological polarity (\hat{X}, \hat{Y}, R) .
- Question: which topological polarities arise as duals?
- Easy answer: the ones in the image of (·)_{*} ∘ ⟨D[∧], D[∨]⟩ . . .

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual spaces

Morphisms

- From a lattice L, we get a topological polarity (\hat{X}, \hat{Y}, R) .
- Question: which topological polarities arise as duals?
- Easy answer: the ones in the image of $(\cdot)_* \circ \langle D^{\wedge}, D^{\vee} \rangle \dots$
- Work in progress: 'nice' characterization.

Gehrke &

Urquhart-Hartung duality

Distributive envelopes
Recap &

Questions

New dual

spaces

Morphisms

- From a lattice L, we get a topological polarity (\hat{X}, \hat{Y}, R) .
- Question: which topological polarities arise as duals?
- Easy answer: the ones in the image of $(\cdot)_* \circ \langle D^{\wedge}, D^{\vee} \rangle \dots$
- Work in progress: 'nice' characterization.
- For this, we think of \hat{X} , \hat{Y} as (ordered) Boolean spaces, i.e., we use the patch topologies.

Gehrke & van Gool

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual

spaces Morphisms

Morphisms

• Recall: D^{\wedge} is left adjoint to $I: \mathbf{DLat} \to \mathbf{Lat}_{\wedge, a^{\vee}}$.

Recap & Questions

New dual spaces

Morphisms

Morphisms

- Recall: D[∧] is left adjoint to I : **DLat** → **Lat**_{∧,a∨}.
- It also follows that

$$\textbf{Lat}_{\wedge,a\vee}(L_1,L_2)\cong\textbf{DLat}(D^{\wedge}(L_1),D^{\wedge}(L_2)).$$

Urquhart-Hartung duality

Distributive envelopes

Recap & Questions

New dual

spaces Morphisms

Morphisms

- Recall: D[∧] is left adjoint to I : **DLat** → **Lat**_{∧,a∨}.
- It also follows that

$$\textbf{Lat}_{\wedge,a\vee}(L_1,L_2)\cong\textbf{DLat}(D^{\wedge}(L_1),D^{\wedge}(L_2)).$$

 By Stone/Priestley duality, the latter is naturally isomorphic to

Stone
$$(\hat{X}(L_2), \hat{X}(L_1)) \cong \text{Priestley}(\hat{X}(L_2), \hat{X}(L_1)).$$

Morphisms

Morphisms

- Recall: D^{\wedge} is left adjoint to $I: \mathbf{DLat} \to \mathbf{Lat}_{\wedge,a\vee}$.
- It also follows that

$$\textbf{Lat}_{\wedge,a\vee}\big(L_1,L_2\big)\cong\textbf{DLat}\big(D^{\wedge}\big(L_1\big),D^{\wedge}\big(L_2\big)\big).$$

 By Stone/Priestley duality, the latter is naturally isomorphic to

Stone
$$(\hat{X}(L_2), \hat{X}(L_1)) \cong \text{Priestley}(\hat{X}(L_2), \hat{X}(L_1)).$$

• Thus, the \bigvee -admissible maps from L_1 to L_2 are exactly those maps which have functional duals from $\hat{X}(L_2)$ to $\hat{X}(L_1)$.

Morphisms

- Recall: D^{\wedge} is left adjoint to $I: \mathbf{DLat} \to \mathbf{Lat}_{\wedge,a\vee}$.
- It also follows that

$$\textbf{Lat}_{\wedge,a\vee}\big(L_1,L_2\big)\cong\textbf{DLat}\big(D^{\wedge}\big(L_1\big),D^{\wedge}\big(L_2\big)\big).$$

 By Stone/Priestley duality, the latter is naturally isomorphic to

Stone
$$(\hat{X}(L_2), \hat{X}(L_1)) \cong \text{Priestley}(\hat{X}(L_2), \hat{X}(L_1)).$$

- Thus, the \bigvee -admissible maps from L_1 to L_2 are exactly those maps which have functional duals from $\hat{X}(L_2)$ to $\hat{X}(L_1)$.
- Order-dual statements hold for \wedge -admissible maps and functions from $\hat{Y}(L_2)$ to $\hat{Y}(L_1)$.

New dual

Morphisms

Morphisms

- Recall: D[∧] is left adjoint to I : **DLat** → **Lat**_{∧,a∨}.
- It also follows that

$$\textbf{Lat}_{\wedge,a\vee}(L_1,L_2)\cong\textbf{DLat}(D^{\wedge}(L_1),D^{\wedge}(L_2)).$$

 By Stone/Priestley duality, the latter is naturally isomorphic to

Stone
$$(\hat{X}(L_2), \hat{X}(L_1)) \cong \text{Priestley}(\hat{X}(L_2), \hat{X}(L_1)).$$

- Thus, the \vee -admissible maps from L_1 to L_2 are exactly those maps which have functional duals from $\hat{X}(L_2)$ to $\hat{X}(L_1)$.
- Order-dual statements hold for \wedge -admissible maps and functions from $\hat{Y}(L_2)$ to $\hat{Y}(L_1)$.
- For admissible maps, we may combine the two.

Gehrke & van Gool

Urquhart-Hartung duality Distributive

envelopes

Recap & Questions

New dual spaces

Morphisms

Topological duality for lattices via canonical extensions

Mai Gehrke and Sam van Gool

LIAFA and CNRS, Université Paris-Diderot 7 (FR) Radboud Universiteit Nijmegen (NL)

> DTALC 13 June 2012 Oxford, United Kingdom