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e Urquhart (1978): dual of lattice is one space having
maximally disjoint filter-ideal pairs as points;
e Hartung (1992): dual of lattice is a topological polarity;
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double dual of a Boolean algebra as its canonical
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e Gehrke, Jonsson (1994): generalization to distributive
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e Gehrke, Harding (2001): canonical extensions for arbitrary
bounded lattices.
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Moreover, the completion L is the unique dense and compact
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For a distributive lattice D, the canonical extension of D? is
the double dual, i.e.,

D¢ is isomorphic to the frame of downsets of the poset of
prime filters of D.

Idea: for an arbitrary lattice L, pretend that L° is a double
dual...

...and derive from this what the dual must be.
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X 1= J¥(L9), Y := M(LY).
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Topology on X: {& : a € L} subbasis of
closed sets,

Topology on Y: {a : a € L} subbasis of
closed sets.

R: order of L° restricted to X x Y.

L distributive = X = Y are spectral
dual spaces of L.



Top. duality for
lattices

Getrke & Comparison with
van Gool
Urquhart-Hartung duality

Distributive
envelopes

Feh Theorem
Let L be a lattice. Then

New dual
spaces

Morphisms

u]
o)
I
"
it

9/30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Comparison with
Urquhart-Hartung duality

Theorem
Let L be a lattice. Then
© The topological polarity (J*(L®), M®(L?), R) is isomorphic
to Hartung’s topological polarity of maximally disjoint filters
and ideals;



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

Comparison with
Urquhart-Hartung duality

Theorem
Let L be a lattice. Then
© The topological polarity (J*(L®), M®(L?), R) is isomorphic
to Hartung’s topological polarity of maximally disjoint filters
and ideals;

® Urquhart’s doubly ordered topological space (Z,1,<1,<2)
is isomorphic to the maximal points of the set
R¢ c J®(L%) x M>(L?) with respect to the order >;» X <.
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o J¥(L%) =N = M>(L?) with the cofinite topology;
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Using Stone/Priestley duality for
non-distributive lattices

Hartung’s dual spaces may be topologically wild;
Question: Can we get ‘nicer’ topologies on the duals?
Can we make the dual spaces spectral/CTOD?

l.e., can we naturally associate distributive lattices with a
lattice L?
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Recall: topology on (X, <) = (J®(L°), <,+) was generated
by taking {& : a € L} as a subbasis for the closed sets;
Alternatively, consider the sublattice of D(X, <) generated
by the elements {4 : a € L};

This lattice froms a basis for the closed sets, and it is
distributive.

We denote this lattice by D*(L) and call it the distributive
A-envelope of L;

Order-dually, the sublattice of D(Y, <) generated by
{&°: a € L}: DY(L), the distributive v-envelope of L.
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The distributive envelopes D*(L) and DV (L) arose
naturally as bases for the dual spaces of L;

Question: how to characterize these distributive lattices
algebraically?

The embedding L »—» D"(L) is A-preserving;
The embedding L > DY(L) is v-preserving.
What other properties do the embeddings have?
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join of a finite S C L, then:

VaeL:aA\/S:\/(a/\s). (1)

seS

Definition
e Afinite S C L is \/-admissible if S satisfies (1).
e Order-dually, a finite S C L is /\-admissible if

VaeL:av/\S:/\(avs). 2)

seS
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e S0, a A-embedding of L into a distributive lattice D can at
most preserve joins of admissible sets.

e Question: Can one preserve all admissible joins?

Theorem (Bruns, Lakser (1970))
Let L be a lattice.

@ There exists a A-embedding of L into a distributive lattice
D which preserves all joins of \/-admissible subsets of S.

@® There exists a vV-embedding of L into a distributive lattice
E which preserves all meets of \-admissible subsets of S.

Proof (Variant).
Take D := D*(L) and E := DY(L). i
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Theorem

The extension (-) : L — D*(L) is the free distributive A- and
admissible-\/ -preserving extension of L.

That is, forany f : L — D such that f is (A,a\/ )-preserving and
D distributive, there is a unique hom. f : D"(L) — D such that

LLDA(L)
N
D

commultes.
The dual statement holds for DY (L).
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e Call a subset I of L an a-ideal if it is a downset which is
closed under taking joins of \/-admissible sets.

Proposition

The poset of finitely generated a-ideals forms a distributive
lattice, and the assignment sending a € L to | a is isomorphic
to the distributive A-envelope L > D"(L).
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The constructive way

e Call a subset I of L an a-ideal if it is a downset which is
closed under taking joins of \/-admissible sets.

Proposition

The poset of finitely generated a-ideals forms a distributive
lattice, and the assignment sending a € L to | a is isomorphic
to the distributive A-envelope L > D"(L).

e Order-dually, DY(L) can be constructed as the finitely
generated a-filters of L.
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Comparison with injective hull

Bruns and Lakser (1970) construct the injective hull of a
meet-semilattice;

Our ideals are very much inspired by theirs, except that we
only allow finitary joins;

The injective hull of L (viewed as a meet-semilattice) can
be recovered as the free dcpo completion of D*(L).

Thus, our construction decomposes Bruns and Lakser’s
as a finitary construction followed by a dcpo completion
(cf. Jung, Moshier, Vickers 2009).
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e For any \/-admissible S C Ly, the set f[S] C Lo is
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Let Lat, ;v denote the category of lattices with \/-admissible
functions.
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A categorical view
Definition
A function f : Ly — Lo between lattices is \/-admissible if
o fpreserves A and admissible \/, and
e For any \/-admissible S C Ly, the set f[S] C Lo is
\/-admissible.

Let Lat, ;v denote the category of lattices with \/-admissible
functions.

Order-dually, we define the notion of A -admissible function and
the category Laty gn.

e Beware: not every lattice homomorphism is \/-admissible.

e However: every surjective lattice homomorphism, and
every homomorphism into a distributive lattice, is both
\/-admissible and A-admissible (i.e., admissible).
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@ The assignment L — D"(L) extends to a functor
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A categorical view

Corollary

@ The assignment L — D"(L) extends to a functor
D" : Lat, 5» — DLat which is left adjoint to the inclusion
functor U" : DLat — Lat, 5.

® The assignment L — D" (L) extends to a functor
DV : Lat, 5o — DLat which is left adjoint to the inclusion
functor U¥ : DLat — Laty 5.
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Hartung’s topological polarity (X, Y, R) of a lattice L is
isomorphic to

(U7 (L), MP(L0), <q5).
The sublattice of D(J*(L?),<,s) generated by {4 : a € L}
is DA(L).
The sublattice of D(M™(L?), <,s) generated by
{a°:aeM}is DV(L).

Thus, we have two spectral spaces X := (D"(L)). and
Y := (DY(L)). naturally associated to L.
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Recap

Hartung’s topological polarity (X, Y, R) of a lattice L is
isomorphic to

(J2(L0), M2 (L), <5).

The sublattice of D(J*(L?),<,s) generated by {4 : a € L}
is DA(L).

The sublattice of D(M™(L?), <,s) generated by
{a°:aeM}is DV(L).

Thus, we have two spectral spaces X := (D"(L)). and

Y := (DY(L)). naturally associated to L.

The adjunction ¢ : D*(L) & DY(L) : O, which is defined
by requiring that ¢(a) := a°, dually gives a relation
RcXxY.
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Admissibly prime filters

Definition
e We call a proper filter F € L admissibly prime if, for any
admissible S C L such that \/ S € F, we have FN S # 0.
e Fora e L, wedefine 4 := {F adm. prime | a € F}.

e Order-dually, we define admissibly prime ideals, and
a := {/adm. prime | a € I}.
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Proposition

e The space Xis homeomorphic to the space of admissibly

prime filters of L with the topology generated by taking
{4 : a € L} as a subbasis for opens.

26/30



Top. duality for
lattices

Gehrke &
van Gool

Urquhart-
Hartung
duality

Distributive
envelopes

Recap &
Questions

New dual
spaces

Morphisms

X and Y directly from L

Proposition

e The space Xis homeomorphic to the space of admissibly
prime filters of L with the topology generated by taking
{4 : a € L} as a subbasis for opens.

e The space Yis homeomorphic to the space of admissibly
prime ideals of L with the topology generated by taking
{a: a €L} as asubbasis for opens.
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X and Y directly from L

Proposition

e The space Xis homeomorphic to the space of admissibly
prime filters of L with the topology generated by taking
{4 : a € L} as a subbasis for opens.

e The space Yis homeomorphic to the space of admissibly
prime ideals of L with the topology generated by taking
{a: a €L} as asubbasis for opens.

e Under these homeomorphisms, the relation R € X x Y is
givenby x Ry iff Fy N, # 0.
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« Observe that X = J(L%) naturally embeds in X.
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X as a completion

Observe that X = J*(L?) naturally embeds in X.

On X, consider the quasi-uniformity generated by setting
as basic entourages, fora e L,

(@°xX)u(Xxa)={(xy)IxeA->yeA}.

Then the space X is the (topological reduct of) the
bicompletion of X, viewed as a quasi-uniform space.

This follows from the following general result:

Theorem (Gehrke, Gregorieff, Pin (2010))

Let D € P(X) be a sublattice of a power set lattice. Then the
Stone dual space of D is homeomorphic to the bicompletion of
the quasi-uniform space X equipped with the Pervin
quasi-uniformity defined from D.
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Characterizing the dual objects

From a lattice L, we get a topological polarity (X, ¥, R).

Question: which topological polarities arise as duals?

Easy answer: the ones in the image of (). o (D",D") ...

Work in progress: ‘nice’ characterization.

For this, we think of X, Y as (ordered) Boolean spaces,
i.e., we use the patch topologies.
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e Recall: D" is left adjoint to / : DLat — Lat, ,.
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e |t also follows that

Lat/\’av(h s Lg) = DLat(DA(L1 ), DA(Lg)).
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Questions

New dual o By Stone/Priestley duality, the latter is naturally isomorphic
spaces tO

Morphisms

Stone(X(Lz), X(L1)) = Priestley(X(Lz), X(L1)).
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Recall: D" is left adjoint to / : DLat — Lat, av.
It also follows that

Lat/\’av(L1 s Lg) = DLat(DA(L1 ), DA(Lg)).

By Stone/Priestley duality, the latter is naturally isomorphic

to
Stone(X(Lz), X(L1)) = Priestley(X(Lz), X(L1)).

Thus, the \/-admissible maps from Ly to L, are exactly
those maps which have functional duals from X(L») to
X(Ly).
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Recall: D" is left adjoint to / : DLat — Lat, av.
It also follows that

Lat/\’av(h s Lg) = DLat(DA(L1 ), DA(Lg)).

By Stone/Priestley duality, the latter is naturally isomorphic
to

Stone(X(Lz), X(L1)) = Priestley(X(Lz), X(L1)).

Thus, the \/-admissible maps from L; to Lo are exactly
those maps which have functional duals from X(L») to

X(Ly).

Order-dual statements h9ld for A-admissible maps and
functions from Y(Lz) to Y(L4).
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Recall: D" is left adjoint to / : DLat — Lat, av.
It also follows that

Lat/\’av(h s Lg) = DLat(DA(L1 ), DA(Lg)).

By Stone/Priestley duality, the latter is naturally isomorphic
to

Stone(X(Lz), X(L1)) = Priestley(X(Lz), X(L1)).

Thus, the \/-admissible maps from L; to Lo are exactly
those maps which have functional duals from X(L») to

X(Ly).

Order-dual statements h9ld for A-admissible maps and
functions from Y(Lz) to Y(L4).

For admissible maps, we may combine the two.
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