
4. The Riemann sphere and stereographic projection

The initial (and naive) idea of the extended complex plane is that one adjoins to the complex plane C a new point, called “∞”
and decrees that a sequence (zn) of complex numbers converges to ∞ if and only if the real sequence (|zn|) tends to ∞ in
the usual sense. It may or may not be intuitively clear (such uncertainties are inevitable when one is dealing with intuition!)
that the resulting object C̃ = C ∪ {∞} is homeomorphic to a sphere. Stereographic projection gives us a more concrete way
of identifying C̃ with a sphere, one which, moreover, yields a lot of geometrical insight.
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We shall take the Riemann sphere to be the usual unit sphere S = {(x,y, t) ∈ R3 : x2 + y2 + t2 = 1}, but we shall identify
the real (x,y)-plane {(x,y, t); t = 0} with C, setting z = x + iy . (This, of course, is why we have used t as the letter for the
vertical coordinate in R3.) We may thus regard S as a subset of C×R, setting S = {(z, t) : |z|2 + t2 = 1}. The point (0,0,1)
of S (which you may wish to think of as the North Pole) will be denoted N . For each z ∈ C the straight line joining N to z
passes through a unique point z̃ of S. The correspondence z̃ , z : S \ {N} → C is called stereographic projection. Notice that
|z| > 1 when z̃ is in the northern hemisphere and that |z| < 1 when z̃ is in the southern hemisphere. The North Pole N may
be thought of as corresponding to the point ∞, so that in all we have a 1-1 correspondence between the Riemann sphere S
and the extended complex plane C̃.

Our first calculation will establish a formula for the coordinates of z̃ in terms of z.

Clearly, z̃ may be written (ζ, s), where the complex coordinate ζ is some positive scalar multiple of z. We may thus write
ζ = λz and our task is to calculate λ and s in terms of z. Consider the 2-dimensional diagram on the next page, showing the
plane passing through the North Pole N , the origin O and the point z.
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The triangle with vertices z̃, ζ and z is similar to that with vertices N , O and z. Consequently, looking at the ratios of the
lengths of the horizontal and vertical edges, we have

|z − ζ| : s = |z| : 1, or

(1− λ)|z| = s|z|.
Thus λ = 1− s. Recalling that z̃ = (λz, s) is on the unit sphere S, we obtain

λ2|z|2 + s2 = 1, or

1− s2 = (1− s)2|z|2, whence

1+ s = (1− s)|z|2,
leading finally to

s = |z|
2 − 1

|z|2 + 1
λ = 2

|z|2 + 1
.

The point z̃ of S is thus given by

z̃ =
(

2z
|z|2 + 1

,
|z|2 − 1
|z|2 + 1

)
.

We are now going to obtain an expression for the distance |z̃− w̃| in R3, when z and w are two points of the complex plane.
(We are dealing with the normal “Euclidean” distance in 3-space, so |(ζ, s)− (ω, t)|2 = [|ζ −ω|2+ (s − t)2].) What follows is
the sort of thing often dismissed in books as “an elementary calculation”. One should always be wary of anything described
in this way. For another example see Courant and Hilbert, “Methods of Mathematical Physics”, Vol 1, page 85. Anyway, just
for once, let’s do the calculation, rather than just claiming it’s easy. At least the first step really is easy: just write down an
expression for |z̃ − w̃|2.

|z̃ − w̃|2 =
∣∣∣∣ 2z
|z|2 + 1

− 2w
|w|2 − 1

∣∣∣∣2

+
[
|z|2 − 1
|z|2 + 1

− |w|
2 − 1

|w|2 + 1

]2

.

We shall now use the fact that, for complex numbers ζ, ω, we can write |ζ −ω|2 = |ζ|2 − 2Re(ζω)+ |ω|2. It will simplify
the algebra if we multiply both sides of our initial equation by (|z|2 + 1)2(|w|2 + 1)2, obtaining

(|z|2 + 1)2(|w|2 + 1)2|z̃ − w̃|2

= 4
∣∣∣(|w|2 + 1)z − (|z|2 + 1)w|

∣∣∣2 +
[
(|z|2 − 1)(|w|2 + 1)− (|w|2 − 1)(|z|2 + 1)

]2

= 4
[
(|w|2 + 1)2|z|2 − 2(|w|2 + 1)(|z|2 + 1)Re(wz)+ (|z|2 + 1)2|w|2 + (|z|2 − |w|2)2

]
= 4

[
(|w|2 + 1)2|z|2 − 2(|w|2 + 1)(|z|2 + 1)Re(wz)+ |w|2 + 2|w|2|z|2 + |w|2|z|4 + |z|4 − 2|w|2|z|2 + |w|4

]
= 4

[
(|w|2 + 1)2|z|2 + (|w|2 + 1)(|z|4 + |w|2)− 2(|w|2 + 1)(|z|2 + 1)Re(wz)

]
= 4

[
(|w|2 + 1)(|z|2 + 1)(|w|2 + |z|2)+ (|w|2 + 1)(|z|4 + 1)− 2(|w|2 + 1)(|z|2 + 1)Re(wz)

]
= 4(|w|2 + 1)(|z|2 + 1)

[
|w|2 + |z|2 − 2Re(wz)

]
= 4(|w|2 + 1)(|z|2 + 1)|z −w|2.
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What this means is that we have a surprisingly simple expression for what we were interested in, namely

|z̃ − w̃|2 = 4|z −w|2
(|w|2 + 1)(|z|2 + 1)

.

Finally, we can move onto the main geometrical result that we are going to establish in this section, that circlines in C (that
is to say, circles and straight lines) correspond under stereographic projection to circles on the Riemann sphere S. We recall
that a convenient way to specify a circline Γ in C is by the equation∣∣∣∣∣z −αz − β

∣∣∣∣∣ = λ,
where λ is some positive real number and α,β ∈ C. Suppose then that z ∈ Γ . We use the expression we have just obtained
to get ∣∣∣∣∣ z̃ − α̃z̃ − β̃

∣∣∣∣∣
2

= |z −α|2
(|z|2 + 1)(|α|2 + 1)

(|z|2 + 1)(|β|2 + 1)
|z − β|2

= λ2 |β|2 + 1
|α|2 + 1

.

So the subset Γ̃ of S that corresponds to Γ under stereographic projection is the intersection with S of the set

Σ = {r ∈ R3 : |r− α̃| = µ|r− β̃|},
where

µ = λ
√
|β|2 + 1
|α|2 + 1

.

Since Σ is a sphere (of Apollonius), or a plane in the case where µ = 1, the set Γ̃ is the intersection of two spheres, or the
intersection of a sphere with a plane, and so a circle. Notice that straight lines in C correspond to circles in S passing through
the North Pole, justifying the description of such lines as “circles through infinity”.


