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We study the indentation of a rigid object into a
layer of a cohesive or non-cohesive plastic material.
Existing approaches to this problem using slip-line
theory assume that the penetration depth is relatively
small, employing perturbation theory about a flat
surface. Here, we use two alternative approaches to
account for large penetration depths, and for the
consequent spreading and uplift of the surrounding
material. For a viscoplastic fluid, which reduces to
an ideal plastic under the limit of vanishing viscosity,
we adopt a viscoplastic version of lubrication theory.
For a Mohr–Coulomb material, we adopt an extension
of slip-line theory between two parallel plates to
account for arbitrary indenter shapes. We compare the
theoretical predictions of penetration and spreading
with experiments in which a flat plate, circular
cylinder or sphere are indented into layers of
Carbopol or glass spheres with successively higher
loads. We find reasonable agreement between theory
and experiment, though with some discrepancies
that are discussed. There is a clear layer-depth
dependence of the indentation and uplift for the
viscoplastic material. For a cylinder indented into
a Mohr–Coulomb material, there is a much weaker
dependence on layer depth.

1. Introduction
The indentation of a rigid object into the surface of a
deformable plastic layer has been studied extensively in
solid mechanics in the context of determining the bearing
capacity of a foundation [1–3] and to provide a theoretical
basis for rolling friction [4,5] and the Brinell hardness
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test [6–9]. For a layer of viscoplastic fluid, indentation is also relevant to a number of industrial
coating, callendering and squeeze-flow processes [10–12], the generic washboarding instability of
a towed object [13] and the migration of submerged pipelines over a muddy seafloor [14,15]. In
a biological context, the formation of footprints, and the inference about the creature that made
them, has been idealized as indentation into an ideal plastic layer [16–18]. In all these contexts,
provided a critical load is exceeded, the insertion of the object displaces material underneath,
forcing the medium to pile up around the object, adjusting the penetration depth and contact
area, and thereby allowing the indenter to reach an equilibrium.

In the classical problem of the indentation of a punch into an ideal plastic, it is assumed that
material begins to deform over a localized region underneath the indenter once one reaches
the critical load, and the surface remains horizontal outside the region of contact. For a two-
dimensional half-space indented by a flat punch, the method of characteristics, or slip lines, can
be used to calculate the critical load exactly for a cohesive material [1] or numerically for a
cohesionless medium [19]. The results can be extended to layers of finite depth [20] or nearly flat
indenters of arbitrary shape [21,22]. Given the contact length a, the critical load (per unit width) is
traditionally written as proportional to aτY for a cohesive material with cohesion τY, or 1

2 ρga2 for
a cohesionless medium with density ρ compacted by gravity g. The constants of proportionality,
the ‘Terzaghi coefficients’, account for effects such as layer confinement and indenter shape.
Nevertheless, this classical-style analysis does not account for the finite deformation of the plastic
layer and its uplift around the indenter [23]. Consequently, the analysis must be extended to
predict the depth to which the indenter penetrates for a given load.

When the layer is relatively shallow, an alternative approach to the problem is provided by
Reynolds lubrication theory, developed for the flow of thin viscous films in fluid mechanics.
The extension of this theory for yield-stress fluids has been used to compute the dynamics of
viscoplastic squeeze flows [11], lubrication [13] and slumps with a free surface [24]. The theory
captures dynamical evolution as well as the final limiting states, and applies to a variety of more
general situations in two or three spatial dimensions [25]. Most closely related to the indentation
problem is the lubrication model of Hewitt & Balmforth [13] describing the washboard patterns
on a viscoplastic layer, which combines an analysis of the flow underneath a dragged, falling plate
with the ploughed free-surface flow ahead. Notably, as flow speeds become arbitrarily small, one
expects that viscoplasticity reduces to an ideal plastic limit. Thus, viscoplastic lubrication theory
offers a means to model dynamic indentation into a plastic layer beyond the initial contact, where
the surface is no longer flat and the penetration depth no longer negligible, with indenters of
arbitrary geometries and for plastic substrates with rate (or even history) dependent rheology.

The goal of the current paper is, therefore, to investigate indentation into a shallow plastic fluid
layer, exploiting a lubrication-style analysis. We begin by reviewing the classic results from slip-
line theory (§2), and then discuss viscoplastic lubrication theory for indentation into a shallow
cohesive layer (§3). In §4, we then consider a Mohr–Coulomb material. In this case, the usual
lubrication model cannot be immediately applied except in the unphysical limit of an arbitrarily
small friction angle; instead, we generalize the analysis of Marshall [26], who reconsidered for
a Mohr–Coulomb material Prandtl’s solution of the compression of an ideal cohesive plastic
between two plates [27]. To complement the theory, in §5 and 6, we perform experiments in which
a cylinder or plate is pushed into a layer of either Carbopol or glass spheres. Aqueous suspensions
of Carbopol (a main ingredient in many hair gels and other common commercial products) are
well-characterized viscoplastic fluids that are often assumed to be adequately described by one
of the simplest yield-stress fluid models, the Herschel–Bulkley constitutive law [28]. Indentation
experiments with Carbopol are, therefore, expected to provide a demanding quantitative test of
the viscoplastic lubrication theory; the experiments with glass spheres provide a counterpart
for the Mohr–Coulomb theory. We end the discussion by commenting on two other relevant
issues: the effect of inertia in dynamic indentation and how a permanent impression could be
imprinted on the plastic layer after the indenter is removed. Both are of particular importance in
the formation of footprints, either by animals or in an industrial process.
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Figure 1. Sketches of the problem geometries: (a) a flat-based indenter or plate and (b) the locally parabolic underside of
a cylinder.

2. Slip-line theory
Following classical plasticity theory, we consider the indentation of a flat punch of length a = ap

into a two-dimensional, ideal plastic layer of depth h0, as sketched in figure 1a. The governing
equations, describing force balance and the yield condition, take the form

∂σ

∂x
+ ∂τ

∂z
= ∂p

∂x
,

∂τ

∂x
− ∂σ

∂z
= ∂p

∂z
+ ρg and σ 2 + τ 2 = (τY cos φ + p sin φ)2, (2.1)

where τ is the vertical shear stress, σ is the horizontal deviatoric normal stress, p is the pressure
(the mean normal stress), ρ is the substrate density, g is gravity, τY is the cohesion and φ is the
friction angle. If we define ϑ such that

σ = (τY cos φ + p sin φ) cos 2ϑ and τ = (τY cos φ + p sin φ) sin 2ϑ , (2.2)

then the force balance equations may be manipulated into the characteristic forms,

dz = tan
(
ϑ − 1

4 π − 1
2 φ
)

dx, dp + 2(τY + p tan φ) dϑ = −ρg(dz + tan φ dx) (2.3)

and
dz = tan

(
ϑ + 1

4 π + 1
2 φ
)

dx, dp − 2(τY + p tan φ) dϑ = −ρg(dz − tan φ dx), (2.4)

which define the α and β−slip lines, respectively.

(a) Slip lines for a finite cohesive layer
For the case of an infinitely deep, purely cohesive layer (with φ = 0), the slip-line solution can
be calculated analytically for a fully rough punch [1]. The slip-line field consists of centred
fans positioned at the edges of the indenter, opening to angles of 90◦ and buffered from one
another and the free surface by right-angle triangles of constant stress; cf. figure 2a (which
shows the right half of the slip-line field). This solution implies a critical load per unit width of
τY(2 + π )ap.

For indentation into a finite layer, following [29], we generalize this Prandtl solution using
the slip-line construction illustrated in figure 2. For ap < h0

√
2, the indenter is too narrow for the

deformation to feel the bottom and the solution reduces to that of Prandtl. But if ap > h0
√

2, the
deformation extends to the base. For that situation, we again place a centred fan and triangle of
constant stress at the edge of the indenter. The construction assumes that the surfaces of both the
indenter and underlying plane are rough, so that |τ | = τY along both, implying that the slip lines
there have angles given by ϑ = ± 1

4 π . The centred fan can consequently be extended down to the
base of the layer and around towards the underside of the indenter, providing an arc along which
p and ϑ are known. Further slip lines can then be launched from this arc and the bottom surface to
complete the slip-line field. As illustrated in figure 2c, provided the contact length is sufficiently
larger than h0

√
2, the slip-line pattern rapidly converges to the repeating cycloids characteristic
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Figure 2. Slip lines for a cohesive layer, showing (a) the Prandtl solution for which the fan first touches the base (ap = √
2h0),

and (b,c) longer indenters in which the fan widens up to an angle of 3π/4 and the slip-line pattern is continued to the left
(α−lines shown in red and β−lines in blue). The arc bounding the centred fan to the left (thicker red curve) is the α−line
from which the slip-line field is constructed. (d) A selection of upper yield surfaces for varying ap, coloured according to the
local vertical force density; the dashed line shows the edge of the fan. (e) Load FL, scaled by apWτY , against 1

2 h
−1
0 ap, with the

shallow and deep limits indicated. (Online version in colour.)

of the squeeze flow between two plates [27]. The pattern eventually terminates underneath the
centre of the indenter (assumed symmetrical about x = 0); here, the α and β−lines that reach x = 0
with angles given by ϑ = 0 (as demanded by symmetry) provide yield surfaces enclosing wedges
that are rigidly attached to the indenter and underlying plane.

The load for the slip-line solutions is found by integrating the vertical force over the upper
yield surface of the deforming region underneath the indenter (which includes part of the
underside for sufficiently large a); see figure 2d,e. As ap → h0

√
2, the yielded region becomes

limited to the fans and adjacent triangles of constant stress, and the load FL converges to τY(2 +
π )apW, where W is the width of the plate. For ap � h0, Prandtl’s squeeze-flow solution gives a
load 1

2 (apWτY)(ap/h0). For intermediate contact lengths, the load is approximately 1
2 (apWτY)( ap

h0
+

8.32), as shown in figure 2e. The numerically computed load switches fairly abruptly over to this
approximation from the deep limit for ap ≈ 2h0.

(b) Slip lines for a finite Mohr–Coulomb layer
For an infinitely deep non-cohesive material with τY = 0, the slip-line field must be constructed
numerically, although the pattern of slip lines superficially resembles Prandtl’s solution. The
critical load per unit width is 1

2 ρgNγ a2
p, where the Terzaghi coefficient Nγ depends on φ and

the frictional character of the surface of the indenter [3,19].
Again, the slip-line solution can be generalized to a layer of finite depth (figure 3). In this

case, the construction begins from a self-similar family of slip lines that are centred at the contact
line and span a region that extends down to where the last self-similar α−line touches the base
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Figure 3. (a) Slip lines for a Mohr–Coulomb layer with ap = 9.2h0, φ = 24◦ and ϑf = − 2
3 (

1
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shows the locus of the points where ϑ = 0. In (b), the upper yield surfaces are shown for various ap, coloured according
to the local vertical force density with the overlying weight of plugged material subtracted, and with the last self-similar
α−line shown by the dashed line. In (c), we plot the load FL scaled by 1
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2
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for ϑf = −[0, 13 ,
2
3 , 1] × ( 14π + 1

2φ). The dashed lines show the asymptotic prediction for ap � h0 in §4. (Online version
in colour.)

tangentially [19,20]. The slip-line field is then continued to the left by launching new slip lines
from that final α−line and the base. The boundary condition on the indenter can further be
adjusted to allow the slip lines to meet the underside at a prescribed angle: ϑ(x, h0) = ϑf , with
ϑf = − 1

4 π − 1
2 φ for a fully rough indenter and ϑ = 0 if it is perfectly smooth; ϑf lies between these

limits for a partially rough surface. Continuing back under the indenter, pressures now grow
exponentially, negating hydrostatic contributions and allowing the slip-line pattern to converge
to an x-independent form [26], as described in more detail in §4.

3. Indentation into a shallow viscoplastic layer

(a) Viscoplastic lubrication theory
To develop a viscoplastic lubrication model of indentation, we consider a shallow layer of yield-
stress fluid for which the depth is much less that the horizontal scale of the indenter, as sketched in
figure 1. We use the incompressible Herschel–Bulkley model [28] to describe the fluid. Because the
layer is shallow, and assuming that the fluid cannot slide freely over either the underlying plane
or the indenter, the pressure p and shear stress τ play the main roles in forcing or opposing fluid
motion. Ignoring the inertia of the plastic material, a standard thin-film approximation [24,25] of
the force balance equations in (2.1) and mass conservation implies that

px = τz pz = −ρg and ux + wz = 0, (3.1)

where u and w are the horizontal and vertical components of velocity, respectively, with subscripts
used to indicate partial derivatives. Given the dominance of the shear stress (at least over the
regions where the material is fully yielded [25,28]), the Herschel–Bulkley law becomes one
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dimensional and takes the form,

τ =
(

Kγ̇ n−1 + τY

γ̇

)
uz, if |τ | > τY

and γ̇ ≡ |uz| = 0, if |τ | < τY,

⎫⎪⎬
⎪⎭ (3.2)

where γ̇ is the strain rate, K is the consistency, n is the power-law index and τY is the (constant)
yield stress.

The problem splits up spatially into two pieces: below the indenter, a squeeze flow arises, with
the no-slip boundary conditions on the surface demanding that

u(x, 0, t) = w(x, 0, t) = u(x, h, 0) = 0 and ht = w(x, h, t), (3.3)

where h(x, t) is the local depth of the plastic layer, which here is prescribed by the shape of the
underside of the indenter. For a cylinder or plate (figure 1)

h(x, t) =
{

h(0, t) + 1
2 R−1x2, cylinder,

h(0, t), plate,
(3.4)

where R denotes the radius of curvature of the cylinder. (In appendix A, we consider
axisymmetric geometry and a spherical indenter.) The squeeze flow occupies − 1

2 a < x < 1
2 a.

Outside this interval, we ignore any ambient pressure and surface tension, and impose

u(x, 0, t) = w(x, 0, t) = 0, ht + u(x, h, t)hx = w(x, h, t) and p(x, h, t) = τ (x, h, t) = 0. (3.5)

If there is no sideways motion, the indenter falls vertically under gravity until it halts under
the resistance from the substrate, which is dominated by the lubrication pressure. Given that the
centre of mass lies a fixed distance above h(0, t), the equation of motion of the indenter is

m
d2

dt2 h(0, t) = 2W
∫ a/2

0
p(x, h, t) dx − mg, (3.6)

where m and W are the indenter’s mass and width.
We begin from the initial moment of contact, when h(x, 0) = h0 and ht(0, 0) = ḣ0 (the initial layer

depth and indenter speed), with a(0) = 0 for the cylinder and a(0) = a(t) = ap for the plate.

(b) Squeeze-flow analysis
Underneath the indenter, integrals of (3.1) indicate that

p(x, z, t) = P(x, t) + ρg(h − z) and τ (x, z, t) = τ (x, h, t) − (Px + ρghx)(h − z), (3.7)

where P(x, t) = p(x, h, t). The constitutive law (3.2) then implies that

K|uz|n−1uz + τY sgn(uz) = τ (x, h, t) − (Px + ρghx)(h − z). (3.8)

Focusing on the region 0 < x, where u > 0, we observe that (3.8) and the boundary conditions
u(x, 0, t) = u(x, h, t) = 0 imply that u must be symmetric about z = 1

2 h. Thus,

u = nK−1/n

(n + 1)
×
⎧⎨
⎩

(−Px − ρghx)1/n[Y1+1/n
− − (Y− − z)1+1/n], 0 < z < Y−,

(−Px − ρghx)1/n[(h − Y+)1+1/n − (z − Y+)1+1/n], Y+ < z < h,
(3.9)

where

Y± = h
2

± τY

|Px + ρghx| . (3.10)

Note that the shear stress |τ | < τY over Y− < z < Y+, implying uz = 0 there. However, the
horizontal plug flow speed,

u(x, Y− < z < Y+, t) = up = nY1+1/n
−

(n + 1)K1/n (−Px − ρghx)1/n, (3.11)
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cannot be uniform in x; this region is a ‘pseudo-plug’, where the stresses are held slightly above
the yield stress, and σ has a similar magnitude to τ [25,28]. For this reason, the levels z = Y± are
not true, but fake, yield surfaces.

Finally, we record the depth-integrated mass-conservation equation,

∂h
∂t

+ ∂

∂x

(∫ h

0
u dz

)
= 0, (3.12)

which (if the flow is symmetrical about x = 0) now implies that

− xht(0, t) = n(−Px − ρghx)1/n

(n + 1)(2n + 1)K1/n Y1+1/n
− [2nh + h − 2nY−] , (3.13)

and determines the surface pressure P(x, t) at each instant given ht(0, t).

(c) Free-surface flow
The stress state beyond the indenter follows from the alternative boundary conditions in (3.5):

p = ρg(h − z) and τ = −ρghx(h − z). (3.14)

Hence, in view of the constitutive law and (3.5),

u = nK−1/n

(n + 1)
×
{

(−ρghx)1/n[Y1+1/n − (Y − z)1+1/n], 0 < z < Y,
(−ρghx)1/nY1+1/n, Y < z < h,

(3.15)

where
Y = h + τY/(ρghx) (3.16)

is a third fake yield surface underneath another pseudo-plug in Y < z < h. Last, we again use the
mass-conservation equation (3.12), which now turns into the evolution equation,

∂h
∂t

+ ∂

∂x

[
n(−ρghx)1/nY1+1/n(2nh + h − nY)

(n + 1)(2n + 1)K1/n

]
= 0. (3.17)

The free surface flow terminates at the flow front x = xE(t), where h → h0.

(d) Model summary
The full model problem consists of the squeeze-flow equations in 0 < x < 1

2 a (which amount to
an ODE in x for P(x, t) from (3.13), the free-surface evolution equation (3.17) for h(x, t) in 1

2 a <

x < xE, and the equation of motion (3.6) for the indenter’s elevation (which requires the pressure
integral in (3.6)). The squeeze-flow and free-surface problems are coupled by the need to match
the pressure and outward flux at the contact line. The former condition translates to

P
(

1
2 a, t

)
= ρg(h+

C − h−
C ) and h±

C = h
(

1
2 a±, t

)
, (3.18)

where x = 1
2 a± denotes the limit to the contact line from underneath or outside the indenter, and

h+
C �= h−

C allows for a jump in depth in the case of the plate due to its vertical sides.
To place the problem in dimensionless form, we rescale time, t̃ = t

√
g/h0, and set

[ξ , ξC(t̃), ξE(t̃)] = [x, 1
2 a, xE]
x0

, η(ξ , t̃) = h
h0

, δ(t̃) = [h0 − h(0, t)]
h0

and Π (ξ , t̃) = x0WP
mg

, (3.19)

where x0 is the characteristic horizontal length scale of the indenter: for the cylinder, x0 ≡√
h0R,

and for the plate, x0 = 1
2 ap. In either case, we define load, gravity and viscosity parameters,

M= mgh0

τYWx2
0

, G = ρgh2
0

τYx0
and V =

(
gx2

0

h3
0

)1/2 (
K
τY

)1/n
. (3.20)
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The model system now reduces to (after dropping the hat decoration on t)

Vξ δ̇ = n|MΠξ + Gηξ |1/n

(n + 1)(2n + 1)
Y1+1/n

− (2nη + η − 2nY−) , for 0 < ξ < ξ−
C ,

Vηt = − nG1/n

(n + 1)(2n + 1)

[
Y1+1/n(2nη + η − nY)|ηξ |1/n

]
ξ

, for ξ+
C < ξ < ξE

and δ̈ = 1 − 2
∫ ξ−

C

0
Π (ξ , t) dξ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.21)

where

Y± ≡ 1
2 η ± |MΠξ + Gηξ |−1 and Y ≡ η + (Gηξ )−1 (3.22)

and

η(ξ , t) =
{

1 − δ(t) + 1
2 ξ2, cylinder,

1 − δ(t), plate,
for 0 < ξ < ξ−

C . (3.23)

At the flow front, η(ξE, t) = 1, and at the contact line we have continuity of pressure,

Π (ξ−
C , t) = G

M (η+
C − η−

C ), (3.24)

where η±
C (t) = η(ξ , t) for ξ = ξ±

C , and continuity of flux,[∣∣∣∣MG Πξ + ηξ

∣∣∣∣1/n
Y1+1/n

− (2nη + η − 2nY−)

]
ξ=ξ−

C

=
[
|ηξ |1/nY1+1/n(2nη + η − nY)

]
ξ=ξ+

C

. (3.25)

(e) A sample indentation
We solve (3.21)–(3.25) numerically by using centred finite differences to approximate spatial
derivatives and quadrature on the same grid to evaluate the substrate resistance, then step
the solution forwards in time using Matlab’s in-built solver ODE15s. Figure 4 shows a sample
numerical solution for the indentation of a cylinder, displaying snapshots of the flow pattern in
the viscoplastic layer, as well as time series of δ(t), ξC(t) and ξE(t). As the cylinder pushes into the
substrate, fluid is squeezed out from underneath, building up the free surface beyond the contact
line, which then collapses under gravity. The penetration of the indenter into the substrate slows
and eventually stops at t ≈ 0.30 when δ = δf ≈ 0.37. The fluid stresses subsequently fall below the
yield stress everywhere to halt all motion (the model equations hold only for δ̇ > 0).

Note that the two flow patterns within the substrate are inconsistent at the contact line:
the pseudo-plugs of the squeeze and free-surface flows do not coincide in figure 4a–c. The
discontinuity highlights the presence of a boundary layer at the contact line with a horizontal
length comparable to the fluid depth. Over this region, the two flow patterns must be reconciled;
in the shallow-layer theory, only the net effect is incorporated by matching the pressure and flux.

(f) Plastic limit
When V → 0, the resistance of the substrate is provided solely by the plastic yield stress and the
flow problems are rendered quasi-static. From (3.22), we then find

MΠξ = −Gηξ − 2
η

for 0 < ξ < ξC and Gηηξ = −1 for ξC < ξ < ξE, (3.26)

which correspond to the conditions met when (Y, Y−) → 0 and Y+ → h, and the yield surfaces
approach the adjacent solid walls (cf. figure 4c). That is, in the plastic limit, the pseudo-plugs fill
the fluid layer, leaving thin viscous boundary layers against the solid surfaces; this corresponds to
the situation that the material deforms like cohesive ideal plastic bordered by fully rough walls.
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3 , with δ̇0 = 2 and
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Hence,

Mδ̈ − M= −2
∫ ξ−

C

0
MΠ dξ ≡ −2ξCG(η+

C − η−
C ) + 2

∫ ξ−
C

0

(
Gηξ + 2

η

)
ξ dξ , (3.27)

and the free surface profile and runout are

η =
√

(η+
C )2 − 2G−1(ξ − ξC) and ξE = ξC + 1

2G[(η+
C )2 − 1]. (3.28)

Conservation of mass now demands that
∫ ξ−

C

0
η(ξ , t) dξ +

∫ ξE

ξ+
C

η(ξ , t) dξ = ξE. (3.29)

Below, we quote the equilibrium positions predicted by (3.27)–(3.29) when δ̈ = 0 for the cylinder
and plate. These equilibria are not the same as the final position δf illustrated in figure 4, which
is lower as a result of the finite inertia of the indenter. However, when the load on the indenter is
slowly raised to push it incrementally into the substrate (which corresponds to raising M at fixed
G), as in our loading experiments, inertia is largely irrelevant and the penetration depth is set by
the equilibrium position.

(i) Cylinder

For the cylinder (η = 1 − δ + 1
2 ξ2 for ξ < ξC, η+

C = η−
C = 1 − δ + 1

8 a2, and Π (ξC) = 0), the equations
(3.27) and (3.29) reduce to

M= 2
3Gξ3

C + 4 log

(
1 + ξ2

C
2(1 − δ)

)
and ξ3

C − G(3 − 2δ + ξ2
C)
(
δ − 1

2 ξ2
C

)
= 6ξC(1 − δ). (3.30)

In the limit, G 	 1, we find ξC = √
6δ. For this low-gravity situation, the free surface deformation

becomes localized to ξ = ξC, and a near vertical face forms at the contact line. In the opposite limit
of G � 1, the free surface is pulled immediately down to the height of the original layer by the
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relatively strong gravity, with ηC = 1 and ξC = √
2δ. Note that the cylinder never makes contact

with the underlying surface (δ → 1): δ ∼ 1 − e−M/4 for M� 1.

(ii) Plate

For the plate (η = η−
C = 1 − δ for ξ < ξC = 1 and Π (1) = G(ηC − 1 + δ)), we find

M= 2(1 − δ)−1 + 2G(ηC − 1 + δ) and 6δ = G(η+
C − 1)2(2η+

C + 1). (3.31)

In this problem, the variables are δ and η+
C , the height to which the fluid becomes piled up against

the sides of the plate. Moreover, there is a threshold for penetration because of the plate’s fixed
length ξC = 1 (for the cylinder, ξC → 0 as δ → 0), of M> 2 or τY < 2mgh0/(Wa2).

4. Indentation into a shallow Mohr–Coulomb layer
Viscoplastic lubrication theory applies when the deviatoric stresses τ and σ are much less than
the pressure p, leading to scale separation and the usual simplifications of Reynolds theory. For
a Mohr–Coulomb material, however, the pressure is only significantly larger than τ and σ when
the friction angle of the material φ is unphysically small. An alternative theoretical description is
then needed. For this task, we return to plasticity theory, and extend the analysis of Marshall [26].
The key insight is that when the length of indenter is much greater than the depth of the layer,
the slip lines converge to a universal pattern away from the contact line.

(a) Perturbation theory
For shallow indentation, we stretch the horizontal coordinate, X = εx, to account for difference
in spatial scales, where ε 	 1 corresponds to the ratio of the layer depth and the characteristic
horizontal extent of the indenter (i.e. ε = h0/x0 in the notation of the lubrication analysis). We then
set p = p(X, z, t), ϑ = ϑ(X, z, t) and h = h(X, t). With τY = 0, we have (σ , τ ) = p sin φ(cos 2ϑ , sin 2ϑ),
and a re-arrangement of (2.1) now gives

− (log p)z cos2 φ + 2 sin φ [ϑz sin 2ϑ + ε(cos 2ϑ − sin φ)ϑX] = ρg
p

(1 − cos 2ϑ sin φ) (4.1)

and
− ε(log p)X cos2 φ + 2 sin φ [(cos 2ϑ + sin φ)ϑz − εϑX sin 2ϑ] = ρg

p
sin 2ϑ sin φ. (4.2)

Motivated by the exponential growth of the pressure in the squeeze flow shown by Marshall [26]
and demonstrated by the slip-line solutions in §2, we introduce the asymptotic sequences,

log p = sin φ

cos2 φ

(
F−1

ε
+ F0 + εF1 + · · ·

)
and ϑ = ϑ0 + εϑ1 + · · · (4.3)

The pressure rise further ensures that hydrostatic contributions become exponentially small,
leading us to discard the gravity terms on the right of (4.1)–(4.2). Again, we take the bottom
of the layer to be fully rough with ϑ(X, 0, t) = 1

4 π + 1
2 φ, and the indenter to be partially rough so

that ϑ(X, h, t) ∼ ϑf − εhX, in view of the shape of the indenter.
Collecting terms of order ε−1 and ε0 in (4.1)–(4.2), we now find the relations,

F−1z = 0, F0z = −(cos 2ϑ0)z and F−1X = 2(cos 2ϑ0 + sin φ)ϑ0z. (4.4)

Hence, given that ϑ0(X, 0, t) = 1
4 π + 1

2 φ and ϑ0(X, h, t) = ϑf ,

F−1(X, t) =
∫A/2

X

C
h(u, t)

du and F0(X, z, t) = f (X, t) − cos 2ϑ0 + cos 2ϑf (4.5)

and
z
h

= sin 2ϑ0 − cos φ + (2ϑ0 − 1
2 π − φ) sin φ

sin 2ϑf − cos φ + (2ϑf − 1
2 π − φ) sin φ

, (4.6)
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where A = εa, f (X, t) = F0(X, h, t) and

C = cos φ − sin 2ϑf −
(

2ϑf − 1
2 π − φ

)
sin φ. (4.7)

The implicit solution for ϑ0 in (4.6) reflects the convergence of the slip-line pattern to a form that
depends only on the rescaled vertical coordinate z/h(X, t). Moreover, in (4.5) we have assumed
that the solution matches to an O(1) pressure at the contact line (demanding F−1( 1

2 A, t) = 0).
At O(ε), equation (4.2) gives

F0X = 2(ϑ1 cos 2ϑ0 + ϑ1 sin φ)z + (cos 2ϑ0)X, (4.8)

which now implies that fX = Υ (log h)X, where

Υ = 2 sin φ − 2
C

[
ϑf − 1

4 π − 1
2 φ + sin φ(sin 2ϑf − cos φ) + 1

4 (sin 4ϑf + sin 2φ)
]

. (4.9)

Hence, to O(1), the pressure is prescribed up to a dimensionless amplitude parameter Ψ (cf. [26]):

p = ρghCΨ exp

{
sin φ

cos2 φ

[
1
ε

∫A/2

X

C
h(u, t)

du + Υ ln
(

h
hC

)
− (cos 2ϑ0 − cos 2ϑf )

]}
. (4.10)

(b) Matching, uplift and surface resistance
To determine Ψ , we assume that the indenter and free surface are locally flat in a narrow region
around the contact line with O(hC) width. This leads us to match the pressure p( 1

2 A, z, t) to the
slip-line solution of §2b, where edge effects and gravity become important. The match provides
Ψ = Ψ (φ, ϑf ) from the leftward limit of the slip-line solution, where the slip lines converge to
universal form. The local depth hC = h0ηC requires a model for the free-surface uplift beyond
the indenter. For a Mohr–Coulomb layer, this is problematic as the time-dependent dynamics
predicted by an associated flow rule predicts an unphysical degree of dilation [30]. One path
forward is to assume that the profile of the free surface is dictated by gravitational collapse to the
angle of friction, in which case

h = h0ηC −
(

x − 1
2 a
)

tan φ, for 1
2 a < x < 1

2 a + h0(ηC − 1) cot φ. (4.11)

Mass conservation during a quasi-static indentation then implies that
∫ ξC

0
η(ξ , t) dξ + 1

2 (ηC − 1)2ε cot φ = ξC, (4.12)

where, again, ξC = a/(2x0) and η(ξ , t) = η(x/x0, t) = h/h0. Finally, we compute the surface resistance
by integrating the leading-order vertical stress σ + p over the contact length, and feed the result
into the dimensionless equation of motion of the indenter:

1 − 2G
MΨ (φ, ϑf )(1 + sin φ cos 2ϑf )ηC

∫ ξC

0
exp

{
sin φ

cos2 φ

[
1
ε

∫ ξC

χ

C du
η(u, t)

+ Υ ln
(

η

ηC

)]}
dχ = δ̈. (4.13)

As in §3f, we consider the equilibrium positions where δ̈ = 0 for different indenter shapes.
The load predicted by (4.13) for a flat plate with x = 1

2 ap is compared with slip-line computations
in figure 3c; in this instance, the slip-line computation is exact, and the prediction from (4.13)
corresponds to its asymptotic limit for ap � h0. For the cylinder (with η = 1 − δ + 1

2 ξ2),

M
2G = Ψ (φ, ϑf )(1 + sin φ cos 2ϑf )

(
1 − δ + 1

2 ξ2
C

)
exp

[
C sin φ

ε cos2 φ

√
2

1 − δ
tan−1

(
ξC√

2(1 − δ)

)]

×
∫ ξC

0
exp

{
− sin φ

cos2 φ

[
C
ε

√
2

1 − δ
tan−1

(
χ√

2(1 − δ)

)
− Υ ln

(
1 − δ + 1

2 χ2

1 − δ + 1
2 ξ2

C

)]}
dχ . (4.14)

along with

ξ3
C + 3

(
δ − 1

2 ξ2
C

)2
ε cot φ = 6ξCδ. (4.15)
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Figure 6. Sketch of the experimental set-up. (Online version in colour.)

Figure 5 shows the solutions to (4.14)–(4.15) for different values of the friction angle φ, aspect ratio
ε (equivalently, the layer thickness for a given cylinder) and cylinder roughness ϑf .

5. Indentation experiments with Carbopol

(a) Set-up
The set-up for our indentation experiments is sketched in figure 6: an indenter was attached
to the end of an aluminium bar and positioned above a tray filled with Carbopol. The metre-
long bar was fixed to bearings that could rotate relatively freely about an axle. The indenter was
counterbalanced so that it rested at a height just above the Carbopol surface, and weights were
placed on top of the bar to add a moment, and hence load, to force the indenter to penetrate the
substrate. For most of the experiments, we began by smoothing the surface of the Carbopol in
the tray with a levelled scraper. The weights were then incrementally added to the bar and then
moved along to the end to gradually increase the load without lifting the indenter off in between.
These ‘loading’ experiments therefore marched through a sequence of equilibrium indentations,
minimizing any dependence on initial position or velocity. In a number of cases, we repeated the
loading sequence after relevelling the surface, to verify the repeatability of the results.

Each time the load was raised, the depth of penetration and contact length were measured
after waiting a short interval. To measure the penetration depth d, a high-resolution camera took
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photographs of each equilibrium position of the indenter. Markers in the field of view were
tracked to determine displacements in the images, and then translated to vertical penetration
distances using the known orientation and distance of the camera. A tape measure adhered to the
inside circumference of the indenter permitted a visual measurement of the length of the contact
curve a. Additional photographs from the side highlighted the uplifted free surface and allowed
a measurement of the profile h(x, t).

The Carbopol was an aqueous suspension of Ultrez 21 with a concentration of about 0.5% by
mass, neutralized with sodium hydroxide. A Herschel–Bulkley fit to the flow curve measured
in a rheometer (MCR501, Anton Paar, with roughened parallel plates) gave τY ≈ 38 Pa, n ≈ 0.3
and K ≈ 30 Pa sn. The tray was filled to layer depths h0 between 0.6 cm and 6.2 cm, and was lined
with sandpaper to minimize any effective slip. The tray was much longer (36 cm) than the contact
lengths encountered, ensuring that the sides not impact the results.

For the indenter, we used either a section of a cylinder (of radius R = 7.2 cm and width W =
30.3 cm), or a plate (of length ap = 6.8 cm and width W = 26.9 cm), both made of Perspex. The
realized contact lengths were rather smaller than the width of these indenters (a/W < 0.4 in all
cases, and much smaller than this bound for most), suggesting that flow in the substrate was
largely two-dimensional. The indenters were also attached to the lever using a metal brace to
help stiffen them and reduce any compliance at the highest loads. Further experiments using a
sphere are described in appendix A.

(b) Penetration depths and contact lengths
Figure 7a,c displays the results for the penetration depth d and contact length a. In all experiments,
the initial contact length is non-zero due to surface tension effects when the cylinder is first
brought into contact with the Carbopol layer. Both the penetration depth and the contact length
depend on the layer depth, and the trends with load compare poorly with a prediction of Spencer
[22] for an infinitely deep layer (included as solid lines in the figure). In (b,d), the data are rescaled
according to the viscoplastic lubrication theory, plotting δ = d/h0 and a/x0 = a/

√
Rh0 against M.

Although there are some discrepancies, particularly for the deeper Carbopol layers, the model
broadly reproduces the experimental data. Importantly, the effect of gravity on the material
beyond the contact line is significant, with the theory for G → 0 overestimating the penetration
of the cylinder.

By contrast, the comparison of theory and experiment for the plate is less satisfactory:
figure 8 shows the penetration depths and compares the resulting data for δ with the
lubrication theory predictions. Although there is an abrupt increase in penetration past at
a certain layer-depth-dependent load in the experiments, there is no true threshold below
which the plate sits on the undeformed surface. The absence of a threshold could be due to
viscoelastic deformation below the yield stress (a feature of Carbopol seen in other contexts
[10,28,31]), although surface tension and its repercussions on the wetting of the plate may also
contribute.

In addition, the relatively abrupt penetration of the plate occurs at higher loads than expected
in the theory, for which the threshold is M= 2. In fact, as exposed in §2a, the threshold is
underestimated in the shallow-layer model because of edge effects: slip-line theory for a plate
of finite length implies that M≈ 2(1 + 8.32h0/ap) (figure 3). The revised threshold implies that
the plate begins to penetrate when M is over the range 3.5–5.7 for the experiments shown in
figure 8, which is much closer to the observations.

Another potential source of disagreement arises from the way in which we conduct the loading
experiments: at each load, the penetration depth was measured after ten or so seconds. Given the
shallowness of the layer and the finite and fixed length of the plate, however, it is conceivable that
fluid takes longer to be squeezed out from underneath. To explore this in more detail, we carried
out an additional experiment in which we increased the load linearly up to 1 kg and then waited,
recording the instantaneous penetration depth every 10 s. The inset of figure 8b shows the results.
Evidently, the plate does not reach its resting position within the 10 s period after changing the
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contact length 2ξC = a/x0 = a/

√
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the prediction of the shallow-layer theory of §3f(i) and the dashed line is theG/M→ 0 limitwithδ → 1 − 3/(2 + eM/4)
and ξC → √

6δ. (Online version in colour.)

load, and continues to descend by over a millimetre for about a minute after the maximum load
is attained. Thus, time-dependent dynamics are at least partly responsible for the discrepancy in
figure 8b. This effect is not expected to impact the indentations of the cylinder (or sphere) because
the squeeze flow in those cases is much less extensive, being set by the variable contact length.

(c) Uplifted surface profiles
Figure 9 shows sample profiles of the uplifted free surface outside the cylinder. Given a point
(x∗, h∗) on the free surface to the left of the cylinder, the lubrication theory result in (3.28) predicts
that the (dimensional) free surface is given by

h =
√

h2∗ + τY(x − x∗)
ρg

, (5.1)
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whereas Spencer’s [22] prediction for infinite depth is

h = h∗ + x2 − x2∗
14R

. (5.2)

Figure 9 compares these predictions with the experimental profiles, using the observed points
indicated by circles. For the largest penetration depths, the profile steepens up close to the
theoretical prediction of viscoplastic lubrication theory. However, for the smallest penetration
depths, this prediction performs poorly and Spencer’s result is superior, implying these
indentations are effectively deep. Note that the observed profiles flatten out near the cylinder
and outer edges, perhaps due to the influence of surface tension and the dynamics at the contact
line that reconciles the squeeze and free-surface flow patterns (see also [14]).

6. Indentation experiments with granular layers
We conducted complementary experiments for the indentation of a cylinder into a layer of glass
spheres (technical quality ballotini, from Potters Industries) with diameter D = 0.1, 0.25, 0.5 and
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Rd.

1 mm. The bulk density is ρ ≈ 1.5 g cm−3, and the angle of repose, as measured from building
sandpiles, was about 24◦ for all four particle diameters. Once more, we measured the position
of the indenter using markers in recorded images and visually measuring the contact length. In
addition, however, we used a laser line incident in a vertical plane to highlight a section along the
ballotini surface perpendicular to the axis of the cylinder. The deflections of the laser line occuring
due to the uplift of the ballotini surface were recorded by a camera positioned off to one side at
a known angle to the vertical, and the ballotini surface thereby identified. Unless the cylinder
was raised from the surface after each indentation (which inevitably also disturbs the surface), a
portion of the laser line is distorted by its passage through the cylinder. In our sequential loading
experiments, we corrected for this distortion by subtracting off a reference profile of the counter-
balanced cylinder resting just above the surface. Despite this subtraction, the indentation of the
cylinder shifts the distorted section of the laser line, leaving inconsequential but unsatisfying
residual optical features in the recorded signal. The penetration depth and contact length can also
be extracted from the laser profiles and we verified that the two sets of measurements were in
agreement.

Figure 10 shows penetration depth d and contact length a for indentations with different layer
depths h0 and particle diameters D. For the particles with D < 1 mm, both d and a appear to
be insensitive to particle diameter and layer depth. The D = 1 mm data are slightly different,
suggesting a finite-size effect for that ballotini (such as persistent force chains spanning the layer
when only tens of particles thick [32]; see also [33]). The independence of layer depth suggests
that the indentation into the granular substrate does not feel the underlying surface, which is
surprising in view of the results for Carbopol and the slip-line theory, in which deformation
evidently extends to the base for a � h0 (figure 3).

According to slip-line theory (§2), the contact length for a deep (non-cohesive) Mohr–Coulomb
layer is given by a = (2m/ρNγ W)1/2. For a material with φ = 24◦, the Terzaghi coefficient is Nγ ≈
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5.5 for a fully rough cylinder, and Nγ ≈ 3 if the surface is perfectly smooth [34]. The contact length
data in figure 10b are best reproduced by the slip-line prediction with the Terzaghi coefficient for
a rough cylinder. For the penetration depth, one requires an assumption regarding the uplifted
free surface to either side of the cylinder. The penetration depth can be bounded by assuming that
the surface purely compacts without any sideways deformation (giving a2 = 8 Rd; dotted line) or
is pushed out incompressibly to form a vertical cliff at the contact line (a2 = 24 Rd; dashed line).
In fact, a plot of the penetration depth against the contact length (inset of figure 10b) suggests that
a2 ≈ 13 Rd, which leads to the prediction for d shown by the solid line in figure 10a.

In figure 10, we also plot the contact length and penetration depth from the shallow layer
theory in §4. When we assume that the free surface sits at the friction angle, this theory
significantly overestimates the contact length for a given penetration depth, suggesting that
avalanching of the free surface does not dictate the profile. Instead, we adopt the fit a ≈ 3.6

√
Rd

(in place of the constraint (4.15)), which leads to the dot-dashed curves in figure 10 for a rough
cylinder. The experimental trends for d and a are somewhat better captured by the deep layer
theory, perhaps due to the fact that the aspect ratio ε is never very small. However, the shallow-
layer theory also does not predict a pronounced layer-depth dependence as might have otherwise
been expected. Thus, the experimental results do not necessarily imply that the deformation fails
to reach the base of the layer.

Figure 11 shows surface profiles for the ballotini extracted using the laser line. The profiles
show some irregularities due the optical distortions from the passage of the laser through the
cylinder. However, some of the other sharp variations for the shallower layers are genuine
features that emerge from abrupt uplifts of sections of the surface in the manner of sudden
slip events, with the sharp features appearing to be lines of failure. For the most part, the
surface profiles can be fairly satisfyingly collapsed using the scalings, x/

√
Rd and (z − h0)/d.

This collapse allows the extraction of average, or ‘master’, profiles that are weakly sensitive
to particle diameter and layer depth for D < 1 mm and h0 > 1.2 cm (at the shallowest layer
depth (h0 = 1.2 cm), the master profiles become significantly disfigured by the slip events, which
lead to distinct maxima away from the cylinder and ‘humped’ profiles). The profiles descend
almost linearly from a maximum of (z − h0)/d ≈ 0.6 at the side of the cylinder, down to the
undisturbed surface for x/

√
Rd ≈ 5. The contact line occurs at x/

√
Rd ≈ 1.8, in agreement with

the fit a ≈ 3.6
√

Rd of figure 10. In view of the scaling, the slope of the uplift depends on the
depth of penetration and does not steepen to the angle of repose, ruling out surface avalanching
as the origin of the profile. The master profiles can also be integrated horizontally to furnish
the (signed) area of the deformed layers relative to the undeformed surface. These areas turn
out to be relatively small (the integral averages of the scaled surface heights are order 10−2,
in comparison to the profiles themselves which ascend from −1 up to 0.6), suggesting that the
penetration of the cylinder does not compact the ballotini and incompressibly uplifts the free
surface.

7. Discussion

(a) Dynamic indentation
In shallow-layer theory, the final resting position of the indenter is not necessarily the equilibrium
position studied in the sequential loading experiments, but below that height as a result of inertial
effects. In particular, in the plastic limit (V → 0), and with an indenter whose mass far exceeds that
of the deforming substrate (G/M→ 0), the dimensionless equation of motion of the descending
object takes the form, δ̈ = −V′(δ), where V(δ) is a potential function representing the indenter’s
weight and substrate resistance. This equation of motion is conservative because the plastic
resistance of the substrate is rate-independent, but only applies up to the point that δ̇ = 0. Thus,
given an initial speed δ̇0 at the undeformed substrate surface, the final depth of penetration δf is
given by the integral, 1

2 δ̇2
0 = V(δf ), if we set V(0) = 0. For example, with a plate or cylinder pushed
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Figure 11. (a,b) Ballotini surface profiles for the layer depths h0 and particle diameters D indicated. Panels (c–e) show scaled
profiles for the (h0, D) combinations indicated,with the sevendeepest penetrations in darker blue and 10 shallower penetrations
in light grey. The dashed lines show the averages of the data and the green solid lines indicate the cylinder. (f ) Averaged scaled
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variation in the surface. (Online version in colour.)

into a purely cohesive layer,

V(δ) =
{

−δ − 2M−1 ln(1 − δ) (plate),
−δ + 2M−1 [(1 + 2δ) ln(1 + 2δ) + 2(1 − δ) ln(1 − δ)] (cylinder),

(7.1)

which are illustrated in figure 12, and indicate how the final penetration depth can be determined
from δ̇0. If 1

2 δ̇2
0 > V(1), then δf = 1 and the indenter is predicted to impact the underlying surface.

Although this is not predicted for the plate (for which V(δ) diverges for δ → 1), δf can vanish for
the cylinder, even though the equilibrium height is always finite.

Although we conducted no systematic series of tests, it was possible to confirm the effect of
the initial speed δ̇0 on the final depth δf experimentally by dropping the cylinder from various
heights, rather than loading it up sequentially. For example, for the 1 mm ballotini, with a layer
depth of h0 = 5 cm, when the initial height of the cylinder was raised by tens of centimetres, the
final penetration depth increased significantly from about 2 mm to 6 mm.
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(a) (b)

Figure 13. Lift-off mechanisms: (a) reverse squeeze flow and (b) avalanching.

Figure 14. Photographs of lift-off experiments with Carbopol showing the effects of adhesion. (Online version in colour.)

(b) Lift-off dynamics
Indentation is the first phase in the process of creating an imprint in a plastic layer; the second
phase is pull-out or lift-off. For example, an idealized model for the formation of a footprint
combines fixed-load penetration with fixed-speed lift-off. The latter depends critically on the
surface interaction between the indenter and substrate. Two obvious possibilities are illustrated
for an indenting plate in figure 13; in the first, there is a partial loss of contact at the sides, with a
reverse squeeze flow underneath. For the second, an immediate loss of contact occurs wherever
normal forces are negative, with ensuing surface avalanching.
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A reverse squeeze flow arises when no air or ambient fluid can fill the gap as the indenter
is lifted up, and instead suction draws material back in from the uplifted material beyond the
contact line (figure 13a). The free surface then collapses back towards the indenter with a profile
again predicted by the free-surface flow problem. Conservation of mass ultimately determines
the portion of the free surface that collapses backwards, and hence the maximum free surface
height. When the free surface meets the corner the pressure at the edge of the indenter becomes
atmospheric; there are then two possibilities for final lift-off. For a material with no strength
under tension, the indenter detaches completely leaving an imprint. For a viscoplastic fluid like
Carbopol, however, there is adhesion to the indenter surface, and detachment only occurs when
the lengthening filament connecting the adhered fluid to the residual layer beneath eventually
pinches off and breaks, as illustrated in figure 14. This more fluid-like phenomenon completely
destroys the impression made during the indentation phase, leaving little by way of an imprint.

Immediate detachment with avalanching occurs when air or ambient fluid migrates freely
into the gap underneath the lifted indenter. Only where the substrate material is pushed back
into the gap is any contact maintained (figure 13b). Once the indenter fully detaches, the base
of the imprint remains at the original penetration depth, with the collapse of the surrounding
mound of material encroaching on the sides of the initial impression. Figure 15 shows two lift-
off experiments with ballotini at different initial depths for a cylindrical indenter. In figure 15a,
the indentation is sufficiently shallow that the sides remain below the angle of friction. As a
result, almost no avalanching occurs during lift-off. However, for the deeper indentation depth
in figure 15b, the walls become steeper than the angle of friction at the contact lines. In this case,
ballotini avalanches down into the interior of the imprint during lift-off. The final profile then sits
at an angle less than the angle of friction everywhere.

8. Conclusion
In this paper, we have explored the indentation of a planar object into a plastic layer, both
theoretically and experimentally (we also provide a brief discussion of the axisymmetric
indentation of a sphere in appendix A). On the theoretical side, we outlined a viscoplastic
lubrication analysis for a purely cohesive substrate that permits one to follow the finite
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deformations during indentation that enable the indenter to sink to its final resting position and
uplift the surrounding free surface. We further provided a related analysis of dynamic indentation
with arbitrary shapes into a Mohr–Coulomb layer, based on an extension of a theory by Marshall
[26]. Both analyses can be used to predict the depth to which the indenter penetrates, given the
load, and examine the effect of that object’s inertia, which are key for modelling the formation
of an imprint. The manner in which the indenter is subsequently pulled off the layer similarly
impacts such prints, the phenomenology of which we have also commented upon.

For the experiments, we used layers of Carbopol and glass spheres (ballotini), which are
prototypical examples of a viscoplastic fluid and a granular medium. Experiments in which a
cylinder was indented into Carbopol showed a clear dependence on the depth of the layer and
compared favourably with the predictions of viscoplastic lubrication theory; the indentations
with a sphere showed a similar level of agreement. Indentations with a plate were less successful,
likely due to a combination of non-ideal fluid rheology, finite-depth effects, and a lengthy
experimental relaxation time.

For the ballotini, indentations with a cylinder had the surprising feature that the penetration
depth and contact length were insensitive to the layer depth. This is potentially unexpected
in view of the Carbopol experiments and classical results from slip-line theory, which suggest
that deformation spans the substrate when the width of the indenter is comparable to layer
depth (which was certainly the case in the experiments). The lack of a prominent layer-depth
dependence is, however, anticipated by the Mohr–Coulomb shallow-layer theory; evidently,
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the varying contact length and layer thickness during indentation are sufficient to offset the
dramatic pressure rise underneath the indenter which would otherwise characterize the confined
deformation and prompt a significant dependence on layer depth.

Our success in reproducing the dynamics of indentation into a viscoplastic fluid suggests
that lubrication theory offers a convenient pathway to study the formation of an imprint or
the migration of structures over plastic layers. For biological inference from footprints, one
can supplement the modelling of the indentation phase with a complementary analysis of the
lift-off stage. In principle, this would provide a relatively simple theoretical description of the
formation of the footprint, allowing one to concisely decipher the controlling combinations
of physical parameters and how the imprint depends upon them. Currently, most theoretical
investigations into indentations into plastic layers proceed via numerical computation (e.g. [14,35,
36]); viscoplastic lubrication theory offers a largely analytical alternative. Despite this, the main
challenge for a layer of non-cohesive material is to adequately capture the flow dynamics outside
the indenter in order to avoid an unrealistic or empirical prescription for the deformation of the
free surface (which we were forced into here; see figure 10).
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Appendix A. Indentation of a sphere
The analysis described in §3 can be extended to model shallow axisymmetric indentation by a
sphere of radius R, for which

h(r, t) = h(0, t) + r2/(2R), (A 1)

where r is the radial coordinate. The analysis then follows that of the two-dimensional case
described where the depth-integrated mass conservation (3.12) can now be written as

∂h
∂t

+ 1
r

∂

∂r

(
r
∫ h

0
u dz

)
= 0. (A 2)

The squeeze flow now occupies r < rc(t) and the substrate resistance is 2π
∫rc

0 p(r, h, t)r dr.
Otherwise, the lubrication theory proceeds much as in the main text.

In the plastic limit, V → 0, following the analysis in §3f, we obtain

M= 4π

(
ξC −

√
2(1 − δ) tan−1 ξC√

2(1 − δ)

)
+ 1

4 πGξ4
C (A 3)

and

δξ2
C − 1

4 ξ4
C = G2

120
(ηC − 1)3(8ηC

2 + 9ηC + 3) + ξCG
3

(ηC − 1)2(2ηC + 1), (A 4)

where now ξC = rc/
√

h0R. Again, we find the limits ξC = 2
√

δ for G 	 1 and ηC → 1 (or ξC → √
2δ)

for G � 1. Now, however, contact δ = 1 is established when M→ 4πξC with

ξ2
C − 1

4 ξ4
C = G2

240

(
1
2 ξ2

C − 1
)3

(4ξ4
C + 9ξ2

C + 6) + rcG
3

(
1
2 ξ2

C − 1
)2

(ξ2
C + 1). (A 5)

Here, contact is an artefact of the neglect of the rate-dependent stress: for η → 0, viscous effects
become important for any finite V in (3.21) and the plastic limit is no longer valid.
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Experiments were also conducted with a sphere of radius R = 7.4 cm using the set-up described
in §5a. Figure 16 shows a plot of the penetration depth and contact length for the sphere. As with
the cylinder described in the main text, the viscoplastic lubrication theory compares well with the
experiments.
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