
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPL. MATH. c\bigcirc 2020 Society for Industrial and Applied Mathematics
Vol. 80, No. 2, pp. 657--689
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Abstract. When cooling cells to preserve them during cryopreservation, cooling too quickly
results in the formation of lethal intracellular ice, while cooling too slowly amplifies the toxic effects
of the cryoprotective agents (CPAs) added to slow down ice formation. We derive a mathematical
model for cell cryopreservation to understand and quantify these observations. We assume that the
system has a spherical geometry of three different regions: ice, extracellular liquid medium, and
cell. The two interfacial boundaries separating the three regions can move and must be determined
as part of the solution. The presence of CPA lowers the freezing point of the system, and the cell
membrane moves due to the osmotic pressure difference across the membrane. We use a combination
of numerical and asymptotic methods to determine how the temperature, the CPA concentration,
and concentration of an ion species internal and external to the cell evolve during cooling for a range
of cooling rates across different timescales. We introduce two metrics to characterize the cell damage
caused by freezing, accounting for supercooling and CPA toxicity. Given cell properties and the
operating protocol of the cryopreservation process, we show how the damage metrics can be used
to predict an optimal cooling rate. Our asymptotic analysis provides a computationally efficient
framework from which to determine this optimal rate.

Key words. cryopreservation, supercooling, moving boundary problem, Stefan problem, as-
ymptotic analysis
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1. Introduction. Cryopreservation is the process of preserving biological enti-
ties by cooling to temperatures low enough to halt biochemical processes such as
metabolism [34, 37, 41]. This technology has a variety of uses, including fertil-
ity [31], tissue transplantation [25], food security [5], and the protection of endangered
species [21]. While the exact details of cryopreservation protocols vary greatly between
different cell types, unifying elements are the immersion of cells within a physiolog-
ical liquid extracellular medium, and the subsequent cooling of this mixture [35]. It
is imperative to be able to control and minimize intracellular ice formation during
cryopreservation, which can be lethal to cells due to crushing or piercing of the cell
from ice crystals [34, 39].

To combat ice formation, cryoprotective agents (CPAs), such as dimethyl sulphox-
ide (DMSO) or glycerol, are often added to the cryopreservation medium before cool-
ing [18]. CPAs lower the freezing point of the cytosol and the medium by interfering
with the process by which crystalline ice structures form. As such, these CPAs must be
able to permeate through the cell membrane. At the same time, the addition of CPA
is not a panacea since CPAs can be toxic to cells at warmer temperatures, before the
cooling process is complete [17]. Since intracellular ice formation is observed for faster
cooling rates [33], and CPA toxicity is observed for slower cooling rates [17], a careful
balance between CPA addition and cooling rate is required if the frozen cells are to
remain viable. Typically the balance between these experimentally controllable pa-
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rameters will be application specific, and protocols are determined empirically [35, 36].
Mathematical and computational methods to simulate the cryopreservation process
offer a cost-effective way to understand, refine, and optimize these protocols [1, 49].

The Kedem--Katchalsky (KK) equations are widely used in cryopreservation mod-
eling to track cell volume and CPA concentration during cryopreservation [26, 29]. The
KK equations consist of a system of coupled ordinary differential equations (ODEs)
for the cell volume and the CPA concentration within the cell. The cell volume can
vary during cryopreservation because osmotic pressures are generated across the mem-
brane. This is caused by the concentrating of chemical species already present outside
the cell as the available liquid volume decreases due to the growth of extracellular ice.
However, as noted previously [1], the spatial variation of important physical quanti-
ties, such as the location of the freezing front and the CPA concentration through the
system, are not typically taken into account in the KK equations. Although there are
some exceptions (see, for example, [6, 16, 24]), most currently available spatial models
only consider some aspect of spatial dependence, and rely on numerical simulations
to solve them. The aim of this paper is to provide a model that accounts for the
spatial dependence of temperature and chemical concentration and to systematically
deduce the conditions under which simpler ODE models are applicable. This provides
a mathematical framework in which optimal cooling rates for different cells can be
deduced.

Three recent papers have investigated similar models to the one we present here
[2, 3, 4]. In [2], a general model for the heat and mass transport around a cell
surrounded by a liquid medium containing multiple chemical species is developed,
taking into account spatial variation. As the system is cooled, a freezing front advances
towards the cell. In [3], a version of this system is solved numerically for the case
with a dilute and ideal ternary solution in a spherical domain, including the effects of
solute capture within the ice, a pressure-dependent freezing point depression, and a
Gibbs--Thomson freezing point promotion. In [4], numerical methods for solving the
model in [3] are presented, and the effect of partial solute rejection at the ice-water
interface is investigated. The model we consider in this paper is similar to those
considered in [3, 4]; however, our approaches to analyzing the models are different.
We focus on obtaining asymptotic solutions to our model, which allow us to derive
reduced equations that effectively govern the system, and yield significant physical
insight into the heat and mass transport processes.

We consider the cryopreservation of a single cell in a liquid extracellular medium.
The geometry, shown in Figure 1, consists of three different regions: ice, extracellular
liquid, and cell liquid. The temperature of the external boundary is lowered at an
operationally determined rate, and we solve for the temperature and concentrations of
chemical species within the liquid medium and the cell. We track two representative
species: one which can permeate the cell membrane, and one which cannot. As CPA
is chosen for its ability to permeate cells, we refer to the permeable solute as CPA. As
ions typically have a very low permeability across the cell membrane, we refer to the
impermeable solute as the ion species. The concentration difference of these solutes
across the membrane drives an osmotic liquid motion, and an associated change of cell
volume. Additionally, as the exterior temperature decreases and ice forms, a freezing
front will develop and propagate into the liquid phase. We therefore have two moving
boundaries to track: the cell membrane and the freezing front.

We solve the resulting model using a combination of numerical and asymptotic
methods. The latter allows us to systematically reduce the complexity of the model
through the method of matched asymptotic expansions [20, 27] by exploiting an inher-
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Fig. 1. A two-dimensional schematic of the three-dimensional spherically symmetric model
geometry we consider in this paper. The dimensionless variables in each phase are defined in Table 1.
The cell membrane and freezing front, rc and rf , respectively, are moving boundaries and are shown
as dashed lines.

ent separation of the natural timescales in the problem. These timescales are associ-
ated with heat conduction (seconds), chemical diffusion (minutes), and cell membrane
movement (hours). Our approach allows us to identify the operating regimes where
specific spatial effects of the temperature and chemical concentration are important,
resulting in a comprehensive understanding of the possible cooling behaviors. Our
asymptotic results also unveil the flow of information through the system and inform
how we implement the relevant boundary conditions in our numerical scheme of the
full problem.

Our asymptotically reduced model allows for a significant reduction in the com-
putational complexity of determining cell damage, and hence optimizing operating
conditions, such as the cooling rate. Benson and colleagues have investigated optimal
control problems for CPA equilibration, introducing the concept of a CPA toxicity
cost function that should be minimized [7, 8, 9, 13, 14]. We consider a similar toxicity
cost function, and add a new cost function to characterize intracellular ice formation,
in order to estimate cell damage as a function of cooling rate.

The outline of our paper is as follows. In section 2 we present the full model,
nondimensionalize, and provide numerical solutions to illustrate the qualitative be-
haviors of the system. In section 3 we perform an asymptotic analysis, exploiting the
separation of the three natural timescales inherent to the problem. In section 4 we
explore how the general analysis of the previous section can be reduced in three dis-
tinguished limits of the system where the operationally imposed cooling rate matches
each of the natural timescales. In particular, we show when it is important to account
for spatial dependence, and when the system can be formally reduced to a system of
ODEs similar to the KK model discussed above [26, 29]. We also validate our asymp-
totic results by comparison with numerical solutions of the full model. In section 5
we introduce damage metrics to account for cell damage due to supercooling (where
liquid is cooled to below its freezing point without solidification) and CPA toxicity.
We conclude in section 6 with a discussion of our results and suggestions for further
model extensions.

2. Model description. We consider the problem of a cell immersed in a liquid
medium containing two chemical species. One of the species, labeled \~x, is able to
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Table 1
Dimensional and dimensionless variable definitions.

Dimensional variable Description Dimensionless variable

\~r Radial coordinate \~r = \~rbr
\~t Time \~t = (\~\rho s\~cs\~r2b/

\~ks)t

\~xc Intracellular CPA concentration \~xc = \~X0xc

\~yc Intracellular ion concentration \~yc = \~X0yc

\~xl Extracellular CPA concentration \~xl = \~X0xl

\~yl Extracellular ion concentration \~yl = \~X0yl
\~Tl Water temperature \~Tl = \~Tf0 +

\bigl( 
\~Tf0  - \~Tend

\bigr) 
Tl

\~Ts Ice temperature \~Ts = \~Tf0 +
\bigl( 
\~Tf0  - \~Tend

\bigr) 
Ts

\~rc Cell membrane \~rc = \~rbrc

\~rf Ice-water interface \~rf = \~rbrf
\~rb Exterior ice boundary

permeate the cell membrane but the other, \~y, is not. As cryoprotective agents (CPAs)
are partly chosen for their ability to permeate the cell, we refer to the permeable
species as CPA and refer to the impermeable species simply as the ion species. We
assume that the concentration of both species is initially equal inside and outside the
cell, with the entire system at the initial freezing point of the liquid. The system
is cooled at the external boundary at a prescribed rate to a final temperature \~Tend,
after which we allow the system to equilibrate. The rate of the cooling is a key
parameter we investigate. As the system cools, the formation of ice from the external
boundary into the interior reduces the volume of the liquid phase, concentrating the
chemical species. This changes the freezing point of the liquid phase, and also induces
an osmotic pressure across the cell membrane, driving a change in cell volume. We
provide a schematic of the dimensionless problem in Figure 1 and a list of variables in
Table 1. For brevity, we will not discuss the parameter definitions in the main text;
these are all contained in Table 2.

We consider a spherically symmetric domain in which the cell center is located
at the origin, and \~r is the radial coordinate. The cell domain is 0 < \~r < \~rc, where
\~r = \~rc(\~t) defines the cell membrane position and \~t denotes time. The fluid domain
is \~rc < \~r < \~rf , where \~r = \~rf (\~t) defines the freezing front position. The ice domain
is \~rf < \~r < \~rb, where \~r = \~rb defines the external boundary. The cell membrane and
the freezing front are moving boundaries which must be determined as part of the
solution. We note that while conservation of mass should result in a slight expansion
of the exterior ice boundary as the water freezes, resulting in a third moving boundary,
this effect is small and we therefore neglect it as a simplification.

We track the temperature in the cell and liquid, \~Tl, and in the ice, \~Ts. We assume
that heat conduction in the cell is the same as that in the liquid as the cell consists
mainly of water, so we do not differentiate between these two regions for the heat flow
problem. We also track the concentrations of the CPA and the ion species in the cell
(\~xc, \~yc) and liquid (\~xl, \~yl). As discussed above, the freezing point of the liquid will be
lowered by the presence of chemical species, and we define the freezing temperature
\~Tf as

\~Tf (\~x, \~y) := \~Tf0  - \~\alpha \~x - \~\gamma \~y,(1)

where we assume a linear relationship. For simplicity, we will consider the case where
the freezing temperature depends on the CPA concentration only, so we take \~\gamma = 0 K
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A MATHEMATICAL MODEL OF CRYOPRESERVATION 661

Table 2
Parameters from the full dimensional problem and their typical values. We estimate \~Dx

c using
the observation in Verkman [47] that small molecules have a diffusivity of around five times less in
cytoplasm than in water, and we estimate \~Dy

c and \~Dy
l by the observation that ions tend to be much

smaller molecules than CPA agents, and so ion diffusivity will be higher in a given medium. We
use the typical cell radius of the human oocyte.

Parameters Typical value Description

\~Dx
c 2\times 10 - 10 m2 s - 1 [15] Intracellular CPA diffusivity

\~Dy
c 4\times 10 - 10 m2 s - 1 [15] Intracellular ion diffusivity

\~Dx
l 1\times 10 - 9 m2 s - 1 [15] Extracellular CPA diffusivity

\~Dy
l 2\times 10 - 9 m2 s - 1 [15] Extracellular ion diffusivity

\~kl 0.6 W K - 1 m - 1 Thermal conductivity of water
\~ks 2.2 W K - 1 m - 1 Thermal conductivity of ice

\~\rho l 1\times 103 kg m - 3 Density of water

\~\rho s 9\times 102 kg m - 3 Density of ice

\~cl 4\times 103 J kg - 1 K - 1 Specific heat capacity of water

\~cs 2\times 103 J kg - 1 K - 1 Specific heat capacity of ice
\~L 3.4\times 105 J kg - 1 Latent heat of freezing water

\~\alpha 4\times 10 - 3 K m3 mol - 1 [28] Cryoscopic constant of CPA

\~\gamma 0 K m3 mol - 1 Cryoscopic constant of ion species

\~rc0 5\times 10 - 5 m [45] Initial cell radius

\~rb 5\times 10 - 4 m [32] System radius

\~\kappa 5\times 10 - 15 m2 s kg - 1 [15] Hydraulic conductivity of cell membrane

\~\omega 5\times 10 - 14 s mol m - 1 kg - 1 [15] CPA permeability of cell membrane
\~R 8.3 kg m2 s - 2 K - 1 mol - 1 Universal gas constant

\sigma 0.65 [6] CPA reflection coefficient at cell membrane
\~X0 1\times 103 mol m - 3 [34] Initial CPA concentration (intra and extra)
\~Y0 1\times 102 mol m - 3 [23] Initial ion concentration (intra and extra)
\~T0 = \~Tf0  - \~\alpha \~X0 269 K Initial temperature of system
\~Tend 200 K [42] Final temperature of system
\~Tf0 273 K Freezing temperature of water in absence of CPA
\~\beta 10 - 3 -- 105 K s - 1 [38, 40] Cooling rate of exterior boundary

m3 mol - 1. This means that the role of the ion species in this model is to impart an
osmotic pressure across the cell membrane as the ice region grows and the extracellular
liquid volume is decreased, resulting in a change in cell volume. The analysis could
easily be extended to incorporate the dependence of the freezing temperature on the
ion concentration.

We assume that the chemical transport in the cell and liquid is due to diffusion.
While we expect the chemical diffusivity and membrane parameters to depend on
temperature in practice [15], we treat these parameters as independent of temperature
for simplicity and to facilitate analytical progress. We provide justification of this
assumption in Appendix A, where we show that the qualitative features of the problem
do not change significantly when temperature dependence is taken into account.

The equations governing the temperature distribution in the liquid and ice are

\~\rho l\~cl
\partial \~Tl

\partial \~t
=

\~kl
\~r2

\partial 

\partial \~r

\Biggl( 
\~r2

\partial \~Tl

\partial \~r

\Biggr) 
for 0 < \~r < \~rf (\~t),(2a)

\~\rho s\~cs
\partial \~Ts

\partial \~t
=

\~ks
\~r2

\partial 

\partial \~r

\Biggl( 
\~r2

\partial \~Ts

\partial \~r

\Biggr) 
for \~rf (\~t) < \~r < \~rb,(2b)
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662 M. DALWADI, S. WATERS, H. BYRNE, AND I. HEWITT

and those governing solute diffusion are

\partial \~xc

\partial \~t
=

\~Dx
c

\~r2
\partial 

\partial \~r

\biggl( 
\~r2

\partial \~xc

\partial \~r

\biggr) 
for 0 < \~r < \~rc(\~t),(3a)

\partial \~yc

\partial \~t
=

\~Dy
c

\~r2
\partial 

\partial \~r

\biggl( 
\~r2

\partial \~yc
\partial \~r

\biggr) 
for 0 < \~r < \~rc(\~t),(3b)

\partial \~xl

\partial \~t
=

\~Dx
l

\~r2
\partial 

\partial \~r

\biggl( 
\~r2

\partial \~xl

\partial \~r

\biggr) 
for \~rc(\~t) < \~r < \~rf (\~t),(3c)

\partial \~yl

\partial \~t
=

\~Dy
l

\~r2
\partial 

\partial \~r

\biggl( 
\~r2

\partial \~yl
\partial \~r

\biggr) 
for \~rc(\~t) < \~r < \~rf (\~t).(3d)

We now consider appropriate boundary and coupling conditions. At the origin,
we impose symmetry conditions

(4) \~Dx
c

\partial \~xc

\partial \~r
= 0, \~Dy

c

\partial \~yc
\partial \~r

= 0, \~kl
\partial \~Tl

\partial \~r
= 0 for \~r = 0.

At the cell membrane, we impose the following conservation conditions:

\~Dx
c

\partial \~xc

\partial \~r
+ \~xc

d\~rc

d\~t
= \~Dx

l

\partial \~xl

\partial \~r
+ \~xl

d\~rc

d\~t
= \~\omega \~R \~T0 (\~xl  - \~xc) for \~r = \~rc(\~t),(5a)

\~Dy
c

\partial \~yc
\partial \~r

+ \~yc
d\~rc

d\~t
= \~Dy

l

\partial \~yl
\partial \~r

+ \~yl
d\~rc

d\~t
= 0 for \~r = \~rc(\~t),(5b)

d\~rc

d\~t
=  - \~\kappa \~R \~T0 [\sigma (\~xl  - \~xc) + (\~yl  - \~yc)] for \~r = \~rc(\~t).(5c)

Equation (5a) corresponds to the continuity of CPA flux through the cell membrane,
and to the fact that this flux is proportional to the concentration difference across the
membrane. Equation (5b) corresponds to no ion flux across the membrane. Equation
(5c) corresponds to the dynamic change in cell volume being proportional to the
osmotic pressure difference across the cell surface. We use a reflection coefficient of 1
for the difference in ion concentration in (5c) since we assume that the cell membrane
is impermeable to ions [29]. Additionally, we have neglected surface tension effects,
as a simple dimensional analysis shows that typical surface tension values of around
0.01--0.1 mN m - 1 for the animal cell membrane [11, 48] yield effects approximately
six orders of magnitude weaker than osmotic forces.

At the freezing front, we have the following conditions:

\~Tl = \~Ts = \~Tf (\~xl) for \~r = \~rf (\~t),(6a)

\~Dx
l

\partial \~xl

\partial \~r
+ \~xl

d\~rf

d\~t
= 0 for \~r = \~rf (\~t),(6b)

\~Dy
l

\partial \~yl
\partial \~r

+ \~yl
d\~rf

d\~t
= 0 for \~r = \~rf (\~t),(6c)

\~\rho s \~L
d\~rf

d\~t
= \~ks

\partial \~Ts

\partial \~r
 - \~kl

\partial \~Tl

\partial \~r
for \~r = \~rf (\~t).(6d)

Here, (6a) corresponds to the temperature at the freezing front being continuous and
depending on the CPA concentration as defined in (1); (6b) and (6c) ensure no flux of
either solute across the freezing front; and (6d) corresponds to the Stefan condition,
namely, that latent heat is released as water is frozen, which results in the velocity of
the interface being proportional to the difference in heat flux across the interface [19].
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Table 3
Dimensionless parameters, with typical values derived from Table 2. Note that \sigma is provided in

Table 2.

Dimensionless parameter Typical value

kl = \~kl\~\rho s\~cs/(\~ks\~\rho l\~cl) 1.2\times 10 - 1

k = \~kl/\~ks 2.7\times 10 - 1

S = \~L/
\bigl( 
\~cs
\bigl( 
\~Tf0  - \~Tend

\bigr) \bigr) 
2.3\times 100

Dx
c = \~Dx

c \~\rho s\~cs/
\~ks 1.6\times 10 - 4

Dy
c = \~Dy

c \~\rho s\~cs/\~ks 3.3\times 10 - 4

Dx
l = \~Dx

l \~\rho s\~cs/
\~ks 8.2\times 10 - 4

Dy
l = \~Dy

l \~\rho s\~cs/
\~ks 1.6\times 10 - 3

\kappa = \~\kappa \~R \~T0
\~X0\~\rho s\~cs\~rb/\~ks 4.6\times 10 - 6

\omega = \~\omega \~R \~T0\~\rho s\~cs\~rb/\~ks 4.6\times 10 - 8

\alpha = \~\alpha \~X0/( \~Tf0  - \~Tend) 5.5\times 10 - 2

\beta = \~\beta \~\rho s\~cs\~r2b/
\bigl( 
\~ks

\bigl( 
\~Tf0  - \~Tend

\bigr) \bigr) 
2.8\times 10 - 6 -- 2.8\times 102

rc0 = \~rc0/\~rb 1\times 10 - 1

Y0 = \~Y0/ \~X0 1\times 10 - 1

Finally, at the exterior ice boundary, we prescribe the temperature in terms of a
general function \~Tp(\~t):

\~Ts = \~Tp(\~t) for \~r = \~rb.(7)

The initial conditions of the system are

\~xc(\~r, 0) = \~X0, \~xl(\~r, 0) = \~X0, \~yc(\~r, 0) = \~Y0, \~yl(\~r, 0) = \~Y0,

\~Tl(\~r, 0) = \~T0 := \~Tf0  - \~\alpha \~X0, \~rc(0) = \~rc0, \~rf (0) = \~rb,(8)

corresponding to a system where the CPA and ion concentration are the same within
the cell and the liquid, and the entire system is at the initial freezing temperature of
the liquid. The prescribed final temperature is \~Tend, so the prescribed temperature
change will be \~Tf0  - \~\alpha \~X0  - \~Tend. For later use, we introduce a typical cooling rate
\~\beta (which can be experimentally controlled) and hence have a timescale for cooling,
( \~Tf0  - \~\alpha \~X0  - \~Tend)/\~\beta .

Taken together, our system consists of equations (2)--(3), boundary conditions
(4)--(7), and initial conditions (8).

2.1. Dimensionless problem. We form the dimensionless variables specified
in Table 1 and the dimensionless parameters specified in Table 3. We choose our time
scaling according to the fastest timescale in the problem, thermal conduction, which
occurs over a few seconds in dimensional time.

Using the nondimensionalization described above, the thermal diffusion problems
(2) become

\partial Tl

\partial t
=

kl
r2

\partial 

\partial r

\biggl( 
r2

\partial Tl

\partial r

\biggr) 
for 0 < r < rf (t),(9a)

\partial Ts

\partial t
=

1

r2
\partial 

\partial r

\biggl( 
r2

\partial Ts

\partial r

\biggr) 
for rf (t) < r < 1,(9b)
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and the solute diffusion problems (3) become

\partial xc

\partial t
=

Dx
c

r2
\partial 

\partial r

\biggl( 
r2

\partial xc

\partial r

\biggr) 
for 0 < r < rc(t),(10a)

\partial yc
\partial t

=
Dy

c

r2
\partial 

\partial r

\biggl( 
r2

\partial yc
\partial r

\biggr) 
for 0 < r < rc(t),(10b)

\partial xl

\partial t
=

Dx
l

r2
\partial 

\partial r

\biggl( 
r2

\partial xl

\partial r

\biggr) 
for rc(t) < r < rf (t),(10c)

\partial yl
\partial t

=
Dy

l

r2
\partial 

\partial r

\biggl( 
r2

\partial yl
\partial r

\biggr) 
for rc(t) < r < rf (t).(10d)

At the origin, the symmetry conditions (4) become

(11) Dx
c

\partial xc

\partial r
= 0, Dy

c

\partial yc
\partial r

= 0, kl
\partial Tl

\partial r
= 0 for r = 0.

At the cell membrane, the boundary conditions (5) become

Dx
c

\partial xc

\partial r
+ xc

drc
dt

= Dx
l

\partial xl

\partial r
+ xl

drc
dt

= \omega (xl  - xc) for r = rc(t),(12a)

Dy
c

\partial yc
\partial r

+ yc
drc
dt

= Dy
l

\partial yl
\partial r

+ yl
drc
dt

= 0 for r = rc(t),(12b)

drc
dt

=  - \kappa [\sigma (xl  - xc) + (yl  - yc)] for r = rc(t).(12c)

At the freezing front, the boundary conditions (6) become

Tl = Ts = Tf for r = rf (t),(13a)

Dx
l

\partial xl

\partial r
+ xl

drf
dt

= 0 for r = rf (t),(13b)

Dy
l

\partial yl
\partial r

+ yl
drf
dt

= 0 for r = rf (t),(13c)

S
drf
dt

=
\partial Ts

\partial r
 - k

\partial Tl

\partial r
for r = rf (t),(13d)

where the dimensionless freezing temperature Tf is

Tf (xl) :=  - \alpha xl.(14)

At the exterior ice boundary, the boundary condition (7) becomes

Ts = Tp(t),(15)

where Tp(0) =  - \alpha . The dimensionless cooling rate is denoted \beta , and the final tem-
perature is Tp =  - 1. We will mainly consider linear cooling in the numerics, so

Tp(t) =

\Biggl\{ 
 - \alpha  - \beta t for 0 < t < (1 - \alpha )/\beta ,

 - 1 for t > (1 - \alpha )/\beta .
(16)

Finally, from (8), the initial conditions of the system are now

(17)
xc(r, 0) = 1, xl(r, 0) = 1, yc(r, 0) = Y0, yl(r, 0) = Y0,

Tl(r, 0) =  - \alpha , rc(0) = rc0, rf (0) = 1.
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A MATHEMATICAL MODEL OF CRYOPRESERVATION 665

Fig. 2. Numerical solutions for a slow dimensionless cooling rate (\beta = 2.8\times 10 - 7, corresponding
to a dimensional cooling rate of \~\beta = 10 - 4 K s - 1). From left to right, we show the temperature, CPA
concentration, and ion concentration. The black lines represent the position of the cell membrane
and the freezing front, respectively. All processes occur over the osmotic timescale here, roughly
corresponding to t > 1000.

Our dimensionless system is thus defined by equations (9)--(10), with boundary
conditions (11)--(15) and initial conditions (17). We now solve this system numerically
to understand the qualitative behavior, before undertaking an asymptotic analysis in
section 3.

2.2. Numerical solutions. We solve this system numerically via the follow-
ing steps. First, we move to new dependent variables of the form rf(r, t), where f
represents any of the dependent variables in the system. This reduces the governing
equations to one-dimensional diffusion in Cartesian coordinates. Then we impose the
Landau transformation [30] to fix the moving boundary in each phase. We implement
the method of lines with a discretization in space (focused near boundary layers if
necessary), essentially converting our partial differential equations into a system of
ordinary differential equations. We solve this system in time using the function ode15s
in MATLAB. This procedure is outlined in more detail in Appendix B. One issue we
face is that the ice region does not exist at t = 0. To circumvent this, we start our
simulations at a small but finite time, using initial conditions that are consistent with
the asymptotic early-time behavior (see Appendix C).

To explore different cooling rates via our numerical scheme, we use the functional
form in (16) and interrogate the solution with different choices of cooling rate \beta . We
emphasize that the asymptotic analysis presented in section 3 is valid for a more
general class of prescribed temperatures on the external boundary, including this
simple case of linear cooling. It is the cooling rate that is important to the asymptotic
analysis, not the exact form of the prescribed temperature.

The system behavior changes significantly as the cooling rate varies. The vari-
ables are approximately spatially homogeneous for lower cooling rates (Figure 2), but
develop spatial gradients as the cooling rate increases: first occurring for the concen-
tration (Figure 3), then also for the temperature (Figure 4) if the cooling rate is very
rapid. While the final equilibrium state is the same for all cooling rates, the dynamics
of how these states are reached differ with the cooling rate.

The spatial gradients in solute concentrations in Figures 3--4 are restricted to the
liquid phase; the solute concentrations within the cell always appear to be spatially

D
ow

nl
oa

de
d 

03
/1

0/
20

 to
 1

92
.7

6.
8.

86
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

666 M. DALWADI, S. WATERS, H. BYRNE, AND I. HEWITT

Fig. 3. Numerical solutions for a moderate dimensionless cooling rate (\beta = 2.8 \times 10 - 2, cor-
responding to a dimensional cooling rate of \~\beta = 101 K s - 1). As in Figure 2, from left to right
we show the temperature, CPA concentration, and ion concentration. The black lines represent the
position of the cell membrane and the freezing front, respectively. The solute diffusion timescale
roughly corresponds to 20 < t < 200, and the osmotic timescale to 200 < t < 3000.

Fig. 4. Numerical solutions for a rapid dimensionless cooling rate (\beta = 2.8\times 103, corresponding
to a dimensional cooling rate of \~\beta = 106 K s - 1). As in Figure 2, from left to right we show the
temperature, CPA concentration, and ion concentration. The black lines represent the position of
the cell membrane and the freezing front, respectively. The thermal conduction timescale roughly
corresponds to t < 10, the solute diffusion timescale to 10 < t < 200, and the osmotic timescale to
200 < t < 3000.

homogeneous (Figures 2--4). While the change in solute concentration and temper-
ature at the cell center occur over the same timescale when the cooling rate is low
(Figure 2), the change in solute concentration occurs over a slower timescale than for
the temperature when the cooling rate is faster (Figures 3--4).

The positions of the moving boundaries are highly dependent on the cooling rate
(Figures 5--6). The cell membrane and freezing front reach a limiting behavior in time
as the cooling rate increases (Figures 5(a) and 6(a)). In addition, the positions of the
moving boundaries also tend toward limiting behaviors as the cooling rate decreases.
This is most evident when scaled against the external temperature (Figures 5(b) and
6(b)), and it represents quasi-steady kinetics. These observations will be elucidated
through our asymptotic analysis in section 3.
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A MATHEMATICAL MODEL OF CRYOPRESERVATION 667

Fig. 5. The normalized radius of the cell rc(t)/rc0 during freezing, plotted against (a) time and
(b) prescribed temperature Tp(t) at the external boundary. The different solid lines correspond to
different values of the cooling rate; we use \beta = 2.8\times 10k, where k = \{  - 7, . . . , 3\} (corresponding to
dimensional cooling rates ranging between 10 - 4 and 106 K s - 1). Otherwise, we use the parameter
values in Table 3. The dashed line is the quasi-steady solution from (44). The arrows denote
increasing cooling rate.

Fig. 6. The radius of the water--ice boundary rf (t) during freezing, plotted against (a) time
and (b) prescribed temperature Tp(t) at the external boundary. As in Figure 5, the different solid
lines correspond to different values of the cooling rate; we use \beta = 2.8\times 10k, where k = \{  - 7, . . . , 3\} 
(corresponding to dimensional cooling rates ranging between 10 - 4 and 106 K s - 1). Otherwise, we
use the parameter values in Table 3. The dashed line is the quasi-steady solution from (44). The
arrows denote increasing cooling rate.

3. General asymptotic analysis.

3.1. Asymptotic structure. Table 3 shows that there are several small param-
eters in the system, and that the difference in magnitude between these parameters
can be extreme. In this section we use asymptotic techniques to investigate the impact
of these differences on the system dynamics.

We identify three natural timescales, associated with thermal conduction (t =
\itO (1), given the nondimensionalization), solute diffusion (t = \itO (1/Dx

l )), and osmosis
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t̃

Heat conduction

t̃ = O
(
ρ̃lc̃lr̃

2
b/k̃l

)t = O(1)
CPA/ion diffusivity

t̃ = O
(
r̃2b/D̃

x
l

)t = O(1/Dx
l )

Cell membrane movement

t̃ = O
(
r̃c/(κ̃R̃T̃0X̃0)

)t = O(1/κ)

Seconds Minutes Hours

Fig. 7. A schematic of the three natural timescales in the system. The prescribed timescale of
cooling is \~t = O(1/\~\beta ) (t = O(1/\beta )), which will range from seconds to hours.

(t = \itO (1/\kappa )). The relative sizes of these timescales are summarized in Figure 7. The
imposed cooling timescale 1/\beta may overlap with any of these, as discussed in section 4.
To perform the asymptotic analysis, we assume the limit \kappa \ll Dx

l \ll 1 henceforth,
so that the timescales outlined above are well separated. When we refer to ``leading
order"" in the next sections, this is meant in the asymptotic limit 0 < \kappa < Dx

l \rightarrow 0.
We are motivated by the values in Table 3 to treat Dx

c , D
y
c , D

y
l all as the same (small)

order asDx
l , and to treat \omega as the same (even smaller) order as \kappa . All other parameters

(kl, k, S, \alpha , rc0, Y0) are treated as \itO (1). In the next three subsections (sections 3.2--3.4)
we discuss each timescale in turn, from fastest to slowest. We start each subsection by
summarizing the physical implications of the results we will deduce in that subsection.

3.2. Thermal conduction timescale: \bfitt = \bfitO (1). Over this timescale, the
important process is heat conduction, and there can be a significant spatial tempera-
ture variation. The moving boundaries are static to leading order, and the chemical
concentrations remain unchanged from their initial values except in a boundary layer
near the freezing front, as seen in Figures 3--4. We see in section 3.3 that this bound-
ary layer problem is the early-time version of a broader diffusion problem that occurs
at the later timescale. We will therefore relegate the details of the chemical boundary
layer to Appendix D.

To formalize the above statements, we note that the cell membrane velocity
drc/dt = \itO (\kappa ) and, as seen in Appendix D, the freezing front movement drf/dt =
\itO (
\sqrt{} 

Dx
l ), resulting in rc(t) = rc0 and rf (t) = 1 at leading order. Therefore, there is

no ice phase at leading order. From (10), the dynamics of xc and yc are unimportant
over this timescale; these concentrations remain unchanged from their initial values,
as can be seen in Figures 2--4, resulting in xc = 1 and yc = Y0 to leading order.

The only variable that evolves significantly on this timescale is the liquid temper-
ature, Tl, which satisfies the reduced problem

\partial Tl

\partial t
=

kl
r2

\partial 

\partial r

\biggl( 
r2

\partial Tl

\partial r

\biggr) 
for 0 < r < 1,(18)

with symmetry condition

kl
\partial Tl

\partial r
= 0 for r = 0.(19)

Since the ice region is very small and the temperature within the ice is essentially
uniform, we have Ts = Tp(t) at leading order (see Appendix D). This leads to the
reduced boundary condition

Tl = Tp(t) for r = 1.(20)

D
ow

nl
oa

de
d 

03
/1

0/
20

 to
 1

92
.7

6.
8.

86
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A MATHEMATICAL MODEL OF CRYOPRESERVATION 669

Finally, the initial condition is

Tl(r, 0) =  - \alpha .(21)

The reduced temperature problem presented above contains no information about
the velocity of the freezing front. In Appendix D, we show that on this timescale the
temperature problem is decoupled from the initial motion of the freezing front, the
latter being governed by the CPA concentration near the front.

The reduced system for the liquid temperature (18)--(21) has the following analytic
leading-order solution:

Tl = Tp(t) +
2

r

\infty \sum 

n=1

( - 1)n exp( - kln
2\pi 2t)

n\pi 

\biggl[ \int t

0

T \prime 
p(s) exp(kln

2\pi 2s) ds

\biggr] 
sinn\pi r.(22)

For many prescribed external temperatures (for example, piecewise linear), we can
calculate the integral in (22) explicitly.

The large-time behavior of the temperature over this timescale is given by

Tl \rightarrow Tp(t), as t \rightarrow \infty ,(23)

and so the spatial dependence of temperature vanishes over this timescale.

3.3. Solute diffusion timescale: \bfitt = \bfitO (1/\bfitD \bfitx 
\bfitl ). Over this timescale, the

important process is solute diffusion within the liquid, and there are spatial variations
in concentration. The solutes within the cell are still unchanged from their initial
values at leading order, and the temperature is now spatially uniform through the
entire system. The cell membrane is static and there is no solute transport through
this boundary to leading order. However, the decrease in temperature will cause the
freezing front to advance into the liquid. This motion is limited by the concentrating
of CPA causing a reduction in the freezing temperature, and by how quickly CPA
can be transported away from the front. This is the interesting behavior on which we
focus in this section.

To formalize the above, we introduce the timescale \tau = Dx
l t = \itO (1), over which

the cell membrane velocity drc/d\tau = \itO (\kappa /Dx
l ) is still small, so rc(\tau ) = rc0 at leading

order. However, the freezing front movement is important, with drf/d\tau = \itO (1).
Over this timescale the thermal conduction is very quick, and it can be shown that
the temperature of the entire system is prescribed by the external boundary, that is,
Ts = Tl = Tp(\tau ). From (10), the dynamics of xc and yc are unchanged from their
initial conditions over this timescale, with xc = 1 and yc = Y0 at leading order.

The important leading-order system is given by the solute diffusion problem

\partial xl

\partial \tau 
=

1

r2
\partial 

\partial r

\biggl( 
r2

\partial xl

\partial r

\biggr) 
,

\partial yl
\partial \tau 

=
Dy

l

Dx
l r

2

\partial 

\partial r

\biggl( 
r2

\partial yl
\partial r

\biggr) 
for rc0 < r < rf (\tau ),(24)

with the conditions

\partial xl

\partial r
= 0,

\partial yl
\partial r

= 0 for r = rc0(25)
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at the cell membrane and

xl =  - Tp(\tau )

\alpha 
for r = rf (\tau ),(26a)

\partial xl

\partial r
+ xl

drf
d\tau 

= 0 for r = rf (\tau ),(26b)

Dy
l

Dx
l

\partial yl
\partial r

+ yl
drf
d\tau 

= 0 for r = rf (\tau )(26c)

at the freezing front.
The matching conditions for this system into the earlier timescale as \tau \rightarrow 0 are

as follows:

xl(r, 0) = 1, yl(r, 0) = Y0, rf (0) = 1.(27)

We note that these ``initial"" conditions may be inconsistent with the boundary con-
ditions at the freezing front (26). This discrepancy is remedied by the early-time
boundary layer near the freezing front (over the timescale t = \itO (1)) discussed in the
previous section and outlined in Appendix D.

Thus, the problem reduces to that of solute diffusion in the liquid domain, with
one moving boundary with a prescribed solute concentration and no flux through
either boundary. Moreover, we note that the freezing front movement is limited by
how quickly CPA can diffuse away from the interface over this timescale; the problem
for the ion concentration decouples.

The effective no-flux conditions at each interface mean that we can obtain the
global constraints

\int rf (\tau )

rc0

r2xl(r, \tau ) dr =
1 - r3c0

3
,

\int rf (\tau )

rc0

r2yl(r, \tau ) dr = Y0
1 - r3c0

3
,(28)

valid over this timescale. If xl and yl become spatially uniform, which is typically the
case for large \tau , these expressions determine the limiting behavior

rf \sim 
\biggl( 
 - \alpha 

Tp
+ r3c0

\biggl( 
1 +

\alpha 

Tp

\biggr) \biggr) 1/3

, yl \sim  - Y0Tp

\alpha 
as \tau \rightarrow \infty .(29)

We use these results as the large-\tau matching conditions for the next timescale.

3.4. Osmotic timescale: \bfitt = \bfitO (1/\bfitkappa ). On the final timescale, the heat con-
duction and solute diffusion are very quick, so the temperature and concentration are
spatially independent. This yields a significant reduction in the complexity of the
system. The important processes are solute permeation through the cell membrane
and the movement of this membrane. The freezing front can also advance into the
liquid, and this is governed by two main effects. First, as before, the CPA in the liquid
medium is concentrated by the advancing freezing front shrinking the domain; this
lowers the freezing point and slows the front movement. Second, as CPA permeates
into the cell, the freezing front must advance more quickly to reduce the size of the
liquid domain to conserve total CPA. This is because the liquid CPA concentration
is at a constant level fixed by the freezing point of the liquid.

To formalize the above, we introduce the slow timescale \zeta = \kappa t = \itO (1), from
which we see that we can have drc/d\zeta = \itO (1) and drf/d\zeta = \itO (1). From (9), the
thermal conduction is very quick and the temperature over this timescale is prescribed
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by the external boundary, resulting in Ts = Tl = Tp(\zeta ). From (10), solute diffusion
is also very quick, leading to chemical concentration being independent of the spatial
coordinate. Hence the freezing temperature at the freezing front (13a) tells us that
within the liquid medium

xl =  - Tp(\zeta )

\alpha 
.(30)

To determine the remaining time-dependent concentrations, we integrate each con-
centration equation over its respective domain, with the knowledge that each variable
is independent of space at leading order.

This procedure results in the governing equations

d

d\zeta 

\bigl( 
r3cyc

\bigr) 
= 0,(31a)

d

d\zeta 

\bigl( \bigl( 
r3f  - r3c

\bigr) 
yl
\bigr) 
= 0,(31b)

d

d\zeta 

\bigl( 
r3cxc

\bigr) 
=  - 3\omega r2c

\kappa 

\biggl( 
Tp(\zeta )

\alpha 
+ xc

\biggr) 
,(31c)

d

d\zeta 

\biggl( \bigl( 
r3f  - r3c

\bigr) Tp(\zeta )

\alpha 

\biggr) 
=  - 3\omega r2c

\kappa 

\biggl( 
Tp(\zeta )

\alpha 
+ xc

\biggr) 
,(31d)

drc
d\zeta 

= \sigma 

\biggl( 
Tp(\zeta )

\alpha 
+ xc

\biggr) 
+ yc  - yl(31e)

for the five remaining variables, xc, yc, yl, rc, and rf , which are all solely functions of
\zeta . The matching conditions for this system into the earlier timescale as \zeta \rightarrow 0 are as
follows:

xc(0) = 1, yc(0) = Y0, yl(0) = lim
\zeta \rightarrow 0

\biggl( 
 - Y0Tp(\zeta )

\alpha 

\biggr) 
,

rc(0) = rc0, rf (0) = lim
\zeta \rightarrow 0

\biggl( 
 - \alpha 

Tp(\zeta )
+ r3c0

\biggl( 
1 +

\alpha 

Tp(\zeta )

\biggr) \biggr) 1/3

.(32)

We are able to reduce this system from five ordinary differential equations to just
two, for xc and rc, as we now describe. Equations (31c) and (31d) can be combined
to eliminate the right-hand sides and integrated directly, yielding an expression for
global CPA conservation:

r3cxc  - 
\bigl( 
r3f  - r3c

\bigr) Tp

\alpha 
= 1.(33)

Rearranging (33) to obtain an expression for the position of the freezing front in terms
of xc, rc, and Tp, and integrating (31a) and (31b) directly, we obtain the algebraic
relationships

yc =
r3c0
r3c

Y0, yl =
1 - r3c0
r3f  - r3c

Y0, rf =

\biggl( 
r3c  - 

\alpha 

Tp

\bigl( 
1 - r3cxc

\bigr) \biggr) 1/3

.(34)

Therefore, we can reduce the system (31) to the following two ODEs for xc and rc:

d

d\zeta 

\bigl( 
r3cxc

\bigr) 
=  - 3\omega r2c

\kappa 

\biggl( 
Tp

\alpha 
+ xc

\biggr) 
,(35a)

drc
d\zeta 

= \sigma 

\biggl( 
Tp

\alpha 
+ xc

\biggr) 
+ Y0

\biggl( 
r3c0
r3c

+
Tp

\alpha 

1 - r3c0
1 - r3cxc

\biggr) 
,(35b)
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with xc(0) = 1 and rc(0) = rc0. The system (35) is similar to other ODE models that
have been used in the past to model cryopreservation (e.g., [7, 8, 13]), based on the
KK framework for the volume and intracellular solute concentration of cells during
cryopreservation [26, 29]. Our asymptotic analysis shows that (35) is the relevant
KK model for the setup we consider over longer timescales once the temperature and
concentration have become uniform in each domain. The differences between our
model and the standard KK model are (1) we consider an additional solute---the ion
concentration---and (2) our model has systematically accounted for the CPA and ion
concentrations both internally and externally to the cell, as well as their coupling to
the prescribed temperature at the external boundary.

Noting that Tp \rightarrow  - 1 when the final freezing temperature is reached, the final
equilibrium values are given by

xc, xl =
1

\alpha 
, yc, yl =

Y0

\alpha 
, rc = rc0\alpha 

1/3, rf = \alpha 1/3,(36)

as verified in Figures 2--4.

3.4.1. Small \bfitr \bfitc \bfzero . We note that, in practice, the value of rc0 is fairly small, and
hence r3c0 and r3c can be ignored relative to larger terms in (34)--(35). Making that
simplification, we find

yl =  - TpY0

\alpha 
, rf =

\biggl( 
 - \alpha 

Tp

\biggr) 1/3

,(37)

and (35b) can be approximated by

(38)
drc
d\zeta 

= \sigma 

\biggl( 
Tp

\alpha 
+ xc

\biggr) 
+ Y0

\biggl( 
r3c0
r3c

+
Tp

\alpha 

\biggr) 
.

4. Distinguished limits for the cooling rate. Now that we have described
the reduced models that hold on each timescale of the problem, we now consider how
the behavior depends on the cooling rate, \beta . The dimensionless cooling timescale is
1/\beta , and we consider three distinguished limits for \beta , where \beta = \itO (1), \itO (Dx

l ), and
\itO (\kappa ) in turn, proceeding from fastest to slowest cooling rate. We also consider the
sublimits of \beta \gg 1 and \beta \ll \kappa in their respective relevant distinguished limits.

4.1. Rapid cooling: \bfitbeta = \bfitO (1). In the case of rapid cooling, where \beta = \itO (1),
the temperature evolves on the conductive timescale t = \itO (1) and is outlined in
section 3.2. Analytic expressions for the temperature over this timescale are given in
(22) and (71). The temperature tends to its uniform final value T =  - 1 by the end
of this timescale.

Later, when t = \itO (1/Dx
l ), the problem is governed by (24)--(27), with the general

condition (26a) given the specific form

xl =
1

\alpha 
for r = rf (\tau ).(39)

This problem determines the diffusive evolution of the solute concentration and the
freezing front evolution. From the integral constraints (29), we have the following
large-time behavior of the reduced moving boundary problem:

xl \rightarrow 
1

\alpha 
, yl \rightarrow 

Y0

\alpha 
, rf \rightarrow 

\bigl( 
\alpha + r3c0 (1 - \alpha )

\bigr) 1/3
as \tau \rightarrow \infty .(40)
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Finally, on the osmotic timescale, outlined in section 3.4, (30) and (34) give

xl =
1

\alpha 
, yc =

r3c0
r3c

Y0, yl =
1 - r3c0
\alpha  - r3cxc

Y0, rf =
\bigl( 
\alpha + r3c (1 - xc)

\bigr) 1/3
.(41)

Recalling the definition \zeta = \kappa t, the governing ODEs (35) for xc and rc can be simplified
to

d

d\zeta 

\bigl( 
r3cxc

\bigr) 
=

3\omega r2c
\alpha \kappa 

(1 - \alpha xc) ,(42a)

\alpha 
drc
d\zeta 

=  - \sigma (1 - \alpha xc) + Y0

\biggl( 
\alpha r3c0
r3c

 - 1 - r3c0
1 - r3cxc

\biggr) 
,(42b)

with xc(0) = 1 and rc(0) = rc0. Thus, the large-time dynamics for rapid cooling all
collapse onto the solutions of (42), as predicted by the collapse of the faster cooling
rates onto a single curve in Figures 5(a) and 6(a).

4.1.1. Very rapid cooling: \bfitbeta \gg 1. It is informative to note the simplifica-
tions that occur when the cooling timescale is much faster than the heat conduction
timescale. In this asymptotic limit, the reductions occur over the first timescale where
t = \itO (1), and T \prime 

p(t) \approx  - (1 - \alpha )\delta (t), where \delta (t) is the Dirac delta function. Hence Tl,
given in (22), becomes

Tl =  - 1 - 2(1 - \alpha )

r

\infty \sum 

n=1

( - 1)n exp( - kln
2\pi 2t)

n\pi 
sinn\pi r.(43)

Solutions for the chemical concentration in the boundary layer in this limit are given
in Appendix D.1.

4.2. Moderate cooling: \bfitbeta = \bfitO (\bfitD \bfitx 
\bfitl ). In the case of moderate cooling where

\beta = \itO (Dx
l ), the thermal conductivity timescale t = \itO (1) (outlined in section 3.2)

is now fairly uninteresting, since the prescribed temperature change is small on this
timescale. To leading order, nothing happens until the t = \itO (1/Dx

l ) timescale on
which both temperature and solute evolve.

Over this timescale, the temperature is spatially uniform, with Tl = Ts = Tp(\tau ),
and it decreases from its initial value of  - \alpha to its final value of  - 1. The reduced
problem, given in (24)--(27), consists of a partial differential equation for xl with one
moving boundary for rf . Since Tp(\tau ) reaches the final value of  - 1, the large-time state
attained over this timescale is the same as for the rapid cooling case in section 4.1,
given in (40). From this point onwards the dynamics of the moderate cooling case are
exactly the same as those in section 4.1, as described by (41)--(42).

4.3. Slow cooling: \bfitbeta = \bfitO (\bfitkappa ). In the case of slow cooling where \beta = \itO (\kappa ),
both the thermal conductivity and solute diffusion timescales (outlined in sections 3.2
and 3.3) are uninteresting. Over both of these timescales, the leading-order system
is essentially solved by the initial conditions (17). The interesting timescale for this
case is where \zeta = \kappa t = \itO (1), described in section 3.4. Over this timescale, the system
is governed by (30), (34)--(35).

4.3.1. Very slow cooling: \bfitbeta \ll \bfitkappa . Finally, it is also of interest to determine
the further reduced system when the cooling rate is even smaller than in the distin-
guished limit of slow cooling, that is, when \beta \ll \kappa . In this case the dynamics become
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quasi-steady. The solution is given parametrically in terms of Tp:

xc = xl =  - Tp

\alpha 
, yc = yl =  - TpY0

\alpha 
, rc = rc0

\biggl( 
 - \alpha 

Tp

\biggr) 1/3

, rf =

\biggl( 
 - \alpha 

Tp

\biggr) 1/3

.

(44)

The latter two solutions for the membrane and freezing front position are shown in
Figures 5(b) and 6(b) by the dashed lines.

4.4. Overview of asymptotic results. Our asymptotic solutions consist of
the analytic results for the liquid temperature (22) and ice temperature Ts = Tp,
the reduced partial differential equation for CPA concentration within the liquid
medium with a moving boundary at the freezing front (24)--(27) over the intermedi-
ate timescale, and the heavily reduced system of a coupled set of ordinary differential
equations for the chemical concentrations and moving boundaries (35) over the slow
timescale.

To summarize, the ice temperature is always spatially independent and equal
to the external temperature for all cooling rates. The liquid temperature can be
spatially dependent for fast cooling rates over the heat conduction timescale (22), but
is spatially independent in all other cases. The chemical concentrations and motions
of the moving boundaries are strongly coupled to one another. While these quantities
are forced by the decrease in temperature, the movement of the freezing front dictates
the chemical balance. The Stefan condition (13d) is more correctly interpreted for
this problem as a statement about the small flux of heat from the freezing front to
the ice phase, rather than a statement about the balance of heat fluxes with the front
velocity. The cell membrane movement and the CPA concentration within the cell
only vary from their initial values over the slow timescale, no matter what cooling rate
is imposed. This means that faster cooling rates will result in significant differences in
CPA concentration within the cell compared to at the freezing front. This will cause
a difference in the freezing temperature at each location and will therefore result in
supercooling within the cell. This is discussed in more detail in section 5.

These asymptotic solutions provide fast and accurate approximations of the nu-
merical solutions when compared with the size of the cell and the CPA concentration
within the cell, as shown in Figure 8. These variables are the key quantities for de-
termining cell damage, and we will exploit our asymptotic solutions in section 5 to
quantify cell damage in a computationally efficient manner. Such insights allow us to
numerically implement boundary conditions in a manner that agrees with the flow of
information in the system. There is a slight discrepancy between the asymptotic and
numerical results for intermediate times in Figure 8; we discuss how to resolve this in
the next section.

4.5. Modified asymptotic solutions. We note that there is a discrepancy
between the osmotic timescale for faster cooling predicted by the asymptotic analysis
(t = \itO (1/\kappa ) = \itO (2 \times 105)) and that seen in Figures 3--4, where the cell membrane
movement occurs over t = \itO (103). In terms of the physics of the problem, this occurs
because the extracellular solute concentration is not uniform during the early part of
the osmotic timescale. However, we shall demonstrate in this section that a careful
incorporation of the required spatial dependence does provide the required correction.

In terms of the asymptotic methodology we use, this discrepancy occurs because,
as is often the case with asymptotic methods, there are quantities we treat as \itO (1)
that combine to become large in practice. For this problem, we can obtain a modified
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(a) (b)

Fig. 8. A comparison of our numerical and asymptotic solutions for (a) rc and (b) xc(0, t).
We use a dimensionless cooling rate of \beta = 1 and the remaining parameters from Table 3. The naive
asymptotic solution is from (30), (34)--(35), and the modified asymptotic solution is from (45). The
naive asymptotic solutions agree well with the numerical solution, whereas the modified asymptotic
solutions are almost indistinguishable.

osmotic timescale directly from (12c). As the CPA concentration difference across
the membrane can be up to 1/\alpha and the cell size is \itO (rc0), a more accurate osmotic
timescale is t = \itO (rc0\alpha /\kappa ) = \itO (103), which does agree with Figures 3--4. While the
osmotic timescale should therefore start to merge with the solute diffusion timescale
(t = \itO (1/Dx

l ) = \itO (103)), this does not occur completely since the diffusion timescale
is itself shortened by the reduction in the liquid domain size, largely keeping these
timescales separate. The practical effect of this is that there is a slight merging
of these two timescales, and this causes the small difference between the numerical
and asymptotic solutions in Figure 8. In essence, the cell motion is slightly slower
than predicted by the asymptotic analysis. This is because the CPA concentration is
actually lower at the cell membrane than at the freezing front early in the osmotic
timescale. This results in smaller forcing of the cell motion than predicted by the
asymptotic analysis, which assumes a sharp separation of timescales, leading to the
CPA concentration being spatially uniform throughout the osmotic timescale. We
refer to the original set of asymptotic solutions as the ``naive"" asymptotic results.

To fix the discrepancy, we can formulate an appropriate reduced composite equa-
tion using the fact that xc is approximately independent of space for all time. To do
this, we first solve for xl(r, \tau ) over the medium time, using the reduced PDE system
derived in section 3.3. This allows us to determine xl(rc0, \tau ) at the cell membrane
(noting that the cell membrane is stationary over this timescale), and we define this
quantity as f(\zeta ) := xl(rc0, (D

x
l /\kappa )\zeta ). Then we may derive the reduced ODE system

d

d\zeta 

\bigl( 
r3cxc

\bigr) 
=  - 3\omega r2c

\kappa 
(xc  - f(\zeta )) ,(45a)

drc
d\zeta 

= \sigma (xc  - f(\zeta )) + Y0

\biggl( 
r3c0
r3c

 - f(\zeta )
1 - r3c0
1 - r3cxc

\biggr) 
,(45b)

with xc(0) = 1 and rc(0) = rc0, for the osmotic timescale. This is a direct modification
of (35), replacing  - Tp(\zeta )/\alpha with f(\zeta ), the precomputed function described above.
We refer to these as the ``modified"" asymptotic results. The system (45) can also be
thought of as a modified KK ODE model [26, 29], valid over the medium and long
timescales, requiring the solution of the reduced PDE system derived in section 3.3
as an input.
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(a) (b)

Fig. 9. Proxies for cell damage at the cell center. (a) Supercooling Tf (xc(0, t)) - Tl(0, t) versus
time. (b) CPA concentration xc(0, t) versus external temperature. The different lines correspond to
different values of the cooling rate; we use \beta = 2.8\times 10k, where k = \{  - 7, . . . , 3\} (corresponding to
dimensional cooling rates ranging between 10 - 4--106 K s - 1). The solid lines are numerical solutions
and the black dashed lines are asymptotic solutions, using the analytic result for the temperature (22)
from the fast timescale and the naive asymptotic solution (30), (34)--(35) from the slow timescale.
The arrows denote increasing cooling rate.

Using (45), our modified asymptotic results show excellent agreement with the
full numerical results (Figure 8), allowing us to be confident in both our numerical
and asymptotic solutions. While this modified asymptotic solution is slightly more
computationally intensive than simply obtaining the solution of the ODE (35), it
remains around 500 times faster than a full numerical solution.

5. Cell damage. In this section, we use our results to estimate the potential
damage caused to cells during freezing. The two main mechanisms of damage are
due to intracellular ice formation and chemical toxicity. The former is triggered by
supercooling, a quantity we are able to calculate directly from our model (Figure 9(a)).
We observe that cells can experience significant levels of supercooling. Our first metric
quantifies intracellular ice formation by integrating the total supercooling over time.
As cytoplasm can tolerate a certain level of supercooling before freezing occurs, we
build this into our metric by only counting supercooling above a specified level, \~Tsup.

In insects that cryogenically preserve themselves during cold weather, \~Tsup \approx 20\circ C
[50], and so we use this value here for definiteness, but we emphasize that this value
can be varied if required.

With the assumptions outlined above, our metric for cell damage due to super-
cooling is

\scrS :=

\int \infty 

0

4

3
\pi r3c [Tf (xc(0, t)) - Tl(0, t) - Tsup]+ dt,(46a)

where [f(x)]+ denotes the positive part of f(x) and Tsup = \~Tsup/( \~Tf0  - \~Tend) \approx 0.29
is the dimensionless level of safe supercooling within cytoplasm. We have integrated
over the cell volume approximating the supercooling by its value at the cell center,
since our solutions show that the supercooling is essentially independent of space
within the cell. As one might expect, the damage due to supercooling increases as
the cooling rate increases (Figure 10(a)).

To quantify cell damage due to chemical toxicity, we assume that toxicity accu-
mulates over time at a rate proportional to CPA concentration and cell volume, but
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(a) (b)

Fig. 10. The metrics for cell damage in our system, (a) \scrS and (b) \scrT , using Tsup = 0.29,
Ea = 40, and Tmet =  - 0.9.

we note that a more general toxicity function could incorporate effects due to the
increased concentration of the impermeable chemical species as well. We see that
lower cooling rates lead to higher CPA concentrations at the cell center for the same
external temperatures (Figure 9(b)), which suggests that toxicity is likely to be more
of a concern for slow cooling, agreeing with experimental observation. We assume
that the rate of proportionality for toxicity satisfies an Arrhenius-type temperature
dependence with activation energy \~Ea [14]. To this end, we use the following metric
to quantify CPA toxicity:

\scrT :=

\int \infty 

0

4

3
\pi r3cxc(0, t)e

 - Ea/(1+\nu Tl(0,t)) [Tl(0, t) - Tmet]+ dt,(46b)

where Ea = \~Ea/( \~R \~Tf0) is a dimensionless activation energy (we use Ea = 40, corre-

sponding to \~Ea = 90.6 kJ mol - 1), and \nu = ( \~Tf0  - \~Tend)/ \~Tf0. While the introduction
of this Arrhenius factor means that CPA toxicity decreases as the temperature de-
creases, it is also helpful to impose that the CPA toxicity explicitly falls to zero when
the temperature falls below a certain level, defined in dimensionless terms as Tmet.
This ensures that we do not accrue infinite toxicity as t \rightarrow \infty . We impose a value
of Tmet =  - 0.9 here for definiteness, but again emphasize that this can be varied if
required. We note that the metric \scrT is similar to the temperature-dependent toxicity
cost function used in Davidson et al. [14] to optimize operating conditions during
cryopreservation, itself an adaptation of the toxicity cost function from [7, 9, 13], for
example. However, we consider the integrand to be linearly proportional to CPA
concentration rather than as a noninteger power, and we scale toxicity with the cell
volume. We note that the damage due to CPA toxicity increases as the cooling rate
decreases (Figure 10(b)), in agreement with physical intuition and experimental ob-
servation.

When we compare the damage predicted by our asymptotic results to that pre-
dicted by our numerical solutions, we note that while there is excellent agreement for
\scrT , the asymptotic results for \scrS systematically predict a lower damage from super-
cooling if we use the naive asymptotic results discussed in section 4.4 (Figure 10).
However, the modified asymptotic results show excellent agreement for both. In Fig-
ure 10, we also plot the damage predicted by using the model (35) (for the slow
timescale) for all time. We refer to this as the Kedem--Katchalsky (KK) model. As
one might expect, the results from this are very similar to those of the naive asymp-
totic results, which differ from the KK model by using the analytic solution for the
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Fig. 11. The cell damage function \scrD , defined in (47) with \lambda and \mu chosen to normalize the
maximum values of \scrS and \scrT as described in the text, versus cooling rate \beta . We show results for
different cytosol tolerances to supercooling (T\its \itu \itp ), which lead to different optimal cooling rates which
minimize \scrD , denoted by a cross.

temperature (22) over the fast timescale, in addition to (35) over the slow timescale.
This is because even though there are significant differences between the KK and
naive asymptotic results in the liquid and ice regions, the only difference between our
naive asymptotic results and the KK equations at the cell center is the temperature
over the fast timescale for fast cooling rates. This explains the discrepancy in \scrT for
faster cooling rates; the KK equations overestimate the rate of heat propagation to
the cell center at faster cooling rates.

Hence, we are able to efficiently compute \scrS and \scrT as metrics for cell damage
in the system. For given cell membrane permeability parameters and appropriate
weightings of each metric, we can use these results to compute optimal cooling rates,
using a combined damage function,

\scrD = \lambda \scrS + \mu \scrT .(47)

For example, if we sweep between \~\beta \in [10 - 3, 101] K s - 1 and choose \lambda and \mu to
normalize \scrS and \scrT such that their highest values are equal to one, we see that our
damage function predicts a minimum in \scrD at an intermediate cooling rate (Figure 11).
The optimal cooling rate increases as the tolerance to supercooling increases. The
framework we have developed in this paper allows us to quantify the optimal cooling
rate for given cell parameters.

6. Discussion. We have derived and solved a mathematical model for the cryo-
preservation of a cell immersed in a liquid medium, using a combination of numerical
and asymptotic methods. Our model accounts for spatial variation of temperature
and chemical concentrations, and for the motion of a freezing front and cell membrane.
The system is fully coupled, since the presence of a cryoprotective agent (CPA) lowers
the freezing point, and the membrane movement is generated by an osmotic force of
chemical concentration difference across the membrane. Investigating this system has
provided insight into how the coupled physical mechanisms underlying cryopreser-
vation combine during the freezing process, and when they cause cell damage. To
this end, we have introduced two different damage metrics to infer the implicit cell
damage caused by freezing. The first quantifies the cumulative supercooling occur-
ring within the cell as a proxy for intracellular ice formation. The second measures
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the cumulative CPA toxicity occurring within the cell. We note that it is impossible
to globally optimize both of these metrics separately since it is observed that faster
cooling has a greater chance of intracellular ice formation, and slower cooling suffers
from greater CPA toxicity. Our metrics allow us to quantify these observations and
show that there is an ``optimal"" cooling rate, which will depend on the cell properties
and the operating conditions of the cryopreservation process. These results are con-
sistent with the well-known ``two-factor hypothesis"" of freezing injury [39]. Our work
provides a computationally efficient framework from which to determine this optimal
cooling rate.

It would be straightforward to modify both the toxicity and supercooling metrics
to account for different cell biology or sensitivity to the ion concentration, for exam-
ple. For simplicity, we have not explicitly considered the mechanism of intracellular
ice formation; we only allow ice to form from a nucleation surface at the external
boundary. Explicitly accounting for the mechanism of supercooling and new crystal
nucleation with an unstable freezing front could lead to mushy layers near the front,
consisting of ice and water. This would be an interesting extension of the model we
present in this paper.

We have focused on the freezing process of cryopreservation here, but note that
there are also interesting physical problems arising in the thawing stage. As our
model is inherently nonlinear, a reversal of the freezing process will not result in a
strict reversal of the dynamics and would be an interesting problem in its own right.

Moreover, we note that while this work is for a single cell, a significant application
of cryopreservation is for biological tissue. Safely freezing larger tissues remains a
current challenge in the field. Our model could be extended to a tissue comprising
many cells using the mathematical technique of homogenization [10, 22]. However,
care must be taken in this upscaling procedure due to the moving boundaries in the
problem---one could follow the methodology of [12, 44], for example.

The higher cooling rates we consider in this paper start to touch on the realm
of vitrification, where a liquid is cooled rapidly past its glass transition point so as
to form a noncrystalline amorphous solid rather than a crystalline ice [43]. While
vitrification is not a focus of this work, and we do not account for the mechanisms
of vitrification in the model, we note that a drop in CPA diffusivity associated with
lowering temperature can be accounted for using the results in Appendix A. In
this appendix, we provide systematically reduced systems for the cryopreservation
of a single cell where the cell parameters are temperature dependent. Although the
solutions will vary due to this temperature dependence, the asymptotic structure of
the problem remains the same.

Finally, we note that this work has the potential to guide cryopreservation pro-
tocols for the freezing of single cells. Our methodology allows us to account for the
spatial variations inherent in the system at faster cooling rates, and to systematically
reduce the system over the different timescales. This approach allows us to derive as-
ymptotic solutions which largely circumvent the issue of expensive parameter sweeps,
resulting in a computationally efficient framework to compute the cell damage for
given cell properties and operating conditions.

Data deposition. The computational code we developed to solve this model
(outlined in Appendix B) is openly available at

https://github.com/m-dalwadi/Mathematical-model-cryopreservation.D
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Appendix A. Temperature-dependent coefficients. In this appendix we
outline how the problem changes when we allow the following chemical transport pa-
rameters to depend on temperature: Dx

c , D
y
c , D

x
l , D

y
l , \omega , \kappa . Though we carry out this

analysis for general temperature-dependent coefficients, it may be helpful to think of
the membrane coefficients having an Arrhenius-type dependence on the temperature.
For the diffusivities, one may consider a modified Arrhenius-type dependence, using
the Stokes--Einstein equation for diffusivity, and an Arrhenius-type dependence for
the viscosity.

In general, we expect all these parameters to decrease as the temperature de-
creases. Looking at activation energies [6, 15], we note that the activation energies
for diffusivities are smaller than those for membrane permeability. Hence, the dis-
tinct timescales in section 3 will separate rather than coalesce as the temperature
decreases, maintaining the asymptotic structure that we identified in the main text.
We are therefore able to present the asymptotic solution to the generalized problem
over the three important timescales identified in the main text as a simple extension
of section 3.

A.1. Thermal conduction timescale: \bfitt = \bfitO (1). Over this timescale, the
solution largely proceeds as in section 3.2. For precision, we use the diffusivity of CPA
in water at the initial temperature D0 := Dx

l ( - \alpha ) as our small (constant) parameter,
and this replaces the Dx

l in section 3.2. In this case, the system is governed by the
same temperature solutions (22) and (71). The chemical transport equations will be
the early-time versions of those given in the next subsection.

A.2. Solute diffusion timescale: \bfitt = \bfitO (1/\bfitD \bfzero ). Over this timescale, the
solution largely proceeds as in section 3.3. We will again use the diffusivity of CPA in
water at the initial temperature Dx

l ( - \alpha ) as our small (constant) parameter, replacing
the Dx

l in section 3.3. This means that we use \tau = D0t = \itO (1) as our timescale.
The temperature is given by Ts = Tl = Tp(\tau ), but now the chemical transport

problem is governed by

\partial xl

\partial \tau 
= \nabla \cdot 

\biggl( 
Dx

l

D0
\nabla xl

\biggr) 
,

\partial yl
\partial \tau 

= \nabla \cdot 
\biggl( 
Dy

l

D0
\nabla yl

\biggr) 
for rc0 < r < rf (\tau ),(48)

instead of (24). At the cell membrane, we have the no-flux versions of (12a)--(12b),
which are

Dx
l

D0

\partial xl

\partial r
+ xl

drc
d\tau 

= 0,
Dy

l

D0

\partial yl
\partial r

+ yl
drc
d\tau 

= 0 for r = rc(\tau ).(49)

At the freezing front, we have the Dirichlet condition for the CPA concentration (26a),
as well as the conditions

Dx
l

D0

\partial xl

\partial r
+ xl

drf
d\tau 

= 0,
Dy

l

D0

\partial yl
\partial r

+ yl
drf
d\tau 

= 0 for r = rf (\tau ),(50)

to replace (26b) and (26c). The matching conditions for this system into the earlier
timescale as \tau \rightarrow 0 are the same as in section 3.3, given by (27) away from the
freezing front, and addressed in the next section when the matching conditions near
the freezing front may become relevant.

A.3. Osmotic timescale: \bfitt = \bfitO (1/\bfitkappa \bfzero ). Over this timescale, the solution
largely proceeds as in section 3.4. We now use the hydraulic conductivity of the cell
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A MATHEMATICAL MODEL OF CRYOPRESERVATION 681

membrane at the initial temperature \kappa 0 := \kappa ( - \alpha ) as our small parameter, replacing
the \kappa in section 3.4. This means that we use \zeta = \kappa 0t = \itO (1) as our timescale.

The temperature of the system is given by Ts = Tl = Tp(\zeta ), and the CPA con-
centration in the water phase is given by (30). The procedure to determine a closed
system for the remaining variables is similar to that in section 3.4. This means that
xc, yc, yl, and rf are given by (30) and (34), while the remaining generalized system
is given by

(51)

d

d\zeta 

\bigl( 
r3cxc

\bigr) 
=  - 3\omega r2c

\kappa 0

\biggl( 
Tp(\zeta )

\alpha 
+ xc

\biggr) 
,

drc
d\zeta 

=
\kappa 

\kappa 0

\biggl[ 
\sigma 

\biggl( 
Tp(\zeta )

\alpha 
+ xc

\biggr) 
+ Y0

\biggl( 
r3c0
r3c

+
Tp

\alpha 

1 - r3c0
1 - r3cxc

\biggr) \biggr] 

for the variables, xc, yc, and rc, which are all solely functions of \zeta . The ``initial""
conditions for this system as \zeta \rightarrow 0 are xc(0) = 1 and rc(0) = rc0. Finally, we note that
in the case where cooling occurs over a longer timescale than membrane movement
(\beta \ll \kappa 0), the temperature dependence of the parameters becomes irrelevant for the
system dynamics.

Appendix B. Landau transformation to three fixed domains. In this
section we make a transformation to turn the Laplacian in our governing equations
from an operator acting on a spherical coordinate system to a Cartesian one, and we
perform the Landau transformation [30] to map the moving-boundary problem into
a fixed domain problem. Both of these transformations will facilitate a numerical
solution.

To transform the Laplacian in our governing equations, we introduce the new
dependent variables

(Tl, Ts, xc, yc, xl, yl) =
1

r
(\Theta l,\Theta s, Xc, Yc, Xl, Yl) .(52)

In addition, we note that it is helpful for the numerical simulation to split \Theta l into \Theta l,c

and \Theta l,l, which hold in the cell and liquid domain, respectively. At the cell membrane,
we couple these two new variables by imposing continuity of temperature and heat
flux. We note that if f = F/r, then f \prime = F \prime /r  - F/r2, and therefore our governing
equations and boundary conditions must be adjusted accordingly. We outline them
below, after one additional transformation.

To transform the moving-boundary problem into three fixed domains, we intro-
duce new independent variables based on the formulation

\xi = g

\biggl( 
r  - a(t)

b(t) - a(t)

\biggr) 
,(53)

where r \in (a(t), b(t)), and g is a monotonic increasing function, with g(0) = 0 and
g(1) = 1. The purpose of g is to allow a uniform discretization of \xi to provide a
nonuniform discretization of r, allowing for finer resolutions near boundary layers.
For our problem, we use

\xi 1 = g1

\biggl( 
r

rc(t)

\biggr) 
for 0 < r < rc(t),(54a)

\xi 2 = g2

\biggl( 
r  - rc(t)

rf (t) - rc(t)
;\lambda 

\biggr) 
for rc(t) < r < rf (t),(54b)
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682 M. DALWADI, S. WATERS, H. BYRNE, AND I. HEWITT

Fig. 12. The nonlinear monotonic function g2(\eta ;\lambda ) (Table 4), used in the transformation of the
domain rc(t) < r < rf (t) to resolve the boundary layers near r = rf (t). The dotted line corresponds
to g2(\eta ; 0+) = \eta , and the solid lines correspond to \lambda = 0.1, 1, 5, 10. Hence, we see that a uniform
grid spacing of g2 corresponds to more grid points near \eta = 1, with this effect being amplified as \lambda 
increases.

\xi 3 = g3

\biggl( 
r  - rf (t)

1 - rf (t)

\biggr) 
for rf (t) < r < 1,(54c)

where \xi j = 0 corresponds to the left-hand boundary of the respective domain, and
\xi j = 1 corresponds to the right, where j \in \{ 1, 2, 3\} . In (54), g1(\eta ) = g3(\eta ) = \eta , and
g2(\eta ;\lambda ) =  - log

\bigl[ 
1 - \eta (1 - e - \lambda )

\bigr] 
/\lambda is a monotonic increasing function, with g2(0) = 0

and g2(1) = 1. Here, \lambda \in (0,\infty ) is a constant we choose, with a larger value of \lambda 
corresponding to a finer grid resolution near r = r - f with a uniform discretization of

\xi 2. The limit g2(\eta ;\lambda ) \rightarrow \eta is reached as \lambda \rightarrow 0+. We show g2(\eta ;\lambda ) in Figure 12.
Under the transformations (54), the derivatives transform as follows:

\partial 

\partial r
\mapsto \rightarrow 

g\prime j
\bigl[ 
g - 1
j (\xi j)

\bigr] 

bj  - aj

\partial 

\partial \xi j
,

\partial 

\partial t
\mapsto \rightarrow \partial 

\partial t
 - 

g\prime j
\bigl[ 
g - 1
j (\xi j)

\bigr] 

bj  - aj

\Bigl[ 
\.aj
\bigl( 
1 - g - 1

j (\xi j)
\bigr) 
+ \.bjg

 - 1
j (\xi j)

\Bigr] \partial 

\partial \xi j
.

(55)

Therefore, the governing equations (9)--(10) are transformed as follows:

(56)

\partial cjij
\partial t

=
g\prime j
\bigl[ 
g - 1
j (\xi j)

\bigr] 

bj  - aj

\Bigl[ 
\.aj
\bigl( 
1 - g - 1

j (\xi j)
\bigr) 
+ \.bjg

 - 1
j (\xi j)

\Bigr] \partial cjij
\partial \xi j

+Dj
ij

g\prime j
\bigl[ 
g - 1
j (\xi j)

\bigr] 

bj  - aj

\partial 

\partial \xi j

\Biggl( 
g\prime j
\bigl[ 
g - 1
j (\xi j)

\bigr] 

bj  - aj

\partial cjij
\partial \xi j

\Biggr) 
,

on the domain 0 < \xi j < 1. Here, i1 \in \{ 1, 2, 3\} , i2 \in \{ 1, 2, 3\} , and i3 \in \{ 1\} , and we
note that g1(\eta ) = g3(\eta ) = \eta greatly simplifies (56) in the cell and solid domains. We
specify aj(t), bj(t), c

j
ij
, and Dj

ij
in Table 4.

The boundary conditions at the origin (11) become

Xc = Yc = \Theta l,c = 0 for \xi 1 = 0.(57)
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Table 4
Definitions for the variables in (56).

j gj(\eta ) aj(t) bj(t) ij cjij Dj
ij

1 \eta 0 rc(t)

1 Xc Dx
c

2 Yc Dy
c

3 \Theta l,c kl

2  - 
1

\lambda 
log

\bigl[ 
1 - \eta (1 - e - \lambda )

\bigr] 
rc(t) rf (t)

1 Xl Dx
l

2 Yl Dy
l

3 \Theta l,l kl
3 \eta rf (t) 1 1 \Theta s 1

The boundary conditions at the cell membrane (12) become

Dx
c

\biggl( 
\partial Xc

\partial \xi 1
 - Xc

\biggr) 
+Xcrc

drc
dt

= Dx
l

\Biggl( 
rc
\bigl( 
1 - e - \lambda 

\bigr) 

\lambda (rf  - rc)

\partial Xl

\partial \xi 2
 - Xl

\Biggr) 
+Xlrc

drc
dt

(58a)

for \xi 1 = 1, \xi 2 = 0,

Dx
c

\biggl( 
\partial Xc

\partial \xi 1
 - Xc

\biggr) 
+Xcrc

drc
dt

= \omega rc (Xl  - Xc) for \xi 1 = 1, \xi 2 = 0,(58b)

Dy
c

\biggl( 
\partial Yc

\partial \xi 1
 - Yc

\biggr) 
+ Ycrc

drc
dt

= 0 for \xi 1 = 1,(58c)

Dy
l

\Biggl( 
rc
\bigl( 
1 - e - \lambda 

\bigr) 

\lambda (rf  - rc)

\partial Yl

\partial \xi 2
 - Yl

\Biggr) 
+ Ylrc

drc
dt

= 0 for \xi 2 = 0,(58d)

drc
dt

=  - \kappa 

rc
[\sigma (Xl  - Xc) + (Yl  - Yc)] for \xi 1 = 1, \xi 2 = 0,(58e)

\Theta l,c = \Theta l,l for \xi 1 = 1, \xi 2 = 0,(58f)

\partial \Theta l,c

\partial \xi 1
=

rc
\bigl( 
1 - e - \lambda 

\bigr) 

\lambda (rf  - rc)

\partial \Theta l,l

\partial \xi 2
for \xi 1 = 1, \xi 2 = 0.(58g)

The boundary conditions at the freezing front (13) become

\Theta l,l = \Theta s =  - \alpha Xl for \xi 2 = 1, \xi 3 = 0,(59a)

Dx
l

\Biggl( 
rf
\bigl( 
e\lambda  - 1

\bigr) 

\lambda (rf  - rc)

\partial Xl

\partial \xi 2
 - Xl

\Biggr) 
+Xlrf

drf
dt

= 0 for \xi 2 = 1,(59b)

Dy
l

\Biggl( 
rf
\bigl( 
e\lambda  - 1

\bigr) 

\lambda (rf  - rc)

\partial Yl

\partial \xi 2
 - Yl

\Biggr) 
+ Ylrf

drf
dt

= 0 for \xi 2 = 1,(59c)

Sr2f
drf
dt

=
rf

1 - rf

\partial \Theta s

\partial \xi 3
 - \Theta s  - k

\Biggl( 
rf
\bigl( 
e\lambda  - 1

\bigr) 

\lambda (rf  - rc)

\partial \Theta l,l

\partial \xi 2
 - \Theta l,l

\Biggr) 
for \xi 2 = 1, \xi 3 = 0.

(59d)

The boundary condition at the exterior ice boundary (15) becomes

\Theta s = Tp(t) for \xi 3 = 1.(60)
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Finally, the initial conditions (17) are now

Xc(\xi 1, 0) = rc0\xi 1, Yc(\xi 1, 0) = Y0rc0\xi 1, \Theta l,c(\xi 1, 0) =  - \alpha rc0\xi 1,

Xl(\xi 2, 0) = rc0 + (1 - rc0)
1 - e - \lambda \xi 2

1 - e - \lambda 
, Yl(\xi 2, 0) = Y0

\biggl( 
rc0 + (1 - rc0)

1 - e - \lambda \xi 2

1 - e - \lambda 

\biggr) 
,

\Theta l,l(\xi 2, 0) =  - \alpha 

\biggl( 
rc0 + (1 - rc0)

1 - e - \lambda \xi 2

1 - e - \lambda 

\biggr) 
, rc(0) = rc0, rf (0) = 1.(61)

We discretize our spatial operators using a standard second-order accurate central-
difference scheme with uniform grid spacing. We discretize our boundary conditions
using forward- or backward-difference schemes where appropriate, with second-order
accuracy (verified in the supplementary material). We use 80 grid points in the cell
and ice regions, and 300 grid points in the liquid region. For a given cooling rate, we
choose \lambda such that there are at least 10 points in the initial boundary layer identified
in Appendix C. This ranged from \lambda = 10 - 5 for low cooling rates to \lambda = 8.7 for the
highest cooling rate of \~\beta = 106 K s - 1. For \~\beta > 0.5 K s - 1, we stop the simulation at
t = 10, then restart it using \lambda = 0 on a remeshed uniform grid. This procedure enables
us to generate a solution more quickly. We found that this approach was sufficient
to ensure that our solutions were well resolved for all time. The excellent agreement
between our numerical and asymptotic solutions (Figures 8--9) gives us confidence in
our results.

Appendix C. Early-time asymptotics. In this section we derive the early-
time solutions for a linear temperature drop. This will allow us to start our simulations
at a small but finite time, thus sidestepping the issue of creating the ice phase at t = 0.
While we have several natural small parameters in our system, the small parameters
we use for this analysis are t and 1 - rf (t), formally treating all other dimensionless
parameters in the system as \itO (1). We also note that the early-time limit of section 3.2,
the first important timescale in the problem, is equivalent to the small-time limit of
the full system (i.e., the limits of Dx

l \rightarrow 0+ and t \rightarrow 0+ commute), confirming that
we have correctly identified the earliest interesting timescale t = \itO (1).

For ease of numerical implementation, it is simpler to determine the early-time
solutions to the transformed system derived in Appendix B. However, we can also
use the results of section 3.2 to guide our analysis, noting that for early time the
ice temperature is constant in r, xc = 1, yc = Y0, and rc(t) = rc0. In terms of the
transformed variables

Xc(\xi 1, t) \sim rc0\xi 1, Yc(\xi 1, t) \sim Y0rc0\xi 1, \Theta l,c(\xi 2, t) \sim  - \alpha rc0\xi 1,

\Theta s(\xi 3, t) \sim (rf (t) + (1 - rf (t))\xi 3)Tp(t), rc(t) \sim rc0.(62)

The more interesting problems are for Xl, Yl, \Theta l,l, and rf , governed by (56), with
boundary conditions (59a)--(59c) and initial conditions (61). At early time, Xl, Yl,
and \Theta l,l are close to their initial values, with a boundary layer near \xi 2 = 1. While we
also have an analytic expression for \Theta l,l, we note that the infinite sum in (22) requires
many terms to evaluate accurately as t \rightarrow 0+. Therefore, it is helpful to obtain a
simplified version in this limit. Although Euler--Maclaurin summation can be used
for this purpose, the steps required are fairly involved. A simpler method is to note
that there is an early-time boundary layer near the interface, and to solve the relevant
equations for \Theta l,l in the small-t limit. Following this process, we note that the correct
early-time scalings are 1  - rf = \itO (t3/2), 1  - \xi 2 = \itO (t1/2), Xl  - Xl(\xi 2, 0) = \itO (t),
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A MATHEMATICAL MODEL OF CRYOPRESERVATION 685

Yl  - Yl(\xi 2, 0) = \itO (t), and \Theta l,l  - \Theta l,l(\xi 2, 0) = \itO (t). Seeking similarity solutions in
the boundary layer, and noting that g\prime 2(1) = (e\lambda  - 1)/\lambda , the early-time (additive)
composite solutions [46] are

Xl \sim rc0 + (1 - rc0)
1 - e - \lambda \xi 2

1 - e - \lambda 
+

\beta t

\alpha 
F

\Biggl( 
\lambda (1 - \xi 2) (1 - rc0)

(e\lambda  - 1)
\sqrt{} 
4Dx

l t

\Biggr) 
,(63a)

Yl \sim Y0

\biggl( 
rc0 + (1 - rc0)

1 - e - \lambda \xi 2

1 - e - \lambda 

\biggr) 
+

\beta Y0t

\alpha 

\sqrt{} 
Dx

l

Dy
l

F

\Biggl( 
\lambda (1 - \xi 2) (1 - rc0)

(e\lambda  - 1)
\sqrt{} 

4Dy
l t

\Biggr) 
,(63b)

\Theta l,l \sim  - \alpha 

\biggl( 
rc0 + (1 - rc0)

1 - e - \lambda \xi 2

1 - e - \lambda 

\biggr) 
 - \beta tF

\biggl( 
\lambda (1 - \xi 2) (1 - rc0)

(e\lambda  - 1)
\surd 
4klt

\biggr) 
,(63c)

rf (t) \sim 1 - 4\beta 

3\alpha 

\sqrt{} 
Dx

l

\pi 
t3/2,(63d)

F (z) =
\bigl( 
2z2 + 1

\bigr) 
erfc z  - 2z\surd 

\pi 
e - z2

,(63e)

where F (z) satisfies the ODE

F \prime \prime + 2zF \prime  - 4F = 0, F (0) = 1, F (\infty ) = 0.(64)

Although Yl satisfies a Neumann condition at the interface, its solution can be written
in terms of F .

We note that the early-time results we derive in this appendix generalize to any
nonlinear prescribed temperature drop with initial velocity T \prime 

p(0) =  - \beta , where 0 <
\beta < \infty .

Appendix D. Boundary layer problems for \bfitt = \bfitO (1). To investigate the
ice temperature and the concentration boundary layers over the timescale t = \itO (1),
we must account for the position of the freezing front as a small perturbation from
its initial value. To this end, we introduce R(t) = \itO (1), where

rf (t) = 1 - 
\sqrt{} 

Dx
l R(t).(65)

Due to the slow movement of the freezing front over this timescale, the solute con-
centrations in the liquid phase take their initial values, xl = 1 and yl = Y0, in most
of the liquid domain except within a boundary layer near the freezing front whose
width is similar to that of the ice region. Therefore, we introduce the boundary layer
coordinate

\rho = (1 - r)/
\sqrt{} 

Dx
l  - R(t),(66)

where  - R(t) < \rho < 0 corresponds to the ice region, \rho = 0 corresponds to the freezing
front, and \rho > 0 corresponds to the liquid region boundary layer. Due to the ice
phase being asymptotically small over this timescale, the leading-order problem for
the liquid temperature will hold over the domain 0 < r < 1.

Using the coordinate transform (66) for the ice region, the leading-order versions
of the governing equations for the thermal problem (9) are

\partial Tl

\partial t
=

kl
r2

\partial 

\partial r

\biggl( 
r2

\partial Tl

\partial r

\biggr) 
for 0 < r < 1, 0 =

\partial 2Ts

\partial \rho 2
for  - R(t) < \rho < 0.(67)
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The relevant leading-order boundary conditions are as follows. At the origin, we have
the symmetry condition

kl
\partial Tl

\partial r
= 0 for r = 0.(68)

At the freezing front, we require the conditions

Tl| r=1 = Ts| \rho =0,
\partial Ts

\partial \rho 
= 0 for \rho = 0,(69)

where the first condition is continuity of temperature, and the second condition is
a significantly reduced Stefan condition, essentially telling us that the ice phase is
insulated to leading order at the freezing front. At the exterior ice boundary, we have

Ts = Tp(t) for \rho =  - R(t).(70)

From the above system, we see that

Ts = Tp(t),(71)

everywhere within the ice to leading order. Therefore, the coupling condition (69)
yields the boundary condition (20).

The leading-order versions of the governing equations for the solute concentration
problems (10) in the liquid region are

\partial xl

\partial t
=

dR

dt

\partial xl

\partial \rho 
+

\partial 2xl

\partial \rho 2
,

\partial yl
\partial t

=
dR

dt

\partial yl
\partial \rho 

+
Dy

l

Dx
l

\partial 2yl
\partial \rho 2

for \rho > 0,(72)

recalling the boundary layer coordinate given in (66). The relevant boundary condi-
tions are

xl(1, t) =  - Tp(t)/\alpha ,
\partial xl

\partial \rho 
+ xl

dR

dt
= 0,

Dy
l

Dx
l

\partial yl
\partial \rho 

+ yl
dR

dt
= 0 for \rho = 0.(73)

To match into the outer liquid region, we have the conditions

xl \rightarrow 1, yl \rightarrow Y0 for \rho \rightarrow \infty .(74)

Finally, the initial conditions of the system are as follows:

xl(r, 0) = 1, yl(r, 0) = Y0, R(0) = 0.(75)

From the above, we see that the motion of the freezing front is governed by the CPA
concentration near the front, rather than from the release of heat due to freezing as
one may have expected.

The reduced system for xl and yl near the freezing front is governed by (72)--(75).
We note that the system for yl decouples from the problem for xl and R.

D.1. Very rapid cooling: \bfitbeta \gg 1. Using the fact that Tp \rightarrow  - 1 immediately
for very rapid cooling, we can obtain analytic expressions for xl, yl, and R over the
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conduction timescale. Seeking a similarity solution, we deduce

xl \sim 1 +

\biggl( 
1

\alpha 
 - 1

\biggr) erfc

\biggl( 
\lambda +

\rho 

2
\surd 
t

\biggr) 

erfc(\lambda )
,(76a)

yl \sim Y0

\left\{ 
     
     
1 - 

\lambda 

\sqrt{} 
\pi Dx

l

Dy
l

exp

\biggl( 
\lambda 2D

x
l

Dy
l

\biggr) 
erfc

\Biggl( \sqrt{} 
Dx

l

Dy
l

\biggl( 
\lambda +

\rho 

2
\surd 
t

\biggr) \Biggr) 

\lambda 

\sqrt{} 
\pi Dx

l

Dy
l

exp

\biggl( 
\lambda 2

Dx
l

Dy
l

\biggr) 
erfc

\Biggl( \sqrt{} 
Dx

l

Dy
l

\lambda 

\Biggr) 
 - 1

\right\} 
     
     

,(76b)

R \sim 2\lambda 
\surd 
t,(76c)

where \lambda satisfies the transcendental equation

\lambda 
\surd 
\pi exp(\lambda 2) erfc\lambda = 1 - \alpha ,(77)

noting that \alpha \in (0, 1) from the definition of \alpha (Table 3), since the initial dimensional
temperature is \~T0 := \~Tf0  - \~\alpha \~X0.
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