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Viscous contact problems describe the time evolution of fluid flows in contact with
a surface from which they can detach and reattach. These problems are of particular
importance in glaciology, where they arise in the study of grounding lines and subglacial
cavities. In this work, we propose a novel numerical method for solving viscous contact
problems based on a mixed formulation with Lagrange multipliers of a variational
inequality involving the Stokes equations. The advection equation for evolving the
geometry of the domain occupied by the fluid is then solved via a specially-built upwinding
scheme, leading to a robust and accurate algorithm for viscous contact problems. We first
verify the method by comparing the numerical results to analytical results obtained by
a linearised method. Then we use this numerical scheme to reconstruct friction laws for
glacial sliding with cavitation. Finally, we compute the evolution of cavities from a steady
state under oscillating water pressures. The results depend strongly on the location of the
initial steady state along the friction law. In particular, we find that if the steady state
is located on the downsloping or rate-weakening part of the friction law, then the cavity
evolves towards the upsloping section, indicating that the downsloping part is unstable.

Key words: ice sheets, variational methods, computational methods

1. Introduction

Viscous contact problems are time-dependent fluid flow problems in which the fluid is
in contact with a solid surface from which it can detach and reattach. Contact problems
of this type arise when modelling glacial ice flow, which is typically treated as a viscous
fluid flow (Schoof & Hewitt 2013). On a large scale, they are relevant to marine ice sheets
with a grounding line (Schoof 2007, 2011) and, on a smaller scale, to the formation of
subglacial cavities when the ice slides over bedrock undulations (Fowler 1986; Schoof
2005; Gagliardini et al. 2007). These problems share a very similar mathematical structure
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and are of great importance for understanding ice sheet dynamics and predicting future sea
level rise.

In this paper, we present a novel numerical approach for solving viscous contact
problems in an accurate and robust way. This method relies on the formulation of the
contact problem as a variational inequality. There exist many different approaches to
solving variational inequalities with finite element methods. Of these, we find that solving
the contact problem with a piecewise constant Lagrange multiplier is particularly well
suited since it allows us to satisfy a discrete version of the contact boundary conditions
exactly in the discretisation. We find that this latter property of the numerical scheme
enables us to evolve the surface of the viscous flow in a robust way. To the best of
our knowledge, viscous contact problems have been solved previously as variational
inequalities only in Stubblefield, Spiegelman & Creyts (2021), where a penalty method
is used.

Although the numerical method presented in this paper is suitable for any viscous
contact problem, here we focus on subglacial cavitation and its application to glacial
sliding. Glacial sliding represents a fundamental component of glacier dynamics and is one
of the major uncertainties in ice sheet modelling (Ritz et al. 2015). It involves a variety of
physical mechanisms, among which is cavitation. Sliding with cavitation has been studied
theoretically by means of linearised approaches (Fowler 1986; Schoof 2005) and these
investigations are limited to relatively simple scenarios with two-dimensional geometries,
smooth bedrocks with small variations, and steady conditions. Numerical methods, on the
other hand, allow the extension to more complicated situations in a more straightforward
manner (Gagliardini et al. 2007; Helanow et al. 2020). In this work, we attempt to more
fully exploit the mathematical structure of the viscous contact problem, to improve the
accuracy and robustness of the numerical methods employed.

In § 2, we introduce our algorithm for solving viscous contact problems, using the
set-up of the glacial cavitation problem to provide a concrete context. We then present
two applications of the algorithm. First, in § 3, we compute the steady sliding law for
flow over a sinusoidal bed for linear and nonlinear rheologies, expanding on the results in
Gagliardini et al. (2007). Furthermore, in this section we compare our results with those
obtained from the linearised theory to validate the algorithm. Then, in § 4, we explore
the effects of unsteady water pressures on glacial sliding by calculating the basal sliding
velocities and cavity shapes under oscillating water pressures.

2. Formulation and approximation of the problem of subglacial cavitation

We focus here on formulating the viscous contact problem of subglacial cavitation and
describing a finite element scheme to approximate it. The problem described here is the
same, though with some different notation, as the subglacial cavitation problem studied
in Gagliardini et al. (2007). A linearised version, assuming small amplitude of the bed
bump, is equivalent to the problem studied in Fowler (1986) and Schoof (2005). Subglacial
cavitation is very similar mathematically to the problem of a marine ice sheet with a
grounding line. Therefore, the extension of the finite element scheme presented here to
grounding line problems requires minor modifications, such as the inclusion of non-zero
tangential stress (a friction law), and a free surface at the ice–atmosphere interface.

Subglacial cavitation occurs at the ice–bedrock interface, over length scales
corresponding to the size of the bedrock obstacles. These length scales are generally
several orders of magnitude smaller than those of the glacier. For this reason, the
computational domain Ω in which we model the formation of cavities is a thin layer of ice
of finite height located under a larger mass of ice; see figure 1. We assume the bedrock,
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Ω

pi

Γt uiτb

Detached region Γd Attached region Γa

Figure 1. The periodic domain Ω on which we model the evolution of a subglacial cavity.

and therefore also Ω , to be periodic in the horizontal direction. The upper boundary Γt
represents a fictional boundary separating Ω from the ice above. The height of the bedrock
is given by the function b(x), and the height of the lower boundary is given by θ(x, t). The
lower boundary is divided into an attached region Γa where θ(x, t) = b(x), and a detached
(i.e. cavitated) region Γd where θ(x, t) > b(x).

Glacial ice is generally modelled with the Stokes equations. If we denote the velocity
and pressure by u = (u, v) and p, respectively, these can be written as

−∇ · (2ηε(u)) + ∇p = 0, (2.1a)

∇ · u = 0. (2.1b)

Here, η = η(|ε(u)|) is the effective viscosity of the ice, which is usually modelled with
Glen’s law (Glen 1958),

η(|ε(u)|) = 1
2 A−1/n

(
1
2 |ε(u)|2

)(1−n)/2n
, (2.2)

where n ≈ 3 for ice, and A is a potentially temperature-dependent parameter that we treat
as constant. The tensor ε(u) represents the strain rate of the ice and is given by the
symmetric component of the velocity gradient,

ε(u) = 1
2 (∇u + ∇uT). (2.3)

For a given velocity and pressure field, we define the stress tensor σ = σ(u, p) by

σ = 2η ε(u) − pI, (2.4)

where I is the identity tensor field. If n denotes the outwards-pointing normal vector to the
boundary of Ω , then the normal and tangential stresses at the boundary are defined by

σnn = (σn) · n and σ nt = σn − σnnn. (2.5a,b)

The Stokes equations (2.1) must be complemented with a set of boundary conditions.
Along the cavitated region Γd of the lower boundary, we assume the ice to be in contact
with water at pressure pw, and we prescribe

σnn = −pw and σ nt = 0 on Γd. (2.6a,b)

For the subglacial cavity problem, we assume this water pressure to be uniform along
the length of the bedrock because gravity is unimportant on the spatial scales under
consideration.

On the attached region Γa, we assume the ice to be lubricated by a thin layer of water
connected to the subglacial drainage system. For this reason, we allow the ice to slide
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freely and set σ nt = 0. The possibility of detachment is realised by enforcing the contact
boundary conditions

u · n ≤ 0, σnn ≤ −pw and (u · n)(σnn + pw) = 0 on Γa. (2.7a–c)

Notice that here we are enforcing the ice either to remain attached (i.e. u · n = 0) whenever
the compressive normal stress is larger than the water pressure, or to have the possibility
of detaching (u · n < 0) if the stress equals the water pressure.

On the top boundary Γt, we enforce the boundary condition σnn = −pi, where pi is the
overburden ice pressure. Finally, we close the system with either the Dirichlet boundary
condition

u = ui on Γt, (2.8)

or the Neumann boundary condition

σ nt = τb(1, 0)T on Γt, (2.9)

where τb is the basal shear stress. As explained further in § 3, we remark that the horizontal
velocity ui is not the same as the basal sliding speed (though they become approximately
equal in the linearised theory). However, the value of τb in (2.9) coincides with the basal
shear stress along the base of the domain (see (3.1) below) due to the overall balance of
forces in the horizontal direction.

The Stokes equations must be coupled to a local advection equation that describes the
evolution in time of the cavity roof:

∂θ

∂t
+ u ·

(
∂θ

∂x
, −1

)T

= 0, (2.10a)

θ ≥ b. (2.10b)

Since θ is time-dependent, so are the domain Ω and the attached and detached regions
Γa and Γd along the lower boundary.

Our goal in the rest of this section is to make use of the fact that the instantaneous
Stokes problem (2.1) together with the contact boundary conditions (2.7a–c) is equivalent
to a variational inequality. This mathematical structure can be exploited by a finite element
discretisation.

2.1. A Stokes variational inequality
The finite element method can be used to compute approximate solutions of the Stokes
equations with the contact boundary conditions (2.7a–c). As a first step, we must find
a weak formulation by multiplying (2.1) by suitable test functions and integrating by
parts. Weak formulations of partial differential equations are formulated in terms of weak
derivatives, and the solutions are generally sought in Sobolev spaces (Adams & Fournier
2003). In order to keep the notation simpler, we assume in this subsection and in § 2.2 that
we enforce the Neumann boundary condition (2.9) instead of (2.8). In this case, a suitable
space of test functions is the vector-valued Sobolev space V = W 1,κ (Ω) for the velocity,
and the Lebesgue space Q = Lκ ′

(Ω) for the pressure. Here, κ = 1 + 1/n, where n is the
coefficient in Glen’s law, and κ ′ = κ/(κ − 1) is the Hölder conjugate of κ .

Due to the contact boundary conditions (2.7a–c), the associated weak formulation of the
Stokes equations is a variational inequality. Given the convex set of admissible velocity
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fields
K = {v ∈ V : v · n ≤ 0 on Γa} , (2.11)

the weak formulation of (2.1) is: find (u, p) ∈ K × Q such that

a(u, v − u) − b( p, v − u) ≥ f (v − u) ∀ v ∈ K, (2.12a)

b(q, u) = 0 ∀ q ∈ Q. (2.12b)

Here, the operators a : V × V → R and b : Q × V → R are defined by

a(u, v) =
∫

Ω

2η (|ε(u)|) ε(u) : ε(v) dx and b(q, v) =
∫

Ω

q(∇ · v) dx, (2.13a,b)

and the linear functional f : V → R is defined by

f (v) =
∫

Γt

τb(v · (1, 0)T) ds −
∫

Γt

pi(v · n) ds −
∫

Γa∪Γd

pw(v · n) ds. (2.14)

As we assume that the water pressure pw is constant along the bedrock, the
incompressibility of the flow velocity can be used to rewrite the right-hand side as

f (v) =
∫

Γt

τb(v · (1, 0)T) ds −
∫

Γt

N(v · n) ds, (2.15)

where N = pi − pw is the effective pressure. Consequently, the solution depends only on
N, not on the particular values of pi and pw.

The variational inequality (2.12) is equivalent to the Stokes equations (2.1) in the sense
that if the velocity u is at least twice differentiable and the pressure p is differentiable,
then integration by parts can be performed in order to arrive at (2.1) with the boundary
conditions introduced in the previous section. Of the three conditions in (2.7a–c), only the
kinematic condition u · n ≤ 0 is enforced explicitly in the definition of K; the remaining
conditions are enforced implicitly in (2.12).

There exist many different approaches for solving a variational inequality with the finite
element method (Glowinski, Lions & Trémoliéres 1981). For example, in the penalty
method, the constraint u · n ≤ 0 in the definition of K is enforced via the addition of
a nonlinear penalty term in (2.12a), and the variational inequality is transformed into a
variational equality over W 1,κ (Ω). This is the approach used in Stubblefield et al. (2021).
We find that what works best in combination with the advection equation (2.10) is a mixed
method with Lagrange multipliers that enforces an average-wise contact condition. We
remark that such a condition could also be enforced via a penalty term, but in this case the
contact boundary conditions would not be enforced exactly.

The contact boundary conditions (2.7a–c) can be enforced explicitly in (2.12) with a
Lagrange multiplier that essentially represents the sum of the normal stress and the water
pressure, σnn + pw, along the attached region Γa. In order to introduce this reformulation
of (2.12), we need to define a suitable set of admissible Lagrange multipliers. We define
the range of the normal trace operator onto Γa by

Σ = {
v · n|Γa : v ∈ V

}
. (2.16)

The space of admissible Lagrange multipliers is then the convex cone of elements in the
dual space Σ ′ satisfying a weak equivalent of the dynamic contact boundary condition
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σnn + pw ≤ 0 in (2.7a–c):

Λ = {
μ ∈ Σ ′ : μ(ξ) ≥ 0 ∀ξ ∈ Σ such that ξ ≤ 0 on Γa

}
. (2.17)

The mixed formulation of the variational inequality (2.12) may be written as: find
(u, p, λ) ∈ V × Q × Σ ′ such that

a(u, v) − b( p, v) − λ(v · n|Γa) = f (v) ∀ v ∈ V, (2.18a)

b(q, u) = 0 ∀ q ∈ Q, (2.18b)

μ(u · n|Γa) ≥ 0 ∀μ ∈ Λ, λ ∈ Λ and λ(u · n|Γa) = 0. (2.18c)

Equation (2.18a) can be obtained by multiplying (2.1a) by a test function v, integrating by
parts, and setting

λ = σnn + pw. (2.19)

Formulation (2.18) offers several advantages for finite element approximation in
comparison to (2.12). First, there is no longer any need to build an approximation of the
convex set K because we seek the velocity in the space V . Second, the conditions (2.18c),
which are a weak analogue of the contact boundary conditions (2.7a–c), can be rewritten
as a nonlinear equation at the discrete level; see (2.22c) below. This means that the
contact boundary conditions can be enforced exactly by solving the finite element system
analogous to (2.18). As we explain shortly, this leads to a robust and stable numerical
method for solving the complete subglacial cavitation system.

Under certain conditions on the geometry of the domain and the linear functional f ,
the variational inequality (2.12) has a unique solution. A proof can be found in de Diego,
Farrell & Hewitt (2021), together with an analysis of the finite element approximation of
the mixed system (2.18).

2.2. A numerical method for subglacial cavitation
In this subsection, we present a numerical algorithm for solving the complete subglacial
cavitation problem that results from coupling the Stokes equations (2.1) to the
time-dependent advection equation (2.10). We write the discrete counterparts to these
equations and explain how they are coupled by deforming the domain according to a
contact criterion. The resulting algorithm is summarised in Algorithm 1. The solver
is implemented in Firedrake (Rathgeber et al. 2016), using the version available at
zenodo/Firedrake-20211103.0 (2021). The code for the viscous contact solver presented
in Algorithm 1 is openly available, as described in the data availability statement below.

Subglacial cavitation is a time-dependent problem, so its discretisation requires a
partition of a given time interval [0, T] into intervals of length Δt. At each time step
tk = kΔt for k = 0, 1, . . . , NT = T/Δt, we must consider a discrete cavity roof θk

h and
domain Ωk given by

Ωk = {(x, y) ∈ R
2 : 0 ≤ x ≤ L, θk

h (x) ≤ y ≤ H}. (2.20)

Additionally, the lower boundary is the union of the attached and detached regions Γ k
a

and Γ k
d , respectively. These are also time-dependent and are determined at each time step

by the contact criterion (2.29) below.
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Algorithm 1: Solution procedure for the subglacial cavity problem

Set θ0 ;
for k = 0, 1, 2, . . . do

Set Γ k
a and Γ k

d according to (2.29);
Find (uk

h, pk
h, λ

k
h) such that (2.22) holds for θ = θk and Γa = Γ k

a ;
Calculate θk+1 with (2.28) ;
If θk+1

i < b(xi), set θk+1
i = b(xi);

Deform mesh;
end

2.2.1. Finite element approximation of the Stokes variational inequality
On each domain Ωk, we seek a finite element approximation to (2.18). To this end,
we consider a triangulation of Ωk and the finite element spaces Vh, Qh and Σh given
by piecewise continuous quadratic vector fields, piecewise constant scalar fields and
piecewise constant scalar functions on Γ k

a , respectively. This velocity–pressure pair is
known to be inf-sup stable in two dimensions (Boffi, Brezzi & Fortin 2013). Furthermore,
as we explain in § 2.2.2, working with a piecewise constant Lagrange multiplier enables
the use of a very simple upwinding scheme for solving the advection equation (2.10) in a
manner consistent with the discrete contact boundary conditions.

We write Vh = span {vi}Nv

i=1, Qh = span {qj}Nq
j=1 and Σh = span {μk}Nμ

k=1, where Nv =
dim Vh, Nq = dim Qh and Nμ = dim Σh. For the functions (uh, ph, λh) ∈ Vh × Qh × Σh,
we denote the respective degrees of freedom in R

Nv , R
Nq and R

Nμ by u, p and λ. In order
to write an algebraic counterpart of (2.18c), we need the operator

γn : R
Nv → R

Nμ (2.21)

that returns the average normal components of a vector vh ∈ Vh along the edges on Γ k
a .

The discrete counterpart to (2.18) is

A(u) − Bp − Dλ = f , (2.22a)

−BTu = 0, (2.22b)

λ+ C(λ, u) = 0. (2.22c)

Here, we have introduced the matrices B ∈ R
Nv×Nq and D ∈ R

Nv×Nμ , the vector f ∈ R
Nv ,

and the nonlinear operators A : R
Nv → R

Nv and C : R
Nμ × R

Nv → R
Nμ . The matrices

are given by the elements Bij = b(vi, qj) and Dij = ∫
Γ k

a
μj(vi · n) ds, and the vector f is

given by

f i = −
∫

Γt

pi(vi · n) ds −
∫

Γa∪Γd

pw(vi · n) ds +
∫

Γt

τb(vi · (1, 0)T) ds. (2.23)

The nonlinear operator A is given by

[A(u)]i =
∫

Ω

2ηε(|ε(uh)|) ε(uh) : ε(vi) dx, (2.24)

where ηε is a regularised form of (2.2) that prevents infinite viscosity at zero strain rates,
defined by

ηε(|ε(u)|) = 1
2 A−1/n

(
1
2 |ε(u)|2 + ε2

)(1−n)/2n
, (2.25)
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(xi − 1, θi − 1)

(xi, θi)

(xi + 1, θi + 1)

ei − 1
ei ei + 1

ni − 1

ni

ni + 1

Figure 2. Notation and ordering for nodes {(xi, θi)} and edges {ei} along the attached region Γ k
a .

for a regularisation parameter ε > 0 that we set to ε = 10−2. The nonlinear function C is

C(λ, u) = max {0, −λ+ c(γnu)} (2.26)

for an arbitrary c > 0 that we set to c = 1. We find the computations carried out in this
paper to be insensitive to the value of c > 0 when c ∈ [10−6, 106]. In (2.26), the max
operation is understood to be carried out for each of the elements in the vector −λ+
c(γnu) ∈ R

Nμ . The use of (2.26) is a common way of expressing contact conditions; a
particular advantage is that the nonlinear system (2.22) can be solved with a semi-smooth
Newton method (Hintermüller, Ito & Kunisch 2002). Moreover, (2.22c) is equivalent to
enforcing

γnu ≤ 0, λ ≤ 0 and (γnu) · λ = 0, (2.27a–c)

a discrete equivalent of (2.7a–c). By solving (2.27a–c), we see that on each edge on Γ k
a , we

have that the edge wishes either to detach (γnu < 0) or to remain attached to the bed (λ ≤ 0
and γnu = 0). At the continuous level, one cannot write (2.18c) as in (2.22c) because in
general the Lagrange multiplier λ is only an element of the dual space Σ ′ and may not
even be a function on Γa (Stadler 2007).

2.2.2. The discrete advection equation and a contact criterion
In order to write a discretisation of (2.10), we introduce some further notation. We denote
the points along the lower boundary by (xi, θi), with the index i increasing from left to
right as in figure 2. The edge between (xi−1, θi−1) and (xi, θi) is denoted by ei. We write
uk

n,i for the value of γnu associated with ei at time tk (by the definition of γn, this value
corresponds to the average value of uh · n along ei).

A numerical scheme that solves the advection equation (2.10a) should satisfy two
conditions. First, it must be stable, as described in standard textbooks (LeVeque 2007) (in
Appendix A.2 we present results with and without stabilisation of (2.10a)). Additionally,
the scheme should be compatible with the discrete contact boundary conditions (2.27a–c),
in the sense that if for two edges ei and ei+1 we have that uk

n,i = 0 and uk
n,i+1 = 0, then

we should have that θk+1
i = θk

i ; that is, the node in between the edges remains unchanged.
This means that the discrete counterpart of u · (∂θ/∂x, −1)T should be defined in terms
of γnu. If not, then we generally find that all edges will detach within a few time steps due
to approximation errors. Here, we propose the following explicit scheme:

θk+1
i − θk

i
Δt

=
⎛
⎝
(

θk
i − θk

i−1

xi − xi−1

)2

+ 1

⎞
⎠

1/2

uk
n,i, (2.28)

where the velocity at each node is taken from the edge located immediately upstream.
This results in an upwinding scheme with the property that penetration cannot occur along
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Γa, because the average values of uh · n along the edges are non-positive; see (2.27a–c).
However, a node on a previously detached edge can penetrate the bedrock. To avoid this
and enforce (2.10b), we simply set θk+1

i = b(xi) whenever θk+1
i < b(xi).

Given a cavity roof θk
h at tk, we must set the attached and detached regions Γ k

a and Γ k
d

to solve the Stokes variational inequality at tk. This is carried out by assigning each edge
ei with endpoints (xi−1, θ

k
i−1) and (xi, θ

k
i ) to either Γ k

a or Γ k
d . We do this by looking at the

node downstream of the edge, in accordance with the scheme for the advection equation:

ei belongs to Γ k
d if and only if θk

i − b(xi) > tol, (2.29)

where the tolerance tol is set to 10−9. Consequently, given a cavity roof θk
h at time tk, the

attached and detached regions Γ k
a and Γ k

d are fully determined.
Once we have computed a new cavity roof θk+1

h , the Stokes problem is then solved over a
new domain Ωk+1. This means that the mesh is deformed according to θk+1

h . Since we use
vertically extruded meshes for the computations in this paper, a simple algorithm is used
that moves each node vertically in a linear manner with respect to the original position of
the nodes at t = 0. If we denote the mesh nodes over xi by yij, and let y = H be the upper
boundary of the domain, then we compute the new vertical positions of the nodes via

yk+1
ij = θk+1

i + H − θk+1
i

H − θ0
i

(y0
ij − θ0

i ) (2.30)

for given y0
ij, θ0

i and θk+1
i .

3. Steady sliding with cavitation

The sliding of a glacier over its bedrock has been studied widely since Weertman’s seminal
work in 1957 (Weertman 1957). In general, these studies attempt to build a function known
as the sliding law that captures the steady relationship between the basal sliding speed ub,
the basal shear stress τb, and other variables such as the water pressure pw. This sliding
law can then be used to prescribe a boundary condition at the ice–bedrock interface in
large-scale glacier models that do not resolve the smaller-scale shape of that interface.

As a first application of the algorithm described in the previous section, we build the
sliding law for ice flowing over a sinusoidal bed. We first present detailed results for a
particular steady state in § 3.1 to evaluate the accuracy of the solver and the effect of mesh
refinement. Then in § 3.2 we compute sliding laws for different values of the parameter n
in Glen’s law (2.2).

The computations presented in this section and in § 4 have been carried out under the
assumption that the water pressure pw is uniform along the lower boundary. As explained
in the previous section, the problem then depends only on the effective pressure N =
pi − pw, rather than individually on pi or pw. (After subtracting pw from the stress, the
boundary conditions become σnn = −N on Γt, σnn = 0 on Γd, and σnn ≤ 0 on Γa.) We
non-dimensionalise the calculations by scaling lengths with the wavelength of the bed
L, velocities with a characteristic velocity scale U, and stresses with the characteristic
stress scale (U/(2AL))1/n. The resulting problem depends only on the non-dimensional
amplitude r of the sinusoidal bed, the non-dimensional velocity ui prescribed along the
upper boundary, and the non-dimensional effective pressure N.
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ne Mesh cells τb ub Detachment Reattachment

16 96 0.014772 0.98667 0.7500 1.0000
32 192 0.015143 0.98633 0.7188 1.0000
64 768 0.015484 0.98598 0.7188 1.0000
128 3072 0.015679 0.98577 0.7109 1.0000
192 7296 0.015741 0.98570 0.7135 0.9948

Table 1. Information about the different meshes used to compute the steady cavity states together with
calculations of the basal shear stress τb, the basal sliding speed ub, and the detachment and reattachment
points of the cavity.

3.1. Steady subglacial cavities
The steady state of (2.1) and (2.10) with the boundary conditions u = ui and σnn = −N
on the top boundary Γt can be found with Algorithm 1 by evolving the cavity from an
initial state until the norm of the discrete derivative (θk+1 − θk)/Δt is below a prescribed
threshold 10−4. In this subsection, we find the steady cavity for a Newtonian flow
(n = 1 in Glen’s law (2.2)) over a sinusoidal bed of small amplitude r = 0.01 given by
b(x) = rL cos (2πx/L). The non-dimensional effective pressure is set to N = 0.3, and the
non-dimensional horizontal velocity to ui = 1. We first consider a linear rheology and a
bedrock of small amplitude in order to compare our results with the analytical solution of
the linearised cavitation problem considered in Fowler (1986) and Schoof (2005). A brief
description of this method is included in Appendix B.

We use five different meshes with ne vertices distributed uniformly along the lower
boundary. In table 1, we present the non-dimensional basal shear stress τb and sliding
speed ub along the cavities. These values are calculated with

τb = −1
L

∫
Γa∪Γd

(σnn + pw)nx ds and ub = 1
L

∫
Γa∪Γd

u ds, (3.1a,b)

where n = (nx, ny). The expression for τb can be derived from the expression for the force
exerted by the ice on the bed as in Schoof (2005). Recall that the Lagrange multiplier λ
represents the normal stress σnn + pw along Γa (see (2.19)); therefore τb can be calculated
from λ via

τb = −1
L

∫
Γa

λnx ds. (3.2)

As we show in the next subsection, the values of τb and ub can be used to construct a
sliding law.

The formula for ub presented in (3.1b) might seem strange if the subglacial cavity
domain is interpreted as a boundary layer between an ice sheet and the bedrock. This would
suggest that we take the sliding speed to be the average value of the horizontal velocity
along the top boundary Γt. However, our computations indicate that if the height of the
domain H is sufficiently large, then we can expect the shear stress to approach a constant
value and the horizontal velocity to vary with yn as y approaches H, where n here is the
exponent in Glen’s law (2.2). Therefore, the horizontal velocity along the top boundary
depends strongly on the height of the domain. For this reason, and following Gagliardini
et al. (2007), we use (3.1b) to calculate ub. In this case, we find that ub is independent of
H for sufficiently large values of H. In particular, throughout this paper we set H = L. In
agreement with Gagliardini et al. (2007), we find this value of H to be sufficiently large.
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Figure 3. (a) Steady cavity shapes and (b) normal stresses along the attached region computed with different
mesh sizes. The stress distribution obtained from the linearised theory is shown in black. Here, the amplitude
of the obstacle is set to r = 0.01, the scaled effective pressure to N = 0.3, and the scaled horizontal velocity at
the top to ui = 1.

In figure 3, we present the steady cavity shape and normal stresses σnn along the attached
region Γa for the different meshes. We can see from these figures that the cavity shape
is computed accurately even with the coarsest mesh. Additionally, we also present the
stress distribution obtained from the linearised theory, which is determined uniquely for
an effective pressure N and a sliding speed ub. The result from the linearised theory plotted
in figure 3 is computed with the value of ub calculated with the most refined mesh.

The plot for the normal stress distribution demonstrates that the contact conditions
(2.7a–c) are satisfied exactly at the discrete level for all of the meshes, because σnn + pw ≤
0. This plot also exhibits the singularity of the normal stresses at the reattachment point.
This singularity complicates the approximation of the normal stresses along the attached
region and can lead to very inaccurate computations of the sliding law in largely cavitated
states. However, figure 3 also indicates that with increasing mesh refinement, the solver
appears to converge towards the linearised solution.

At the discrete level, the Lagrange multiplier λ, which we use to calculate τb, is
piecewise constant on each edge along the lower boundary. In figure 3, these values, the
degrees of freedom of λ, are plotted at the midpoints of each edge. Due to the contact
criterion (2.29), the edge immediately upstream of the first reattached node is treated as
part of Γa (this is required in order to allow for the possibility of subsequent detachment
there), which explains why there are non-zero values of σnn + pw left of the reattachment
node in figure 3. This is particularly visible for the coarsest mesh with ne = 16.

3.2. Computation of the linear and nonlinear steady sliding law
We next perform calculations similar to those of § 3.1 but for varying effective pressure N
and power-law exponent n. This allows us to map out a steady sliding law for ice sliding
over a hard bed with cavitation as in Gagliardini et al. (2007). The steady sliding law can
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r = 0.01 Gudmundsson (1997) Gagliardini et al. (2007)

n = 1 1.0014 0.9936 0.9771
n = 3 0.3434 0.3294 0.2769
n = 5 0.1255 0.1153 —

Table 2. Value of the parameter c0 associated with the sliding laws. This parameter is computed with the
slope of these curves near the origin.

be mapped out by varying only N and keeping ui fixed, since dimensional analysis of the
steady problem shows that the scaled basal shear stress τb/N depends only on the ratio
ub/(ALNn), and not independently on ub or N (Fowler 1986) (the same will not be true of
the unsteady problem in § 4).

Several previous studies have suggested what form the sliding law should take, both with
and without cavitation (Kamb 1970; Fowler 1981, 1986; Gudmundsson 1997; Schoof 2005;
Gagliardini et al. 2007). The law proposed in Gudmundsson (1997) for the uncavitated
case can be written as ( τb

rN

)n = α(n)
r

AL
ub

Nn , (3.3)

where r = a/L, and α(n) is a function depending on n. The function α(n) is related to the
parameter c0 (which also depends on n) considered in Gudmundsson (1997) by

α(n) = (2π)n+2

2c0
. (3.4)

For a Newtonian flow, the complex analysis method presented in Fowler (1986) and Schoof
(2005) yields an exact solution to the linearised problem. In particular, for high effective
pressures, no cavitation occurs and a linear sliding law as in (3.3) with c0 = 1 is found.
For effective pressures lower than a critical value 8π2rηub/L, cavitation occurs and the
sliding law becomes nonlinear, varying with N as well as ub.

We compute the sliding law over a sinusoidal bed of different amplitudes r and for
n = 1, 3 and 5, and we plot the results in figure 4 using the scaling suggested by (3.3).
The mesh has 192 vertices along the lower boundary, and 7296 cells. The locations of
the cavity endpoints are also plotted in figure 4, along with the solution to the linearised
problem calculated with the method from Fowler (1986) and Schoof (2005). For each
n, the parameter α(n) is computed by calculating the slope of the curve near the origin
(where there is no cavitation) for the lowest value of r. The corresponding values of the
parameter c0 can then be calculated from (3.4); these values can be found in table 2
together with those obtained in Gudmundsson (1997) and Gagliardini et al. (2007). We
see that the results obtained in these works are broadly similar to ours and that the value
c0 = 1 obtained in the linearised theory is approached in all cases when n = 1.

The computed sliding laws with cavitation in figure 4 are multivalued for τb/(rN)

as expected (Fowler 1986; Schoof 2005). This aspect of the law justifies the use of
the Dirichlet boundary condition u = ui instead of the alternative Neumann boundary
condition. We find that if we use the Neumann boundary condition σ nt = τb(1, 0)T and
initiate the cavity from a fully attached state, then the solver always evolves to the steady
state associated with the upsloping region of the curve (see also § 4). From figure 4, we
also deduce that the validity of the sliding law (3.3) along the linear segment of the curves
(where either little or no cavitation has occurred) decreases with increasing values of
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rN
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(α(n)r/AL)1/n u1
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b
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Figure 4. (a) Computed sliding law for steady glacial sliding with cavitation. (b) Cavity endpoints. The
parameter n in Glen’s law (2.2) is set to n = 1 (green), 3 (blue) and 5 (red). For each n, we compute the
sliding law for beds of amplitude r = 0.01 (circles, light), 0.04 (squares) and 0.08 (triangles, dark). For these
computations, we set the scaled velocity at the top of the domain to ui = 1 and the scaled viscosity parameter
to A = 0.5. We use a mesh with 192 cells along the lower boundary. The parameter α(n) is computed from the
slope of the curve near the origin for the lowest r.

r and n. For example, when n = 5, one can observe that the linear segment of the sliding
law for r = 0.08 clearly does not collapse onto the corresponding linear segment for
r = 0.01. As soon as the cavity size increases and the sliding laws cease to be linear,
the aspects of these curves largely differ for different values of n.

In figure 4, we use a scaling different to the one used in Gagliardini et al. (2007). In
Gagliardini et al. (2007), the computed maximum value reached by τb/N is included in
the scaling for the sliding law. In this way, the maximum value reached by the scaled
sliding law equals 1 by design. However, we preferred the scaling based on (3.3) because
it contains fewer terms that are unknown a priori. It is also worth mentioning that for
different values of n, the curves in figure 4 do not collapse into a single curve when plotted
with the scaling from Gagliardini et al. (2007).

For the linear case with n = 1, the numerical results computed with the finite element
solver highly resemble those obtained with the linearised solution. For r = 0.08, a slight
difference from the linearised solution can be seen near the peak of the sliding law.
This difference is probably a consequence of nonlinear effects that are accentuated with
increasing amplitudes of bedrock roughness.

4. Unsteady sliding

In the previous section, the sliding law was constructed by computing steady cavity states.
However, field measurements from alpine glaciers and from the Greenland Ice Sheet
have found short-term variations in the water pressure, on time scales down to hours
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(Iken 1981; Iken & Bindschadler 1986; Sugiyama & Gudmundsson 2004; Andrews
et al. 2014; Hoffman et al. 2016). In these studies, variations of water pressure have
been correlated with variations in surface speeds, vertical strain and uplift. Subglacial
cavitation has been considered a possible mechanism causing these correlations (Iken &
Bindschadler 1986; Mair, Sharp & Willis 2002; Sugiyama & Gudmundsson 2004). These
observations motivate an investigation of glacier sliding under unsteady conditions. In this
section, we therefore compute the evolution in time of subglacial cavities under oscillating
water pressures and calculate the corresponding unsteady basal sliding speed and shear
stresses. The study published by Iken of the transient stages between steady cavity shapes
(Iken 1981) is the only numerical investigation of unsteady cavitation solving the Stokes
problem known to the authors.

We initialise the computations from a steady state corresponding to a point in the
sliding law determined by an effective pressure N0, a basal sliding speed ub,0, and a basal
shear stress τb,0. Instead of prescribing the Dirichlet boundary condition u = ui on Γt,
we enforce the Neumann boundary condition σ nt = τb,0(1, 0)T on Γt. We consider it more
physically realistic to have the basal shear stress fixed rather than the sliding speed because
we can expect the basal stresses to balance the gravitational driving stresses, which are
essentially fixed on these time scales. In practice, if water pressure variations are spatially
localised, then the driving stress can be transferred to neighbouring regions of the bed,
but it is not easy to account for this within the current boundary layer treatment of the
problem. We set n = 3 in Glen’s law to model the nonlinear rheology of ice. Algorithm 1
is used with a mesh with 192 elements along the lower boundary over a sinusoidal bed of
amplitude r = 0.08.

The effects of unsteady water pressures differ depending on the initial steady state from
which we evolve the cavity. To illustrate this, we first evolve two different points along
the upsloping component of the steady sliding law by oscillating the effective pressure
with amplitude 0.1N0 and fixed non-dimensional frequency 0.4. As a reference, note
that one non-dimensional time unit is approximately the time taken for ice at the top of
the domain to traverse one wavelength of the bed. The results are plotted in figure 5.
These results indicate that with increasing cavitation, the amplitude of the sliding speed
increases. For the case of small cavitation (figure 5a), the sliding speed is slightly out of
phase with the effective pressure. However, this phase difference disappears with larger
cavitation, as observed in figure 5(d) and also in figures 6 and 7 below. This implies that
the maximum sliding speed is most often reached when the effective pressure is lowest.
Field measurements have also found maximum surface speeds to take place at moments of
maximum water pressure (Iken & Bindschadler 1986; Sugiyama & Gudmundsson 2004).
On the other hand, the phase difference between the sliding speeds and the cavity volume
appears to change in each numerical test: in figure 5(a), one can observe that the maximum
sliding speed is reached when the cavity is still growing, while in figure 5(d), it is reached
at the time of maximum cavitation. There are slight oscillations in the computed sliding
speed when the cavity volume is at its largest. These are numerical artefacts due to the
stress singularity at the reattachment point of the cavity having an increasing effect on the
overall solution of the problem as the cavity volume grows. In these situations, a small
displacement of the reattachment point has a large effect on the stress distribution along
the bed and therefore also on the computed sliding speed.

As mentioned above, the non-dimensional time that it takes a fluid particle to traverse
the domain is of order t ≈ 1. Therefore, the scaled frequency f = 0.4 can be considered a
relatively slow frequency that allows the cavity to follow approximately the steady shapes
associated with the effective pressure at each instant in time as calculated in § 3. In figure 6,
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Figure 5. Unsteady cavitation for imposed oscillating effective pressures N and fixed basal shear stress τb
around the states with (a–c) (ub,0, N0) = (1, 2.2281), and (d–f ) (1, 1.8843). In (a,d), the evolution of the cavity
volume V (right-hand axis) and basal sliding speed ub (left-hand axis, also for N) are plotted. One period of
each solution is superimposed on the steady sliding law in (b,e), as indicated by the coloured dots. In (c, f ),
the cavity shapes are plotted at different time instants with coloured lines; the dotted lines represent the steady
cavity shapes for (ub,0, N0).

we compare results obtained with frequencies f = 0.4 and f = 2 to examine the effect of
faster oscillations in the water pressure. With a higher frequency, the magnitude of the
change of cavity volume is significantly lower. In contrast, the amplitude of the sliding
speed increases slightly with a higher frequency. The phase difference between the velocity
and the cavity volume also changes when the frequency is increased. For a high frequency,
the maximum velocity is no longer attained when the cavity reaches its largest extent,
but before, when the cavity is still growing. More specifically, figure 6(d) indicates that
the maximum of the sliding speed and of the rate of change of the cavity volume occur
simultaneously.

We can therefore expect a phase difference between the sliding speed and the cavity
volume to arise for large frequencies. For very low frequencies, at each time instant t,
the cavity shape is approximately that of the corresponding steady state for the values of
N(t), ub(t) and τb(t). Therefore, since ub increases with the cavity volume under steady
conditions, this phase difference will disappear. When comparing panels (a) and (d) of
figure 5, we see that this phase difference is larger when the cavity is smallest. This could
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Figure 6. Unsteady cavitation around the state with (ub,0, N0) = (1, 1.8843) for imposed oscillating effective
pressures N, with non-dimensional frequencies (a–c) 0.4, and (d–f ) 2, and fixed basal shear stress τb . In (a,d),
the evolution of the cavity volume V (right-hand axis) and basal sliding speed ub (left-hand axis, also for N)
are plotted. The effective pressure is plotted against the sliding speed in (b,e) in coloured dots, together with
the steady solution in black. In (c, f ), the cavity shapes are plotted at different time instants with coloured lines;
the dotted lines represent the steady cavity shapes for (ub,0, N0).

indicate that the characteristic time scale with respect to which we measure the frequency
increases for smaller cavity volumes.

Following Sugiyama & Gudmundsson (2004), in figure 6 we also plot the sliding speed
against the effective pressure throughout one cycle. For the lower frequency f = 0.4, a
clear loop arises in which the sliding speed is greater during cavity growth. For the
higher frequency f = 2, the loop nearly collapses into a single line. These plots can be
compared with those obtained from field measurements in Sugiyama & Gudmundsson
(2004, figure 5); a qualitative similarity between both is that higher speeds are reached
when N decreases. Additionally, similar plots are presented in Andrews et al. (2014,
Extended Data figure 4). These plots also show the extent to which unsteady sliding can
differ from its steady counterpart.

The downsloping section of the friction curve produces a so-called rate-weakening
sliding regime in which, for a supposed fixed effective pressure, an increase in the sliding
speed is accompanied by a decrease in the basal drag. Rate-weakening sliding has been
observed in a laboratory setting for ice sliding over a sinusoidal bed (Zoet & Iverson
2015), although several authors have questioned whether such a sliding regime can arise
for more realistic bed geometries (Fowler 1987; Schoof 2005; Helanow et al. 2021).
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Figure 7. Unsteady cavitation around the state with (ub,0, N0) = (1, 1.0937) for imposed oscillating effective
pressures N, with amplitudes (a–c) 0.1N0, and (d–f ) 0.01N0, and fixed basal shear stress τb. In (a,d), the
evolution of the cavity volume V (right-hand axis) and basal sliding speed ub (left-hand axis, also for N) are
plotted. One period of each solution is superimposed on the steady sliding law in (b,e), as indicated by the
coloured dots. In (c, f ), the cavity shapes are plotted at different time instants with coloured lines; the dotted
lines represent the steady cavity shapes for (ub,0, N0).

An implication of rate-weakening sliding is that the sliding law becomes double-valued,
as seen in figure 4. This invalidates the commonly used shallow ice approximation of
the Stokes equations, which requires the friction law to be invertible (Schoof & Hewitt
2013).

In figure 7, we perturb a steady state along the downsloping section of the curve
with an oscillating effective pressure of non-dimensional frequency f = 0.4, with the
amplitude set to 0.1N0 (figures 7a–c) and 0.01N0 (figures 7d–f ). As shown in figures 7(b)
and 7(d), we observe that for perturbations with both large and small amplitudes, the
cavity quickly evolves towards the steady state along the upsloping section for a similar
value τb,0/N0. In fact, we find that this phenomenon continues to occur for different
frequencies in the oscillations of the effective pressure and different steady states along
the downsloping section of the sliding law. This finding could offer an additional reason
to not use a sliding law with a rate-weakening regime: since such a regime is unstable
in the sense described above, we could expect it to be unachievable under natural
conditions.
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5. Discussion and conclusions

In this work, we have presented a novel numerical method for solving viscous contact
problems by formulating the Stokes variational inequality as a mixed problem with
Lagrange multipliers. We have also introduced a numerical scheme for the advection
equation specifically designed to ensure both stability and coherence with the contact
conditions of the Stokes problem. This combination leads to a robust and simple method
for solving viscous contact problems. Although we have applied our method only to
the problem of subglacial cavitation, it can be extended to the ice-ocean grounding line
problem. In § 3, we have used this method to compute steady cavity configurations. In
particular, we have validated the numerical method by comparing our results over bedrocks
with small amplitudes to the linearised approach in Fowler (1986) and Schoof (2005), and
we have reconstructed steady sliding laws for different values of the parameter n in Glen’s
law (2.2).

Finally, in § 4, we have explored the temporal evolution of cavities under unsteady
effective pressures and its effect on glacial sliding. One of the features of unsteady
sliding studied in this work is the phase difference between the sliding speed, the cavity
volume and the effective pressures. Our results show that with increasing frequencies,
the phase difference between the sliding speed and cavity volume increases. They also
seem to indicate that the maximum sliding speed occurs at the point of minimum effective
pressure, at least for sufficiently cavitated states. Similar phase differences have been
found in data obtained from field measurements (Iken & Bindschadler 1986; Sugiyama &
Gudmundsson 2004; Andrews et al. 2014). Although our results could offer an explanation
in terms of an idealised model, it should be noted that changes in measurements of surface
elevation of an ice sheet can be the result of many cavities in different states. Finally,
we also find that when we fix the value of τb as a Neumann boundary condition, the
downsloping section of the sliding law, also known as the rate-weakening regime, is
unstable under finite perturbations. In particular, if we perturb a steady state along the
downsloping section, then the cavity evolves quickly towards the corresponding point with
a similar value of τb/N along the upsloping part.

We have compared our method with those from Gagliardini et al. (2007) and
Stubblefield et al. (2021). When computing the points along the steady sliding law in
figure 4 with our method, the number of time steps required to converge to a steady state
can become very large (of order 1000) in the highly cavitated stages along the downsloping
region of the curve. This is due to very-small-scale oscillations that travel across the cavity
but have a significant effect on the calculated values of τb due to the stress singularity at the
reattachment point. Contrastingly, when using the method from Gagliardini et al. (2007),
these oscillations seem to dampen and the method can converge in about 100 iterations for
highly cavitated states. We speculate that this is due to the use of a numerical stabilisation
in Elmer when solving the advection equation; see (11) in Gagliardini & Zwinger (2008).
Despite this difference in computational times, we find that the basal stress computations
carried out with our method appear to be more accurate due to the exact enforcement
of discrete contact conditions (see figure 3 and compare with Gagliardini et al. 2007,
figure 1).

We also attempted to solve the subglacial cavity problem with the numerical method
from Stubblefield et al. (2021). Although this method is suitable for solving the grounding
line and subglacial lake problems presented in that reference, we found that it was not able
to evolve the cavity correctly. This method solves the variational inequality via a penalty
method, in which the constraint u · n ≤ 0 in (2.11) is enforced pointwise at the discrete
level on the attached region via a penalisation term. However, due to the discretisation
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of the advection equation used in Stubblefield et al. (2021), enforcing this condition does
not guarantee that the term u · (∂θ/∂x, −1) is exactly zero where u · n = 0 at the discrete
level. Moreover, according to our computations, when applying this penalty method to
the subglacial cavity problem, the computed values of uh · n along the attached region
appear to be much less accurate than when using the method presented here, as shown
in Appendix A.1. We also remark that the method in Stubblefield et al. (2021) does not
include any stabilisation of the advection equation. As demonstrated in Appendix A.2,
without stabilisation, numerical oscillations appear along the cavity roof after some time
steps. For these reasons, we expect that the numerical method from Stubblefield et al.
(2021) should be modified for the subglacial cavity problem.

In the numerical method introduced in this paper, we are essentially solving a Stokes
variational inequality by enforcing the average values of uh · n to be less than or equal to
0 along the attached region. When formulated as a mixed problem, we arrive at system
(2.18). However, many other possibilities exist at the discrete level; for example, we could
enforce that the projection of uh · n onto a space of piecewise linear functions along the
attached region of the boundary be less than or equal to zero. Alternatively, we could also
enforce this constraint to hold for the values of uh · n at the midpoints of the edges. We
are currently exploring these different discretisations in combination with different time
stepping schemes for the advection equation (2.10). We believe that suitable combinations
of these methods could yield further improvements in terms of the speed and robustness
of the algorithm. We are also exploring extensions of this method to three-dimensional
problems; in particular, generalising the scheme for the advection equation is not obvious
and requires further consideration.
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Appendix A. Additional numerical tests

A.1. Comparison with a penalty method
The method introduced in Stubblefield et al. (2021) solves the variational inequality (2.12)
by penalising the values of u · n that are positive on Γa. When enforcing the Neumann
boundary condition (2.9), this is achieved by solving the variational equality

a(u, v) − b( p, v) + 1
δ

∫
Γa

(u · n + |u · n|) (v · n) ds = f (v) ∀ v ∈ V, (A1a)

b(q, u) = 0 ∀ q ∈ Q, (A1b)
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where δ > 0 is the penalty parameter. The finite element method in Stubblefield et al.
(2021) solves (A1) with Taylor–Hood elements. As δ → 0, the penalty term

∫
Γa

(u · n +
|u · n|)(u · n) ds also tends to 0, which means that the contact condition u · n ≤ 0 is
enforced on Γa. We remark that in the limit δ → 0, this method is equivalent to a Lagrange
multiplier method in which the discrete contact boundary conditions set (uh · n)(x) ≤ 0
for all x ∈ Γa, as opposed to forcing the average values of uh · n to be non-positive as we
do in our method.

Additionally, in Stubblefield et al. (2021), the advection equation (2.10a) is solved
explicitly with

θk+1
i − θk

i
Δt

= −ui

(
∂θk

h
∂x

)
i

+ vi, (A2)

where (ui, vi) are the values of uh at the vertices in Γa, and ∂θk
h/∂x is the projection of the

(distributional) derivative of θh onto the space of piecewise linear functions on Γa.
In § 2.2.2, we explain the need for a compatibility between the discrete contact boundary

conditions and the discretisation of the advection equation (2.10a) in order to have a
robust numerical method for viscous contact problems. One might expect that solving (A1)
directly should make the design of a compatible discretisation of the advection equation
simpler, because we are enforcing u · n ≤ 0 on Γa in a pointwise manner at the discrete
level. However, our numerical tests on the subglacial cavity problem indicate that this is
not the case. This appears to be because the discretisation of the advection equation in
(A2) is not compatible with the discrete contact boundary conditions in the sense that
uh · n(x) = 0 for all x ∈ Γa does not necessary imply that

−ui

(
∂θk

h
∂x

)
i

+ vi = 0 (A3)

on a vertex (xi, θi) ∈ Γa. Moreover, the values of uh · n computed with the penalty method
appear to be less accurate then the corresponding values computed with the method
presented in this work. Due to this lack of accuracy, we no longer have a clear distinction
between regions that detach (u · n < 0) and those that stay attached (u · n = 0).

This latter issue is illustrated in figure 8. In this test, we evolve the cavity by solving
the variational inequality equipped with the Dirichlet boundary conditions (2.8) with the
penalty method described above with r = 0.08 over a mesh with 16 elements along the
lower boundary. We set N = 1, ui = 1, Δt = 0.01, n = 1, A = 0.5 and δ = 10−6 in (2.1a).
Additionally, in order to avoid detachment, we increase the tolerance in (2.29) to tol =
10−3. In figures 8(a–d) we present the evolution of the cavity from a fully attached state
when computed by our implementation of the method from Stubblefield et al. (2021).
Our numerical results show that by t = 0.5, the cavity shape is deforming excessively. In
figures 8(e) and 8( f ), we also compare the computed values of uh · n in the first time step
with the penalty method from Stubblefield et al. (2021) and with our method, respectively.
As seen in figure 8(e), we have points where uh · n > 0 in between points where uh ·
n = 0.

We have carried out further computations with more refined meshes, and these indicate
that the lack of accuracy in uh · n persists when using the penalty method. We would like
to emphasise that this numerical issue does not arise when solving the problems presented
in Stubblefield et al. (2021). It must therefore be due to some particularity of the subglacial
cavity problem.
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Figure 8. (a–d) Evolution of a subglacial cavity with the method from Stubblefield et al. (2021). (e) Values of
uh · n at the endpoints and midpoint of each edge computed with the penalty method from Stubblefield et al.
(2021) after a single time step. ( f ) Average values of uh · n at each edge computed after a single time step with
the method presented in this work. We set r = 0.08, N = 1, ui = 1, Δt = 0.01, n = 1 and A = 0.5.

A.2. On the use of upwinding when solving the advection equation
In § 2.2.2, we state that the advection equation (2.10a) should be stabilised with e.g. an
upwinding method. Since no stabilisation is required for the numerical tests solved in
Stubblefield et al. (2021), here we demonstrate that without upwinding, the subglacial
cavity problem quickly becomes unstable.

In order to show this, we solve the same problem as in Appendix A.1 with a new method
that is identical to the one presented in this paper except for the fact that the advection
equation is discretised as

θk+1
i − θk

i
Δt

=
⎛
⎝
(

θk
i − θk

i−1

xi − xi−1

)2

+ 1

⎞
⎠

1/2 (
uk

n,i + uk
n,i+1

2

)
(A4)

instead of (2.28). That is, instead of taking the average values of uh · n along the edge
immediately upstream of each node, the average of the edges upstream and downstream is
taken. In this way, we still have compatibility with the discrete boundary conditions but no
upwinding. In figure 9, we can see the evolution of the cavity with and without upwinding.
Clearly, oscillations arise in the cavity roof at t = 1 when no upwinding is used.

Appendix B. Linearised solution

For a Newtonian flow (n = 1) and small-amplitude topography, the theory of Fowler
(1986) and Schoof (2005) can be used to find solutions with which the numerical
calculations can be compared. The method involves linearisation of the boundary
conditions and use of complex variables to solve a Riemann–Hilbert problem for the
velocities and stresses. We summarise the result for the particular case when b =
rL cos(2πx/L).
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Figure 9. Evolution of the cavity roof (a–d) with upwinding, and (e–h) without upwinding. For this
numerical test, we set r = 0.08, N = 1, ui = 1, Δt = 0.05, n = 1 and A = 0.5.

It is convenient to parameterise the solution in terms of the scaled cavity endpoints c and
d, such that the cavity occupies the region d < x̂ < c + 1, where x̂ = x/L. The velocity is
u = (u, v) with u ≈ ub, and on the cavitated region, the vertical velocity v satisfies

∂v

∂x
= −4π2rub

L
cos

(
2πx

L

)
+ 4π2rub

L

∣∣∣∣sin π(d − x̂)
sin π(x̂ − c)

∣∣∣∣
1/2

×
[

cos π

(
2x̂ + 1

2
(d − c)

)
− sin π(c + d) sin

π

2
(d − c)

]
. (B1)

The linearised steady kinematic condition for the cavity roof is ub(∂θ/∂x) = v, and
integrating this subject to the condition that θ = b at the cavity endpoints provides a
constraint between c and d. In addition, c and d are related to the effective pressure by

N = 8π2rηub

L
cos

π

2
(3d + c) sin

π

2
(d − c). (B2)

Thus for given values of N and ub, these two constraints determine the endpoints c and d.
Further, the normal stress on the contact region c < x̂ < d is given by

σnn + pw = −8π2rηub

L

∣∣∣∣sin π(d − x̂)
sin π(x̂ − c)

∣∣∣∣
1/2

×
[

cos π

(
2x̂ + 1

2
(d − c)

)
− sin π(c + d) sin

π

2
(d − c)

]
, (B3)

and the integral in (3.1) then gives the basal shear stress as

τb = π3r2ηub

L
[5 − sin 2π(c + d) sin 2π(d − c) − cos 2π(d − c) − 4 cos π(d − c)

− cos π(3c + d) + cos π(c + 3d)]. (B4)

This cavitated solution requires N < 8π2rηub/L. Otherwise, there is no cavity and we
have τb = 8π3r2ηub/L.
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