
J. Fluid Mech., page 1 of 31. c© Cambridge University Press 2012 1
doi:10.1017/jfm.2012.166

Flotation and free surface flow in a model for
subglacial drainage. Part 2. Channel flow

I. J. Hewitt1†, C. Schoof2 and M. A. Werder3

1 Department of Mathematics, University of British Columbia, 1984 Mathematics Road,
Vancouver, BC, Canada V6T 1Z2

2 Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road,
Vancouver, BC, Canada V6T 1Z4

3 Department of Earth Sciences, Simon Fraser University, 8888 University Drive,
Burnaby, BC, Canada V5A 1S6

(Received 22 June 2011; revised 31 January 2012; accepted 30 March 2012)

We present a new model of subglacial drainage incorporating flow in a network of
channels and a porous sheet, with water exchange between the two determined by
pressure gradients. The sheet represents the average effect of many linked cavities,
whilst the channels emerge from individual cavities that enlarge due to dissipation-
induced melting. The model distinguishes cases when the water pressure drops to zero,
in which case it allows for the drainage space to be only partially filled with water
(free surface flow), and when the pressure reaches the ice overburden pressure, in
which case it allows for uplift of the ice to whatever extent is needed to accommodate
the water (flotation). Numerical solutions are found for a one-dimensional flow-line
version of the model. The results capture typically observed or inferred features of
subglacial drainage systems, including open channel flow at the ice margin, seasonal
channel evolution, and high water pressures and uplift of the ice surface driven by
rapid changes in water supply.
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1. Introduction
Glaciers and ice sheets move through a combination of internal deformation and

sliding at the bed. Significant sliding can occur whenever water is present, since it
allows slip at the interface between ice and bed. Water may be produced from melting
at the bed, due to a combination of geothermal and frictional heating; often, however,
there is a much larger supply that comes from melting on the ice surface, descending
to the bed through crevasses and moulins. This supply can vary on diurnal, annual and
decadal time scales, and is known to cause significant spatial and temporal variations
in the velocity of mountain glaciers (e.g. Hooke, Brzozowski & Bronge 1983; Kamb
et al. 1985; Iken & Bindschadler 1986; Willis 1995; Raymond et al. 1995; Jansson
1996). Recent observations from Greenland have shown that large sections of the ice
there also undergo rapid acceleration and deceleration, which has been attributed, at
least partly, to changing meltwater conditions at the bed (Zwally et al. 2002; Joughin
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et al. 2008; Van de Wal et al. 2008; Shepherd et al. 2009; Bartholomew et al. 2010).
It is still not clear, however, what the long-term effect of these changes is for the
mass balance of the ice sheet and for consequent sea level rise. Ice flow models that
are coupled to models of the drainage system and its effect on sliding are ultimately
required in order to assess this.

One of the most important observations is that a greater quantity of meltwater does
not necessarily correlate with increased sliding. This is believed to be due to the
ongoing evolution of the subglacial drainage system which may, at different times,
be more, or less, able to accommodate large quantities of water. Theoretical models
and field evidence both suggest that it is the effective pressure at the bed, defined
as the normal stress in the ice minus the water pressure, that plays a key role in
controlling the rate of sliding (Budd, Keage & Blundy 1979; Bindschadler 1983; Iken
& Bindschadler 1986; Fowler 1986; Schoof 2005). Lower effective pressure generally
allows for faster sliding, either by weakening underlying till which can then deform
more readily, or by reducing the contact area between ice and bedrock and therefore
lessening the drag. The main goal for our model is therefore to predict the effective
pressure.

The conventional description of subglacial drainage, which motivates our model,
makes a broad distinction between ‘distributed’ and ‘channelized’ water flow (Fountain
& Walder 1998). In a distributed system, water is spread out over the bed in what can
effectively be described as a porous drainage layer (Flowers & Clarke 2002; Creyts &
Schoof 2009; Hewitt 2011). For the purpose of constructing our model we envisage
it as a series of linked cavities, which form when the ice slides over asperities in the
bed (Lliboutry 1969; Walder 1986; Fowler 1987; Kamb 1987); very similar behaviour
can however be expected if the water flows through porous till or a network of ‘canals’
(Walder & Fowler 1994), and the model may apply with minimal modification to both
hard and soft bedded glaciers. In a channelized system the water collects into a few
distinct channels, incised upwards into the ice (Shreve 1972; Röthlisberger 1972; Nye
1976; Spring & Hutter 1982; Schoof 2010). The water flowing within these channels
dissipates energy, which acts to melt the surrounding ice and maintain them open
against inward creep (the basal water pressure is generally lower than the ice pressure,
so viscous deformation of the ice acts to close down the drainage space).

In general, a distributed system is expected when meltwater discharge is low,
whereas channels are expected when it is high. In places where surface meltwater
penetrates to the bed, the discharge can vary enormously over the course of a year
and the structure of the drainage system consequently evolves (Hock & Hooke 1993;
Raymond et al. 1995; Gordon et al. 1998; Nienow, Sharp & Willis 1998; Copland,
Sharp & Nienow 2003). During the winter, when discharge is low, water occupies
the slow distributed system, and channels created during the preceding summer tend
to close down. In spring, meltwater from the surface finds its way to the bed; the
distributed system is unable to cope with this sudden influx and high water pressures
ensue. The larger discharge also enables channels to form, however, which eventually
causes the water pressure to drop. The response to subsequent variations in the melting
rate depends upon their magnitude and rapidity: slower and smaller changes may be
accommodated by the channels with minimal impact on the water pressure, whereas
sudden or large changes may again result in elevated pressures.

Whilst this description is highly idealized and the specifics are often different, it
gives some idea of the general behaviour we hope to model. In particular, we note that
the pressure can undergo large fluctuations as a result of the varying meltwater supply.
In this and a companion paper (Schoof, Hewitt & Werder 2012), we particularly focus
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on what happens when the water pressure exceeds the overburden ice pressure (i.e. the
effective pressure becomes negative) or reaches zero. In the first case, which we refer
to as ‘overpressure’, rapid uplift and widespread separation between ice and bed is
expected. In the second, ‘underpressure’, an air or vapour pocket should form and the
drainage system becomes only partially filled with water. Most current models do not
take account of these effects and would unphysically predict negative effective pressure
or water pressure (there are some exceptions: Tsai & Rice (2010), for instance, present
a hydrofracture model for high water pressure lake drainage, and Schuler & Fischer
(2009) account for partially filled channels).

In the companion paper (Schoof et al. 2012) we presented a simple ‘sheet’ model
for a distributed drainage system, in which the water pressure is constrained so
that it always lies between zero and the overburden pressure. When either of these
bounds are reached, the ‘normal’ model is modified to allow for the sheet to be only
partially filled, or for additional uplift to occur. The purpose of the present paper is to
extend those ideas to a model that includes channelized drainage. In the process, we
demonstrate how existing continuum models of distributed drainage can be coupled to
an arbitrary network of channels.

In § 2 we describe how the sheet model outlined in Schoof et al. (2012) can be
combined with a network of channels. Section 3 then explains how this extended
model is modified when the water pressure reduces to zero or reaches overburden. We
also show how a variational principle can be used to determine the regions on which
the pressure reaches these bounds, and outline the numerical procedure we have used
to solve the model in one spatial dimension. In one dimension the combined sheet-
channel model resembles other flow-line ‘dual-permeability’ models (e.g. Flowers et al.
2004; Hewitt & Fowler 2008; Pimentel & Flowers 2010), and is able to capture
many aspects of the drainage system behaviour that are inferred from observations.
Section 4 presents a number or illustrative results, and in § 5 we discuss some of the
implications and limitations of this model. Readers less interested in the mathematical
details may wish to gloss over § 3 and go straight to the solutions in § 4.

2. A sheet-channel model for subglacial drainage
We begin in this section with the ‘normal’ pressure regime, assuming that the

drainage system is water filled and that the water pressure, pw, lies between
atmospheric and overburden pressures. Then, in § 3, we discuss the modifications
required when pw passes outside this range. The effective pressure is defined by

N = pi − pw, (2.1)

and the ice pressure is assumed to be cryostatic, pi = ρigH, where ρi is the ice density,
g the gravitational acceleration and H = H(x, y) the ice thickness. (For simplicity we
assume that pi is cryostatic throughout this paper; if there are significant deviatoric
stresses we should instead define the effective pressure in (2.1) as −σn − pw, where
−σn is the average normal stress at the bed, and all references to pi or to ‘overburden’
should be interpreted as −σn. The normal stress is usually well-approximated by ρigH,
even when the pressure itself is not cryostatic.)

2.1. Sheet dynamics
In Schoof et al. (2012) we described a distributed linked-cavity drainage system as a
porous ‘sheet’, represented by an average water depth hw(x, y, t) occupying the average
drainage system depth h(x, y, t) (in the normal pressure regime, water fills all of the
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cavities and hw = h, but we maintain the distinction for use in the next section). Since
cavities open through sliding of the ice over bedrock bumps, and close due to inward
creep of the ice roof (Walder 1986; Kamb 1987), the depth h is assumed to evolve
according to

∂h

∂t
= vo(h)− vc(N, h), vo(h)= ub(hr − h)/lr, vc(N, h)= Ãh|N |n−1 N, (2.2)

where these specific forms for vo and vc are chosen as parameterizations of the
opening and closing processes, ub is the sliding speed (assumed known for this paper),
hr is a typical height of bedrock bump and lr is the typical spacing of such bumps,
Ã is the rheological constant for the ice times an order one geometrical factor that
depends on the shape of the cavities, and n is the exponent in Glen’s law. Note
that according to (2.2) it is impossible for the sheet depth to exceed hr unless the
effective pressure becomes negative; physically, this is because cavities cannot become
arbitrarily large but are limited by the size of the bedrock bumps.

Water flow through the porous sheet is described by

q=−khαw|∇φ |β−2
∇φ, (2.3)

where k is a permeability constant, α > 1 and β > 1 are model parameters for the
water flow (taken to be α = 5/4 and β = 3/2, motivated by a Darcy–Weisbach law),
and φ is the hydraulic potential. Mass conservation in the sheet is then expressed as

∂hw

∂t
+∇ · q= m, (2.4)

where m= m(x, y, t) is the meltwater source. In general, m has contributions from both
basal melting and from surface run-off through crevasses and moulins. In this paper
it is simply prescribed, but it should ideally be determined by coupling to models for
surface mass balance, englacial water routing and heat transport in the ice.

The hydraulic potential φ is given by

φ = ρwgb+ ρwghw + pw, (2.5)

where ρw is the water density and b= b(x, y) is the bed elevation. We also define

φ0(x, y)= ρigH(x, y)+ ρwgb(x, y) and φm(x, y)= ρwgb(x, y), (2.6)

as the potentials corresponding to the ice surface and the bed elevation (see figure 1),
taken to be steady on the time scales of interest here. The effective pressure can then
be written in terms of φ as

N = φ0 + ρwghw − φ. (2.7)

By including the term ρwghw, we attempt to account for the hydrostatic pressure
variation within the water layer, and are therefore taking pw to be the water pressure
at the top of the sheet (as in the definition of effective pressure (2.1)). Most models,
including our sheet model in Schoof et al. (2012), ignore this pressure variation since
it is typically very small, but it may be important in allowing for subglacial lakes to
form when the hydraulic potential would otherwise have a local minimum.

As discussed by many previous authors (e.g. Walder 1986; Kamb 1987; Schoof
2010; Hewitt 2011), individual cavities have the potential to grow more rapidly than
suggested by vo in (2.2) if the heat generated by water flow through them causes
significant melting of the ice roof. This leads to the idea that ‘cavities’ can turn
into ‘channels’, the distinction being that channels are maintained open through the
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) (a) An example glacier
profile showing: bed elevation z = b(x) (dark shading), surface elevation z = b(x) + H(x)
(lighter shading), the flotation level for water (dashed) and typical hydraulic head for basal
water (solid). (b) The equivalent profile of hydraulic potential, with the boundaries of the
shaded regions representing the hydraulic potentials, φm(x) and φ0(x), that correspond to the
bed and the flotation level (see (2.6)).

balance of ice melting and creep closure, without any requirement for the sliding term.
Including the heating effect in (2.2) results in an ill-posed model, however, since it
can lead to unbounded growth of h in an infinitesimally narrow region. This physical
process of channelization is nevertheless one we would like to describe in the model,
and we propose a method to do so below. Essentially we allow a certain collection of
the individual cavities to turn into channels, and these are modelled separately, as line
sinks to the two-dimensional sheet.

2.2. Channel dynamics
In the simplest theory for subglacial channels (Röthlisberger 1972; Nye 1976), the
channel cross-sectional area, S, evolves according to melting and creep closure:

∂S

∂t
= Ξ

ρiL
− vcC(N, S), vcC(N, S)= ÂS|N |n−1 N, (2.8)

where Â is a rheological constant (potentially different from Ã due to the different
geometries of channels and cavities), L is the latent heat of fusion and Ξ is the
heat generated by water flow in the channel. This assumes that all heat generated is
instantly transferred to the ice walls and results in melting. If a turbulent flow law such
as

Q=−kCSαw

∣∣∣∣∂φ∂s

∣∣∣∣β−2
∂φ

∂s
, (2.9)

is used to describe the discharge Q through the channel, the heat dissipated is
|Q∂φ/∂s|. In (2.9), kC is a constant related to the friction law and geometry assumed
for the channel, α = 5/4 and β = 3/2 are again related to the turbulent flow
parameterization and s denotes horizontal distance along the channel. Note that we
again distinguish the water-filled cross-sectional area, Sw, from the total cross-sectional
area, S, for later use; in the normal pressure regime, we always have Sw = S.

In order to marry this description of a channel with the cavities that make up the
sheet, we suppose that S denotes the cross-sectional area of a channel that lies ‘above’
the sheet depth h (see figure 2). We envisage, however, that the channel initially
evolves out of one of the individual cavities that make up the sheet (Walder 1986;
Kamb 1987). The heat production that goes into melting the channel therefore includes
both that due to water flow within the channel area, (2.9), and that due to the water
flow in the original cavity. The latter can be approximated by lrkhαw|∂φ/∂s |β , taking lr

http://journals.cambridge.org/flm
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FIGURE 2. (Colour online) Schematic representation of a water-filled channel and sheet (the
depth of the sheet is exaggerated and is not really a continuous sheet; it comprises small
connected cavities as shown on the right). The sheet has average depth h, typically controlled
by sliding over bedrock bumps and creep closure due to a positive effective pressure. The
channel has cross-sectional area S, controlled by melting due to turbulent dissipation of the
water flowing within it and creep closure due to a positive effective pressure.

to be the typical cavity width, and khαw|∂φ/∂s |β the heat generated per unit width in
the sheet. Thus, the dissipation in (2.8) is taken to be

Ξ = kCSαw

∣∣∣∣∂φ∂s

∣∣∣∣β +lrkhαw

∣∣∣∣∂φ∂s

∣∣∣∣β . (2.10)

In effect, this defines S to be the drainage space created by melting of one of the
cavity roofs. When there is little water flow this area is very small compared with the
cavity size, the first term in (2.10) is negligible compared with the second, and S is
small. As the discharge is increased, however, S increases, and at some stage the first
term in (2.10) dominates the second term; this corresponds to the cavity turning into a
channel.

The equations describing a channel are completed with a mass conservation
equation:

∂Sw

∂t
+ ∂Q

∂s
= Ξ

ρwL
+ κ, (2.11)

in which κ is the water source from the surrounding sheet, discussed again below.
It is straightforward to include additional source terms directly into a channel (if a
subglacial channel is fed directly from a moulin, for example) but for this paper we
intend to avoid specifics of the englacial hydrologic system and assume all water is fed
initially into the sheet, through m.

2.3. Network approach
The location and orientation of channels is not known until they form, and in
principle we would like to allow them to form anywhere and with any orientation.
One way to approximately allow for this, following the network model of Schoof
(2010), is to explicitly model the dynamics of individual ‘conduits’ that can choose to
behave as ‘cavities’ or ‘channels’. Channels are inherently localized, however, and if
neighbouring conduits all turn into channels they quickly compete with one another for
water, all but one reverting to behave as cavities. This observation that most conduits
remain as cavities is the motivation for introducing the average sheet description of
cavities, since it allows us to account for many more of them than can feasibly be
included in a discrete formulation.

For the current model we therefore propose to allow for a network of ‘potential’
channels, each described by (2.8), overlying the porous sheet. In effect, we single
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(a) (b)

FIGURE 3. (a) A channel network, with channel segments labelled Γij divides the sheet
domain into distinct regions Ωi. (b) A schematic plan view of the bed showing example
domains of overpressure and underpressure (see (3.4)–(3.5)). The ice flow is predominantly
from left to right.

out certain individual cavities that we allow to turn into channels, on the assumption
that the other cavities making up the sheet would in any case remain cavities. Each
of the potential channels is free to evolve according to (2.8), and only those with
sufficient water flow through them will evolve into channels of any significant size. By
including a sufficiently dense network of potential channel segments we hope to allow
the evolving network to select its own structure, including, for instance, the merging
and splitting of channels.

To be more specific, we suppose that the whole subglacial domain, labelled Ω , is
dissected by a network of potential channel segments, Γ , treated as being infinitely
thin (figure 3a). This divides the sheet domain into many subdomains Ωi, and the
individual channel segments can be labelled Γij according to the indices i and j of the
subdomains on either side. The porous sheet, described by (2.2)–(2.4), is defined on
each Ωi, and individual channels, described by (2.8)–(2.11), are defined on each Γij.
With this setup, the source terms to each channel, κ = κij, can be written explicitly as

κ = [q ·n]+− ≡ qi ·ni + qj ·nj, (2.12)

where ni is the normal to the channel pointing outward from Ωi. The channel
segments can therefore be seen as line sources or sinks, providing jump conditions
for the sheet flux across them (Hewitt 2011). At nodes of the network where the
channels meet, mass conservation requires that the fluxes into and out of the node sum
to zero. We also assume that water pressure is continuous between sheet and channel
segments, so

φ|Γij = φ|∂Ωi = φ|∂Ωj . (2.13)

Boundary conditions are required at the external boundaries ∂Ω; we assume these
are either conditions on φ (at the ice margin we expect to prescribe that the pressure
is atmospheric), or conditions on the fluxes, qN = −q · n, normal to the boundary (n
here is the outward normal to the boundary ∂Ω), and label the regions on which these
are prescribed as ∂ΩD and ∂ΩN , respectively. Where channels intersect the inflow
boundary ∂ΩN , Q= QN is prescribed.

In summary, the model of this section consists of two ordinary differential
equations (2.2) and (2.8) for the evolution of sheet depth h and channel area S.



8 I. J. Hewitt, C. Schoof and M. A. Werder

With hw = h and Sw = S, the combination of these evolution equations with the
conservation (2.4) and (2.11), and jump conditions (2.12), yields

−∇ · [khα|∇φ |β−2
∇φ] + vo(h)− vc(N, h)− m= 0, (2.14)

on each Ωi, and

− ∂
∂s

[
kCSα

∣∣∣∣∂φ∂s

∣∣∣∣β−2
∂φ

∂s

]
+ 1ρ
ρw

Ξ

ρiL
− vcC(N, S)+ [khα|∇φ |β−2

∇φ ·n]+− = 0,

(2.15)

on each Γij, where 1ρ = ρw − ρi is the density difference between water and ice.
Together with the expression for N in (2.7) and the prescribed boundary conditions on
∂Ω , these constitute an elliptic problem for the potential φ.

3. Overpressure and underpressure
We now describe how the model changes when the water pressure reaches

overburden or reduces to zero. The general principle is to assume that the water
pressure cannot pass beyond these two bounds; instead, modifications are made to
the model when they are reached. In the next subsection we express these pressure
bounds as constraints on the hydraulic potential. Then in § 3.2 we discuss how the
evolution and transport equations (2.2), (2.4), (2.8) and (2.11) apply to the bounding
cases of underpressure and overpressure. In § 3.3 we show how the combination of
the equations allows for the hydraulic potential to be determined by a variational
formulation.

3.1. Bounds on the hydraulic potential
From (2.5) and (2.6), the extreme case pw = pi is equivalent to φ = φ0 + ρwghw and
pw = 0 is equivalent to φ = φm + ρwghw. In fact, pw was defined as the pressure at the
top of the water sheet; in the channels, the zero water pressure bound should more
sensibly be applied to the pressure at the top of the channel instead, which is smaller
by the hydrostatic factor ρwgHw, where Hw is the water depth in the channel above
the sheet. Given an assumed geometry of the channel, and allowing for it to be only
partially filled, Hw depends on Sw and S, and we write Hw(Sw, S) (e.g. see appendix B
for semicircular channels). If we then define the hydrostatic potentials,

φh(x, y, t)= ρwghw, φH (x, y, t)=
{

0 (x, y) ∈
⋃
Ωi,

ρwgHw(Sw, S) (x, y) ∈ Γ, (3.1)

and use these to define

φ̂m(x, y, t)= φm(x, y)+ φh(x, y, t)+ φH (x, y, t),

φ̂0(x, y, t)= φ0(x, y)+ φh(x, y, t),

}
(3.2)

then the potential φ must always be constrained so that

φ̂m 6 φ 6 φ̂0. (3.3)

As pointed out earlier, the φh and φH terms are usually very small, and in Schoof
et al. (2012) we ignored them (in which case φ̂m = φm, φ̂0 = φ0). Here we retain them
because they turn out to prevent some otherwise singular behaviour.



Subglacial drainage. Part 2 9

(b)

(e)

(c)

( f )

(a)

(d)

FIGURE 4. (Colour online) Schematic representation of sheet and one channel, with the
predominant flow direction out of the page, under different possible flow conditions. (a) Low
meltwater input: insignificant melting in the channel, essentially all flow is in the sheet;
(b) increased input: pressure reaches overburden and lifts up the ice, the channel has not had
time to develop; (c) larger steady input: the channel has grown and draws in water from
the sheet; (d) increased input: pressure reaches overburden and lifts up the ice, leaving the
channel unaltered; (e) lower input: pressure falls to a minimum and the channel becomes
partially empty; (f ) still lower input: water level drops enough so that the sheet also becomes
partially filled.

At any given time t, we can define the domains on which φ = φ̂m (‘underpressure’),
and φ = φ̂0 (‘overpressure’), respectively:

Ω−(t)=
{
(x, y) ∈

⋃
Ωi : φ = φ̂m

}
, Γ −(t)= {(x, y) ∈ Γ : φ = φ̂m}, (3.4)

Ω+(t)=
{
(x, y) ∈

⋃
Ωi : φ = φ̂0

}
, Γ +(t)= {(x, y) ∈ Γ : φ = φ̂0}. (3.5)

These domains are not known a priori, however, and must be determined as part of the
solution, as will be shown in § 3.3. First we discuss how the equations are modified on
these regions.

3.2. Evolution and transport equations

Normal pressure, φ̂m < φ < φ̂0

When φ̂m < φ < φ̂0 the model is as described in § 2, with h= hw and S= Sw.

Underpressure, φ = φ̂m

When water pressure reaches zero the drainage space becomes only partially filled
(see figure 4e,f ). In that case we can have hw < h, and with φ = φ̂m, equations (2.2)
and (2.4) provide two separate equations for the evolution of h and hw. Similarly, when
Sw < S, equations (2.8) and (2.11) provide two separate equations for S and Sw.

In the limiting case when the sheet is just on the verge of becoming partially empty,
hw = h, the evolution equations must satisfy the inequality constraint

φ = φ̂m,
∂hw

∂t
6
∂h

∂t
, (3.6)

the two derivatives still being given by (2.4) and (2.2), respectively. Similarly if the
channel is on the verge of being partially empty, Sw = S, and

φ = φ̂m,
∂Sw

∂t
6
∂S

∂t
. (3.7)

With φ = φ̂m, the mass equations (2.4) and (2.11) for hw and Sw are nonlinear
diffusion equations, and the continuity of φ ensures that hw and Hw(Sw, S) must be
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continuous. Note also that the continuity of φ implies that the sheet adjacent to a
channel cannot reach underpressure until the channel is completely empty (so Sw = 0
and Hw = 0). In that case, the channel equation (2.11) serves to determine κ , which
provides the jump conditions (2.12) required when solving the sheet equation (2.4).
When the channel is still partially filled on the other hand, so hw = h there, the sheet
equations (2.2) and (2.4) together determine the source term κ from (2.12) to use in
(2.11).

Overpressure, φ = φ̂0

When overburden is reached we assume that widespread uplift of the ice can
occur, and that the excess pressure required to cause this is insignificant. The opening
equation for the sheet (2.2) no longer holds in this case and instead we allow h to
evolve together with hw according to the mass equation (2.4). This allows for the
possibility that h can exceed the roughness level hr in (2.2), corresponding to complete
separation between ice and bed. If the ice is still in contact, however (i.e. h < hr), the
rate of separation must be at least as large as that due to the sliding term in (2.2),
giving rise to the inequality constraint

φ = φ̂0,
∂h

∂t
= ∂hw

∂t
> vo(h)− vc(N, h), (3.8)

(the closure term here is zero since N = 0, but it is retained for convenience below).
The channel area S, being incised into the ice roof, is unaffected by any uplift of the
ice and therefore continues to evolve according to (2.8). With φ = φ̂0 known, however,
the channel equations (2.8) and (2.11) combine to determine both the evolution of
S= Sw and also the source term κ . This determines the jump conditions (2.12) to apply
when solving the diffusion equation (2.4) for hw and h.

3.3. Variational formulation for hydraulic potential
To facilitate determining the hydraulic potential we first note that, given current values
of h, hw, S and Sw, we can immediately identify the regions of partially filled cavities
and channels as

Ωe =
{
(x, y) ∈

⋃
Ωi : hw(x, y, t) < h(x, y, t)

}
,

Γ e = {(x, y) ∈ Γ : Sw(x, y, t) < S(x, y, t)}.

}
(3.9)

Similarly, regions where there is complete separation between ice and bed, are

Ω f =
{
(x, y) ∈

⋃
Ωi : h(x, y, t) > hr(x, y)

}
, Γ f = Γ ∩Ω f (t), (3.10)

where Ω f denotes the closure of Ω f .
On Ωe ∪ Γ e, we know immediately that φ = φ̂m, and on Ω f ∪ Γ f , we must have

φ = φ̂0 (since h> hr is only possible if φ reaches φ̂0). The remainder of the domain is
labelled by

Ωc =
⋃
Ωi \ (Ωe ∪Ω f ), Γ c = Γ \ (Γ e ∪ Γ f ), (3.11)

and it is this region on which the potential must be solved for, subject to φ̂m 6 φ 6 φ̂0.
On these subdomains we have hw = h < hr and Sw = S. The following variational
formulation echoes that in Schoof et al. (2012), to which the reader is referred for
further details.
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Considering the various possibilities explained in § 3.2, on Ωc we must either have
φ̂m < φ < φ̂0, in which case ∂hw/∂t = ∂h/∂t as in (2.14), or we have one of the
bounding inequalities (3.6) and (3.8). Thus, one of the following three cases applies
on Ωc:

φ̂m < φ < φ̂0 and −∇ · [khα|∇φ |β−2
∇φ] + vo(h)− vc(N, h)− m= 0,(3.12a)

φ = φ̂0 and −∇ · [khα|∇φ |β−2
∇φ] + vo(h)− vc(N, h)− m 6 0, (3.12b)

φ = φ̂m and −∇ · [khα|∇φ |β−2
∇φ] + vo(h)− vc(N, h)− m > 0. (3.12c)

Similarly it is evident from § 3.2 that the channel equations (2.8) and (2.11) always
hold on Γ c with ∂S/∂t = ∂Sw/∂t, except for the momentary case in (3.7) when the
channel is on the verge of becoming partially empty. One of the following two cases
must therefore apply on Γ c:

φ̂m < φ 6 φ̂0 and − ∂
∂s

[
kCSα

∣∣∣∣∂φ∂s

∣∣∣∣β−2
∂φ

∂s

]
+ 1ρ
ρw

Ξ

ρiL
− vcC(N, S)− κ = 0,

(3.13a)

φ = φ̂m and − ∂
∂s

[
kCSα

∣∣∣∣∂φ∂s

∣∣∣∣β−2
∂φ

∂s

]
+ 1ρ
ρw

Ξ

ρiL
− vcC(N, S)− κ > 0.

(3.13b)

The variational form is obtained by multiplying (3.12) and (3.13) by (θ − φ), where
θ is a test function, satisfying φ̂m 6 θ 6 φ̂0. Then integrating by parts over each
sheet segment Ωc

i (that is, Ωc ∩ Ωi) and channel segment Γ c
ij (that is, Γ c ∩ Γij), and

considering all of the different cases in (3.12) and (3.13), we find∫
Ωc

i

khα|∇φ |β−2
∇φ ·∇(θ − φ)− vc(φ̂0 − φ, h)(θ − φ)

− [m− vo(h)](θ − φ) dΩ +
∫
∂Ωc

i

q ·n(θ − φ) dΓ > 0, (3.14)

for each Ωc
i , and∫
Γ c

ij

kCSα
∣∣∣∣∂φ∂s

∣∣∣∣β−2
∂φ

∂s

∂(θ − φ)
∂s

− vcC(φ̂0 − φ, S)(θ − φ)− κ(θ − φ)

+ 1ρ
ρw

Ξ

ρiL
(θ − φ) dΓ + [Q(θ − φ)]∂Γ c

ij
> 0, (3.15)

for each Γ c
ij . The final boundary terms are evaluated at each end of Γ c

ij . We then
sum together all of these inequalities, assuming that θ satisfies the same Dirichlet
conditions as φ on all points of ∂Ωc and ∂Γ c interior to Ω and on the outer boundary
∂ΩD. Remembering the definition of κ in (2.12), and the conservation of mass at the
network nodes, most of the boundary terms cancel out or disappear, and we are left
with∫

Ωc
khα|∇φ |β−2

∇φ ·∇(θ − φ)− vc(φ̂0 − φ, h)(θ − φ)− [m− vo(h)](θ − φ) dΩ

+
∫
Γ c

kCSα
∣∣∣∣∂φ∂s

∣∣∣∣β−2
∂φ

∂s

∂(θ − φ)
∂s

− vcC(φ̂0 − φ, S)(θ − φ) dΓ
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−
∫
∂Ωc∩∂ΩN

qN(θ − φ) dΓ − QN(θ − φ)|∂Γ c∩∂ΩN

+
∫
Γ c

1ρ

ρw

Ξ

ρiL
(θ − φ) dΓ > 0, (3.16)

for all suitable test functions θ . We have written
∫
Ωc =

∑
i

∫
Ωc

i
,
∫
Γ c =

∑
i,j

∫
Γ c

ij
. The

two remaining boundary terms on the penultimate line come from locations where
Ωc ∪ Γ c intersects the inflow boundary ∂ΩN .

The final term represents the dissipation in the channel, and is written separately
because it requires special attention. We would like to convert the inequality (3.16)
into a minimization principle for a convex function. From (2.10), however, the Ξ term
really contains |∂φ/∂s |β , so

∫
Ξ(θ − φ) dx is not a monotone operator and cannot

be written as a derivative of a convex function. However, this term is always small
(note that it is multiplied by 1ρ/ρw ≈ 0.1) and we therefore suggest to determine φ
by iterating Ξ . Starting with a guess for φ (Φ, say), Ξ can be calculated (ΞΦ , say)
and treated as constant while φ is calculated from (3.16); then ΞΦ is successively
updated and used to find improved estimates for φ. It is shown in appendix A that this
iteration converges provided that the coefficient of Ξ is sufficiently small. In practice,
we usually have a good guess as to what the pressure is (from a previous time step, for
instance), and require only one or two iterates to attain a reasonable tolerance.

Treating Ξ = ΞΦ as independent of φ, (3.16) is equivalent to stating that φ
minimizes the functional

JΦ(φ) :=
∫
Ωc

1
β

khα|∇φ |β +Λ(φ; h)− [m− vo(h)]φ dΩ

+
∫
Γ c

1
β

kCSα
∣∣∣∣∂φ∂s

∣∣∣∣β +ΛC(φ; S) dΓ

−
∫
∂Ωc∩∂ΩN

qNφ dΓ − QNφ|∂Γ c∩∂ΩN +
∫
Γ c

1ρ

ρw

ΞΦ

ρiL
φ dΓ, (3.17)

subject to φ̂m 6 φ 6 φ̂0 as well as the imposed Dirichlet boundary conditions (e.g.
Ekeland & Temam 1976; Schoof et al. 2012), where we have defined

Λ(φ; h) :=
∫ φ̂0−φ

0
vc(N

′, h) dN ′ and ΛC(φ; S) :=
∫ φ̂0−φ

0
vcC(N

′, S) dN ′. (3.18)

In principle then, (3.17) can be minimized for fixed h and S to find φ on Ωc ∪ Γ c.
Then φ is known everywhere and the appropriate combination of (2.2)–(2.11) can be
solved to evolve h, hw, S and Sw, as described in § 3.2.

3.4. Summary of the model
The model can be summarized as follows: at a fixed time t, the subdomains Ωe,
Ω f , Γ e and Γ f can be identified through (3.9) and (3.10). On Ωe ∪ Γ e, φ = φ̂m; on
Ω f ∪ Γ f , φ = φ̂0; and on the remainder, Ωc ∪ Γ c, φ is determined as the solution
to the variational inequality (3.16), subject to φ̂m 6 φ 6 φ̂0 and to the prescribed
boundary conditions. The water-filled sheet depth hw and channel area Sw evolve
everywhere according to mass conservation equations (2.4) and (2.11), together with
the relevant boundary conditions and jump conditions (2.12). The channel area S
evolves everywhere according to (2.8). The sheet depth h evolves according to (2.2)
except on those parts of the domain where φ = φ̂0, where we have h= hw instead.
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3.5. Neglecting hydrostatic terms in the hydraulic potential

We commented earlier that the hydrostatic terms ρwghw and ρwgHw in φ̂0 and φ̂m

are typically small, so let us now consider the effect of neglecting them. In that case
there is no distinction between φ0 and φ̂0 or φm and φ̂m, and the mass equations on
the overpressure and underpressure regions, (2.4) and (2.11), become hyperbolic rather
than parabolic. This means that shocks can occur and hw and Sw no longer have to
be continuous. More importantly, it can sometimes present problems balancing fluxes
into and out of the channels; if, for example, a channel within an overpressured region
is aligned with the direction of the sub-characteristics, −∇φ0, there is no way for
the jump condition (2.12) to be satisfied. Indeed, it is clear physically that for water
to spread out laterally from such a channel requires a pressure gradient, and that is
precisely what the inclusion of the hydrostatic term in φ̂0 allows for. Similarly, without
those diffusive terms, mass conservation at the nodes of the channel network when it
is overpressured results in a point source or sink to the sheet, which is problematic.

In practice, when we solve the equations numerically, these troublesome line and
point sources are spread out over a discrete cell size. For the situations of interest
to us here, this artificial ‘diffusion’ of the water from channel into sheet is larger
than the diffusion that is introduced by the hydrostatic terms in φ̂0 and φ̂m. Thus,
including those terms adds little to the realism of the solutions; their regularizing
effect is already provided by the grid size. We should also remind ourselves that the
constraint for the pressure not to exceed overburden is only approximate, and that
a finite increase above overburden is required in reality both to cause the uplift of
the ice and to drive water out over the bed (Schoof et al. 2012). Although we are
assuming that these stresses in excess of overburden are small, they may often be
larger than the size of φh, so that including the latter without the other would not be
entirely consistent.

For the solutions shown in the next section, we therefore ignore the φh and φH

terms and have the constant bounds, φm and φ0, on the hydraulic potential. In fact, the
issues raised above are of little relevance for the one-dimensional model, which we
now focus on.

3.6. One-dimensional model
In the one-dimensional version of the model we envisage a single channel that runs
in parallel with a sheet occupying a width W, as in figure 4. This can be seen as
the subglacial analogue of commonly used flow-line glacier models (e.g. Pimentel &
Flowers 2010), and assumes an efficient connection between sheet and channels so
that both may be considered at the same width-averaged pressure. The channel is
most easily thought of as lying at the centre of the sheet, so that the system can
crudely be thought of as representing one catchment basin of a wider array of channels
with regular spacing W. In this case the domain is Ω = Γ × (−W/2,W/2), with
Γ = {x : x ∈ (0, xm)}, say, and we may take the variables to be defined along Γ . There
are analogous projections between Ωe and Γ e, and Ω f and Γ f , respectively.

A one-dimensional mass conservation equation is derived by integrating the sheet
equation (2.4) across the width W, making use of the jump condition (2.12) at the
channel, and combining with the the channel equation (2.11):

∂

∂t
[Sw +Whw] − ∂

∂x

[
kCSαw

∣∣∣∣∂φ∂x

∣∣∣∣β−2
∂φ

∂x
+Wkhαw

∣∣∣∣∂φ∂x

∣∣∣∣β−2
∂φ

∂x

]
=Wm+ Ξ

ρwL
, (3.19)
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where we absorb any prescribed inflow from the lateral boundaries into m. This can be
interpreted as an equation for the total cross-sectional area Sw +Whw across the glacier
width, with the advantage that the unknown exchange term κ has been eliminated. The
normal evolution equations (2.2) and (2.8) for h and S are

∂h

∂t
= ub

lr
(hr − h)− Ãh|N |n−1 N, (3.20)

∂S

∂t
= Ξ

ρiL
− ÂS|N |n−1 N, (3.21)

and the dissipation term (2.10) is

Ξ = kCSαw

∣∣∣∣∂φ∂x

∣∣∣∣β +lrkhαw

∣∣∣∣∂φ∂x

∣∣∣∣β . (3.22)

The combination of (3.19) with (3.20) and (3.21) gives rise to the functional (3.17)
that is used to determine φ on Γ c:

JΦ(φ) :=W
∫
Γ c

1
β

khα
∣∣∣∣∂φ∂x

∣∣∣∣β +Λ(φ; h)− [m− vo(h)]φ dx

+
∫
Γ c

1
β

kCSα
∣∣∣∣∂φ∂x

∣∣∣∣β +ΛC(φ; S)+ 1ρ

ρwρiL
ΞΦφ dx− (WqN + QN)φ|x=0,

(3.23)

where the last boundary terms are present only when Γ c extends to the inflow
boundary at x= 0.

Summarizing the problem again: at any fixed t we identify Γ e and Γ f from (3.9)
and (3.10), on which φ = φm and φ = φ0, respectively (in this width-integrated
formulation the definition of Ωe in (3.9) is redundant). On the remainder of the
domain, Γ c, φ is determined by minimizing (3.23) subject to φm 6 φ 6 φ0. Then Sw

and hw evolve everywhere according to (3.19), whilst S evolves according to (3.21)
and h evolves according to (3.20) except on those parts of the domain where φ = φ0,
on which h = hw instead. The partitioning between Sw and hw in (3.19) is determined
from the fact that Sw = S (when φ > φm), Sw = 0 (when φ = φm and the channel is
empty) or hw = h (when φ = φm and the channel is partially filled). In the next section
we describe the numerical procedure we have implemented to solve this problem.

3.7. Numerical procedure
The method we use is similar to that outlined in Schoof et al. (2012), using
an operator splitting approach to alternatingly (I) find φ through the minimization
procedure described above and (II) explicitly evolve h, hw, S and Sw with φ held
constant. We are currently developing a variant of the same method to use in two
dimensions. The procedure is as follows.

(I) For fixed h, hw, S and Sw, calculate φ:
(a) divide Γ into regions Γ e, Γ f and Γ c defined in (3.9)–(3.11);
(b) on Γ e, assign φ = φm;
(c) on Γ f , assign φ = φ0;
(d) on Γ c, find φ by starting with a guess for ΞΦ in (3.22), and iteratively

minimizing (3.23) subject to φm 6 φ 6 φ0 and applied Dirichlet conditions,
then updating ΞΦ .
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(II) With the calculated φ, update h, hw, S and Sw:
(e) based on the computed φ, divide the sheet domain into three new regions Γ +,

Γ − and Γ 0 = Γ \ (Γ − ∪ Γ +) defined by (3.4) and (3.5);
(f ) on Γ 0, step h forward using (3.20) and set hw = h, and step S forward using

(3.21) and set Sw = S;
(g) on Γ +, step S forward using (3.21) and set Sw = S, then use the known

∂Sw/∂t to step hw forward using (3.19), and set h= hw;
(h) on Γ −, step h forward using (3.20), and step S forward using (3.21);
(i) on Γ −, step forward Sw and hw using (3.19), with the additional constraint

that either hw = h or Sw = 0;
(j) some post-processing may be required for Γ −, where the updated hw and Sw

may not satisfy hw 6 h and Sw 6 S; the simplest option is simply to set hw = h
and Sw = S in this case, and to move (by altering the computed fluxes) any
mass that is neglected in doing so to the neighbouring partially empty region.

The functional (3.23) is discretized using piecewise linear finite elements for φ, and
the minimization to find φ on Ωc is achieved using either an augmented Lagrangian
algorithm or a trust-region method. The discrete φ is defined on nodes of a mesh
that is also used to define h and hw. The channel area S is defined on the connecting
line segments between those nodes, while it turns out to be helpful to define Sw

separately at each end of these channel segments. The normal evolution equations for
h and S, which for fixed φ are ordinary differential equations, are simply stepped
forward explicitly. Where required, the mass conservation equations are also solved
with an explicit time step, using a conservative upwind finite volume discretization.
The partitioning of water between channels and sheet, in steps (g), (i) and (j) above, is
explained in appendix B.

4. One-dimensional results and discussion
4.1. Steady states

To demonstrate that the proposed model produces plausible results, we first consider
steady-state one-dimensional solutions when the prescribed input m is constant and
spatially uniform. This also provides a useful test of the numerical method, since
steady solutions can also be found by alternative methods. Those are not entirely
straightforward, however, and details of their calculation are given in appendix C.
Note, in particular, that there is not necessarily a unique steady-state solution when
the sheet width is too wide, although in practice it often is unique, as in the examples
shown here.

All of the results in this section assume a spatially uniform meltwater source m. As
commented earlier, this represents contributions from basal melting and from surface-
derived water that could be calculated as part of a more complete model. It is unlikely
that water from the surface should ever realistically be treated as a uniform source,
but we nevertheless treat it as uniform for this study because our aim is to assess the
generic behaviour of the model.

Figure 5 shows steady-state solutions for φ, h, hw, S and Sw, as well as the
corresponding channel and sheet discharges, for four different constant melt inputs,
using the glacier geometry shown in figure 1; that is, a ‘plastic’ ice shape determined
from −ρigH∂(b + H)/∂x = τc, with b(x) a linear slope 50 km long and 1000 m
high, and τc = 105 Pa. The sheet width W is 200 m, and the other parameters used
are shown in table 1. The geometry and values chosen are intended to be loosely
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FIGURE 5. (Colour online) Steady-state solutions for the hydraulic potential φ, sheet depth
h and water-filled depth hw, channel area S and water-filled area Sw, and total discharge Q in
channel and sheet. Solutions are shown for four different constant melt inputs m: (a) 1, (b) 5,
(c) 20 and (d) 40 mm d−1; and qN = QN = 0 at x = 0. Note the different axes scales in each
case. Dots show numerical solutions, while solid lines (red in the online version of this article)
show solutions by ordinary differential equation methods described in appendix C; they are
mostly indistinguishable. The smaller dotted lines show the corresponding solutions for φ
and h without allowing for a channel (Schoof et al. 2012), in which case both h and φ are
larger. Shaded regions for φ correspond to φ < φm and φ > φ0. Note that drainage through the
channel begins further upglacier for larger melt input and that the drainage system is always
full except close to the margin.

appropriate for a large valley glacier, or perhaps the edge of the Greenland ice sheet.
We note that there is significant uncertainty in some of the parameters, particularly
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ρw 1000 kg m−3 β 3/2 hr 0.1 m
ρi 910 kg m−3 n 3 lr 2 m
g 9.8 m s−1 k 0.01 m7/4 kg−1/2 Ã 5×10−25 Pa−3 s−1

α 5/4 kC 0.1 m3/2 kg−1/2 Â 5×10−25 Pa−3 s−1

ub 30 m y−1

TABLE 1. Values of the physical parameters in the model used in § 4. Values of α,
β and kC are based upon the Darcy–Weisbach parameterization of flow through small
semicircular conduits; values of Ã and Â are taken as 2A/nn, assuming semicircular cavities
and channels, with A ≈ 6.8 × 10−24 Pa−3 s−1 appropriate for ice at 0 ◦C (Paterson 1994).
Values for k, hr and lr are less well known, and those used here are chosen as seemingly
sensible values (giving an average water speed through the full sheet of around 5 cm s−1

on a 1◦ slope). Sliding speed ub should really be determined by considering the overlying
ice flow and the constant used here is chosen as a representative value.

the bed roughness scales hr and lr, and sheet permeability k. The values used
here seem plausible, but one should be wary of applying these same parameters to
any particular geographical location without attempting some form of fit to available
observations.

In each case, the dots show the numerical solutions and the solid lines (red in the
online version of this articles) show the steady-state calculated directly as described in
appendix C. Where there are two lines on the h and S plots, the lower is hw or Sw;
where there is only one line it indicates that hw = h or Sw = S. For comparison we also
show the solutions for φ and h in the case when there is no channel. As expected, the
presence of the channel reduces both the sheet depth h and the water pressure.

Also as expected, the larger the discharge the further up the glacier the channel
forms, and the larger the proportion of water transported in the channel. Note that
when the channel is sufficiently small, in figure (b), the water does not remain in it
all of the way to the margin but transfers back out into the sheet. This behaviour
is due to the small effective pressure at the margin which implies, from (2.2), that
h becomes large and the sheet therefore has a large carrying capacity. For the larger
inputs, however, the channel does extend to the margin, becoming partially empty
close to the edge.

Figure 6 shows similar steady solutions for a thin glacier with a stepped bed and
surface profile (as before, the glacier geometry can be seen from the shaded regions
showing φm and φ0). Again, four different melt inputs are considered. At the lowest,
the sheet is everywhere only partially full and the channel is always empty. As the
discharge is increased, the sheet and channel first become water filled in the regions
with shallow potential gradient. Note too that the channel area, even when it is only
small in (a) and (b), is typically larger in sections with a steep potential gradient
where there is consequently greater dissipation. For the larger discharges in (c) and
(d) the sheet is always full, but the channel remains only partially filled in the steeper
sections, where its total area is larger as a result of the greater dissipation.

4.2. Diurnal meltwater variation
In figure 7, we show solutions for the same glacier geometry as in figure 5, when
the meltwater input varies sinusoidally over two diurnal periods (it is still spatially
uniform). These solutions are approximately periodic, having been allowed to adjust
previously from an initial steady state for the mean input. The timing is such that t = 0



18 I. J. Hewitt, C. Schoof and M. A. Werder

h
h

hw

S

Sw

Channel

Sheet

Channel

Sheet

Without channel

S

Sw

Sheet

Channel
Sheet

h and hw

Without channel

0
2
4
6 S

2

4

Channel

Sheet

0

5

10

0

5

10

0

0.01

0

0.1

0

5

10

0

5

10

0
1
2
3

0

0.5
1.0
1.5

10 20 30 400 50 10 20 30 40 50

10 20 30 40

x (km)
50 10 20 30 40

x (km)
50

0

5

10

0

5

10

0

0.01

0

0

5

10

0

5

10

Sw

S

hw

h

Sw

h and hw

0.2
0.4
0.6

(a)

(c)

(b)

(d )

0

FIGURE 6. (Colour online) Steady-state solutions as in figure 5 but for a stepped glacier
profile indicated by the shaded regions for φ, and for four different uniform melt inputs m,
as shown. Note the different axes scales in each case. Small dotted lines on the plots for φ
and h show the solution when there is no channel. Channel area S is always largest beneath
steep sections of the ice. At low discharge the channel is empty and the sheet is only partially
filled; for increasing discharge the sheet and channel fill up (initially beneath shallow slopes),
although the channel remains partially empty beneath steep sections and beneath the thin ice
near the margin.

corresponds to lowest melt input to the bed; that will likely lag behind the time of
least melting on the surface, depending on how efficient the connection is from the
surface (Shepherd et al. (2009), for instance, infer a lag of 2 hours during the summer
on the Russel Glacier in western Greenland).
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FIGURE 7. (Colour online) (a) Periodic solutions for a sinusoidally varying meltwater input,
m = 10 − 8 cos(2πt/td) mm d−1, where td = 1 d, for the same glacier geometry and other
parameters as shown in figure 5. (b) Profiles of the hydraulic potential at equally spaced
time intervals corresponding to (i) minimum input, (ii) increasing input, (iii) maximum
input and (iv) decreasing input (almost identical to (ii)), with solid lines showing the
constrained solution, dashed lines showing the equivalent solution with no constraints on
the pressure. (c) Variation with time of the mean effective pressure (constrained solution,
solid; unconstrained solution, dashed) and melt input (dotted), averaged over the whole length
of the glacier. (d) Profiles of the average effective pressure over the whole diurnal period,
according to the constrained solution (solid) and the unconstrained solution (dashed), with
the dotted line showing the pressure profile if the melt input were constant at the mean. (e)
Variation with time of the mean sheet depth (solid) and channel area (dashed), averaged over
the whole length of the glacier. Dotted lines show the case of constant input.

There are several important things to note from figure 7. First, the effective pressure
reaches zero (φ = φ0) during the periods of largest melt input. It does not become
negative, since that is not allowed by the model, but remains at zero until the
inflow reduces again. For comparison, figure 7(b) shows the hydraulic potential at
four instances during the cycle, together with the profiles that are predicted using the
same model but without the modifications when φ > φ0 (the model therefore allows
for creep opening, rather than uplift). There is very little difference during the normal
pressure periods, when the models are the same, but the unconstrained model naturally
predicts pressure well in excess of overburden during the time of peak input. This
is also shown in figure 7(c), which shows how the effective pressure averaged over
the whole bed varies with time, and compares the constrained model (solid) with the
unconstrained one (dashed).

The temporal average of the effective pressure profile is shown in figure 7(d): again
the solid line shows the prediction of the current model, the dashed line shows the
equivalent result for the unconstrained model, and the dotted line in this case shows
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FIGURE 8. (Colour online) (a) An idealized annual melt cycle for the same glacier geometry
as shown in figure 5, except W = 2 km, with m= 1 + 20sin4(2πt/ty) mm d−1, where ty = 1 y.
Note the growth of channels upglacier during the course of the summer, and resulting
increase in effective pressure in those regions. (b) Variation with time of the effective pressure
averaged over the glacier length (solid), and the melt input (dotted). (d) Variation with time of
the sheet depth (solid) and channel area (dashed), averaged over the glacier length. (c) and (e)
show the same averages as in (b) and (d), when the amplitude of the melting varies diurnally,
m = 1 + 10(2 − cos(2πt/td))sin4(2πt/ty) mm d−1, with lines showing diurnal averages and
shaded areas showing the diurnal range.

what the average would be if the melt input were not varying but were constant at
the mean. In this case, the average N is lower when the input is varying, although
the constraint on N becoming negative means it is not as low as it would be in the
unconstrained case.

It is notable in figure 7(a) that the sheet depth and channel area do not change
very much. This is because the diurnal time scale is faster than the natural time scales
for opening and closing associated with (2.2) and (2.8), so gives them little time to
adjust (faster uplift of the sheet is possible during the high-pressure period, but the
melt rates imposed are not sufficient to cause large variations). Nevertheless, there is
some variability in both Sw and hw, and their average over the length of the glacier
is shown in figure 7(e). Note that the time of peak melt, during which there is high
pressure, correlates with the time of maximum rate of change of water storage (hw).
This is fundamentally different from poroelastic sheet models which instead predict the
largest storage at that time.

4.3. Annual cycle
Figure 8 shows the evolution of the one-dimensional drainage system due to an
idealized annually varying meltwater input (the width is 10 times larger than in
figure 5, W = 2 km, so that a significant channel can develop). When the input is
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FIGURE 9. (Colour online) (a) Response of the drainage system to a sudden point source
Q = 2 m3 s−1 opening at time 1 d at x = 5 km, with a uniform background melting rate
m = 20 mm d−1 that remains constant throughout. The glacier geometry is shown by the
shaded regions in the plots for φ in (b), which correspond to φm and φ0. (b) Profiles of
hydraulic potential, sheet depth and channel area before the additional source starts and at
three later times as shown.

at its lowest, in winter, the channel is extremely small. As melting increases the
sheet initially enlarges, followed by the channel, which starts growing from near the
margin where the discharge is greatest. As the channel takes over transporting more of
the water, the sheet depth decreases and the effective pressure increases. The lowest
effective pressure at any given location is therefore just before channelization occurs
(see figure 8a).

The melt input in this situation varies sufficiently slowly that the pressure never
reaches overburden, and open-water flow only occurs very close to the margin during
the winter. If shorter time scale variability of m is included then the pressure varies
much more rapidly and overpressure often occurs. The averages over the length of the
glacier in such a case are shown in figure 8(c) and (e), where the large range of the
effective pressure can be seen.

4.4. Sudden meltwater increase
Figure 9 shows an example of a rapid change in meltwater source, such as might
happen when a crevasse or moulin suddenly opens to provide a hydraulic connection
between surface and bed. In this case, the drainage system is initially in a steady state
(shown in the first column of figure 9b) that results from a constant uniform source.
After 1 day, an additional point source is initiated half way along the glacier. There is
a rapid increase to overburden at the injection site, and the water initially spreads both
up and down glacier in the porous sheet, causing uplift of the ice downstream (see



22 I. J. Hewitt, C. Schoof and M. A. Werder

figure 9b). The channel is initially unaffected, but over the next few days the greater
discharge causes the channel downstream of the injection site to grow, and the sheet
slowly collapses again.

Water pressure is sustained at overburden over a significant portion of the bed for
around 12 hours after the onset, before subsiding again. If the rapid uplift of the sheet
had not been allowed for in the model, and only creep opening instead, the pressure
would have become much higher than overburden locally, and there would not have
been the same downslope front propagation.

The method of allowing for uplift in our model is not strictly appropriate, however,
to the initial stages of this injection, when uplift occurs very locally. On these short
time scales, such uplift would be resisted by elastic stresses in the ice, which we have
assumed to be negligible compared with the overburden pressure. To lift up a section
of ice with lateral dimension L ≈ 200 m by h ≈ 5 cm would induce an elastic stress
on the order of E/(1 − ν2) × h/L ≈ 1.7 MPa (taking Young’s modulus E = 6.2 GPa
and Poisson’s ratio ν = 0.3), which is not insignificant. When the uplifted region is
larger, say L ≈ 2 km, the stress would be around 0.17 MPa, and its neglect becomes
less important (the ice also deforms more viscously on time scales longer than a few
hours). These additional stresses should in reality smooth out the steep edges of the
uplifted region in figure 9, however. A hydrofracture model such as that presented by
Tsai & Rice (2010) could be used to model the initial period of injection, whilst the
current model is more appropriate for the longer time scale behaviour. Allowing the
water to spread out rapidly initially, as in figure 9, nevertheless seems more realistic
than requiring excessively high pressures to expand the sheet by viscous creep.

A similar issue regarding short time scales may be relevant to the case of diurnal
fluctuations in § 4.2; the Maxwell time, over which the ice behaves more elastically
than viscously, is typically estimated to be a few hours. For the smooth meltwater
variations in figure 7, with minimal resulting uplift (of the order of a millimetre), the
elastic stresses are unlikely to be relevant. If the input has more short term and spatial
variability, however, the model may not be so appropriate.

5. Conclusions
We have presented a model of a subglacial channel network that overlies a sheet

description of distributed drainage, thus combining aspects of existing continuum and
discrete models. The advantage over discrete models is that one does not have to
resolve individual drainage elements that may occur on the scale of bed roughness,
which is often too small to be practically incorporated into ice-sheet models. The
advantage over continuum models is that channelized transport can be included
without having to prescribe the location and spacing of channels; rather, the spacing
of a potential channel network is prescribed, and the location of the real channel
segments within that is selected dynamically.

Our main emphasis in §§ 3 and 4 has been on the complications associated with
water pressure exceeding overburden or becoming negative. It is worth pointing out,
however, that the model in § 2 can be used as it stands if one is not concerned
with those limits (perhaps because there is little short-term variability and the ice is
sufficiently thick). That model is relatively simple, consisting of evolution and mass
conservation equations for the sheet (equations (2.2) and (2.4)) and for each potential
channel segment (equations (2.8) and (2.11)). Combined, they can be cast as an elliptic
equation for the water pressure, coupled to local evolution equations for sheet depth
and channel area.
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To account for the different behaviour when overburden pressure or zero pressure
are reached, however, the additional physical considerations we have included are to
allow for arbitrary separation of the ice from the bed when ‘overpressure’ is attained,
and to allow for channels and cavities to be only partially filled when ‘underpressure’
is attained. The hydraulic potential is constrained to lie at or between the bounds φ̂0

and φ̂m corresponding to overburden and zero pressure, and this allows the potential to
be calculated by means of the constrained variational problem in § 3.3.

Our one-dimensional results show that the model gives quite plausible predictions.
Underpressure is common when discharge is relatively low, beneath steeper and
thinner ice, and at the mouth of channels that extend to the glacier margin.
Overpressure occurs when there are rapid changes in meltwater input. Channels extend
further up glacier when there is a larger discharge and, other things being equal, tend
to be larger beneath steeper ice where there is enhanced dissipative heating.

It is worth pointing out some differences between this model and the work of
Schuler & Fischer (2009), who similarly accounted for partially empty channels.
Unlike that work, we make no modification to the flow parameterization when the
sheet or channel become partially empty. The frictional resistance resulting from
turbulent stresses may depend on whether the water makes direct contact with the
ice wall or with an intervening air-filled gap, but we consider this a secondary effect
that we neglect, and maintain the lumped flow parameterization in (2.9) throughout.
Note also, if comparing with Schuler & Fischer (2009), that the dissipation term (2.10)
is unaltered when the channel is only partially filled (although the distinction between
S and Sw becomes relevant), since we still assume instantaneous transfer of heat to the
ice walls.

The numerical method we have devised uses an explicit time step to evolve the
sheet depth and channel area, together with the variational formulation to solve for
the pressure at each step. Although this scheme is successful at matching steady-state
solutions that have been calculated by other means, it has a number of drawbacks.
Chiefly, the explicit time stepping puts restrictions on the size of time steps that
must be taken, which can be quite severe, particularly when the hyperbolic transport
equations must be solved (e.g. LeVeque 2002): when underpressure occurs, the water-
filled sheet depth and channel area evolve according to (2.4) and (2.11) and the time
step is then limited by the CFL condition (the same occurs for the overpressured sheet,
although this is less of a problem since the velocity in the sheet is typically much
smaller). If the diffusive term ρwghw in the potential φ̂m were included it would also
impose a more stringent restriction as the grid size is refined.

An additional difficulty with the computations is dealing with the boundaries of
the overpressure and underpressure regions. At a given fixed time, the variational
method to solve for φ calculates these automatically; but as soon as time evolution
is introduced and discrete elements of the mesh start moving in and out of the
contact domain Ωc, correctly accounting for the migration of the boundaries becomes
a somewhat delicate matter. One must take care to ensure that mass is conserved
despite different discretizations for fluxes being necessary on the different regions.
Ideally, one might hope to construct an implicit or semi-implicit method that takes
account of the varying h and S (and also hw and Sw) at the same time as calculating φ.
An improved method must await further work, however.

Aside from the technicalities of solving the model, its greatest deficiency is probably
the restriction of the pressure to overburden. We have assumed that the required rates
of uplift, ∂h/∂t, are achieved with insignificant excess pressure above overburden. As
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discussed in Schoof et al. (2012), this is often the case when the overpressured region
has significant lateral extent, in which case the viscous resistance to uplift is small. It
is not true, however, when only a small region is pressurized or when the uplift rate
is much larger than usual, in which case significant stresses in the ice, both viscous
and elastic, may have to be overcome. Allowing for this possibility presents quite a
challenge for the present model, however, since determining those excess pressures is a
non-local problem. Situation-specific hydrofracture or beam-type models could be used
(e.g. Pimentel & Flowers 2010; Tsai & Rice 2010), but it is not yet clear how to
integrate such approaches into a more general framework.

We are currently working to extend the results to two dimensions, with a disordered
arrangement of potential channels, and to include the hydrostatic contribution to the
hydraulic potential. Apart from allowing more realistic simulations, this should enable
us to determine likely channel spacings, and to test the model’s sensitivity to the
density of the imposed channel network (it is hopefully clear that the maximum
cross-sectional area of the channels in the one-dimensional results in § 4 is simply set
by the prescribed width W, whereas the two-dimensional network should select the
channel size automatically; see Schoof (2010) and Hewitt (2011)).

We also hope to use the model to examine the effects of short- and long-term
variability of the melt input on the effective pressure and hence on glacier sliding.
We refrain from making general predictions at this stage, since the implications likely
depend upon the precise geometry and forcings, and may require better calibration of
the model parameters. In figure 7, for instance, we saw that accounting for diurnal
melt variability resulted in a reduction of mean effective pressure, but this is for a
specific case when the majority of water is contained in the sheet and it is not clear
whether the same result holds true in general.
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Appendix A. Proof of convergence of Picard iteration for small density
difference

In this appendix, we study the non-monotone variational inequality (3.16) and its
numerical solution. We assume that Γ c is a set of piecewise C1 arcs. Let Ω̄c =Ωc∪Γ c

and assume that Ω̄c is a bounded, open set with a Lipshitz boundary ∂Ω̄c, with Γ c in
its interior. The appropriate function space V to cast the problem in is the completion
of C2(Ω̄c) ∩ C0(∂Ω̄c) with respect to the norm

‖φ ‖V =
∫
Ω̄c
|φ |β +|∇φ |β dΩ +

∫
Γ c
|φ |β +

∣∣∣∣∂φ∂s

∣∣∣∣β ds. (A 1)

In other words, V = {φ ∈ W1,β(Ω̄c) : γ (φ) ∈ W1,β(Γ c)} where γ is the relevant trace
operator. As a closed subspace of Lβ(Ω̄c) × Lβ(Ω̄c) × Lβ(Γ c) × Lβ(Γ c), this is a
reflexive Banach space with respect to the norm ‖ · ‖V . We also denote by VD the
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affine subspace of functions that satisfy the relevant Dirichlet conditions, and define
the convex, closed set K = {φ ∈ VD : φ̂m 6 φ 6 φ̂0 almost everywhere} of admissible
functions in (3.16). For simplicity, we assume that Dirichlet conditions hold on some
part of ∂Ω̄c, so Poincaré’s inequality can be applied.

We also assume that h ∈ L∞(Ω̄c) ∩ L∞(Γ c), S ∈ L∞(Γ c) with h > h0 > 0 and
S > S0 > 0 for some constants h0 and S0, and that φ̂m, φ̂0 ∈ L∞(Ω̄c) ∩ L∞(Γ c), with
φ̂m and φ̂0 such that K is non-void. In addition, assume that vc(N, h) and vcC(N, S)
are bounded below by 0 for N > 0 and strictly increasing in their first argument,
and that vc(φ̂0 − φ, h) as well as vcC(φ̂0 − φ, S) are measurable for all φ ∈ K with
vc(φ̂0− φ̂m, h) ∈ Lβ/(β−1)(Ω̄c), vcC(φ̂0− φ̂m, S) ∈ Lβ/(β−1)(Γ c). Note that this ensures that∫
Ωc Λ(φ, h) dΩ and

∫
Γ c ΛC(φ, h) dΩ are both bounded on K. Moreover, we require

that m, vo(h) ∈ Lβ(Ω̄c), qn ∈ Lβ(∂Ω̄c ∩ ∂ΩN). These assumptions allow us to apply
standard methods from convex analysis (Ekeland & Temam 1976) to the problem at
hand.

We now turn to the offending term
∫
Γ c Ξ(θ − φ) dΓ in (3.16). This corresponds to

the non-monotone operator

B(Φ, φ)=
∫
Γ c
(kCSα + lrkhα)

∣∣∣∣∂Φ∂s

∣∣∣∣β φ dΓ. (A 2)

First we show that B(Φ, ·) is a bounded linear operator on V for every Φ ∈ V . Given
that, we can then define a mapping F(Φ)= arg minφ∈K JΦ(φ), where

JΦ(φ) :=
∫
Ωc

1
β

khα|∇φ |β +Λ(φ; h)− [m− vo(h)]φ dΩ

+
∫
Γ c

1
β

kCSα
∣∣∣∣∂φ∂s

∣∣∣∣β +ΛC(φ; S) dΓ

−
∫
∂Ωc∩∂ΩN

qNφ dΓ − QNφ|∂Γ c∩∂ΩN
+ νB(Φ, φ) (A 3)

with ν = 1ρ/(ρwρiL). Here JΦ is strictly convex, weakly lower-semicontinuous and,
by Poincaré’s inequality, coercive on K and hence has a unique minimizer, so F(Φ) is
well defined. Then φ = F(Φ) also satisfies the variational inequality∫

Ωc
khα|∇φ |β−2

∇φ ·∇(θ − φ)− vc(φ̂0 − φ, h)(θ − φ)− [m− vo(h)](θ − φ) dΩ

+
∫
Γ c

kCSα
∣∣∣∣∂φ∂s

∣∣∣∣β−2
∂φ

∂s

∂(θ − φ)
∂s

− vcC(φ̂0 − φ, S)(θ − φ) dΓ

−
∫
∂Ωc∩∂ΩN

qN(θ − φ) dΓ − QN(θ − φ)|∂Γ c∩∂ΩN + νB(Φ, θ − φ)> 0, (A 4)

for all θ ∈ K, and it is clear that solving (3.16) therefore amounts to finding a fixed
point of F. To this end, we show below that F is a contraction mapping on a suitable
subset of K for sufficiently small ν. This then ensures the existence at least of a
locally unique fixed point, and also that the Picard iteration in § 3.7 converges for
suitable initial guesses.

Note that Γ c is one-dimensional. With β > 1, W1,β(Γ c) ⊂ C(Γ c) follows by
Morrey’s inequality, with ‖φ ‖C(Γ c) 6 C1‖φ ‖W1,β (Γ c) 6 C1‖φ ‖V for some constant C1
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that depends only on β and the geometry of Γ c. Hence,

|B(Φ, φ)|6 C2‖Φ ‖βW1,β (Γ c)
‖φ ‖C(Γ c) 6 C1C2‖Φ ‖βV ‖φ ‖V, (A 5)

where C2 depends only on h0, S0 and various fixed parameters such as α, but not on ν.
This shows that B(Φ, ·) is a bounded linear functional.

Next, we show that for small enough ν there is a non-void, closed and bounded
set K0 ⊂ K such that F : K0 7→ K0. Pick a representative φr ∈ K; for definiteness, this
can be the smallest element of K with respect to the norm ‖ · ‖V . We know that
JΦ(φ) 6 JΦ(φr). After manipulating using (A 5) and Poincaré’s inequality and the fact
that the integrals

∫
Ωc Λ(θ, h) dΩ and

∫
Γ c ΛC(θ, h) dΩ are both bounded on K, we find

C3‖φ ‖βV −νC1C2‖Φ ‖βV ‖φ ‖V 6 C4‖φr ‖βV +C5 + νC1C2‖Φ ‖βV ‖φr ‖V . (A 6)

Here C3, C4 and C5 are positive constants that depend on the domain as well
as various parameters and data functions such as α, h, S m, vo etc as well
as on the bounds on the integrals of Λ and ΛC; they are independent of φ,
φr, Φ and ν, and we have C3 6 C4. From (A 6) it is straightforward to show
that, for sufficiently small ν, we get the bound ‖φ ‖V 6 R0 when ‖Φ ‖V 6 R0,
where R0 = 2 (C4/C3)

1/β ‖φr ‖V + (C5/C3)
1/β is independent of ν. We can then pick

K0 = {φ ∈ K : ‖φ ‖V 6 R0}, which necessarily contains φr and is therefore non-void.
Next, we show that F is a contraction mapping on K0 for small ν. Let φ1 = F(Φ1)

and φ2 = F(Φ2). In turn, let Φ = Φ1 with θ = φ2 and Φ = Φ2 with θ = φ1 in (A 4),
and add the resulting inequalities. After some manipulation and bearing in mind that
vc and vcC are increasing functions of N = φ̂0 − φ, we get∫

Ωc
khα(|∇φ2 |β−2

∇φ2 − |∇φ1|β−2
∇φ1) ·∇(φ2 − φ1)− dΩ

+
∫
Γ c

kCSα
(∣∣∣∣∂φ2

∂s

∣∣∣∣β−2
∂φ2

∂s
−
∣∣∣∣∂φ1

∂s

∣∣∣∣β−2
∂φ1

∂s

)
∂(φ2 − φ1)

∂s
dΓ

6 ν[B(Φ2, φ2 − φ1)− B(Φ1, φ2 − φ1)]. (A 7)

Typical turbulent closure schemes lead to β = 3/2 so we assume 1 < β 6 2. By
well-established stability estimates (Glowinski 1984) and Poincaré’s inequality, this
implies

C6 (‖φ1 ‖V +‖φ2 ‖V)
β−2 ‖φ2 − φ1 ‖2

V 6 ν[B(Φ2, φ2 − φ1)− B(Φ1, φ2 − φ1)]
6 νC1C2β2β−1 (‖Φ1 ‖V +‖Φ2 ‖V)

β−1 ‖Φ2 −Φ1 ‖V ‖φ2 − φ1 ‖V (A 8)

where C6 > 0 depends only on domain geometry and the parameters β, α, h0 and S0.
For Φ1, Φ2 ∈ K0, we also have φ1, φ2 ∈ K0 and their norms are bounded independently
of ν. With all other parameters fixed and a given domain shape, it follows that
‖F(Φ2)− F(Φ1) ‖V = ‖φ2 − φ1 ‖V < r‖Φ2 −Φ1 ‖V where r is a constant that, for small
enough ν, is less than unity, and we have a contraction mapping.

In the proof above, it is essential that the domain be finite (so Poincaré’s inequality
holds), and the required smallness of ν will depend on domain size through constants
such as C3, C4 and C6. In fact, for large domains, one should expect channel flow
potentially to exhibit pathological behaviour. Consider (3.13) with channel discharge
defined as Q= kCSα|∂φ/∂s |β−2 ∂φ/∂s and Ξ given by (2.10). At a fixed point in time
(so that Sw and hw can be treated as fixed), we then have a problem that behaves at
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least in some parts of the domain as

∂Q

∂s
= constant× Sα/(β−1)|Q |β/(β−1)+ other terms, (A 9)

which hints at the possibility of Q blowing up at finite s. The offending term here is
the dissipation term Ξ , which we have re-written as a function of S times |Q |β/(β−1).
The physical issue is the positive feedback between increased flux and increased
dissipation. However, in real glaciological settings, the finite size of the system
generally prevents blow-up, and in all of the computations reported in this paper,
the Picard iteration converged.

Appendix B. Water partitioning in the finite volume method
For a fixed φ, the one-dimensional mass conservation equation (3.19) must be

solved wherever φ = φm or φ = φ0. With finite volume cells centred on the nodes of
the mesh, and using upwind discretizations for the fluxes, (3.19) is advanced explicitly
to determine the water volume in each cell:

Vwi = (Whwi + 1
2 Swi− + 1

2 Swi+)1xi, (B 1)

with 1xi being the cell length, and i± indicating the channel segments entering and
leaving the cell. It is then a relatively simple matter of partitioning this available water
between the channels and the sheet in that cell.

When φ = φ0, Sw = S is already known from step (g) in the solution procedure in
§ 3.7, so

Swi± = Si±, hwi =
(
Vwi/1xi − 1

2 Swi− − 1
2 Swi+

)
/W. (B 2)

When φ = φm, h is already known from step (h) in the solution procedure, and
either

Swi− = Swi+ = 0, hwi = Vwi/1xiW (if this gives hwi 6 hi), (B 3a)
or hwi = hi,

1
2 Swi− + 1

2 Swi+ = Vwi/1xi −Whi. (B 3b)

This last possibility requires partitioning between the adjacent channels and there is
nothing immediately to tell us how to do this. If we remember the neglected diffusive
component ρwgHw from φm, however, we conclude that an appropriate thing to do is
to ensure that the water level is continuous between channels. Since the channels have
known (and potentially different) areas Si±, this is not necessarily the same as taking
Swi− = Swi+; rather Hw(Swi−, Si−) =Hw(Swi+, Si+), where Hw(Sw, S) is the water depth
in the channel. Assuming semicircular channels, this relationship is a little ungainly
but can be written implicitly as

S̃w(S,Hw) := 2S

π
sin−1

(
πH 2

w

2S

)1/2

+
(

2S

π

)1/2

Hw

(
1− πH

2
w

2S

)1/2

, (B 4)

for the water-filled area S̃w. Thus, (B 3b) can be written as

1
2 S̃w(Si−,Hwi)+ 1

2 S̃w(Si+,Hwi)= Vwi/1xi −Whi, (B 5)

which can be solved to find Hwi and, hence, Swi±. Note that employing this method
at all of the underpressure nodes means that Sw is potentially different at either end
of these channel segments. That is why we choose to define Sw on each end of the
channels; but it should be noted that in the usual case, when φ > φm, we always have
Sw = S at both ends.
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If, at the beginning of this procedure for φ = φm, the water-filled volume Vwi is
actually larger than the total volume available in that cell,

Vi = (Whi + 1
2 Si− + 1

2 Si+)1xi, (B 6)

that node must become part of Ωc at the next time step, and in order to conserve mass
the excess water volume Vwi − Vi is added to the neighbouring partially empty cell,
effectively correcting the computed flux between those two cells.

Appendix C. Computation of steady states
In the one-dimensional steady state with constant positive input m, we write the total

discharge as

Q≡ Q+Wq= kcS
α
wψ

β−1 +Wkhαwψ
β−1, (C 1)

where ψ =−dφ/dx is always positive. The mass conservation equation (3.19) requires

dQ

dx
=Wm+ Ξ

ρwL
, (C 2)

with the condition Q = QN ≡ QN +WqN at x = 0. The general aim here is to integrate
this equation, together with the ordinary differential equation for φ that is implicitly
defined by (C 1), and for which the natural boundary condition is φ = φm at the margin
x = xm. Since the dissipation term in (C 2) is small, we already have a good guess for
Q:

Q(x)≈ QN +
∫ x

0
Wm(x′) dx′, (C 3)

and since the boundary conditions are imposed on opposite ends we therefore propose
to integrate backwards from the margin x = xm, shooting for an initial value Q(xm) in
order to satisfy Q = QN at x = 0. Some work is required before we can determine
dφ/dx from (C 1), however.

For φm 6 φ 6 φ0, the steady sheet depth is always determined by the hydraulic
potential, from (2.2):

h=H (φ) := ubhr

ub + lrÃ|φ0 − φ |n
. (C 4)

The steady-state channel area S, from (2.8), additionally depends on the dissipation
term (3.22). Since hw =H (φ) unless Sw = 0 (in which case hw 6 H (φ)), that can be
written as

Ξ = [Q− (1− lr/W)min(WkH (φ)α ψβ−1,Q)]ψ. (C 5)

(Note that the term in square brackets is the discharge carried in the channel and
underlying sheet; unless the sheet is partially empty it is Q − (W − lr)kH (φ)α ψβ−1.)
The steady-state channel area from (2.8) can therefore be written in terms of hydraulic
potential, discharge and potential gradient:

S=S (φ,Q, ψ) := [Q− (1− lr/W)min(WkH (φ)α ψβ−1,Q)]ψ
ρiLÂ|φ0 − φ |n

. (C 6)

Note that, unlike in the sheet-only case, it is not possible to have a steady state in
which φ = φ0, since S becomes arbitrarily large as φ0 is approached (although we have
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to allow this at the margins if φm = φ0 there; additional physics could be added to
prevent this but it is not a major concern of this paper (e.g. Evatt et al. 2006)).

When φ = φm, the sheet can only be partially filled (hw < h) if the channel is empty
(Sw = 0), so we can deduce from (C 1) that in that case:

hw =Hw(Q) :=min

([
Q

Wkψβ−1
m

]1/α

,H (φm)

)
, (C 7)

and

Sw =Sw(Q) :=
[

max
(

Q−WkH (φm)
α ψβ−1

m

kCψ
β−1
m

, 0
)]1/α

, (C 8)

where ψm =−dφm/dx.
When φ > φm, we have hw = h =H from (C 4) and Sw = S =S from (C 6) and

(C 1) therefore reads

Q= kcS (φ,Q, ψ)
α
ψβ−1 +WkH (φ)α ψβ−1, (C 9)

which implicitly determines ψ = Ψ (φ,Q). Assuming that this function is well defined,
we have

dφ
dx
=


−ψm when φ = φm and Sw(Q) <S (φ,Q, ψm)

min(−ψm,−Ψ (φm,Q)) when φ = φm and Sw(Q)=S (φ,Q, ψm)

−Ψ (φ,Q) when φ0 > φ > φm,

(C 10)

where, in the second case, the derivative is defined as x is approached from below.
We can integrate (C 10) from x = xm to x = 0 together with (C 2), shooting to find the
correct initial value for Q. Once φ(x) has been found, it is a straightforward matter
to define h, S, hw and Sw from the appropriate combination of (C 4), (C 6), (C 7) and
(C 8).

It is unfortunately not clear from (C 9) that there is only one solution for ψ , and
hence whether Ψ (φ,Q) is a single-valued function. In fact, in general it is not; (C 9)
can have one, two or three roots for ψ depending upon the various parameters. We
interpret this as meaning that there is sometimes more than one possible steady state
(see below). In many cases, however, Ψ (φ,Q) is well defined. In particular, it can be
shown that if we only consider the sheet immediately below the channel, so W = lr,
then the steady state is always unique (the width lr is supposed to represent roughly
one cavity width, so the description as a ‘sheet’ in that case is unnecessary).

Multiple steady states arise when W � lr, meaning that the sheet is very wide:
the water can either be contained almost entirely in the sheet, in which case only a
small portion of the total energy dissipated goes into heating the potential channel,
or it can be localized in the channel with a much smaller proportion in the sheet.
Typically, at low discharge only the first option is possible, and at high discharge only
the second is possible; but there can occasionally be a region in between when either
option gives rise to a viable steady state. This type of hysteresis for the steady states
is essentially the same as found numerically in the two-dimensional network model
of Schoof (2010). In fact for the one-dimensional case studied here, with uniform
pressure required across the width of the sheet, multiple steady states are rather rare;
they appear to be more common in the (presumably more realistic) two-dimensional
model.
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