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Abstract. Meltwater is produced on the surface of glaciers
and ice sheets when the seasonal energy forcing warms the
snow to its melting temperature. This meltwater percolates
into the snow and subsequently runs off laterally in streams,
is stored as liquid water, or refreezes, thus warming the sub-
surface through the release of latent heat. We present a con-
tinuum model for the percolation process that includes heat
conduction, meltwater percolation and refreezing, as well as
mechanical compaction. The model is forced by surface mass
and energy balances, and the percolation process is described
using Darcy’s law, allowing for both partially and fully sat-
urated pore space. Water is allowed to run off from the sur-
face if the snow is fully saturated. The model outputs include
the temperature, density, and water-content profiles and the
surface runoff and water storage. We compare the propaga-
tion of freezing fronts that occur in the model to observa-
tions from the Greenland Ice Sheet. We show that the model
applies to both accumulation and ablation areas and allows
for a transition between the two as the surface energy forcing
varies. The largest average firn temperatures occur at inter-
mediate values of the surface forcing when perennial water
storage is predicted.

1 Introduction

Meltwater percolation into surface snow and firn plays an
important role in determining the impact of climate forcing
on glacier and ice-sheet mass balance. Percolated meltwater
may refreeze, run off, or be stored as liquid water. Since melt-
water that runs off from the surface ultimately contributes to
sea-level rise, and can influence ice dynamics if it is routed
to the ocean via the ice-sheet bed, understanding the propor-
tion of meltwater that runs off is important in assessing the

health of glaciers and ice sheets under atmospheric warming
(Harper et al., 2012; Enderlin et al., 2014; Forster et al., 2014;
Koenig et al., 2014; Machguth et al., 2016). The balance be-
tween runoff, refreezing, and storage is controlled by the me-
chanics and thermodynamics of the porous snow. These pro-
cesses also underlie the rate of compaction of firn into ice and
therefore control the average temperature and accumulation
rate that provide surface boundary conditions to numerical
ice-sheet models (which typically do not include the com-
pacting firn layer explicitly).

Liquid water that is produced at the surface holds a sub-
stantial quantity of latent heat. If the meltwater percolates
into the snow and refreezes, it releases the latent heat to warm
the snow. Humphrey et al. (2012) observe that the snow at
10 m depth in Greenland is often more than 10 ◦C warmer
than the mean annual air temperature because of the refreez-
ing of meltwater. If, however, this water runs off through
supraglacial streams or drains to the bed through moulins, the
latent heat is carried away and subsequent cooling of the sur-
face in the winter means that the remaining snow is relatively
cold. Since the capacity to store and/or refreeze meltwater is
tied to the porosity of the snow, which is in turn linked to the
amount of storage and refreezing that have occurred in pre-
vious years, it is of interest to know how the partitioning of
meltwater between runoff, refreezing, and storage, as well as
the firn temperature and density profiles, depends on climatic
forcing (air temperature and radiative forcing as well as accu-
mulation). This question is of interest even under steady cli-
mate conditions (i.e., seasonally periodic, without any year-
on-year trend), and this forms the focus of our study. A fur-
ther question of current interest is how the firn responds tran-
siently to year-on-year increases in melting (Harper et al.,
2012; Koenig et al., 2014), but we consider the steady prob-
lem a prerequisite to understanding such transient response.
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Our approach in this paper is to construct a continuum
model for meltwater percolating through porous snow, along
similar lines to Gray (1996). This contrasts cell-based numer-
ical models that are often applied to the Greenland Ice Sheet,
such as the Firn Densification Model (IMAU-FDM) that is
incorporated in the regional climate model RACMO and is
described by Ligtenberg et al. (2011) and Kuipers Munneke
et al. (2014, 2015). That model includes mechanical com-
paction and a “tipping-bucket” hydrology scheme, where
the firn is divided into distinct layers and water fills each
layer up to the irreducible water content and then trickles
instantaneously into the lower layers. Runoff occurs when
the water reaches an impermeable layer and the water is
removed (representing the lateral flow that occurs in real-
ity). Steger et al. (2017a, b) used a similar tipping-bucket
method in the SNOWPACK model (Bartelt and Lehning,
2002) and compared the results to the IMAU-FDM. Wever
et al. (2014) compared the tipping-bucket and Richards equa-
tion formulations within SNOWPACK to field observations
and found that using Richards’ equation provided a better
fit. The Richards equation approach, in which water flow is
driven by gravity and capillary pressure, is similar to the
model we adopt in this study. This has also been used in
a number of more theoretical models for the percolation of
meltwater through snow (Colbeck, 1972, 1974, 1976). Gray
and Morland (1994, 1995) and Gray (1996) provide detailed
descriptions of this approach in the context of mixture theory.

We now summarize an outline of the paper. In Sect. 2, we
construct our continuum model for the firn layer and describe
its conversion to an enthalpy formulation that facilitates the
numerical solution method. In Sect. 3, we analyze two test
problems that involve the propagation of a refreezing front
moving into cold snow and a saturation front filling pore
space. These act as benchmarks for the numerics and elu-
cidate some of the generic dynamics that occur within the
model. In Sect. 4, we impose a more realistic surface energy
forcing, corresponding to a periodic seasonal cycle, to exam-
ine the effect of climate variables on the fate of the meltwater
and the resulting thermal structure of the snow.

2 Model

2.1 Percolation through porous ice

Here we describe our model for the flow of meltwater
through porous, compacting snow. We keep track of the flow
of water, mechanical compaction, and the melt–refreezing of
water into the snow. A volume fraction 1−φ is solid ice while
the void space φ is composed of water and air. We define the
saturation S as the fraction of the void space that is filled by
water (see the schematic in Fig. 1). Conservation of mass for
ice, water, and air is expressed as

∂

∂t
[(1−φ)ρi]+∇ · [(1−φ)ρiui]= −m, (1)

Velocity < 0 Velocity > 0

(a) Accumulation area (b) Ablation area

Runoff

Figure 1. The three components of meltwater-infiltrated snow: air,
water, and ice. Panel (a) shows water infiltrating an accumulation
area where the snow density increases with depth and snow ad-
vects down. The water partially saturates the snow near the surface
(S < 1) whereas, at depth, all of the air is replaced by water and the
snow is fully saturated (S = 1). Panel (b) shows an ablation area
where the there is fully saturated porous snow in a thin layer near
the surface and the underlying ice is solid, advecting into the do-
main from upstream. Ice grains make contact in the third dimension
(into the page) and similarly many of the air and water pockets are
connected in the third dimension.

∂(Sφρw)

∂t
+∇ · (Sφρwuw)= m, (2)

∂

∂t
[(1− S)φρa]+∇ · [(1− S)φρaua]= 0, (3)

where the subscripts i, w, and a indicate ice, water, and air,
respectively. The densities ρi, ρw, and ρa are constants. The
velocities of the ice, water, and air are given by ui, uw, and
ua. The variable density of the snow is (1−φ)ρi+φSρw+

φ(1− S)ρa. The rate at which ice melts and turns into melt-
water internally is given by m and is therefore a source in
Eq. (2) and a sink in Eq. (1).

This term is always negative, i.e., refreezing, and in fact is
zero except on refreezing interfaces. We assume that the air
density is negligible and henceforth neglect Eq. (3).

The flow of water is governed by Darcy’s law, i.e.,

φS (uw−ui)=−
k(φ)

µ
kr(S)

(
∇pw+ ρwgẑ

)
, (4)

where pw is the water pressure, k(φ) is the permeability,
kr(S) is the relatively permeability, and µ is the viscosity of
the water. For the permeability we use a simplified Carman–
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Kozeny relationship, given by

k(φ)=
d2
p

180
φ3
= k0φ

3, (5)

where dp is a typical grain size (Gray, 1996). Table 1 pro-
vides the parameter values we use later.

We must now distinguish between partially saturated (S <
1) and fully saturated (S = 1) flow. When the snow is
partially saturated, capillary forces drive flow along liquid
bridges connecting ice crystals (Bear, 1972). Thus, we re-
late the water pressure to the capillary pressure pc by pw =

pa−pc, where pa is the air pressure (taken as zero). Both
the capillary pressure and the relative permeability are pre-
scribed functions of the saturation S. We take

kr(S)= S
β and pc(S)=

γ

dp
S−α, (6)

where γ is surface tension, and we choose the exponents
α and β such that β = α+ 1, which avoids a singularity in
kr(S)p

′
c(S) at S = 0 (Gray, 1996).

If the snow is fully saturated, water pressure pw is con-
strained by mass conservation. Combining Eqs. (1), (2), and
(4) gives

∇ ·

[
ui−

k(φ)

µ

(
ρgẑ+∇pw

)]
=m

(
1
ρw
−

1
ρi

)
, (7)

which is an elliptic problem for pw. Boundary conditions for
this equation are provided by the constraint that pw must be
continuous across the interfaces between partially and fully
saturated regions and the constraint of no flow across imper-
meable boundaries (e.g., ice lenses).

2.2 Compaction

One of the difficult aspects of modeling firn in a percolation
zone is that both mechanical compaction and refreezing com-
bine to control the changes in snow density. There are vari-
ous empirical parametrizations of dry compaction that can be
used; these typically relate the rate of change of density, or
equivalently porosity, to quantities such as depth, accumula-
tion rate, temperature, and grain size. In our context, these
can be expressed using the material derivative

∂φ

∂t
+ui ·∇φ =−C, (8)

where C is a parametrization of the rate of compaction (Arth-
ern et al., 2010). The appropriateness of such models for
snow containing meltwater is uncertain. The parametriza-
tions represent the rearrangement and growth of snow crys-
tals and the accompanying closure of air voids as functions
of temperature and accumulation rate, and these processes
may be modified by the presence of liquid between crys-
tals. In the absence of a more developed theory for wet com-
paction, we take the approach of using these dry parametriza-
tions but modify the material density derivative to include the

rate of refreezing that is calculated from the thermodynam-
ics. Therefore, we have

∂φ

∂t
+ui ·∇φ =

m

ρi
− cφ, (9)

where the specific compaction rate we choose is the Herron
and Langway (1980) model, which is written as C = cφ. The
coefficient c in units of yr−1 is given by

c =

11a exp
{
−

1222
T

}
if φ > 0.4

575
√
a exp

{
−

2574
T

}
if φ ≤ 0.4,

(10)

where a is the accumulation rate in meters of water equiv-
alent per year and T is the absolute temperature. This is an
empirical parametrization, and the two forms reflect a change
in dominant compaction processes at a certain snow density.
Other parametrizations for compaction that could easily be
incorporated in this framework are discussed by Zwally and
Li (2002), Reeh (2008), and Morris and Wingham (2014).
We have chosen to use the Herron and Langway model here
for simplicity; from the experiments we have conducted, dif-
ferent formulations do not appear to qualitatively change our
results.

Combining with Eq. (1), we note that Eq. (9) is equivalent
to

(1−φ)
∂wi

∂z
=−cφ, (11)

where wi is the vertical component of the ice velocity.

2.3 Temperature

We assume that ice and water are at the same temperature
and therefore any region containing meltwater (S > 0) is at
the melting point Tm. In regions without water, we solve the
temperature evolution equation,

ρicp(1−φ)
∂T

∂t
+ ρicp(1−φ)ui ·∇T =∇ ·

(
K∇T

)
−Lm, (12)

where the heat capacity is cp and the thermal conductivity is
K = (1−φ)K . The latent heat term −Lm operates on inter-
faces of refreezing, where it is singular and causes disconti-
nuities to occur in the temperate gradient.

2.4 Surface boundary conditions

Here we write boundary conditions on the surface zs(t),
which we assume is locally flat, and we write wi and ww
as the vertical velocities. The kinematic conditions are

ρi(1−φ)(wi− żs) = ρw(M − a), (13)
ρwφS(ww− żs) = ρw(M −R+ r), (14)

where żs is the velocity of the surface, M is the rate of melt-
ing, a is the accumulation rate, R is the rainfall rate, and r is
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runoff, all expressed in units of water equivalent per year. The
compaction Eq. (9) requires a boundary condition, φ = φ0,
when the accumulation rate is greater than the rate of melt-
ing (i.e., wi− żs < 0), where (1−φ0)ρi is the bulk density
of freshly deposited snow. The energy balance on the surface
provides a boundary condition for the temperature equation
when the surface temperature is less than Tm, and determines
the rate of melting M when T = Tm. These conditions are
combined as

ρicp (1−φ)(wi− żs)(T − Tm)−K
∂T

∂z

=−Q+h(T − Tm)+ ρwLM, (15)

along with the conditions M = 0 when T < Tm, and M ≥ 0
when T = Tm. The forcing energy flux Q(t) includes the
combined effects of radiative, turbulent, and sensible heat
fluxes. We assume that this is prescribed in order to provide
a simple parametrization of the climate forcing. However, it
can be related to more specific components of the energy bal-
ance as described in Appendix A. The heat transfer coeffi-
cient h represents a combination of radiative and turbulent
heat transfer. We expect Q to have a typical magnitude on
the order of Q0 = 200 W m−2 with a comparable seasonal
amplitude and take h= 14.8 W m−2 K−1 as a representative
constant (Cuffey and Paterson, 2010; van den Broeke et al.,
2011).

2.5 Numerical method

Our complete model is given by ice and water conservation
(1) and (2), Darcy’s law (4), compaction (9), and temperature
evolution (12), subject to the boundary conditions (13)–(15).
The model is forced by a prescribed energy flux Q, accumu-
lation a, and precipitation R, and it predicts the temperature,
porosity, and saturation profiles as well as the surface melt
rate, runoff, refreezing, and storage of liquid water.

In this section, we rewrite the equations in a form that we
use for our numerical solutions. There are two steps: first,
we combine the equations as conservation equations for total
water (ice and liquid water) and enthalpy (sensible and la-
tent heat). Using this approach, commonly referred to as the
enthalpy method, we can avoid tracking the phase change
interfaces and can solve for their location using inequalities
(Hutter, 1982; Aschwanden et al., 2012; Hewitt and Schoof,
2017). The second step is to change variables into a frame
that moves with the ice surface. At this stage we also sim-
plify the model to write it in one vertical dimension, and we
make the Boussinesq approximation to ignore density differ-
ences so that ρi = ρw = ρ.

We define the total water asW , which is the sum of liquid
and solid fractions, i.e.,

W = 1−φ+ Sφ, (16)

and we define the enthalpy as the sum of sensible and latent
heat as

H= ρcpW(T − Tm)+ ρLSφ. (17)

The inverse relationships that relate the enthalpy H and total
water W to the temperature T , saturation S, and porosity φ
are

T = Tm+min
{

0,
H
W

}
, φ = 1−W +max

{
0,
H
ρL

}
,

and S =max
{

0,
H
ρLφ

}
. (18)

We define the depth below the ice surface Z, and the relative
downward ice velocity w̃i, as

Z = zs(t)− z, w̃i = żs−wi. (19)

We combine the conservation Eqs. (1) and (2) with Darcy’s
law (4) and temperature evolution (12) as

∂W
∂t
+

∂

∂Z
(w̃iW + q) = 0, (20)

∂H
∂t
+

∂

∂Z

{
w̃iH+ q

[
ρcp(T − Tm)+ ρL

]
−K

∂T

∂Z

}
= 0, (21)

where the downward water flux is

q =
k(φ)kr(S)

µ

(
ρg−

∂pw

∂Z

)
. (22)

Combining ice conservation (1) with compaction (9) gives

(1−φ)
∂w̃i

∂Z
=−cφ, (23)

and water pressure is given by

pw =−
γ

dp
S−α (S ≤ 1) or pw ≥−

γ

dp
(S = 1). (24)

The surface boundary conditions (at Z = 0), re-expressed
in terms of W and H, are given as

Ww̃i+ q = a+R− r, (25)

w̃iH+ q
[
ρcp(T − Tm)+ ρL

]
−K

∂T

∂Z
=Q−h(T − Tm)

+ ρLR− ρLr, (26)

w̃i =
a−M

1−φ0
(w̃i > 0) or w̃i =

a−M

1−φ
(w̃i ≤ 0). (27)

In these conditions, the runoff r is assumed to be zero un-
less the snow at the surface reaches full saturation, in which
case Eqs. (25) and (26) determine r . At the bottom of our do-
main, we assume that the conductive heat flux and pressure
gradients vanish to replicate effective matching conditions to
the deep interior of the ice sheet. On internal interfaces be-
tween fully saturated and partially saturated regions we apply
pw =−γ /dp to ensure pressure continuity.
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Table 1. Table of physical values, derived scales, and nondimen-
sional parameter values (defined in Appendix B).

ρ 917 kg m−3 Q0 200 W m−2 U 100
cp 2050 m2 s−2 K−1 h 14.8 W m−2 K−1 S 12
L 334 000 m2 s−2 1T 13.5 K B 260
K 2.1 kg m s−3 K−1 M 6× 10−4 kg m−2 s−1 Pe 11
g 9.806 m s−2 ` 20.6 m α 1
γ 0.07 N m−1 k0 5.6× 10−11 m2 β 2
dp 10−4 m t0 3.15× 107 s
µ 10−3 Pa s

We discretize the conserved fluxes in space using a fi-
nite volume method implemented in MATLAB (see the Sup-
plement for code). In this construction, the value of each
variable is constant in each cell center and the velocities
and fluxes are evaluated at cell edges, thereby transferring
fluxes of each variable from one cell to another. We evolve
Eqs. (20)–(21) in time using explicit forward Euler time step-
ping, which involves evaluating the fluxes on the cell edges
using the quantities from the previous timestep. For advec-
tion, we use an upwind scheme where the value of the vari-
able advected depends on the velocity direction. For edges
between partially saturated cells, we evaluate the water fluxes
using the capillary pressure for pw on the adjacent cells. For
edges between fully saturated cells, we solve Eq. (20) with
S = 1 as an elliptic equation for pw on the saturated cells,
which we then use to evaluate the water fluxes. In order to al-
low cells to switch from fully to partially saturated, we com-
pute the fluxes using both of these methods on edges between
fully and partially saturated cells and choose that which gives
the largest flux away from the saturated region.

3 Test problems

In this section we consider two test problems that demon-
strate the model behavior and validate the numerical method.
The two problems that we consider here are designed to ex-
plore the boundaries between frozen and unfrozen snow (re-
freezing interfaces) as well as the boundaries between par-
tially and fully saturated snow (saturated interfaces). Both
problems ignore mechanical compaction. We start by de-
scribing the propagation of rainwater into dry snow. This
is similar to the problem studied by Colbeck (1972), Gray
(1996), and Durey (2014) and has an approximate analyti-
cal solution that provides a useful test case for the enthalpy
method. We also compare the results of the analytical solu-
tion for the propagation of the meltwater front to temperature
data from Humphrey et al. (2012). Secondly, to test the prop-
agation of saturated fronts, we consider an isothermal prob-
lem in which the porosity profile is prescribed to decrease
with depth. We again investigate how rainwater propagates
into the snow, with saturation increasing as the front propa-

(a) (b)

Figure 2. Schematic of the test problems considered in (a) Sect. 3.1
and (b) Sect. 3.3. In both panels, rain falls at a rate R on the surface
of the snow. White shading indicates dry snow (S = 0), grey indi-
cates partially saturated snow (0< S < 1), and dark shading indi-
cates fully saturated snow (S = 1). In panel (a), the snow is initially
cold with T = T∞ and dry, with uniform porosity φ0. The rainwa-
ter percolates through the snow, refreezes at the interface Zf(t), and
releases latent heat that warms the snow. The refreezing decreases
the porosity in the upper region so that φ+ < φ0. In panel (b), the
snow is temperate, T = Tm, with a porosity profile that decays ex-
ponentially with depth. After the snow fully saturates two saturation
fronts emerge with Zl propagating downward and Zu upward.

gates down. At a certain point the snow fully saturates and a
saturated front propagates up toward the snow surface.

3.1 Rainfall into cold snow

We consider the infiltration of rain into cold, dry snow as
a test problem. We start with a patch of dry snow (S = 0)
with constant porosity (φ = φ0) and temperature (T = T∞ <
Tm). We assume no accumulation and ignore compaction so
that the ice is stationary. Furthermore, the porosity is large
enough that the snow never fully saturates. At time t = 0 a
fixed flux of rain R with a temperature T = Tm is applied at
the surface Z = 0 and a wetting front at Z = Zf moves down
at velocity Żf (we show a schematic in Fig. 2 and the numeri-
cal solutions in Fig. 3). Since the capillary pressure gradients
are small and the flow is largely driven by gravity, the wet-
ting front behaves as a smoothed shock front. Some of the
water at the shock front refreezes, warming the snow ahead.
As shown in more detail in Appendix C, the behavior of this
shock can be understood by ignoring the diffusive capillary
pressure term. This approximation relegates Eqs. (1) and (2)
to hyperbolic partial differential equations for the porosity
and saturation as well as simplifying the temperature Eq. (12)
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so that

∂S

∂t
+
ρgk(φ)k′r(S)

)
φµ

∂S

∂Z
= 0, (0< Z < Zf) , (28)

∂φ

∂t
= 0, (0< Z < Zf) and (Z > Zf) , (29)

∂T

∂t
=

K

ρcp

∂2T

∂Z2 , (Z > Zf) , (30)

where k′r(S)= dkr/dS, and with initial and boundary condi-
tions

S = 0, φ = φ0, T = T∞ at t = 0, (31)
T = T∞ as Z→∞, (32)
T = Tm on Z = Zf, (33)

ρgk(φ)kr(S)

µ
= R on Z = 0. (34)

Equations (28)–(30) have corresponding jump conditions
across the shock which incorporate the refreezing rate −mi
at that front. These are

ρg

µ
k(φ)kr(S)−φSŻf

∣∣∣∣
+

=−mi, (35)

Żf[φ]+− =mi, (36)

(1−φ)K
∂T

∂Z

∣∣∣∣
−

= ρLmi, (37)

where + refers to the region above the front (Z < Zf). Us-
ing these jump conditions and the solutions to Eqs. (28)–(30)
subject to the boundary conditions (31)–(34), we find an ap-
proximate expression for the front velocity:

Żf =
RL

φ+S+L+ (1−φ0)(Tm− T∞)
. (38)

Note that if T∞ = Tm, i.e., isothermal snow, the front
simply propagates at the speed of the draining rainwater
R/(φ+S+) (Bear, 1972). The effect of refreezing due to
T∞ < Tm is to slow the front and to cause a decrease in
the porosity as the front passes by an amount φ0−φ

+
=

(1−φ0)cp(Tm− T∞)/L. This is a mechanism by which ice
lenses can form: if the pre-existing porosity is small enough,
the porosity above the front can decrease to zero and the
pores freeze shut. In this case the front stops propagating,
and a saturated region forms above the lens in a similar way
to that described in Sect. 3.3. We also determine approximate
analytical solutions for temperature and saturation, which are
compared to the numerical solutions in Fig. 3. The agree-
ment between the numerical and approximate solutions is
very good. The approximate temperature profile ahead of the
refreezing front is given by

T = T∞+ (Tm− T∞)exp

[
−
ρcpŻf(Z−Zf)

K

]
. (39)

3.2 Data comparison

The refreezing and release of latent heat as a front of meltwa-
ter moves through a firn layer allows the percolation of melt-
water to be observed in englacial temperature data. Harper
et al. (2012) and Humphrey et al. (2012) collected temper-
ature data in the accumulation zone on the western flank of
the Greenland Ice Sheet and inferred the movement of melt-
water by warming of the snow due to the release of latent
heat. They set up a vertical string of thermistors to determine
the temperature profile in the upper 10 m of the ice sheet.
Data from one vertical string between the dates of 5 and 25
July 2007 (days 185–203) are shown in Fig. 4. From these
data it is clear that the ice at depth progressively warmed,
likely due to the refreezing of liquid meltwater. Over the 12
days between day 185 and day 197, the warming front prop-
agated about a meter, while over the course of the next 6
days from day 197 to day 203 the meltwater penetrated two
additional meters, showing a 4-fold increase in front veloc-
ity. Humphrey et al. (2012) infer that the warming spike on
day 199 is due to an influx of meltwater from lateral sources.
A minimum temperature is observed at around 5 m depth and
the temperature recorded on the lower thermistors is warmer,
which could be due to prior warming by meltwater pulses or
a manifestation of the seasonal thermal wave.

We now compare these data to the approximate solution
for the temperature field ahead of a refreezing front, as given
in Eq. (39). We fit front speed Żf for the days 185–197 and
a larger front speed for days 197–203. The increase in the
front speed is likely due to an increase in surface melt. We
set the melting temperature Tm = 0 ◦C, fit a constant far-
field temperature T∞, and use the heat diffusivity for ice
K/(ρcp)= 1.1× 10−6 m2 s−1 (Table 1). In light of the sim-
plified analysis, the fit between Eq. (39) and the Humphrey
et al. (2012) data is quite good.

3.3 Isothermal saturation fronts

We now consider the propagation of rainwater into isother-
mal, temperate snow of decreasing porosity such that fully
saturated fronts develop. The porosity decreases exponen-
tially with depth as

φ(Z)= φ0e
−Z/Z0 , (40)

where Z0 is a constant. We continue to ignore compaction
and accumulation, and since the snow is isothermal the
porosity is therefore constant in time. Initially, the rain par-
tially saturates the snow and a wetting front moves down-
ward, as shown in Fig. 5a. Then, at a certain depth, the
maximum saturation reaches unity and two saturation fronts
emerge, one that propagates up and the other down, as shown
in Fig. 5b and c.

In Appendix D, we derive the locations of the upper Zu
and lower Zl fronts by neglecting flow driven by gradients
in capillary pressure. This analysis results in two differential
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Figure 3. Evolution of a refreezing front at three instances of time, partitioned between the three components of the enthalpy. The green,

red, and yellow colors show the porosity, saturation, and temperature profiles, respectively. The dashed lines show the approximate analytical

solutions described in Appendix C. The temperature is made nondimensional by T = Tm + (T1�Tm)T̂ and the parameters are �0 = 0.4,

and R = 0.54, along with other values in table 1.

Equations (28)-(30) have corresponding jump conditions across the shock which incorporate the refreezing rate �mI at that

front. These are

⇢g

µ
k(�)kr(S)��SŻf

����
+

= �mI , (35)

Żf [�]+� = mI , (36)

(1��)K
@T

@Z

����
�

= ⇢L mI , (37)5

where + refers to the region above the front (Z < Zf ). Using these jump conditions and the solutions to (28)-(30) subject to

the boundary conditions (31)-(34), we find an approximate expression for the front velocity,

Żf =
RL

�+S+L + (1��0)(Tm�T1)
. (38)

Note that if T1 = Tm, i.e. isothermal snow, the front simply propagates at the speed of the draining rain water R/(�+S+)

(Bear, 1972). The effect of refreezing due to T1 < Tm is to slow the front and to cause a decrease in the porosity as the front10

passes, by an amount �0��+ = (1��0)cp(Tm�T1)/L. This is a mechanism by which ice lenses can form: if the pre-existing

porosity is small enough, the porosity above the front can decrease to zero and the pores freeze shut. In this case the front stops

propagating, and a saturated region forms above the lens in a similar way to that described in section 3.3. We also determine

approximate analytical solutions for temperature and saturation, which are compared to the numerical solutions in figure 3.

The agreement between the numerical and approximate solutions is very good. The approximate temperature profile ahead of15

the refreezing front is given by

T = T1+ (Tm�T1)exp

"
�⇢cpŻf (Z �Zf )

K

#
. (39)
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Figure 3. Evolution of a refreezing front at three instances of time, partitioned between the three components of the enthalpy. The green,
red, and yellow colors show the porosity, saturation, and temperature profiles, respectively. The dashed lines show the approximate analytical
solutions described in Appendix C. The temperature is made nondimensional by T = Tm+ (T∞− Tm)T̂ and the parameters are φ0 = 0.4
and R = 0.54, along with other values in Table 1.
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Figure 4. Data from Humphrey et al. (2012) show the propagation
of refreezing fronts in Greenland firn. We overlay the approximate
temperature solution for the temperature ahead of a refreezing front
(black lines, Eq. 39). The speed of the front varies over the 18-day
record: dashed lines use the initial speed and the dotted line uses the
final speed. The far-field temperature is assumed to be constant in
the model whereas the data show a local minimum in temperature
at around 5 m, which could be due to prior freezing fronts or the
seasonal wave.

equations for the evolution of upper front Zu and lower front
Zl:

Żl =
qs

φl
and Żu =

qs−R

φu

[
1−

(
µRe3Zu/Z0

ρgk0φ
3
0

)1/β
] ,

with qs =
3k0φ

3
0ρg(Zu−Zl)

µZ0
[
e3Zu/Z0 − e3Zl/Z0

] , (41)

subject to the initial conditions

Zu = Zl = Z1 at time t = t1, (42)

where Z1 and t1 are the location and time at which full sat-
uration initiates. We solve these coupled, nonlinear ordinary
differential equations (ODEs) using a numerical integrator in
MATLAB and compare these semi-analytical solutions to the
full numerical solutions in Fig. 5 (the dashed black lines).
The slight differences are due to neglecting the gradient in
capillary pressure in our approximate solutions.

4 Results

We now examine the solutions to the full model with pre-
scribed seasonal energy forcing, which we parametrize as a
sinusoid, using the annual mean as a control parameter. In
principle, we could also incorporate diurnal periodicity, but
we choose to ignore it because we expect diurnal variability
to affect only a small surface layer (∼ 1 m depth) and we are
interested in the full firn column (∼ tens of meters of depth).
For cold ice, the variation of surface energy flux leads to a
seasonal temperature wave (Cuffey and Paterson, 2010) and
a dry-compaction density profile. This solution breaks down
if the surface temperature reaches the melting point during
summer, at which point the surface snow melts and the melt-
water can percolate through the snow and refreeze, thereby
warming the snow through the release of latent heat. Even
with a small amount of melting, the resulting temperature
profiles become very different from the thermal wave.

We apply an oscillating surface forcing in Eq. (26) of the
form

Q(t)=Q−Q0 cos(2πt/t0), (43)

where Q is the annual mean surface forcing, and we take the
amplitudeQ0 = 200 W m−2 and period t0 = 1 year. For sim-
plicity, we assume a constant accumulation rate and ignore
rainfall.

We run a suite of numerical simulations varying the ac-
cumulation rate and annual mean surface forcing, each time
allowing the dynamics to reach an annual periodic state (typ-

www.the-cryosphere.net/11/2799/2017/ The Cryosphere, 11, 2799–2813, 2017



2806 C. R. Meyer and I. J. Hewitt: Meltwater flow through snow

0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

(a)

t = 0.4t0
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

(b)

t = 0.7t0
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

(c)

t = t0

Figure 5. Evolution of fully saturated fronts at three instances in time, showing saturation (red), water flux (cyan), and water pressure

(magenta). The porosity (green) decreases exponentially with depth over length scale Z0 = `/2, where ` is the characteristic length scale

defined in Appendix B and given in table 1. Panel (a) shows the position of the front before the firn fully saturates. Panels (b) and (c) show

the bidirectional motion of the fully saturated fronts. Dashed black lines show semi-analytical solutions from solving equation (41).

3.3 Isothermal saturation fronts

We now consider the propagation of rain water into isothermal, temperate snow of decreasing porosity such that fully saturated

fronts develop. The porosity decreases exponentially with depth as

�(Z) = �0e
�Z/Z0 , (40)

where Z0 is a constant. We continue to ignore compaction and accumulation and since the snow is isothermal, the porosity is5

therefore constant in time. Initially, the rain partially saturates the snow and a wetting front moves downward, as shown in figure

5(a). Then, at a certain depth, the maximum saturation reaches unity and two saturation fronts emerge, one that propagates up

and the other down, as shown in figures 5(b) and 5(c).

In Appendix D, we derive the locations of the upper Zu and lower Zl fronts by neglecting flow driven by gradients in

capillary pressure. This analysis results in two differential equations for the evolution of upper front Zu and lower front Zl,10

Żl =
qs

�l
and Żu =

qs�R

�u


1�

⇣
µRe3Zu/Z0

⇢gk0�3
0

⌘1/�
� with qs =

3k0�
3
0⇢g(Zu�Zl)

µZ0

⇥
e3Zu/Z0 � e3Zl/Z0

⇤ , (41)

subject to the initial conditions

Zu = Zl = Z1 at time t = t1, (42)

where Z1 and t1 are the location and time at which full saturation initiates. We solve these coupled, nonlinear ODEs using a

numerical integrator in MATLAB, and compare these semi-analytical solutions to the full numerical solutions in figure 5 (the15

dashed black lines). The slight differences are due to neglecting the gradient in capillary pressure in our approximate solutions.
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Figure 5. Evolution of fully saturated fronts at three instances in time, showing saturation (red), water flux (cyan), and water pressure
(magenta). The porosity (green) decreases exponentially with depth over length scale Z0 = `/2, where ` is the characteristic length scale
defined in Appendix B and given in Table 1. Panel (a) shows the position of the front before the firn fully saturates. Panels (b, c) show the
bidirectional motion of the fully saturated fronts. Dashed black lines show semi-analytical solutions from solving Eq. (41).

ically this takes around 10 years). Four representative space–
time diagrams of these simulations are shown in Fig. 6.

Each case shows a different value of Q with the same ac-
cumulation rate (1.7 m water equivalent per year) and poros-
ity of fresh snow φ0 = 0.64. While the ice surface moves up
and down during the simulation, we plot the quantities as a
function of depth below the surface Z = zs(t)−z and plot ice
streamlines to show the relative motion of the ice. In Fig. 7
we show how the mean temperature at the bottom of the do-
main T∞ and the mean surface temperature T s change as
the mean surface forcing varies, for three different values of
accumulation rate. Each point in this figure corresponds to
an annual average of a periodic simulation such as those in
Fig. 6 (and which are labeled in Fig. 7b).

The four simulations in Fig. 6 represent the spectrum of
possible surface types on glaciers and ice sheets, encompass-
ing both accumulation and ablation regions. If we interpret
increasing Q as a parametrization of slow climate warming,
we might expect a location that is initially an accumulation
area to transition through each of these states. Figure 6I is
an accumulation area where there is no melting at any point
during the year. The ice streamlines show that the ice ad-
vects downward as more snow accumulates on the surface.
The snow compaction is visible from a convergence of the
streamlines with time. The temperature variation with depth
in this case is just the thermal wave and the variations in
surface temperature are only felt around

√
K/(ρcpω)∼ 6 m

into the snow.
IncreasingQ above−Q0 leads to melting during summer.

Figure 6II shows an accumulation area where the temper-
ature and porosity profiles are significantly affected by the
meltwater that drains into the snow during the summer. Here
there is water below 10 m throughout the year fed by perco-
lation each summer. This is a perennial aquifer, as found in
a number of field observations (Forster et al., 2014; Koenig
et al., 2014).

Figure 6III shows a region which is an accumulation area
but with more melting than in Fig. 6II. Interestingly, this sit-
uation no longer has a perennial aquifer and all of the melt-
water that is produced refreezes. Although still a percola-
tion zone it is different in character than the region shown
in Fig. 6II. The porosity decreases more rapidly with depth
in this case so that despite more water being produced on the
surface during the summer, this larger quantity of water is
not able to percolate as far into the snow. As a consequence,
it is not so well insulated from the cold surface during the
winter and all of the water refreezes. This greater quantity of
refreezing is in turn responsible for the more rapid decrease
in porosity with depth that prevents the liquid water percolat-
ing as deep as it does in Fig. 6II (more refreezing means the
pore space is filled in more effectively with ice). In contrast,
the reason a perennial aquifer is sustained in Fig. 6II is be-
cause the water penetrates sufficiently far that it is insulated
from the cold surface (Kuipers Munneke et al., 2014).

Above a criticalQ there is too much melting for the firn to
accommodate and runoff begins (this occurs at a value of Q
intermediate between Fig. 6III and IV and is clearest to see
in Fig. 7b). The transition from an accumulation area to an
ablation area occurs when runoff exceeds the accumulation.
Figure 6IV shows an ablation area where the surface melt-
water is only able to enter a few meters into the snow and
reaches the impermeable barrier of the glacial ice surface.
During the course of the summer all of the snow is melted as
well as some of the glacial ice. The streamlines show net up-
ward motion in this case indicating that there is net ablation
over the course of the year.

In Fig. 7 we also calculate the total quantity of surface
melt and the partitioning of the melt between runoff, liquid
storage in the ice, and refreezing in the firn. Runoff and melt
are calculated from the model output, liquid storage is taken
to be the total water flux passing out of the bottom of the
domain (the domain represents only the surface firn layer, so
this represents water that is stored within the upper part of the
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Figure 6. Space-time diagrams showing the evolution of porosity � (top), saturation S (middle), and temperature T (bottom) as a function

of time for the accumulation rate a = 1.7 mwe yr�1 and four values of forcing: (I) cold accumulation zone where the mean forcing is

Q =�Q0 . (II) accumulation area with mean forcing Q =�0.707Q0. In this case, a clear perennial aquifer develops. (III) accumulation

area with larger forcing Q =�0.575Q0. (IV) ablation zone with mean forcing Q =�0.146Q0. In all simulations the porosity of the falling

snow is �0 = 0.64 and the black lines show ice streamlines.
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Figure 6. Space–time diagrams showing the evolution of porosity φ (a), saturation S (b), and temperature T (c) as a function of time for
the accumulation rate a = 1.7 m w.e. yr−1 and four values of forcing: (I) cold accumulation zone where the mean forcing is Q=−Q0 and
(II) accumulation area with mean forcing Q=−0.707Q0. In this case, a clear perennial aquifer develops. (III) Accumulation area with
larger forcing Q=−0.575Q0. (IV) Ablation zone with mean forcing Q=−0.146Q0. In all simulations the porosity of the falling snow is
φ0 = 0.64 and the black lines show ice streamlines.

Figure 7. Average meltwater partition (right) and annual mean temperature at the ice surface T s and bottom of the domain T∞ (left) as a func-
tion of the annual mean surface forcing, with accumulation increasing from left to right: (a) a = 0.68 m w.e. yr−1, (b) a = 1.7 m w.e. yr−1,
and (c) a = 3.4 m w.e. yr−1. ForQ>−Q0 melting occurs at the surface and meltwater percolation warms the bottom of the domain. Dashed
lines in panels (a, b) mark the transition from an accumulation to ablation zone and the roman numerals in panel (b) correspond to the
solutions in Fig. 6.

ice sheet), and the amount of refreezing is computed as the
residual. As shown in Fig. 7b and c, the maximum storage
is 0.56 and 1.5 m w.e. yr−1 for accumulation rates of 1.7 and
3.4 m w.e. yr−1, respectively.

For Q<−Q0 no melting occurs and the domain top and
bottom temperatures are identical. However, as soon as the
annual mean surface forcing increases above −Q0, the do-
main top and bottom temperatures diverge due to the re-
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lease of latent heat which warms the snow. Depending on
the accumulation rate, the average bottom firn temperature
can reach the melting point, corresponding to a perennial
firn aquifer. This does not occur for smaller accumulation
rates, i.e., Fig. 7a, but does for larger accumulation rates,
i.e., Fig. 7b and c. Additionally, all three panels show that
when Q increases further the bottom firn temperature de-
creases again. This corresponds to the second type accumu-
lation area shown in Fig. 6III, in which water only penetrates
part of the way into the domain before refreezing. When Q
is large enough such that the region has become an ablation
zone, the bottom temperature (now the temperature of incom-
ing glacial ice) is almost the same as the surface temperature.
The largest bottom temperatures occur at intermediate values
of surface forcing, considerably lower than the value required
to transition to an ablation region.

The thermal structure and water content of the lower firn
are strongly tied to the amount of meltwater produced, which
in this model is tied directly to the annual mean surface forc-
ing. In a warming world, one can imagine a particular loca-
tion transitioning from an accumulation to ablation region.
Our results in Fig. 7 show that storage and refreezing can ac-
commodate much of the melt that occurs when the warming
is not too large. Once the forcing is sufficient for runoff to
start, the amount of refreezing decreases slightly so that an
increasingly large fraction of the melt runs off. Most of this
runoff is presumably routed to the glacier bed and then the
ocean. As well as a form of mass loss, the timing and quantity
of meltwater delivery to the bed will determine the style of
subglacial drainage system that develops and the subsequent
ice dynamics (Zwally et al., 2002; Schoof, 2010; Tedstone
et al., 2015).

5 Conclusions

We have described a continuum model for the evolution of
firn hydrology, compaction, and thermodynamics. The model
is capable of determining the evolution of the firn includ-
ing the temperature, porosity, and water content. The model
differs from other models of firn hydrology in its treatment
of the percolation of water, for which we use Darcy’s law
and a parametrization of capillary pressure. Our treatment for
runoff also differs in that we assume that water runs off when
the surface layer of snow is fully saturated rather than assum-
ing runoff at depth when the percolating water first reaches
an impermeable ice layer.

The model applies to both accumulation and ablation ar-
eas. Given the forcing (energy flux and accumulation rate),
the model selects which of these applies to any particular re-
gion. One of the useful outputs of the model is an indication
of how the firn may change as function of climate warming,
as revealed by moving from left to right in Fig. 7. In agree-
ment with Kuipers Munneke et al. (2014) and Steger et al.
(2017a) we find that perennial firn aquifers occur when there

Table 2. Typical numerical values for the surface energy balance
(Cuffey and Paterson, 2010; van den Broeke et al., 2011).

Sw 292 W m−2 Net shortwave radiation
α 0.6 Ice albedo
ε 0.97 Emissivity
σ 5.7× 10−8 W m−2 K−4 Stefan–Boltzmann constant
Lw 279 W m−2 Longwave radiation
χ 10.3 W m−2 K−1 Turbulent transfer coefficient
a0 9.5× 10−9 m s−1 Accumulation
Ta 267 K Average air temperature

is sufficiently high accumulation and sufficient melting oc-
curs.

In the future, we hope to extend this work beyond the
one-dimensional solutions presented here. In principle the
model applies to fully three-dimensional geometries, when
the slope of the saturated surface (the “water table” in the
firn) will allow meltwater to flow laterally as well as ver-
tically. The data from Humphrey et al. (2012) suggest the
occurrence of “piping events”, where meltwater forms a ver-
tical channel and breaks through to depths where the snow
is much colder. These events could be captured in a two-
dimensional framework, and it is possible that a theory al-
lowing the solid ice and liquid water to have different tem-
peratures may help explain these features. On a larger scale,
the horizontal scales of the ice sheet are much larger than the
depth of the firn, so a reduced, vertically integrated version
of this theory may also be useful.

The use of Darcy’s law requires an estimate for the perme-
ability and the relative permeability. The comparison of our
model behavior with the data from Humphrey et al. (2012)
in Fig. 4 is encouraging and suggests that these parameters
could be determined with detailed measurements of surface
melt and snow temperatures. Here we have interpreted the
porosity and the permeability as grain-scale properties. An
alternative interpretation that might be appropriate on larger
scales would treat these as averages over fractures, pipes, and
ice lenses to give a macroscopic effective porosity and per-
meability.

Although we have focused on idealized, periodic simula-
tions, the model can be forced by real climatological data or
coupled to a regional atmospheric model. The model could
also be coupled to an ice-sheet model, using the deep firn
temperature T∞ as the surface boundary condition for the
ice sheet.

Data availability. The data associated with this paper are contained
in Humphrey et al. (2012) or can be produced from the code at-
tached in the Supplement.
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Appendix A: Surface energy balance

The surface energy balance is given by

−K
∂T

∂z
=−(1−α)Sw−Lw+ εσT

4
−χ(Ta− T )

− ρwcia(Ta− T )− ρwcwR(Ta− T )+ ρwLM, (A1)

where the terms represent, in order, conduction into the ice,
incoming shortwave radiation Sw (α is the albedo), incom-
ing longwave radiation Lw, outgoing longwave radiation (ε
is the emissivity and σ is the Stefan–Boltzmann constant),
turbulent heat transfer with coefficient χ , sensible heat fluxes
associated with solid and liquid precipitation, which is as-
sumed to fall with the air temperature Ta, and latent heat flux
associated with melting.

Linearizing this equation around the melting temperature
Tm gives Eq. (15) in the text, where the components ofQ are
given by

Q(t)= (1−α)Sw+Lw− εσT
4

m+χ(Ta− Tm)

+ ρwcia(Ta− Tm)+ ρwcwR(Ta− Tm), (A2)

and the effective heat transfer coefficient h includes contri-
butions from turbulent heat transfer and outgoing longwave
radiation:

h= χ + 4εσT 3
m. (A3)

Using the values shown in Tables 1 and 2, we determine
that a reasonable scale for Q is Q0 = 200 W m−2 and h=
14.8 W m−2 K−1.

Appendix B: Nondimensional model

We nondimensionalize the lengths by `=Q0t0/(ρL) and
time by the annual period t0. We write T = Tm+1T θ and
choose the temperature scale as 1T =Q0/h. Enthalpy is
scaled with ρici1T , ice velocity with `/t0, water velocity
with (ρwgk0)/µ, and water pressure with ρwg`. We define
the parameters

U = ρgk0t0

`µ
, S = L

cp1T
, Pe=

ρcp`
2

Kt0
, B =

ρgdp`

γ
, (B1)

where U is the scale for the water percolation relative to ice
motion, S is the Stefan number, Pe is the Péclet number, and
B is the Bond number. Typical parameter values are shown
in Table 1. Both U and B are large; this indicates that the
water percolates relatively quickly and that the percolation is
mainly driven by gravity rather than capillary pressure gradi-
ents. Both of these could be seen as justification for tipping-
bucket-type models.

Using the change of variablesZ = zs(t)−z, with w̃i = żs−

wi, we write the full nondimensional equations as

W = 1−φ+φS, (B2)

H=Wθ +SφS, (B3)
∂W
∂t
+

∂

∂Z
(w̃iW + q)= 0, (B4)

∂H
∂t
+

∂

∂Z

[
w̃iH+ q (θ +S)−

W
Pe
θ

Z

]
= 0, (B5)

(1−φ)
dw̃
dZ
=−cφ, (B6)

q = Uk(φ)kr(S)

(
1−

∂pw

∂Z

)
, (B7)

pw =−
1
B
S−α (S < 1) or pw ≥−

1
B

(S = 1), (B8)

subject to the boundary conditions

w̃iH+ q (θ +S)−
1
Pe
W ∂θ

∂Z

= S [Q− θ +R− r] on Z = 0, (B9)
w̃iW + q (θ +S)= a+R− r on Z = 0, (B10)

w̃i =
a−M

1−φ0
(w̃i > 0) or

w̃i =
a−M

1−φ
(w̃i ≤ 0) on Z = 0, (B11)

−Uk(φ)kr(S)
∂pw

∂Z
(θ +S)→ 0 as Z→∞, (B12)

−
1
Pe
W ∂θ

∂Z
→ 0 as Z→∞. (B13)

Appendix C: Refreezing front

Here we detail the approximate solution for the refreezing
front considered in Sect. 3.1. The schematic is shown in
Fig. 2a. We use dimensionless variables and the equations
we solve are

φ
∂S

∂t
+
∂q

∂Z
= 0, (0< Z < Zf) (C1)

q = Uk(φ)kr(S)

(
1+

1
B
p′c(S)

∂S

∂Z

)
, (0< Z < Zf) (C2)

∂φ

∂t
= 0, (0< Z < Zf) and (Z > Zf) (C3)

∂θ

∂t
=

1
Pe
∂2θ

∂Z2 , (Z > Zf). (C4)

The boundary conditions for Eqs. (C1)–(C4) are

θ = θ∞ as Z→∞, (C5)
θ = 0, S = 0 on Z = Zf. (C6)

q = R on Z = 0, (C7)

where θ∞ < 0 is the cold far-field temperature, and R is the
prescribed constant rainfall rate. Integrating across the front
at Zf(t) gives the nondimensional jump conditions[
q +φS

(
w̃i− Żf

)]+
−
=−mi, (C8)
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(1−φ)

(
w̃i− Żf

)]+
−
=mi, (C9)

1
Pe

[
(1−φ)

∂θ

∂Z

]+
−

=−Smi, (C10)

which states that the mass −mi that freezes from the liquid
phase enters the solid phase and that the latent heat from
refreezing warms the dry ice below. We can simplify these
equations since θ = 0 in the upper portion (+), φ = φ0 and
S = 0 in the lower portion (−), and the ice velocity w̃i is zero,
so

q −φ+S+Żf =−mi, (C11)
(φ+−φ0)Żf =mi, (C12)

1
Pe
(1−φ0)

∂θ

∂Z

∣∣∣∣
−

= Smi. (C13)

After a short initial transient, the solution approximates a
traveling wave in which the upper region 0< Z < Zf has
θ = 0, φ = φ+ (to be determined shortly), and q = R. Since
B� 1, this means Uk(φ+)kr(S

+)≈ R, which determines
the constant S+ in the upper region (there is a narrow bound-
ary layer behind the front, in which S+ changes rapidly but
q −φ+S+Żf is constant; see below).

We next solve for the temperature evolution in the lower
region. Assuming that the freezing front moves quickly, i.e.,
|Żf| � 1 (this is appropriate since U is large), we can move
into a translating frame Z̃ = Z−Zf and neglect the time de-
pendence so that

1
Pe
∂θ

∂Z̃
+ Żfθ ≈ Żfθ∞ (C14)

is constant (set by the far-field temperature), and hence θ ≈
θ∞

(
1− e−PeŻfZ̃

)
. This is the approximate solution given di-

mensionally in Eq. (39). From the temperature field we can
determine the melt rate using Eq. (C13) as

mi = (1−φ0)
Żfθ∞

S , (C15)

which is negative, corresponding to freezing, since θ∞ < 0,
and Eq. (C12) therefore determines the porosity jump:

φ+ = φ0+ (1−φ0)
θ∞

S . (C16)

Finally, the jump condition for water conservation,
Eq. (C11), determines the speed of the front as

Żf =
RS

φ+S+S − (1−φ0)θ∞
. (C17)

This result corroborates the front velocity derived by Colbeck
(1972), Gray (1996), and Durey (2014).

To capture the smoothing of the front due to capillary pres-
sure, we can examine the narrow boundary layer behind the

front. The relevant scale for this region is of order 1/B, so we
write Z−Zf = Ẑ/B and determine the leading-order quasi-
static approximation

−φŻf
∂S

∂Ẑ
+U ∂

∂Ẑ

[
k(φ)kr(S)

(
p′c(S)

∂S

∂Ẑ
+ 1

)]
= 0, (C18)

with the boundary conditions

S→ S+ as Ẑ→−∞ and S = 0 on η = 0. (C19)

We can integrate this once and find

Uk(φ)kr(S)−φSŻf+Uk(φ)kr(S)p
′
c(S)

∂S

∂Ẑ

= Uk(φ)kr(S+)−φ
+S+Żf, (C20)

where the constant comes from the matching condition. If we
now make use of pc = S−α , kr = S

β and take β = 2, α = 1,
then Eq. (C20) becomes

∂S

∂Ẑ
= S2
− S2
+−ψ(S− S+), (C21)

where ψ = φŻf
Uk(φ) , which can be integrated to give

S =
ψ

2
+

2S+−ψ
2

tanh
{

arctanh
(

ψ

ψ − 2S+

)
−

2S+−ψ
2

Ẑ

}
, (C22)

which is similar to the result derived by Gray (1996).

Appendix D: Saturation fronts

Here we calculate the motion of the fully saturated fronts for
isothermal conditions with fixed porosity φ = φ0e

−Z/Z0 , as
in Sect. 3.3. We again make use of dimensionless variables.
In the time before full saturation initiates, and in the limit
B� 1, conservation of water at the wetting front Zf(t) is
given, as in the Appendix C with θ∞ = 0, by

R−φfSfŻf = 0, (D1)

where φf(t)= φ0e
−Zf/Z0 is the porosity at the front and Sf

is the saturation. Using permeability k(φ)= φ3 and relative
permeability kr(S)= S

2, we can calculate the saturation in-
duced by the rainfall as

Sf =

(
R

Uφ3
f

)1/2

. (D2)

Thus, the initial evolution equation for the front before full
saturation is

Żf =
√
URφ0 exp

{
−
Zf

2Z0

}
, (D3)

which can be integrated to give

Zf = 2Z0 ln
{

1+
√URφ0

2Z0
t

}
. (D4)
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We can therefore calculate the position of the front, and
the time, at which full saturation occurs by setting Sf = 1.
This gives

Z1 =
Z0
3

ln

{
φ3

0U
R

}
and t1 =

2Z0
√URφ0

(φ3
0U
R

)1/6

− 1

 .
(D5)

Now in the fully saturated region, between the upper and
lower saturation fronts Zu(t) < Z < Zl(t), we have

Uk(φ)
(

1−
∂pw

∂Z

)
= qs, (D6)

where qs is the water flux in the fully saturated region, which
is constant since there is no compaction. Rearranging and
integrating again, using pw(Zu)= pw(Zl), gives

Zl−Zu =
qs

U

Zl∫
Zu

dy
k(φ)

, (D7)

which determines the flux as

qs =
3φ3

0U(Zl−Zu)

Z0
[
e3Zl/Z0 − e3Zu/Z0

] . (D8)

Since there is no melting–refreezing, water conservation
across the lower front states that

qs−φlŻl = 0. (D9)

The equivalent jump condition on the upper front is

qs−φuŻu = R−φuSuŻu, (D10)

where Su = (R/Uφ3
u)

1/2 as before. Thus, once full saturation
is initiated, we must solve the ODEs:

Żl =
qs

φl
and Żu =

qs−R

φu

[
1−

(
R

Uφ3
u

)1/2
] with

qs =
3φ3

0U(Zl−Zu)

Z0
[
e3Zl/Z0 − e3Zu/Z0

] , (D11)

subject to the initial conditions

Zu = Zl = Z1 at time t = t1. (D12)

In dimensional form, these are the same as Eq. (41), and the
solutions are compared to the full numerical solution using
the enthalpy method in Fig. 5.
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