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Modeling channelized and distributed subglacial drainage
in two dimensions
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[1] We present a two-dimensional Glacier Drainage System model (GlaDS) that couples
distributed and channelized subglacial water flow. Distributed flow occurs through linked
cavities that are represented as a continuous water sheet of variable thickness.
Channelized flow occurs through Röthlisberger channels that can form on any of the
edges of a prescribed, unstructured network of potential channels. Water storage is
accounted for in an englacial aquifer and in moulins, which also act as point sources of
water to the subglacial system. Solutions are presented for a synthetic topography
designed to mimic an ice sheet margin. For low discharge, all the flow is accommodated
in the sheet, whereas for sufficiently high discharge, the model exhibits a channelization
instability which leads to the formation of a self-organized channel system. The random
orientation of the network edges allows the channel system geometry to be relatively
unbiased, in contrast to previous structured grid-based models. Under steady conditions,
the model supports the classical view of the subglacial drainage system, with low
pressure regions forming around the channels. Under diurnally varying input, water flows
in and out of the channels, and a rather complex spatiotemporal pattern of water pressures
is predicted. We explore the effects of parameter variations on the channel system
topology and mean effective pressure. The model is then applied to a mountain glacier
and forced with meltwater calculated by a temperature index model. The results are
broadly consistent with our current understanding of the glacier drainage system and
demonstrate the applicability of the model to real settings.
Citation: Werder, M. A., I. J. Hewitt, C. G. Schoof, and G. E. Flowers (2013), Modeling channelized and distributed subglacial
drainage in two dimensions, J. Geophys. Res. Earth Surf., 118, doi:10.1002/jgrf.20146.

1. Introduction
[2] Water movement beneath glaciers and ice sheets is

important because of its influence on ice flow [e.g., Iken and
Bindschadler, 1986; Kamb, 1987], its contribution to glacial
erosion [e.g., Iverson, 2012], to catchment hydrology, sub-
glacial biology [e.g., Siegert et al., 2001], and because of the
hazard potential of glacier outburst floods [e.g., Nye, 1976].
Renewed interest has been generated recently by the still
poorly understood link between surface melt and ice sheet
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dynamics [e.g., Joughin et al., 2008] and its implications
for future sea level rise [IPCC, 2007]. In particular, recent
observations of the Greenland Ice Sheet suggest that melt-
water produced on the ice surface can significantly alter the
speed at which the ice moves [e.g., Hoffman et al., 2011;
Bartholomew et al., 2012].

[3] Where it occurs, surface melting is usually the pre-
dominant source of water, whereas meltwater fluxes pro-
duced by geothermal or frictional heating at the bed are
typically orders of magnitude smaller. Our attention is
focused primarily on this situation, which is relevant for
most alpine glaciers as well as for the margins of the Green-
land Ice Sheet. Surface meltwater typically collects into
streams before disappearing into crevasses or moulins. It is
transported englacially in channels and fractures and even-
tually reaches the bed, where it flows through a subglacial
drainage system to the terminus, often reemerging in a sin-
gle or few streams [see Fountain and Walder, 1998, and
references therein].

[4] The subglacial drainage system appears to exert a
key control on ice dynamics, as well as being central to
other aspects of glacial hydrology. Particularly important
is the distinction between two broad categorizations of the
drainage system: a slow, distributed system and a fast,
channelized system, which forms during periods of high
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discharge. The distributed system may comprise flow
between cavities that open behind bedrock bumps due to ice
sliding, a so-called “linked cavity system” [Walder, 1986;
Kamb, 1987], a water sheet of more or less uniform thick-
ness [Weertman, 1972; Flowers and Clarke, 2002; Creyts
and Schoof, 2009], as well as permeable subglacial till
[Shoemaker, 1986]. Channelized drainage occurs most com-
monly through conduits melted into the base of the ice,
known as Röthlisberberger (R) channels [Röthlisberger,
1972; Nye, 1976]. Channels may also be incised into the
bedrock or sediments [Nye, 1973; Walder and Fowler, 1994;
Ng, 2000]. Both distributed and channelized systems may
be possible whether the glacier bed is hard, i.e., bedrock, or
soft, i.e., sediments.

[5] The goal of this work is to integrate both distributed
and channelized drainage in a two-dimensional (2-D) model.
Most previous models that combine both drainage mecha-
nisms have been zero-dimensional “box” models [Clarke,
1996] or one-dimensional “flow-line” models. For example,
Flowers et al. [2004] combined a distributed water sheet in
parallel with a series of channels, and Kessler and Anderson
[2004] described discrete drainage pathways that comprise
a mixture of cavities and channels, allowing a transition
between distributed and channelized modes.

[6] On the other hand, most previous 2-D models include
only a distributed component [e.g., Flowers and Clarke,
2002; Johnson and Fastook, 2002; Le Brocq et al., 2009].
Arnold and Sharp [2002] used a model that incorporates
both distributed and channel flow, but assumed a steady
state in which only one or the other operates. More recently,
Schoof [2010] presented a 2-D network of discrete conduits
that could behave as both channels and cavities. The individ-
ual conduits in the model are similar to the ones in Kessler
and Anderson [2004] and to those originally proposed by
Walder [1986]. Schoof’s [2010] treatment allows for the for-
mation of an arborescent channel system when the discharge
is sufficiently large. However, the computations were done
only on a rectangular grid of individual conduits, which
strongly affects the morphology of the arborescent drainage
system that emerges. For practical simulations, this discrete
approach is hampered by the need to resolve individual flow
paths of the distributed system, which we expect to be on
a scale of meters. A different approach to represent the dis-
tributed system was used by Creyts and Schoof [2009] who
described flow through a sheet of water with the ice roof
supported by rock clasts of different sizes. A mathematically
similar model was presented by Hewitt [2011] who used a
water sheet to represent many evolving linked cavities aver-
aged over a suitably large patch of the bed that were coupled
to a single channel. A recent study by Hewitt [2013] has inte-
grated such a linked-cavity sheet with a structured channel
network (similar to Schoof ’s [2010] approach) to investi-
gate the coupling with ice dynamics. The two papers, Schoof
et al. [2012] and Hewitt et al. [2012], introduced a coupled
channel and sheet model with the added complication of free
surface flow at atmospheric pressure and ice uplift due to
hydraulic jacking. However, their numerics only addressed
the one-dimensional problem.

[7] The glacier drainage system model GlaDS presented
in this paper combines water flow through a sheet, derived
as averaged linked cavities, with flow through a network
of conduits that lie on an unstructured numerical mesh. It

Table 1. Parameters and Values Used in Synthetic Model Runsa

Description Symbol Value Units

Acceleration due to gravity g 9.81 m s–2

Latent heat L 3.34� 105 J kg–1

Ice density �i 910 kg m–3

Water density �w 1000 kg m–3

Pressure melt coefficient ct 7.5� 10–8 K Pa–1

Heat capacity of water cw 4.22� 103 J kg–1 K–1

First sheet flow exponent ˛ 5/4
Second sheet flow exponent ˇ 3/2
First channel flow exponent ˛c 5/4
Second channel flow exponent ˇc 3/2
Sheet conductivityb k 0.01 m7/4 kg–1/2

Channel conductivityc kc 0.1 m3/2 kg–1/2

Glen’s n n 3
Ice flow constant cavities QA 5� 10–25 Pa–n s–1

Ice flow constant channels QAc 5� 10–25 Pa–n s–1

Basal sliding speed ub 10–6 m s–1

Sheet width below channeld lc 2 m
Cavity spacing lr 2 m
Bedrock bump height hr 0.1 m
Englacial void ratio ev 10–3

Moulin cross-sectional area Am 10 m2

Bed elevation B m
Ice thickness H m
Sheet input m m s–1

Moulin input Qs m3 s–1

aFirst section lists physical constants, second section lists model parame-
ters, some of which may be spatially varying, and third section lists spatially
varying model inputs.

bThe stated units are for ˛ = 5/4, ˇ = 3/2, in general m2ˇ–˛ s2ˇ–3 kg1–ˇ .
cThe stated units are for ˛c = 5/4, ˇc = 3/2, in general m2ˇc–2˛c+1

s2ˇc–3 kg1–ˇc .
dThis contributes to channel melt.

therefore builds on the earlier models of Schoof [2010]
and Hewitt [2011], combining the ability of the former to
describe a channelized drainage system, with the continuum
formulation of the distributed system of the latter. The usage
of an unstructured mesh allows channels to form without
directional bias, yielding what we believe is a truer represen-
tation of the real system than what is possible with a struc-
tured grid as in Schoof [2010] and Hewitt [2013]. The sheet
description of the distributed system allows for simulations
on larger domains than is possible with a purely network-
based model. We also add an englacial storage component,
as well as input to moulins that route the water to the bed at
localized points [cf. Schoof, 2010]. This type of hydrology
model allows for a two-way coupling to an ice-flow model
through effective pressure and sliding speed as is demon-
strated in Hewitt [2013]. The aim of the paper is to introduce
the model’s physics, to clearly lay out its mathematical struc-
ture, to investigate its behavior with some synthetic exam-
ples, to apply it to an alpine glacier, and to discuss the results
in light of previous observational work. Readers less inter-
ested in the mathematical details should skim over section 2
and focus on the results and discussion in the sections
that follow.

2. Model Description
[8] The model is posed on a two-dimensional domain �

with boundary @�, on which the glacier geometry is spec-
ified by the bed elevation B = B(x, y) and the ice thickness
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Table 2. Variables and Unitsa

Description Variable Units

Hydraulic potential � Pa
Channel discharge Q m3 s–1

Channel cross-sectional area S m2

Sheet discharge q m2 s–1

Sheet thickness h m
Time coordinate t s
Along edge coordinate s m
Normal vector n m
Test function � Pa
Englacial storage he m
Hydraulic potential of bed �m Pa
Overburden hydraulic potential �0 Pa
Effective pressure N Pa
Cavity opening rate w m s–1

Cavity closure rate v m s–1

Channel dissipation … W m–1

Channel press-melt „ W m–1

Channel closure rate vc m2 s–1

Sheet flow beneath channel qc m2 s–1

Water volume in moulin Vm m3

aFirst section lists dependent variables, second section lists coordi-
nates and miscellaneous variables, third section lists variables of derived
quantities.

H = H(x, y). Tables 1 and 2 summarize the variables and
parameters.

[9] The hydraulic potential at the bed is defined by

� = �m + pw, (1)

with pw the water pressure, and with the elevation potential

�m = �wgB, (2)

in which �w is the density of water and g is acceleration due
to gravity. The effective pressure is defined by

N = pi – pw = �0 – �, (3)

with the ice overburden pressure given by pi = �igH and the
overburden hydraulic potential by �0 = �m + pi. If this model
were combined with a Stokes ice flow model, pi should be
replaced by the normal stress �nn at the bed.

2.1. Sheet Model
[10] The model of the water sheet follows Hewitt [2011]

and is a continuum description of a linked cavity drainage
system. We adopt cavities as the generic description of
the distributed system because their behavior appears to
be broadly consistent with many field measurements of ice
uplift and subglacial water pressure and their mathematical
description is well established. The continuum description is
reached by averaging the thickness of the discrete links and
cavities over a suitably large patch of the bed, on the order of
100 m2, to give an average sheet thickness h. Simple param-
eterizations of sliding and ice creep are used to describe
how the cavities, and therefore the averaged sheet thickness,
evolve in time. In an averaged description the distinction
between different types of distributed systems is much less
clear than at a microscopic level, so although our descrip-
tion is most obviously applicable to hard beds, the resulting
model may be appropriate for soft beds too.

[11] Conservation of water mass, assuming incompress-
ibility and saturation, demands that

@h
@t

+ r � q = m, (4)

where h is the water sheet thickness, q is the discharge, and
m is a prescribed source term, representing distributed sur-
face input as well as basal melt. The discharge is related to
the gradient of the hydraulic potential through

q = –kh˛ |r� |ˇ–2r�, (5)

where k is a constant, ˛ > 1, and ˇ > 1. We take ˛ = 5/4 and
ˇ = 3/2 which corresponds to fully turbulent flow described
by the empirical Darcy-Weisbach law.

[12] The time evolution of the sheet thickness is given by

@h
@t

= w – v, (6)

for some functions w and v, which parameterize the rate
of cavity opening and closing, respectively [Walder, 1986;
Kamb, 1987]. The opening is due to sliding over bumps in
the bed, and is related to the basal sliding speed ub through

w(h) =
�

ub(hr – h)/lr if h < hr
0 otherwise, (7)

where hr is the typical bedrock bump height and lr the typical
horizontal cavity spacing. The cavities close by viscous ice
deformation which is related to the effective pressure N by

v(h, N ) = QAh|N|n–1N, (8)

where QA is the rheological constant of ice multiplied by an
order-one geometrical factor that depends on the shape of
the cavities, and n is the exponent in Glen’s law.

[13] This model of distributed drainage is certainly not the
only possibility. For instance, one alternative was proposed
by Flowers and Clarke [2002] which Hewitt [2013] com-
pares to this approach. Also, within our framework, other
functional relations for the opening and closing rates could
be used to represent other types of distributed subglacial
drainage. However, care must be taken that the opening term
does not lead to unbounded localization (i.e., channelization)
of the water flow as this will make the problem mathe-
matically ill posed: the sheet becomes infinitely thick in an
infinitesimally narrow region. For instance a melt opening
term due to dissipation of potential energy has this property
and indeed this is the process causing channelization. It has
been shown by Schoof et al. [2012] that a linked cavity sys-
tem where the links behave like mini R channels, i.e., they
open by melt, is necessarily unstable and flow will either
shutdown or localize/channelize. Thus, in a stable linked
cavity system, the links need to open due to another process,
for example, due to sliding as used in this model. To still
model channelized drainage (cf. section 2.4) a melt opening
term is necessary, but by restricting its action to a network
of conduits, we avoid the problem above.

[14] Due to the omission of the melt term, energy is
not conserved in the sheet model. However, as a dissi-
pation dominated distributed system is unstable, it will
evolve either to a sheet where sliding is the leading opening
mechanism or to a channelized system, both of which this
model captures.
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[15] Note that we impose no restrictions on the values
that the water pressure can attain. This is in contrast to
the model in Schoof et al. [2012] and Hewitt et al. [2012]
which assumes that an air/vapor gap forms when the pres-
sure drops to zero, and instantaneous ice uplift occurs when
pressure exceeds overburden. However, the numerical pro-
cedure used in those studies is prohibitively expensive to use
in 2-D.

2.2. Englacial Storage
[16] Although the sheet can store a limited amount of

water, changes in water storage can only happen on the rel-
atively slow timescale dictated by cavity opening due to
sliding (equation (7)). This is not fast enough to explain
many storage phenomena observed on glaciers, such as the
delay between daily maximal surface melt water input and
peak proglacial discharge, so we also include a faster storage
mechanism in which the volume of water stored is a func-
tion of water pressure. The stored volume per unit area of
the bed, he, needs to be included in the mass conservation
equation (4):

@h
@t

+
@he

@t
+ r � q = m. (9)

Specifically, we envisage that this storage occurs in an
englacial aquifer with a void ratio ev [e.g., Clarke, 1996;
Fountain et al., 2005; Huss et al., 2007], for which

he( pw) = he(� – �m) = ev
� – �m

�wg
. (10)

2.3. Channel Model
[17] We first describe the equations governing a single

channel, and then show how the channels are connected to
each other and to the sheet. Channels are modeled as R chan-
nels [Röthlisberger, 1972; Nye, 1976] which close due to ice
creep, just like the sheet, but enlarge due to melting. Melting
is driven by dissipation of potential energy in the water flow
and by changes of the pressure melting point of the ice.

[18] For a single channel, mass conservation demands

@S
@t

+
@Q
@s

=
„ –…
�wL

+ mc, (11)

where S is the channel cross-sectional area (assumed always
to be filled with water), Q is the discharge, s is the horizontal
coordinate along the channel, „ is the rate of dissipation of
potential energy per unit length of channel, … is the rate of
change of sensible heat per unit length of channel due to
changes in the pressure melting point, and L is the latent heat
of fusion. The source term mc represents water entering the
channel from the adjacent sheet.

[19] The discharge is again related to the hydraulic poten-
tial gradient via a turbulent flow parameterization,

Q = –kcS˛c

ˇ̌̌
ˇ@�@s

ˇ̌̌
ˇ
ˇc–2

@�

@s
, (12)

where kc is a constant. As for the sheet, this is equivalent to
the Darcy-Weisbach relation for our choice of the parameters
˛c = 5/4 and ˇc = 3/2. For a semicircular channel kc can be
related to the Darcy-Weisbach friction factor fr by

k2
c =

8
�wfr(2/�)1/2(� + 2)

. (13)

Note that sometimes a friction factor under the same name
is used which is f = fr/8. Alternatively, a Manning rela-
tion could be used instead by setting ˛c = 4/3 and
k2

c = [�w g n02(2/�)2/3(� + 2)4/3]–1, where n0 is the Manning
roughness.

[20] The time evolution of S is given by

@S
@t

=
„ –…
�iL

– vc (14)

with opening rate („ – …)/�iL and closure rate vc. The
potential energy dissipated per unit length and time is
given by

„ =
ˇ̌̌
ˇQ @�

@s

ˇ̌̌
ˇ +
ˇ̌̌
ˇlcqc

@�

@s

ˇ̌̌
ˇ , (15)

where qc = –kh˛
ˇ̌̌
@�

@s

ˇ̌̌ˇ–2
@�

@s is approximately the discharge
in the sheet flowing in the direction of the channel. The
first term in (15) represents the contribution from the water
flowing in the channel, and the second term represents a con-
tribution from the water flowing in a width lc of the sheet
lying underneath the channel. This second term is the dis-
sipation that was neglected in (6); it allows for flow in the
sheet to cause a channelization instability even when the
channel size is initially zero, provided the flow in the sheet is
sufficiently large [cf. Hewitt et al., 2012]. Thus, channels can
nucleate without having to impose a minimal channel size
as was necessary in some previous models [e.g., Flowers
et al., 2004].

[21] We assume that the water is always at the pres-
sure melting point [e.g., Röthlisberger, 1972; Nye, 1976],
so changes in the water pressure must be accompanied by
a corresponding amount of melting or freezing at the rate
–…/�iL. This process is important, for instance, it reduces
the opening rate of a level channel by a factor of 1/3, and
is instrumental in glaciohydraulic supercooling [e.g., Creyts
and Clarke, 2010]. However, for water flowing down a suf-
ficiently steep slope, it causes ice melt which in turn can
lead to channelization. Thus, it is also only included in the
channel and not the sheet model.

[22] The sensible heat change of the water due to this
process is given by

… = –ctcw�w (Q + f lcqc)
@pw

@s

= –ctcw�w (Q + f lcqc)
@

@s
(� – �m), (16)

where ct is the Clapeyron slope, cw is the specific heat capac-
ity of water, and where we again account for the contribution
from a part of the sheet underneath the channel of width lc, as
above for„. We cannot allow for the channel size to become
negative, so the contribution of the sheet flow to refreezing
is conditional on the switch

f =
�

1 if S > 0 or qc
@pw
@s > 0

0 otherwise.
(17)

[23] Finally, the closure rate of the channel due to viscous
creep is

vc(S, N ) = QAcS|N |n–1N. (18)
where QAc is the rheological constant for ice multiplied by an
order-one factor that depends on the cross-sectional geom-
etry of the channel. The geometrical factor for the channels
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Figure 1. A view of part of a network � with a moulin
connecting to one of the nodes. The network has edges �j
and nodes ƒk, partitioning the domain � into subdomains
�i. The channels are constrained to lie on the edges and
the sheet occupies the subdomains. The moulin has Qs sur-
face water input, Qm discharge into network node, and a
volume Vm.

is probably different from the one included in QA used for
the sheet; however, we use the same value for lack of more
detailed knowledge.

2.4. Channel Network
[24] The arrangement of channel segments to form a

network closely follows the model of Schoof [2010], but
additionally, the exchange of water with the sheet has to
be accounted for. Channel segments �j are arranged into a
network � , which partitions the whole domain � into sub-
domains �i as depicted in Figure 1. The channels intersect
and exchange water with each other at the network nodes,
ƒk, and exchange water along their length with the sheet
in the adjacent subdomains �i1 and �i2 . The water pres-
sure is assumed to be the same in the channels and the
adjacent sheet.

[25] We use the term (channel) network exclusively to
refer to � . The term channel system will be used to describe
the subset of � on which channels of appreciable size have
formed. Finally, we reserve the word mesh to refer to the par-
titioning of the domain used for the numerical discretization.
In our numerics the edges of the mesh are identical to �;
however, implementations where � is a subset of the mesh
edges are also feasible.

[26] Water conservation at each of the network nodes
requires that the discharge flowing into the node from the
channels must sum to zero (provided there is no other inflow
into the node), i.e., X

j

Q k
j = 0, (19)

where Qk
j is the discharge in channel j flowing into node

k, and the sum is over all channels connected to that node.
Similarly, the channel source term mc must balance the flow
of water out of the adjacent sheet, so

mc = q � n|@�i1
+ q � n|@�i2

, (20)

for each channel, where n is the normal to the channel edge.

2.5. Moulins
[27] A significant proportion of surface melt water can

enter the glacier through moulins which may deliver water
directly to the channelized drainage system. This process is
included in the model by connecting cylindrically shaped
moulins to some of the nodes of the channel network
(Figure 1). Mass conservation at these network nodes is
therefore modified to X

j

Q k
j = –Q k

m, (21)

where Qk
m is the discharge out of the moulin into the channel

network. As well as conducting the surface input to the bed,
moulins can also store a volume of water that depends on the
subglacial water pressure Vm = Vm(pw) [Clarke, 1996]. We
use a linear relation for Vm,

Vm( pw) = Am
pw

�wg
= Am

� – �m

�wg
, (22)

where Am is the cross-sectional area of the moulin. This type
of relation was shown by Werder et al. [2010b] to be consis-
tent with tracer-experiment data. Thus, the discharge out of
each moulin is

Qm = –
@Vm

@t
+ Qs = –

Am

�wg
@�

@t
+ Qs, (23)

where Qs is the (prescribed) rate of surface water input.

2.6. Summary of the Model Equations
[28] On each subdomain �i, the sheet equations apply

which are obtained by combining (6), (9), and (10) to give

ev

�wg
@�

@t
+ r � q + w – v – m = 0, (24)

@h
@t

= w – v, (25)

where q(h,r�) is given by (5), w(h) by (7), and v(h, N) by
(8). The first equation is a parabolic equation for � (if there is
no storage, i.e., ev = 0, it becomes elliptic), while the second
governs the time evolution of h in a purely local fashion (i.e.,
no spatial derivatives of h are present).

[29] The sheet subdomains are separated by channel edges
�j on which the channel equations apply which result from
combining equations (11), (12), and (14) to give

@Q
@s

+
„ –…

L

�
1
�i

–
1
�w

�
– vc – mc = 0, (26)

@S
@t

=
„ –…
�iL

– vc, (27)

where Q(S, @�/@s) is given by (12), „(S, h, @�/@s), by
(15), …(S, h, @�/@s) by (16), and vc(S, N) by (18). The first
equation is an elliptic equation for �, while the second gov-
erns the time evolution of S in again a purely local fashion
(i.e., no spatial derivatives of S are present).

[30] The channels are assembled into a network by enforc-
ing water conservation at the nodes, where input from
moulin can also occur (equation (21)). Finally, the channel
network and sheet subdomains are all coupled via the mass
exchange equation (20).
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2.7. Boundary Conditions
[31] Boundary conditions on � must be applied around the

domain boundary @�. Conversely, h and S do not require any
boundary conditions as their evolution equations, (25) and
(27), do not contain their spatial derivatives. The physically
relevant boundary conditions are either a prescribed pressure
or a prescribed water flux, both of which can be expressed
as conditions on the hydraulic potential �. Thus, a portion
@�D of @� has pressure (i.e., Dirichlet) boundary conditions
(usually atmospheric pressure)

� = �D on @�D, (28)

corresponding to a specific potential �D, while a portion @�N
has a Neumann boundary condition

@�

@n
= ‰N on @�N, (29)

which corresponds to a specific discharge

qN = –kh˛ |r� |ˇ–2‰N. (30)

We do not allow channels to cross the boundary and thus
no analogous flux conditions for them exist. If a prescribed
channel inflow (or outflow) at a boundary is desired, it
can be achieved through the term Qm, i.e., using the same
mechanism as for moulin inflow.

[32] Typically, boundaries where outflow occurs have a
Dirichlet boundary condition at which atmospheric pressure
is applied, and “upstream” boundaries where inflow occurs
have a Neumann boundary condition at which the inflow
(often zero) is prescribed. Applying pressure boundary con-
ditions where outflow is expected can sometimes lead to an
unintended pressure-driven inflow and care must be taken to
ensure the correct physical condition is enforced.

2.8. Weak Formulation
[33] A convenient way to solve the coupled model

equations for � is to write them in weak form [cf. Hewitt
et al., 2012]; this enables the awkward coupling exchange
terms to be dealt with naturally and automatically (see, e.g.,
Elman et al. [2005] for an explanation of weak forms in the
context of finite elements, which we use for the numerics).
For each sheet subdomain �i, we multiply (24) by a test
function � . Integrating by parts then gives, for each �i,Z

�i

�
�

ev

�wg
@�

@t
– r� � q + � (w – v – m)

�
d�

+
Z
@�i

� q � n|@�i d� = 0, (31)

where n is the outward normal to the subdomain (and also
normal to the corresponding channel edges).

[34] Similarly, multiplying the channel equation (26) by �
and integrating by parts over each of the channel segments
�j gives

Z
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�
–
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�
„ –…
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�
1
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–
1
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��
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�Qj

�+
– = 0, (32)

where []+
– represents evaluation at the two ends of �j.

[35] Summing these two expressions for all sheet subdo-
mains and channel edges amounts to an integral over the

whole domain �. In performing this sum, notice that apart
from the exterior boundaries @�, each @�i is a collection of
channel segments �j, so the boundary terms in (31) can be
rewritten as integrals along �j and around the outer boundary
@�. The result is

n�X
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�
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n�X
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�Q k
j = 0,

where n�, n� , and nƒ are the number of subdomains, edges
not on @�, and nodes. Note that, unlike in standard weak
forms used for finite element formulations, we integrate and
sum over all edges of the mesh and not just the ones lying
on the boundary.

[36] However, the definition of the channel source mc as
the exchange with the sheet, cf. (20), means that the terms
in the second sum all vanish. The conservation conditions at
the network nodes (21) mean that the final sums also van-
ish, except at moulin nodes. Moreover, the test function �
is required to satisfy homogenous boundary conditions (i.e.,
� = 0) on the Dirichlet parts of the outer boundary @�D, and
the discharge qN is prescribed on the remaining part @�N.
Thus, we have

X
i

Z
�i

�
�

ev

�wg
@�
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– r� � q + � (w – v – m)

�
d�

+
X

j

Z
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�
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Q + �

�
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�
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��
d�

+
Z
@�N

� qN d� –
X

k

�

�
–

Ak
m

�wg
@�

@t
+ Q k

s

�
= 0, (33)

where, for completeness, we recall that q(h,r�), w(h),
and v(h,�) are given by (5), (7), and (8), Q(S, @�/@s),
„(S, h, @�/@s), …(S, h, @�/@s), and vc(S,�) are given by
(12), (15), (16), and (18). Combining this equation with the
evolution equations (25) and (27) for h and S, completes
the model.

[37] The water exchange between sheet and channels
has canceled out and vanished from the weak form of the
equations. It is implicitly accounted for through the assump-
tion of continuous pressure between sheet and channels:
water exchange occurs at whatever rate is needed to main-
tain equal pressure, and thus the solution for � is such that
the exchange terms sum to zero. The exchange rate can then
be recovered a posteriori from the solution. This is differ-
ent from some previous models in which the exchange was
explicitly prescribed as a function of the pressure differ-
ence between the channel and sheet [Flowers et al., 2004;
Hewitt and Fowler, 2008], where a separate � is required for
each system.
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Table 3. Summary of Water Sources for Synthetic Model Runs

Spatial Temporal
Model Run Water Input Dependence Dependence

SHEET sheet elevation none
MOULINS moulins elevation none
DIURNAL moulins elevation diurnal
Sensitivity tests sheet none none

2.9. Numerical Solution
[38] We use an irregular triangular mesh to partition the

domain �, and use the edges of these elements to form the
unstructured channel network � . Equation (33) can be con-
sidered a parabolic equation for �, which is solved using
the finite element method [e.g., Elman et al., 2005]. First-
order elements are used to discretize � and h, while S is
discretized with a constant value along each edge. The inte-
grals in the first sum of (33), over �i, are discretized in
the standard way. The integrals in the second sum, over �j,
are unusual because, in standard partial differential equation
problems, integrals along the one-dimensional edges vanish.
In this problem, however, they provide an essential contri-
bution and require the integration of derivatives along mesh
edges. This is relatively straightforward to implement with
piecewise linear finite elements.

[39] Time stepping is performed either with a fully
implicit time step, using the MATLAB ode15s solver, or
with an operator splitting scheme. For the latter, first the �-
equation (33) is stepped forward by ıt with a backward Euler
step; then, using the new values for �, the two evolution
equations (25) and (27) for h and S are advanced by ıt using
a forward Euler step, a second-order leapfrog step, or—if
there is no storage—with the MATLAB ode113 solver. For
the first two, a simple assessment scheme is used to adapt
the time step ıt according to a local error estimate. The
model is coded in MATLAB and the meshes are generated
using Triangle [Shewchuk, 1996], which produces meshes
with uniformly distributed edge orientations.

3. Synthetic Model Experiments
[40] We perform model experiments on a 60 km by 20 km

rectangular domain with a synthetic topography comprising
a flat bed (B = 0) and a parabolic surface profile (H /

p
x)

such that the ice thickness increases from zero at x = 0 to
1500 m at x = 60 km. The scale is similar to a smaller catch-
ment of the Greenland Ice Sheet, such as the Leverett glacier
catchment of �600 km2 [Bartholomew et al., 2012]. Zero
flow is imposed on the three interior boundaries, while the
water pressure is prescribed to be atmospheric at the fourth
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Figure 2. Time evolution of model run SHEET: map view of domain with terminus at x = 0 km show-
ing snapshots of the development of the channel system at 50, 150, and 500 days with contours of the
hydraulic potential (interval 1 MPa). Thick lines are plotted for larger channels (Q � 20 m3s–1), and thin
lines for smaller channels (20 > Q � 1 m3s–1). The steady state configuration of the channel system is
shown in Figure 3a.
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Figure 3. Steady state of model run SHEET: (a) map view of the domain with channel system with
thick lines for larger channels (Q � 20 m3s–1) and thin lines for smaller channels (20 > Q � 1 m3s–1);
(b) width-integrated quantities against distance from terminus: sheet discharge qw (blue line), channel
discharge Qw (dash dotted), total discharge (black), total cumulative input (dashed, superimposed on total
discharge), and sheet discharge on subdomains q0w (see text for definitions); (c) effective pressure N at
nodes: red crosses indicate sheet nodes, smaller blue, and larger black dots indicate nodes through which
a smaller and larger channel runs. (see also Animation S1 in the supporting information).

edge (x = 0) corresponding to the ice margin. The different
model runs are summarized in Table 3, and parameter values
are given in Table 1.

[41] The three runs SHEET, MOULINS, and DIURNAL
use a mesh with �10,000 nodes and �30,000 edges with
a mean edge length of 400 m. They are forced by surface
melt that varies with elevation, decreasing from 14 cm d–1

at zero elevation with a lapse rate of –10 cm d–1 km–1 until
it reaches 0 at x � 52 km. This corresponds to a total
input of �600 m3s–1, again chosen to be comparable to
that of a smaller Greenland Ice Sheet catchment. The runs
differ in how this meltwater is input into the system: in
SHEET, a steady supply is fed to the distributed system
(via the term m in (4)); in MOULINS, the steady supply
is fed into the channel nodes through 50 moulins (via the
term Qs in (23)); and in DIURNAL, the same moulin input
is modulated by a sinusoidal diurnal variation. In addition
to the surface input, all model runs include a small uni-
form input into the sheet of 1 mm a–1 intended to represent
basal melt.

[42] After briefly illustrating the time evolution leading
to the steady state of SHEET, we concentrate primarily on
the steady states themselves, or on the periodic state in
the case of DIURNAL. For SHEET and MOULINS, the

simulations are run for 4000 and 8000 days (after�500 days
changes are only minor) starting with an initial condition
of a uniformly thick sheet (h = 0.05 m) and zero chan-
nel cross-sectional area; for DIURNAL, we take the final
state of MOULINS and run for 50 diurnal cycles, presenting
the results from the last of those cycles. In the supporting
information, we provide animations of most of the figures
showing the time evolution into the steady state or under the
periodic forcing.

[43] The influence of different random networks on the
steady state channel system is investigated by running
MOULINS with three different random meshes with �4000
nodes. Finally, we explore the parameter dependence of the
model with several runs with all parameters but the exam-
ined one at their defaults. These runs are performed using
the same domain but a spatially uniform input and a mesh
with �4000 nodes.

[44] Channels are allowed to form on all edges of the
mesh but only few will attain an appreciable size. To visu-
alize the channel system, we assign a threshold discharge
Q = 1 m3s–1 above which we classify an edge as a “channel”
and plot it in the figures. This threshold is arbitrary, how-
ever, the steady state channel system is almost invariant for
any threshold in the range 0.003–1 m3s–1.
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Figure 4. Model runs MOULINS and DIURNAL: Map views of part of the domain showing channel
discharge Q (blue lines), sheet-flow q direction and magnitude (arrows), contours of hydraulic potential
� (red lines, interval 0.5 MPa), surface catchment delineations (black dashed), moulins (location black
circle; water input scales with red dot size), and location of virtual experiments (crosses, cf. Figure 8).
(a) MOULINS (which is very nearly identical to the diurnal average of run DIURNAL); (b) DIURNAL
at midday; and (c) DIURNAL at midnight. (see also Animation S2 for MOULINS and Animation S3 for
DIURNAL).

3.1. Channel System Development: SHEET
[45] Figure 2 shows how the channel system evolves for

the model run SHEET from the channel-free initial state.
At first, channels grow on all of the network edges roughly
aligned with the water flow (cf. equation (15)) near the ice
margin (x = 0) where the discharge is largest (Figure 2a).
Major channels have formed after 150 days in the low-
ermost 10 km by capturing the discharge of the smaller
ones, which disappear. The randomness provided by the
unstructured mesh gives rise to the necessary perturbation
to initialize this process. At 500 days, the channel sys-
tem has nearly reached its steady state (cf. steady state in
Figure 3a). However, minor rearrangements of channels still
occur after more than 1000 days. Channelization causes the
large-scale subglacial water pressure to drop. For instance,
the 8 MPa contour moves about 4 km upstream, whereas the
unchannelized region experiences almost no pressure drop.

A channel influences the water pressure locally by carv-
ing a “valley” into the potential �. Thus channels divert the
sheet water-flow, which is perpendicular to the � contours,
toward them.

3.2. Steady State With Distributed Input: SHEET
[46] In the steady state of model run SHEET, there are

four major channels reaching up to �32 km, beyond where
there is only sheet flow (Figure 3a). Additional smaller chan-
nels begin closer to the margin between these main ones,
and at the terminus there is a total of 11 channels spaced
�2 km apart.

[47] The channel system is only slightly arborescent,
with smaller intervening channels preferentially continuing
straight down the main surface gradient rather than feeding
into the neighboring channels as tributaries. This is because
the pressure drawdown of channels is relatively small
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Figure 5. Model run MOULINS: layout as in Figure 3 with Figure 5a also showing moulin location
(blue circle) and water input (red dot, area scales with amount); Figure 5c shows empty blue squares
plotted for moulin nodes. (see also Animation S4).

compared to the background hydraulic gradient dictated by
the surface slope (cf. Figure 2c). Indeed, channel branching
occurs where the main channel deviates from the downs-
lope direction, so that the tributary channel does not have to
approach too obliquely.

[48] Figure 3b shows various discharge quantities across
the width of the domain: the channel discharge Qw is the sum
of discharge from all channels intersecting a particular cross
section, and the sheet discharge qw is the width integral of the
x component of q. Also shown are the individual contribu-
tions to qw from each of the sheet elements, q0w, multiplied by
the domain width. The scatter of q0w in the channelized region
is due to the water being captured and diverted in regions
of the sheet close to channels and thus both magnitude and
direction of q vary.

[49] A maximum sheet discharge qw of around 60 m3s–1

is reached where the major channels start, downglacier of
which the water is transferred increasingly into the channels.
Very near the terminus, qw increases again as the thin ice
limits creep closure and increases the sheet’s capacity, caus-
ing channels to leak a fraction of their water into the sheet
[cf. Schoof, 2010; Hewitt, 2011]. Total water input and total
discharge are equal across all cross sections, demonstrating
that the model conserves mass.

[50] Where there is only sheet flow, N decreases with
increasing discharge (Figure 3c); it reaches a minimum at the
transition to channelized flow at� 32 km and then increases
again, before finally dropping near the terminus due to
the boundary condition imposing atmospheric pressure at

x = 0. This behavior is consistent with the usual expecta-
tion of steady state drainage: effective pressure decreases
with increasing discharge when distributed flow prevails,
and increases with increasing discharge when channelized
flow prevails.

[51] At any cross section in the channelized region, N
has a wide scatter. It is higher in the larger channels
(black dots) than in smaller channels (blue dots) and even
lower in the intervening sheet (red dots), showing that
the channels create potential “valleys,” with intervening
high-pressure “ridges.” The pressure difference between val-
ley and ridges is not particularly large, consequently, the
potential gradient remains predominantly in the downslope
direction, and thus, as stated above, the network is only
slightly arborescent.

3.3. Steady States With Moulin Input: MOULINS
[52] In the MOULINS run, the surface input is fed into

50 moulins instead of into the sheet directly. Catchment
basins on the ice surface are generated by a Voronoi tessella-
tion of randomly chosen points, and the moulins are chosen
to sit at the lowest node contained within each Voronoi
cell (Figure 4). The input to each moulin is then taken as
the integral of the surface melt over its Voronoi cell. This
approach crudely mimics the surface and englacial routing
that occurs in reality, which is governed by finer details of
the surface topography and the location of streams, moulins,
supraglacial lakes, and crevasses [e.g., Banwell et al., 2012;
Clason et al., 2012].
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Figure 6. Model run DIURNAL: (left column, a1–c1) state of system at highest input (midday) and
(right column, a2–c2) state of system at lowest input (midnight), panels are described as in Figure 3. The
average over a diurnal cycle is very nearly identical to the results in Figure 5. (see also Animation S5).

[53] Subglacial channels nucleate at moulin locations and
tend to link moulins that are approximately aligned in the
downslope direction (Figure 5a). At the terminus there
are seven channels, compared to 11 for SHEET. Contin-
uous channels do not extend quite as far up glacier as
in the SHEET run due to the fact the catchment areas
of the moulins extend above them but not below. In the
upper regions where sheet flow prevails, the individual ele-
ments of sheet discharge q0w are more scattered than for
run SHEET, due to water spreading out into the sheet
from the injection points (Figure 5b). The water pres-
sure in the moulins in the upper parts of the domain
is higher than in the surrounding sheet (Figure 5c). In
contrast, nearer the terminus where larger channels have
developed, the moulin and channel pressures are gener-
ally toward the lower end of the pressure envelope (i.e.,
the higher values of effective pressure), similar to the
SHEET run.

[54] However, there are some exceptions to this, for
instance, the string of low values of channel effective
pressure that is visible in Figure 5c between �10 km and
20 km corresponds to a “leaky” channel located around
y � 6 km (Figure 5a); water from this channel slowly
spreads into the sheet and is ultimately transferred to
the neighboring channels. Figure 4a shows a close up of
this region which includes this and another leaky chan-
nel, located along the bottom and in the top right quad-
rant, respectively. The sheet discharge is indeed diverg-
ing from the channels, because the channels do not sit
in a pressure valley but on pressure ridges. All the leaky
channels start in the transition region between sheet and
channelized flow. This is indicative of their demise: the dis-
charge from the moulin is not quite enough to maintain
the channel.

3.4. Diurnally Varying Moulin Input: DIURNAL
[55] In the run DIURNAL the steady moulin input from

above is replaced by a diurnal sinusoid with the same mean
and with an amplitude equal to the mean. Figures 6 (left col-
umn) show the state of the drainage system at midday, when
the input is chosen to be largest, and Figures 6 (right column)
show the state at midnight when there is zero input. The
channel system geometry is essentially constant during a
diurnal discharge cycle, since the time scale for channel evo-
lution is longer than 24 h (Figures 6a1, 6a2). The discharge
carried within the channels can nevertheless change sub-
stantially (observe that the sections with thick lines carrying
the larger discharge differ between midday and midnight).
The most marked feature of Figure 6 is the change in chan-
nel pressure between midday and midnight. At midday, the
moulins and channels are all at a higher pressure than the
sheet, so act as a source driving water laterally outward. The
total channel discharge (Figure 6b1) is therefore decreasing
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Figure 7. Model run DIURNAL: Map view of diurnal
amplitude (max-min) of effective pressure (N) variation,
with channels (black lines), moulin locations (black circles),
moulin input (red dots scale with input at midday), and
location of virtual experiments (crosses, cf. Figure 8).
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Figure 8. Model run DIURNAL: a virtual glaciological
experiment of pressure and discharge measurements along a
longitudinal (L1-L2-L3) and transverse (T1-T2-T3) section
intersecting at T1/L2. (a) Map view of same area as in
Figure 4 with channels (blue lines), moulin locations and
inputs (red circles), and experiment locations (various mark-
ers; locations are also marked in Figure 4). Plots of time
series with corresponding markers at their extrema: (b) Q
normalized to its local mean in the channel at L1-L2-L3
and close to its proglacial outlet; (c) N at L1-L2-L3; (d) N
at T1-T2-T3; and (e) total water input (dash dotted), total
proglacial discharge (dashed), and mean of the effective
pressure N normalized to local atmospheric pressure (solid).

downstream between the large step increases due to the
water input at each moulin. In contrast, at midnight, the
channels are low pressure sinks drawing the water back
in from the surrounding sheet. The channel discharge then
increases much more smoothly with distance downstream
and is comparable to that of SHEET (Figure 3b).

[56] This contrasting behavior of channels acting as
sources and sinks to the sheet is particularly evident at the
moulin locations, where flow is nearly radially outward at
midday and radially inward at midnight (Figures 4b, 4c).
Similarly, the flow is generally away from the channels at
midday and toward them at midnight, although this is some-
what dependent on the distance from the next moulin and
the size of the channel. The pressure fluctuations are largest
near moulins and channels. Indeed the spatial pattern of the
diurnal pressure amplitude shows little variation at distances

more than �2 km from these features (Figure 7). This is due
to the damping effect of englacial storage setting the width
over which diurnal pressure changes can diffuse, i.e., a large
ev will decrease the region with a diurnal pressure signal.

[57] To look further into spatial discharge and pressure
patterns, we show time series of effective pressure and chan-
nel discharge at locations marked in Figure 8a. Figure 8d
shows effective pressure at three points along the transect
(T1-T2-T3) emanating from a moulin at T1. Figures 8b
and 8c show the time series of the effective pressure and
discharge along the longitudinal section (L1-L2-L3) cen-
tered at the same moulin. The effective pressure time
series might be considered analogous to one obtained from
field pressure measurements within boreholes drilled to the
glacier bed.

[58] The amplitude of the pressure change along the tran-
sect (Figure 8d) decreases with distance away from the
channel, as already discussed, but also incurs a progressive
phase lag of up to 6 h. This behavior is reminiscent of the
diffusive water pressure around a “variable pressure axis,”
found by Hubbard et al. [1995]. The variations along the
longitudinal section (Figures 8b and 8c) show a more com-
plex pattern. The pressure at the moulin (L2) and the lower
location (L3) are nearly in phase, but the upper location (L1)
lags by 4 h. The channel discharge is in phase with input (cf.
Figure 8e) at the moulin (L2) but in antiphase both above
and below. This behavior is due to the variations of the two-
dimensional flow field in the sheet and channels over the
course of the day: surface input at the moulin is largest at
noon and thus Q is largest then. Conversely, at the other two
locations, input is also due to the inflow from the sheet which
is largest at midnight (cf. Figure 4) and dominates over the
discharge advected along the channel. Thus, discharge in a
channel can vary both temporally and spatially in complex
and surprising patterns.

Figure 9. Channel system (Q > 1 m3s–1) for three model
runs with same parameters and inputs as for MOULINS but
with different random meshes. The mean effective pressure
N (MPa) and the maximal discharge of any channel Qmax
(m3s–1) are printed beside each panel.
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Figure 10. Channel system (Q > 1 m3s–1) for different parameter values. Beside each panel: the var-
ied parameter in bold, the mean effective pressure N (MPa), and the maximal discharge of any channel
Qmax ( m3s–1). (a–c) Varying default melt input by a factor mf; (d–f) varying channel conductivity kc
(m3/2 kg–1/2); and (g–h) changing the width of the sheet contributing to channel melt lc (m). The panels
with thicker borders (Figures 10b, 10f, 10g) are with default parameters as given in Table 1 and thus
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3.5. Mesh Dependence
[59] Changing the mesh, while keeping the number of

nodes constant, can produce considerable variation in the
average channel spacing, in particular when using dis-
tributed input and with no topography to guide the channels,
like in the model run SHEET. However, realistic topography
and moulin inputs will likely introduce larger perturbations
than the mesh and thus fix the channel locations in space.
This hypothesis is explored by comparing three model runs
with fixed moulin locations, as for the run MOULINS, but
on different meshes (Figure 9).

[60] The channel system is similar between the runs with
four to six major outlet channels. The domain-averaged
effective pressure is the same within less than 1%, and the
maximal discharge carried by any channel is within 2%.
These three runs also compare well to the run MOULINS
which used a finer mesh and produced five major out-
let channels with Qmax = 109 m3s–1 and a mean N of
1.75 MPa. The related issue of model convergence under
mesh refinement is examined in the Appendix A.

3.6. Parameter Dependencies
[61] The model contains several poorly constrained

parameters, some of which also vary spatially (Table 1).
The values used in the model runs SHEET, MOULINS, and
DIURNAL were chosen to illustrate the general behavior of
the model, and choosing other values can lead to qualitative
as well as quantitative differences. We describe and explore
some of the parameter dependencies, at least for steady
states. To this end, we present a few suites of model runs on
a mesh with �4000 nodes forced with a spatially and tem-
porally uniform input into the sheet, i.e., no moulins and no
elevation dependence. As for the previous runs, the default
total water input is �600 m3s–1 and the default parameters
are given in Table 1. For the sensitivity experiments, we then
vary a chosen parameter or input over some range.
3.6.1. Discharge and Topography

[62] Channels form when the discharge forced through the
system is above a threshold depending on the model input
and parameters. The channel system changes from almost
nonexistent to very arborescent by varying the melt input by
two orders of magnitude (Figures 10a–10c). The threshold

discharge for channelization is smaller when the topography
(mostly the surface but also the bed) is steeper, since the
dissipative energy available to melt the channels increases
with the potential gradient. Thus, a channelized system is
more likely beneath a steep alpine glacier than beneath a
shallow ice sheet [Walder and Fowler, 1994; Schoof, 2010].
In our synthetic example, channels are favored closer to the
ice margin both because the cumulative discharge is larger
there and because the surface gradient is steeper. When chan-
nels form, their spacing tends to decrease with increasing
discharge and slope, and this explains why new channels
start between the existing ones close to the margin.

Figure 11. Density of channel system versus sheet
conductivity constant k: fraction of nodes connected to a
channel (RC, solid line) and fraction of nodes with a channel
junction (RJ, dashed line) versus k for an equal and uni-
form input into the sheet. The red dots are at the value of
k = 10–2 m7/4 kg–1/2 used in all other model runs. Insets
show the channel system for three values of k indicated by
the arrows (see also Figure S1 in supporting information for
figures of the channel system for all k).
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Figure 12. Simulation 2007 melt season for Gornergletscher. Snapshot of the trunk on (a) 14 May and
on (b) 19 July at the time of peak input, showing contours of hydraulic potential � (MPa), effective
pressure N, the channel discharge Q, moulin input (dots), and inflow boundaries (black lines). (c) Time
series of N at location marked by cross, with horizontal lines (from bottom) corresponding to overflow,
overburden, and atmospheric pressure; (d) total input and proglacial discharge. The vertical lines indicate
the time of the two snapshots. (see also Animation S6).

3.6.2. Density of Channel System
[63] For a given discharge and topography, several param-

eters control the relative efficiency of the distributed and
channelized systems, and hence control the extent and spac-
ing of the channels [cf. Hewitt, 2011; Schoof, 2010]. The
sheet is more efficient for larger conductivity parameter k,
larger bed roughness height hr, smaller bed roughness length
lr, and faster sliding velocity ub. Similarly, the channel is
less efficient for smaller flow parameter kc, corresponding to
a rougher channel wall. All such changes act to increase the
threshold discharge at which the sheet transitions to chan-
nels. A more efficient sheet also gives rise to more widely
spaced channels, whereas a very inefficient sheet gives rise
to a much more dense channel system.

[64] We explore the influence of the conductivity param-
eter k on the channel system by varying k between 5 � 10–1

and 5 � 10–5 m7/4 kg–1/2. We use RC, the fraction of nodes
connected to a channel with Q > 0.04 m3s–1, as a metric
for the density of the channel system. The reason we use
a lower threshold value on Q than previously is to capture
even the small channels that form at low k, and thus we
set the threshold to be close to the mean water input per
sheet element (0.08 m3s–1). As a measure of how arborescent
the channel system is, we use Rj, the fraction of nodes that
are at a channel junction, i.e., with three or more channel
edges connected.

[65] At the largest k the sheet conducts water well enough
that no channels at all are formed (Figure 11 and support-
ing information, Figure S1). As k decreases, more channels
form and RC increases until it reaches almost 1 for the
lowest k. As k decreases, at first straight channels grow head-
ward (cf. Figure 11, lowest two insets) and RC increases

due to increased channel length and decreased channel spac-
ing. Eventually, the channel system becomes arborescent (cf.
Figure 11, top inset) until small channels reach all nodes of
the mesh at the lowest k.

[66] This shift from straight channels to an arborescent
channel system is reflected in RJ, which is close to zero
up to the value of k that corresponds to the middle inset
and then increases up to 0.2. Interestingly, the fraction RJ
slightly drops for the lowest two values of k due to the shift
from many small side channels, as seen in Figure 11, top
inset, to longer but less branching side channels (Figure S1).
This appears to be due to the strong tendency for channels
to follow the ice surface gradient; at very small k the pre-
ferred arrangement is to have few long side channels running
parallel to the main channels for a long distance as opposed
to many small ones at more oblique angles to the x axis.

[67] The influence of the channel roughness kc on the
channel system is a bit more convoluted as illustrated
in Figures 10d–10f. Decreasing kc moves the transition
between sheet and channel flow slightly downstream, as

Table 4. Parameters for Gornergletscher Runa

Description Para. Value Units

Sheet conductivity k 5� 10–4 m7/4 kg–1/2

Channel conductivity kc 0.05 m3/2 kg–1/2

Basal sliding speed ub 20 m a–1

Sheet width below channelb lc 10 m
Englacial void ratio ev 8.5� 10–4

Moulin cross-sec. area Am 0 m2

aOnly parameters different from those in Table 1 are listed.
bThis contributes to channel melt.
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Figure 13. Gornergletscher run on 19 July with no
pressure-melt term (… = 0), layout as in Figures 12a
and 12b.

argued above, and at the same time increases the channel
system’s arborescence. The latter effect appears to be due to
the lower effective pressure which limits creep closure of the
channels and allows more of them to stay open.
3.6.3. Channel Initialization

[68] How easily a channel can begin to form is mostly
influenced by the width of the sheet that contributes to chan-
nel melt, lc (cf. equation (15)). This parameter can be thought
of as representing the size and spacing of individual flow
paths within the cavity system. It is loosely comparable to
the spacing of conduit elements in the network model of
Schoof [2010]. The choice of lc influences the behavior of
small channels during their initialization, and only mini-
mally changes the steady state configuration except for large
lc. This can be seen in Figures 10g–10i, where the varia-
tion of lc has little effect except at lc = 200 m for which the
results show more small channels in the higher reaches and
a somewhat different configuration lower down.
3.6.4. Discharge Parameterization

[69] The choice of suitable values for k and kc depends on
the exponents ˛ = 5/4, ˛c = 5/4, ˇ = 3/2, and ˇc = 3/2 used
in the discharge laws (5) and (12). Our choice is motivated
by turbulent parameterizations for flow through conduits and
individual orifices. For the sheet, in particular, it is possi-
ble that the average behavior of flow through many cavities
is better described by a different choice (in some circum-
stances flow may be laminar too), and a different functional
dependence of the sheet conductivity on h is also possible
[Flowers and Clarke, 2002; Hewitt, 2011]. Using different
exponents in the power laws does not qualitatively change
the behaviors described above, however.
3.6.5. Englacial Storage

[70] In a steady state, the quantity of englacial storage
plays no role. It can have a large impact on the response
to temporally varying input, however. Taking a larger value
for the englacial void ratio ev leads to more damped oscilla-
tions in water pressure during the diurnal variations. It also
controls the extent and timing of the pressure wave decay-
ing away from the channel; more storage confines pressure
changes to a narrower band around the channel and leads
to a greater phase lag. This effect can be seen in the model
run DIURNAL with ev = 10–3, where pressure fluctuations
are limited to a strip of about 4 km wide centered on the
channels (Figure 7). Storage in the moulins, controlled by

the moulin area Am, has a similar effect in damping the
diurnal oscillations.

4. Application to a Real Setting
[71] We run the model on the trunk of Gornergletscher,

a large Alpine valley glacier, for the time span Febru-
ary to November 2007. The trunk is about 4.5 km long,
1.5 km wide, and up to 400 m thick. We use surface topog-
raphy [Bauder et al., 2007] derived from aerial photography
and bed topography [Farinotti et al., 2009] derived from
radar measurements combined with a mass-conserving bed
approach. Air temperature data are converted into water
input using a distributed temperature index model coupled
to a linear storage model to account for surface hydrology
(e.g., retention in the snowpack). The melt occurring on the
tributary glaciers is fed to the trunk through inflow bound-
ary conditions (black lines in Figure 12). On the trunk itself,
the meltwater is input through 30 randomly placed moulins
using the same scheme as in the run MOULINS. The stan-
dard model parameters in Table 1 are used except for the
ones listed in Table 4.

[72] Two snapshots of the seasonal evolution of the
drainage system are shown in Figure 12 together with time
series of effective pressure, water input, and proglacial dis-
charge. One is taken in spring (14 May), at a time when
the drainage system is developing, and one in midsummer
(19 July) when the system is well established. Both of them
are at the time of maximum daily water input. An anima-
tion of the whole melt season is provided in the supporting
information (Animation S6).

[73] The first snapshot shows that in spring, a small
increase in melt input overwhelms the drainage system and
causes negative effective pressures to prevail in the upper
half of the trunk where the channel system is not yet estab-
lished. The widespread, very low effective pressures are
not realistic and are caused by the model not including
two processes: hydraulic jacking and allowing moulins to
overflow once their water level reaches the ice surface. In
the lower half of the trunk, effective pressures are higher
due to the nascent channel system. However, the system
is in an early stage of development characterized by many
parallel channels which have yet to collapse into a few
dominant ones.

[74] In midsummer this collapse has occurred and the
channel system is well established. It is much more arbores-
cent than for the synthetic model runs due to the topography
channeling not only the ice flow but also the water flow at the
bed. Even though the input is larger than at the time of the
spring snapshot, the effective pressure is much higher due to
the efficient channel system.

[75] The hydraulic potential � is convex in both snap-
shots over large areas and the channels carve no “valleys”
into the potential, unlike for instance, in the run MOULINS.
For comparison, we ran the same setup with the pressure-
melt term … set to zero (equation (16)) which produces
a concave potential; in particular, the main channel sits
in a deep, often V-shaped trough (Figure 13). The magni-
tude of … is dependent on the slope of the channel: melt
is enhanced for the downsloping channels connecting the
flanks with the middle of the trough; conversely, melt is
diminished in the level channels lying along the valley
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bottom. This process is clearly visible in the spring snap-
shot (Figure 12a): channel segments along the whole of
the northern flank have formed, whereas the channels along
the thalweg have reached only halfway. Another effect is
that channels on a sloping bed are often oblique to the gra-
dient of � compared to the mostly parallel channels for
… = 0. Edges are favored to become channels for which
the sum of the dissipation („) and pressure-melt term is
largest (equation (14)). Whereas „ depends on r� only,
… also depends on the bed slope r�m and thus chan-
nels will in general be oblique to r�. The combination
of these two effects, which enhance the connection of the
flanks to the main drainage channel, leads to the convex
hydraulic potential.

5. Discussion
[76] Our model is able to corroborate a number of long-

postulated features of subglacial drainage. At low input,
flow remains distributed, but above a critical discharge,
the flow organizes itself into a channel system [e.g., Flow-
ers, 2008; Hewitt and Fowler, 2008; Schoof, 2010]. With
our choice of parameters and without lateral topographi-
cal variation, the model indicates that the channel system
is only mildly arborescent consisting of almost parallel
channels that largely follow the ice surface gradient. The
considerable arborescence found by Schoof [2010], in par-
ticular, in the higher reaches, was partially due to the
imposed orientation of the channels at 45ı to the main sur-
face slope. Nevertheless, this difference does not alter the
fundamental conclusion that the steady state effective pres-
sure in the channelized region increases with increasing
discharge downstream.

[77] Compared to Schoof [2010], the novelty of this model
is twofold: (1) the arrangement of the channel segments on
an unstructured network and (2) the continuum description
of the distributed system. The former permits more free-
dom in the development of the channel system, although
its geometry is constrained by the particular random mesh
arrangement. The latter avoids the need to resolve each
cavity individually and thus overcomes the resolution limi-
tations inherent in the older model.

[78] It is perhaps worth pointing out that the prediction
of long parallel channels contrasts with typical subaerial
watersheds, which often have more arborescent structures.
The channel system of subaerial watersheds has been sim-
ulated quite successfully with landscape evolution models
[see Tucker and Hancock, 2010, and references therein]. For
example, Braun and Sambridge [2012] produce arborescent
channel systems from initial topographies with no lateral
variation. In contrast, the channel systems of our synthetic
model runs are hardly arborescent. The difference stems
from the fact that subaerial streams erode the topography
and thus can significantly modify the background hydraulic
potential that controls their direction. An R channel can only
achieve a slight pressure reduction from its surroundings
which is set by the ice overburden pressure. Thus the pre-
dominant hydraulic gradient will be aligned with the surface
slope. Another very notable difference is that R channels can
lie on hydraulic potential ridges, leaking discharge into the
sheet (Figure 4a), whereas subaerial drainage channels will

always lie along the thalweg and capture discharge from the
surroundings.

[79] The leaky channels emanating from the moulins at
higher elevations show that channels are not favored if
the discharge and surface slope are not large enough [cf.
Schoof, 2010]. They contradict the common notion that
channelized drainage necessarily leads to lower pressures
than distributed drainage, even in steady states. Borehole
measurements of Meierbachtol et al. [2013] in Greenland
show that basal water pressures are consistently high in the
upper reaches of the ablation area with very small diurnal
oscillations. They conclude that, there, the drainage system
cannot be channelized. Our results suggest that these find-
ings may also be consistent with a region of leaky channels
that peter out before connecting up or reaching the margin.
However, on a larger scale, Schoof [2010] finds that, for a
given total discharge, the pressure averaged over the whole
domain is always lower with moulin input than with distri-
buted input.

[80] For time varying input (model run DIURNAL,
Figures 6c1, 6c2), the water pressure in the channels is not
always lower than in the surrounding sheet. For instance, at
midday, the water pressure is highest in the channels, in par-
ticular close to the moulins. On average, however, the time
varying case still has the lowest water pressures in the largest
channels. In fact, the averages of the state variables (�, h, S)
of model run DIURNAL are almost identical to the steady
state values of model run MOULINS.

[81] However, the diurnal variation of pressure may still
influence the mean ice flow speed [e.g., Schoof, 2010]. The
dependence of sliding speed ub on the effective pressure N is
likely nonlinear, with a greater sensitivity at low N [e.g., Iken
and Bindschadler, 1986]. Thus, using N obtained from the
run DIURNAL in such a sliding law would result in a higher
average ub compared to using N from model run MOULINS.
The spatial extent of the increased average ub would roughly
be limited to the spatial extent of the diurnal pressure fluctu-
ations (Figure 7). This spatial confinement compares well to
measurements from Greenland that show that late summer
speedup is concentrated around main water drainage axes
[Palmer et al., 2011].

[82] This confinement of pressure fluctuations along cer-
tain axes has directly been measured by Hubbard et al.
[1995]. They found that the pressure diffuses outward from
what they infer to be a channel into the distributed system.
The model run DIURNAL illustrates that this oscillating
lateral pressure gradient drives water into and out of the
sheet during high and low discharge. Measurements of
Bartholomaus et al. [2008] suggest that this process is occur-
ring during outburst floods on an alpine glacier, causing the
observed ice flow speed increases and changes in proglacial
meltwater composition.

5.1. Shortcomings and Modeling Issues
[83] One of the limitations of this model is that it may not

cope well with sudden inputs of water and with low water
pressures. In the first case, the sheet and channels are not
able to expand fast enough to account for the input, and the
model predicts large pressures, often well in excess of over-
burden. Such pressures are regularly observed in boreholes,
so may not in themselves be a problem; but if the model pre-
dicts pervasive pressures above overburden it seems likely
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that neglected physical processes such as hydraulic jacking
are important [e.g., Das et al.,2008]. Consideration of this
scenario may be especially important if the model is to be
linked to ice flow, since typical sliding laws suggest that the
basal drag goes to zero when overburden pressure is reached.

[84] When a sloping bed is considered, the model may
also predict that water pressure falls below atmospheric
pressure, whereas in reality we would instead expect both
channels and cavities to become only partially filled with
water. The neglected effect of this may be largely to limit
the rates of creep closure during periods of low discharge,
since the model is then overpredicting the effective pressure
that drives closure. Modifications along the lines of Schoof
et al. [2012] and Hewitt et al. [2012] could be considered to
account for both too low and high pressures (cf. section 2.1).

[85] A related point is that at low discharge, the model
generally predicts low water pressures. This is inconsistent
with many borehole pressure records that show higher pres-
sures in winter than in summer. It is quite possible that large
areas of the bed become cut off from the drainage system
during low discharge in the winter. This is not currently
included in this continuum model of the distributed drainage
system, which predicts that the transmissivity of the sheet
decreases but remains nonzero [e.g., Murray and Clarke,
1995; Iken and Truffer, 1997].

[86] Water pressures measured in closely spaced bore-
holes often show little or no correlation [e.g., Fudge et al.,
2008]. This suggests that the conductivity of the distribu-
ted system can be very low, in some instances so low
that all drainage must essentially occur through conduits
with no lateral connection. In a setting where this is the
case, there may be little gain from simulating a distributed
system with essentially zero conductivity and instead a
strictly network based model [e.g., Schoof, 2010] could
be used.

[87] We showed that using different random meshes with
the same moulin locations on the same synthetic topog-
raphy will produce somewhat different model results. In
particular, the geometry of the channel system will change.
However, the large scale behavior, for instance, the average
effective pressure, remains nearly invariant. A more con-
straining topography than just moulin locations, such as a
valley glacier or the surface depression of an ice-sheet outlet
glacier, will decrease the variability of the channel system.
We suspect that the errors introduced by mesh effects are
likely small compared to errors introduced by uncertainties
in parameters and other inputs.

5.2. Application to a Real Setting
[88] The model application to the 2007 melt season of

Gornergletscher delivered promising results that broadly
reflect our understanding of the seasonal and diurnal evo-
lution of the drainage system of an alpine glacier [e.g.,
Fountain and Walder, 1998]. In spring, as meltwater flux
increases, the distributed system becomes unstable and a
channel system starts to develop. At this time, the highest
water pressures are both modeled and measured, and lead
to the observed episodes of fast ice flow, so called “spring
events” [Iken et al., 1983]. As the season progresses, the
channel system grows headward resulting in generally lower
water pressures. The many parallel channels, which the
model forms at the beginning, compete with each other and

an arborescent system emerges. Conforming to observations,
the model shows diurnal pressure variations and storage
effects causing a phase delay of the proglacial discharge
compared to input.

[89] So far, the influence of the pressure-melt mechanism
on the glacier drainage system has been discussed mostly in
connection with overdeepened beds and the resulting glacio-
hydraulic supercooling [e.g., Lliboutry, 1983; Creyts and
Clarke, 2010]. Our results show that this mechanism also
has a profound effect on the subglacial drainage system even
in the absence of overdeepenings. Melt enlargement in chan-
nels descending into the trough is enhanced, whereas for
channels along the trough it is reduced. This decreases the
lateral variation of the hydraulic potential. Furthermore, the
pressure-melt mechanism leads to channels that are not par-
allel to the hydraulic potential gradient but deflected toward
the downslope direction of the bed.

6. Conclusions
[90] We have presented GlaDS, a new glacier drainage

system model that incorporates channelized and distributed
subglacial drainage in two horizontal dimensions. The use-
fulness of the model lies in its potential to address such
issues as the hazard of floods from subglacial and ice-
marginal lakes [e.g., Werder et al., 2010a], the effect of water
routing on erosion [e.g., Creyts and Clarke, 2010], and, most
importantly, the impact of meltwater on ice dynamics [e.g.,
Bartholomaus et al., 2008; Bartholomew et al., 2012]. A
two-way coupling of this model to an ice flow model is pos-
sible [cf. Hewitt, 2013]: the effective pressure couples to
the sliding speed which couples back to the cavity open-
ing rate (equation (7)). This paper was intended to present
the physics, mathematics, and simple test applications of
the model to lay the ground work for such applications in
the future. The results support and extend previous work on
subglacial drainage:

[91] 1. In steady state, there is a transition from distributed
flow at small discharge to a channelized system at larger
discharge.

[92] 2. Only moulins that supply a sufficiently large dis-
charge serve as channel nucleation points.

[93] 3. The channel system is self-organized and is only
mildly arborescent for ice and bed surfaces without lateral
variation; channels tend to follow the surface slope rather
than being diverted toward neighboring channels, in contrast
to subaerial rivers. However, running the model with real
topography shows a more arborescent channel structure that
is inherited from the surface and bed topography.

[94] 4. Channels generally act as low pressure axes that
can capture water from the surrounding distributed sys-
tem. For temporally varying inputs, this average behavior
is masked by large pressure variations, driving water out-
ward to the surrounding bed and englacial voids during
high discharge and back into the channels during low dis-
charge. This behavior may influence the spatial pattern of ice
flow variability.

[95] 5. Channels can lie along pressure ridges, even in
steady state. This is contrary, at least locally, to the common
assumption that channelization necessarily leads to lower
pressure.
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Figure A1. Dependence of three metrics on mesh size
(semi-log plots): (a) The number of channels with
Q > 10 m3s–1, (b) maximal discharge of any channel, both
at x = 5 km, and (c) mean effective pressure over the whole
domain. The small dots indicate the result from a particular
random mesh, large dots indicate the average at the given
resolution and the error bar gives the standard deviation.
(d, log-log plot) Relative error of the averages for Qmax and
mean N with respect to the run with highest resolution (best
fit lines have slopes of –1.7 and –2.2).

[96] 6. Pressure-melting point effects diminish the
hydraulic potential variation across the trough of a glacier,
as steeply dipping side channels are enlarged relative to the
main channel.

[97] Not all of the model behavior is consistent with
field observations. Modifications will have to be consid-
ered to include more realistic surface drainage, the effect of
hydraulic jacking, open channel flow, the possible closure of
drainage pathways in winter, and the erosion and transport
of sediment. The model also needs to be compared quan-
titatively with field measurements. The ability to simulate
realistic topographies demonstrated in section 4 will be cru-
cial for this, and should enable us to constrain some of the
poorly known parameters in future work.

Appendix A: Convergence Under Mesh Refinement
[98] The solution produced by a numerical scheme for

solving partial differential equations should converge to
the true solution under mesh refinement. However, for the
presented model convergence in this sense will not be
satisfied as the mesh forms part of the solution by restrict-
ing potential channel locations (cf. section 3.5). Neverthe-
less, convergence in some statistical sense should still be
achieved for the model to be useful.

[99] To investigate this, we ran the model on the syn-
thetic model domain using meshes with mean edge lengths
between 5500 m and 400 m (corresponding to 60 to 10,000
nodes); 20 different random meshes were used at each of the

eight resolutions. As in section 3.6, the default parameters
were used (Table 1) and the model was forced with a spa-
tially and temporally uniform input into the sheet totaling
�600 m3s–1.

[100] Figures A1a–A1c show the statistics of three met-
rics under mesh refinement. The mean of the three quantities
does not change significantly for edge lengths smaller than
�1500 m. The relative error of the averages of Qmax and
mean N relative to the value at the highest resolution show
a convergence rate of approximately O(	x2) (Figure A1d).
The standard deviation does not decrease much under mesh
refinement which shows that there is a natural variability in
the model due to the details of the mesh. This variability
should decrease further once real topography is used and is
unlikely to be larger than the errors of field measurements.
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