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Continuum mechanics



Continuum mechanics

A continuum approximation treats a material as having a continuous distribution of
mass. It applies on scales much larger than inter-molecular distances.

Each ‘point’ of the continuum can be ascribed properties, such as density, temperature,
velocity, pressure, etc.

Continuum mechanics provides a mathematical framework to describe how these properties

vary in space and time.

Continuum mechanics can be used to describe both ‘fluids’ and ‘solids’ - we focus on fluids.



Kinematics
- Coordinate systems / derivatives

- Strain rate

Dynamics
- Stress tensor

- Constitutive laws

Conservation laws

- Conservation of mass

- Conservation of momentum
- Navier-Stokes equations

- Conservation of energy

Boundary conditions

Depth-integrated approximations
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Kinematics



Coordinate systems

Eulerian description (x,1)

X Spatial coordinates, fixed in space x = x(X, t)

X = (Qf,y,Z) — (55'1,562,5133)

&%V

Lagrangian description (X, 1)

X Spatial coordinates, fixed in material

We usually choose these as the coordinates of a reference configuration at ¢t = 0

\/— velocity u= (u,v,w) = (u1, u2, u3)

Material paths x(X,¢) are governed by T — U X|t—p = X

where Dgt is the time rate of change for fixed: X  (i.e. the derivative ‘following the fluid’)



Coordinate systems

A stake drilled into the ice tracks the ice motion in a Lagrangian system.

w o A weather station on the ice surface measures atmospheric

s Q%"’u;; Kt iél.f ”
MR R e g properties in a (roughly) Eulerian framework.
i el o ol P . . |

Fluid models are usually written in an Eulerian coordinate system.



Material derivative

Given some function of Eulerian coordinates (e.g. temperature) 1 = f(x,t)

we can calculate the material derivative using the chain rule (recall x = x(X,t) )

DT OT
o9 T
Dt " or TwV

f f

local term advective term

0T /0t rate of change with respect to time at fixed x
or oT OT
V= (8:1:’ dy’ 0z

u  rate of change of x with respect to time at fixed X

) rate of change with respect to x

The material derivative is also called the ‘convective’ derivative or ‘total’ derivative.

| DT 0T oT oT oT oT oT
n components, — — — | q. =

Dt~ ot Yam ~ ot “or "'y TVaz

We use the summation convention (repeated indices imply a sum): 4

Z uz (9:1:2



Material derivative

Example

The rate of change of temperature as measured by a skier has components due to:
- the temperature decreasing through the evening
- the temperature increasing as they travel downlhill

DT T
- _ 7 VT
Dt o TV




Strain rate

Strain is a measure of deformation. The strain rate is a measure of how fast strain is changing.

One dimension

Consider the rate of change of length of a small fluid element

dx
D ou 1 D ou
—(dz) = du = —d S - __
Time— i) P s PG

Three dimensions

The strain rate is now described by a rank-two tensor (a matrix)

1 D 1
dx = §ds &E(ds) 2§T(Vu+VuT)é = 5;€;j8;

. 1 8uz
[ K/\ where the strain rate tensoris | ¢ =5 ( T

Time

Strain rate




Strain rate

Examples

Strain-rate tensor

N

N

, 1
Eijzi

C?uz-

aélij +

8Uj

8:1:,@

x = (2,9,2) = (21, T2, T3)

u = (u,v,w) = (uy, uz, us)



Strain rate

Examples

N

N

8u@- (9uj) X = (Q?,y,Z) — ($17$27$3)

. 1
Strain-rate tensor Eij = 5 (8:5- + B
] 1

u = (u,v,w) = (uy, uz, us)



Strain rate

Examples

Z
N
x 1 0 0
u = 0 éij: 0 O 0
—Z 0 0 —1
> I
<
N
>
2 —> 0 0 1L
u=| 0 — gi=| 0 0 0
- 1
0 S > 0 0
. ) 1 (8% (9uj) X = (il?,y,Z) — (371,£U2,$3)
Strain-rate tensor €ij = = +
2\ 0zr; Oz u= (u,v,w) = (uy, ug, us)
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Dynamics



Stress tensor

Stress is force per unit area.

The stress state is described by a rank-two tensor (a matrix).

At each point in the material, consider a small cube. 'nj'vaij

We define the Cauchy stress tensor o = o;; as the force per /
unit area in the i direction on the face with normal in the j direction.

Oxx Ogxy Ozxz
O =045 = | Oyz Oyy Oyz

Ozx Ozy Ozz
Due to conservation of angular momentum, the stress tensor must be symmetric.

1

We define the pressure by p = — 30

and the deviatoric stress tensor 7by o= -pd + 7 or 0ij = —Pdij + Tij

The stress acting on a general surface with unit normal n is S

s=o0-n oninindex notation, s; = o;;n;



Constitutive law

The constitutive law describes a relationship between stress and strain rates - it
characterises the rheology of the material

For a Newtonian fluid (e.g. water) Tij = 21Eij n is the viscosity

For ice, it is common to use Glen’s flow law

Eij = A(T)Tn_lﬁj T = %Tz‘ﬂz‘j n~~3J A~24x107*Pa3 st at 0° C
(more recent work suggests n ~ 4 more appropriate)

This can be written in the form of a Newtonian fluid but with an effective viscosity

1

R _
K Y r ™ 4 n=1




Conservation laws



Conservation of mass

A major concern at Karthaus ...

dM ¢ b € _° 9
—— = ‘sources’ - ‘sinks
dt

Time




Conservation of mass

dM
dt




Conservation of mass

aM _
dt

a,dS+/ ap dS — Q.
sur face bed

ah



Conservation of mass

Conservation of mass applies to each arbitrary (Eulerian) volume V in the ice.

n
d
/ il dV = _/ ou-n ds ‘sources and sinks’ here are due to
4 oV =~ material flowing into / out of 9V

ov
Use divergence theorem => / % dV = —/ V- (pu) dV
1% 1%

Since this is true for any Vv 9p +V-(pu) =0

ot

O

. . D .
If the material is incompressible, Fi =0,weobtain | V-u=0



Break



Conservation of mass

Conservation of mass applies to each arbitrary (Eulerian) volume V in the ice.

n
d
/ il dV = _/ ou-n ds ‘sources and sinks’ here are due to
4 oV =~ material flowing into / out of 9V

ov
Use divergence theorem => / % dV = —/ V- (pu) dV
1% 1%

Since this is true for any Vv 9p +V-(pu) =0

ot

O

. . D .
If the material is incompressible, Fi =0,weobtain | V-u=0



Conservation of momentum

We apply a similar argument to conserve momentum for each volume V

Momentum conservation is equivalent to Newton’s second law F = maq

Rate of change of momentum is equal to the forces acting

d
n —/pudV:—/ puu-ndS+/ a-ndS+/png
/ dt Jy oV oV v

I I I

flux of momentum  surface forces body force

A% through boundary (gravity)

d

Write in index notation —/ pu; AV = —/ pugun; dS +/ oijn; dS +/ pg; AV
dt Jy oV )% 1

. 0 o 0 o 802']' .
Apply divergence theorem /V a(puz) dV = /V o (puiuj) + oz, + pg; dV
: : 2( w;) + i( wi;) = 0o 1 pa;
Use that volume is arbitrary g Pl oz, PUU; ) = oz, PYi

ou
Use conservation of mass p (— +u- Vu) =V .o+ pg



Navier-Stokes equations

We have derived mass and momentum equations for an incompressible fluid

0
V-u=0 p(8—?+u-Vu):—Vp+V-T+pg

Combining with the Newtonian rheology 7,; = 2n¢;; gives the Navier-Stokes equations

0
V-u=20 p(a—?—ku-Vu):—Vp—l—nVQu—kpg

'\ constant viscosity is used here

'\ this term is non linear!



Reynolds number

Let’s estimate the size of terms in the momentum equation for an ice sheet

0 1 1
—u+u-Vu:——Vp+—V-T—|-g
ot p p

u~U~100m y * x ~ L ~ 1000 m g~g~98ms? o~ pgz

=> u-Vu~ 10" ms? J

The inertial terms on the left are much much smaller than those on the right.

UL
More generally, the relative size of these terms is measured by the Reynolds number | Re = pT

- this is 2 measure of how ‘fast’ the flow is.

For small Reynolds number (‘slow flow’) we neglect inertia and have the Stokes equations

V-u=0 0=—-Vp+V- -17+4pg i = A(T)T" 17y,



High Reynolds number flows

For flows with high Reynolds number (e.g. most atmosphere and ocean processes) we can
usually ignore the viscous terms.

9, 1 1
u+u-Vu:Vp+}%+g
ot 0

However, such flows are often turbulent, and there are Reynolds stresses (due to fluctuations
in the velocity field) that have to be parameterised to describe the mean velocity

1
g—?+u-Vu:—;Vp—V-<u’u’>+g

g Reynolds stresses

When inertia is important we may also have to worry about the effects of Earth’s rotation

Du Du
Dr becomes E—kQQ/\u—FQ/\(Q/\x)



Conservation of energy

The same methods work to derive an energy equation.

Rate of change of energy is equal to the work done by forces and net conductive heat transfer

d
T ple+s[ul?) dV = —/ ple+3[ul*)un dS—I—/ kVT-n dS+/ u-on dS+/ pu-g dV
1% 1% 1% )% 1%
n 1 ! ! 1
/ flux of energy conductive  work done against work done
through boundary  transfer surface forces against gravity

oV

Applying similar arguments to oCs (5_T . VT) — V- (WVT) + 735 De DT

— = Cc,,—
earlier... ot Dt P Dt



Boundary conditions






Kinematic boundary conditions

At a rigid boundary (e.g. the glacier bed™ in absence of melting/
freezing), we must usually have no normal flow

For a viscous fluid we also usually have no slip

However, glaciers often slide at the base, so instead we adopt a sliding
law relating basal speed and basal shear stress 7y =0 -n— (n-o-n)n

At a free boundary (e.g. the glacier surface in absence of

accumulation or melting) the boundary must move as determined by the
velocity of the fluid at the boundary

(e = s(wy,1) =0

If there is accumulation/ablation at such boundary, this condition is
modified to account for this

w

+u@+v§— +
ox ay_w .



Dynamic boundary conditions

At free boundaries we also apply conditions on the stress o-n=—p,n
or o-n=—p,n

(atmospheric pressure is often chosen as the gauge pressure and set to zero)

- : : n-o-n=max(—p,gz,0
This is sometimes broken into normal and shear components (=Pugz,0)

Ts=0oc-n—(n-oc-nn=>0



Stokes equations + boundary conditions

ou N ov N ow 0 0—
or Oy 0z B

0 —
i = A(T)T" 7y, 0=

z = s(x,y,t)

op

- Ox

(9]9
- —éy
(9]9
B —( )z

OT

ox
OTyq

ox

0T,y

ox

OTzy
dy
OTyy

Oy

0Ty

dy

0Ty
0z
0Ty
0z
0T
9. Py
0s 0s
u% + Uﬁ_y =W+ a
ob ob
u% va—y = w



Depth-integrated approximations



Shallow approximation (lubrication theory,'SIA’") .<: w<u

ou Ow
(1) 7 .

 Op 0Ty OTa




Shallow approximation (lubrication theory, SIA’) . <+ w<u

ou ow ap oy 0Ty
— + — = 2) 0=—— pA
(1) O + 02 0 (2) ox + T i 0z &(5) => 0s
Trz — —pg%(s - Z)
1@ — A‘T:Bz‘n_lsz
20z op orl o
. n— Tz 22
(4) =Sy (3) 0p+7£+%pg &©5)=> p=pg(s —2)
0z x z
z = s(x,t) @ + @ = W +
= s(z, (7) 5 Tug =wta
b
— b - —
z = b(z) (8) uy =w
(6) 7wz = f(up)
Depth-integrate (1) with (7) and (8) oh -~ % _ a h=s-b q= / u dz
ot ox b
, | 2A4(pg)" | o |0s|" " Os _ Os
Depth-integrate (2) with (6) 1=—— > "t 3| B T up = [ (—pgh%>




Depth-integrated mass conservation directly

q(x,t) q(x + dx, t)

dz

Depth-integrated mass conservation Q(h dz) = q(z,t) — q(z + dx,t) + a dx

ot

% 4 Q(x + dxat) - Q(xat)
ot dx

Rearrange =a

oh  0q _

Take limit dxz — 0 n + Ty a



Rapid sliding (membrane theory, ‘SSA’)  u(z,2,t) = w(a,t)

ou ow . ap aTCECB 87—:{;7;
() %Jr&_o (2) 0= 8x+8x+8z
@ — A‘T:cx‘n_lTxx
O op | Otfe  O7
(4) Ly, () 0=—3"+ =+ == —pg
0z x 0z
0s 0s
o t —_— —_— =
z = s(x,t) 8t+uax w + a
Ob
—p 9o _
z = b(z) (8) uy =w
(6) 7oz = f(us)
Depth-integrate (1) with (7) and (8) ?’)}Z -~ gq =a h=s—10 q = hu
T

ou

- - — oan 2% 9 (opa-iim
Depth-integrate (2)-(4) with (5) and (6) 0= —pgh 5 T o <2hA 5

1/n—1 ou
&C> — f(u)



Summary

Continuum variables can be described in terms of Eulerian or Lagrangian coordinates.
The material derivative is the derivative following fluid particles.

Stress and strain rate tensors describe the forces and the rates of deformations in
the material.

The principles of mass and momentum conservation lead to coupled PDEs for velocity,
pressure and deviatoric stress. Together with a constitutive law these lead to the
Navier-Stokes or Stokes equations.

Various boundary conditions are applicable for different types of bounding surfaces.







