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Subglacial hydrology

- Tunnels / channels

- Cavities

- Canals

- Sheet flow

Water sources

- Surface melting, precipitation

- Basal melting

- Lakes

Large-scale models



Accumulation

Surface melting (runoff)

Basal melting / freezing

Glacier hydrology
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Glacier, Recovery Ice Streams, Byrd Glacier and Totten Glacier in East
Antarctica; Siple Coast ice streams and Pine Island/Twaithes Glaciers
in West Antarctica. Large subglacial lakes (displayed in Fig. 5) all lie at
the head of the subglacial water system, such as Sovetskaya/90°E lake
system, Subglacial Lake Vostok, and Subglacial Lake Concordia (Lakes
District). The large subglacial lakes associated with the Recovery ice
stream catchment are not lying at the head, but further downstream.
They therefore receive a substantial amount of subglacial melt water
from upstream, which makes them important water reservoirs of the
East Antarctic ice sheet.

5. Discussion

5.1. Parameters affecting basal temperature

The interplay between GHF and accumulation rates is very
sensitive, as high GHF increases basal temperatures, while high
accumulation rates cool down the ice mass. This is illustrated in Fig. 6,
displaying the minimum GHF needed to reach pressure melting point
at the base of an ice sheet as a function of ice thickness and surface
temperature, based on (20)–(22). Despite low surface temperatures
(−50 °C), pressure melting point is reached for relatively low values
of GHF (40 mWm−2), as long as the ice is near 4000 m thick and
accumulation rates are small (0.05 m a−1), which is rather typical for
the interior parts of the East Antarctic ice sheet. For high accumulation
rates (tenfold the previous value), one needs more than twice this
GHF (90 mWm−2) to reach melting point at the base.

An interesting feature according to Fig. 6 is that variations in ice
thickness have less influence on the basal temperature field in regions

where the GHF is low (e.g. 40 mWm−2) than in areas where the GHF
is high (e.g. 100 mWm−2). This is probably one of the reasons why
the Lakes District is characterized by a rather constant (but low) GHF,
despite significant ice thickness variability. On the contrary, the effect
of ice thickness variability is much more pronounced in West
Antarctica. However, since large parts of the WAIS are at pressure
melting point, the variability is most pronounced in basal melting
rates (Table 3).

5.2. Model assumptions

The quality of the results also depends on the assumptionsmade in
the model. A major assumption is the steady-state condition for both
the temperature field and ice thickness. Englacial temperatures react
slowly to environmental changes and are therefore expected to still
readjust to the glacial–interglacial transition. Ritz (1987) estimated
that the impact of transient effects on the basal temperature could be
up to 2 K (ice sheet base being colder than the steady-state one). This
is the same order of magnitude as the standard deviation in the
sensitivity experiment. However, during the last glacial period,
surface temperatures were lower by 5–10 K, but ice velocities and

Table 2
Percentage of the grounded ice sheet at pressure melting point for the 24 experiments
(FM = Fox-Maule et al. (2005); SR = Shapiro and Ritzwoller (2004); P = Pollard et al.
(2005); 42/54 = spatially uniform GHF (mW m−2); Std a = van de Berg et al. (2006);
Δa = decadal accumulation perturbation from Monaghan et al. (2006)).

Std. a Δa (1995–2004) Δa (1985–1994)

FM 67.7 67.7 67.0
SR 54.4 54.6 53.3
FM+SR 63.2 63.1 62.1
P 55.5 55.3 54.7
P+SR 55.8 55.7 54.8
FM+P+SR 60.9 60.9 59.9
42 32.1 32.0 31.8
54 56.2 55.9 55.2
Mean 55.7 55.7 54.9

Fig. 4. (A) Mean basal melting rate (truncated at 10 mm year−1) and (B) standard deviation (mm year−1) for the 24 sensitivity experiments.

Fig. 5. Subglacial water flux (103 m2year−1) based on the mean basal melt rate
displayed in Fig. 4A. Values are truncated at 6×103 m2year−1.
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Aschwanden et al 2012

Aschwanden and others: An enthalpy formulation for glaciers and ice sheets 15

Figure 7. Thickness of the basal temperate ice layer for the control run (left) and the cold-mode run (right). Values are in meters and
contour interval is 25m. The dashed line is the cold-temperate transition surface. Dotted areas indicate where the bed is temperate but
the ice immediately above is cold.
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Figure 8. Basal melt rate for the control run (left) and the cold-mode run (right). Values are in millimeters per year. The dashed line is
the cold-temperate transition surface.
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M. R. van den Broeke et al.: Greenland ice sheet and sea level rise 1941

Figure 7. Modelled 1961–1990 average runoff (a) and 1991–2015 minus 1961–1990 difference (b). Stippled areas indicate differences that
are not significant at the 95 % level. Dashed contours are 500 m elevation intervals; thick solid contour represents glacier mask.

(a) (b)

Figure 8. Modelled 1961–1990 average surface mass balance (SMB) (a) and 1991–2015 minus 1961–1990 difference (b). Stippled areas
indicate differences that are not significant at the 95 % level. Dashed contours are 500 m elevation intervals; thick solid contour represents
glacier mask. Note that SMB is only defined for the glacier mask.

3.4 Temporal MB variability

Figure 9 combines GrIS integrated values of SMB and D into
ice sheet MB with uncertainties as defined in Sect. 2.2. Lin-
ear trends for the period 1991–2015 are indicated by dashed
lines. The equivalent sea level rise (eq. SLR) for negative
MB is provided on the lower right axis. The MB values be-

fore 1996 are uncertain because reliable estimates of D are
missing, although previous work reported little difference be-
tween discharge estimates from the early 1960s and the mid-
1990s (Rignot et al., 2008). Before 1995, under the assump-
tion of constant ice discharge, we see that MB typically var-
ied between +200 and �200 Gt yr�1, with an average close
to 0. After 1995, MB becomes persistently negative, with a
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Ẑb(k)k3

k2 + k2
⇥
dk

k⇥ =

⇥
⌃iL

4kC⇥

⇤1/2

⇥i

⌅ ⇥ 1
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Hydraulic potential

Direction of subglacial water flow

in terms of effective pressure

Potential gradient if basal water pressure were equal to ice pressure
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Predominant control on water flow direction from the ice surface slope 

Potential gradient
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Increasing water flow

Kamb & LaChapelle 1964, 
Lliboutry 1968, Walder & Hallet 
1979,

Alley et al 1986, Creyts & Schoof 
2009

Röthlisberger 1972, 
Nye 1976

Walder & Fowler 1994

Subglacial drainage systems



Weertman film Weertman 1972, Walder 1982

Poiseuille flux
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Weertman suggested water could flow as a film

Leads to an instability 

Larger 
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Water flow dissipates energy through heating

Larger flux 

Melting of ice roof

Flow wants to concentrate in localized channels / tunnels 

However, a patchy film may still exist eg. Alley 1989, Creyts & Schoof 2009
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Röthlisberger channels
Ice wall melting is counteracted by viscous creep

Röthlisberger 1972, Nye 1976
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Creep

Melting

Neighbouring channels compete with one another 

leads to an arterial network
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!1/n

 
11/8n

Q
1/4n

@N

@Q
> 0

N = 0

Q = 0

s = 0

x = 0

s = L

�
AL

⇢wg

@N

@t
= mL �Q

@S

@t
=

S
4/3
 

3/2

⇢iL
� ÃSN

n

Q / S
4/3
�

1/2

@S

@t
= Ubhr �KSN

n

@S

@t
=

m

⇢i
+ Ubhr �KSN

n

9

Röthlisberger/Nye theory (ignoring pressure dependence of melting temperature)

water mass conservation

wall evolution

local energy conservation

momentum conservation 
(turbulent flow parameterization)
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Discharge

• Basal melting due to geothermal heat flux, frictional heating, turbulent
dissipation. Typical rates 5 mm yr�1.

• Surface melting during summer. Typical rates 1000 mm yr�1.

• Surface melt water provides the dominant source of water (di�erent
from Antarctica - more like mountain glaciers).

• Ways in which water a�ects sliding. E�ective pressure.

• What happens to water and how to model it.

q ⇥ �⇤⇤

⇤ = �wgz + pw

At surface elevation z = s,

⇤ = �wgs

At bed elevation z = b,

⇤ = �igs+ (�w � �i)gb+N

E�ective pressure N = pi � pw. pi and pw are averaged over some repre-
sentative area.

Surface z = s
Bed z = b

N ⇥ |⇤⇤|11/24Q1/12

t ⇥ 1

|⇤⇤|11/8Q1/4

⌅h

⌅t
+⇤ · q = m+ r

N ⇥ u1/3
b |⇤⇤|1/9

Q1/9

⇥b = f
� ub

Nn

⇥

1

RH =
⇤1/2

21/2(⇤ + 2)
S1/2

� = 4
3

� = 5
4

Zs

Zb

H = Zs � Zb

q ⇤ �⌅⌃

⌃ = ⌅wgZb + pw

N = ⌅igZs + (⌅w � ⌅i)gZb � ⌃

pw = ⌃� ⌅wgZb

N = ⌅ig(Zs � Zb)� pw

1

S

�S

�t
=

2A

nn
Nn

1

S

�S

�t
= ÃNn
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M � ÃSNn

�S

�t
+

�Q

�s
= M

Q = �KcS
�

����
�⌃

�s

����
�1/2 �⌃

�s

Q = �KcS
� �⌃/�s

|�⌃/�s|1/2

Q = Qin

⌅wML = �Q
�⌃

�s

⌅wML+ ⌅wcS
�T

�t
+ ⌅wcQ

�T

�s
= �Q

�⌃

�s

T = Tm(pw) ⇥ Tm0 � ⇥pw

⌅wML = �Q
�⌃

�s
+ ⌅wc⇥Q

�pw
�s

M = �1� ⌅wcw⇥

⌅wL
Q
�⌃

�s
+

⌅wgc⇥

L
Q
�Zb

�s

2

RH =
⇤1/2

21/2(⇤ + 2)
S1/2

� = 4
3

� = 5
4

Zs

Zb

H = Zs � Zb

q ⇤ �⌅⌃

⌃ = ⌅wgZb + pw

N = ⌅igZs + (⌅w � ⌅i)gZb � ⌃

pw = ⌃� ⌅wgZb

N = ⌅ig(Zs � Zb)� pw

1

S

�S

�t
=

2A

nn
Nn

1

S

�S

�t
= ÃNn
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Jökulhlaups (GLOFs) Nye 1976, Spring & Hutter 1981, Clarke 2003
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F igure 5. Comparison of predicted (solid line) and observed (dashed line) 
hydrographs for the 1972 flood from Grímsvötn, Iceland, using realistic parameters 
(the Manning roughness in the model is n��= 0.036 m�1/3 s). 

 
In the context of Nye-Röthlisberger theory, the rise in flood hydrographic discharge is 

explained by positive feedback between melt enlargement of the channel (first term on the 
right of Eqn. 2.5) and the growing discharge and heat dissipation inside it. However, as the 
source lake drains, its lowering hydrostatic pressure reduces the channel water pressure, so 
channel closure (last term in Eqn. 2.5) eventually overrides melting to shut the channel and 
end the flood. The channel model is now coupled to the lake (whether subglacial or ice-
marginal) and requires an upstream boundary condition on the discharge Q, which drains the 
lake. In turn, changes �����
��
�
���volume V (thus its surface elevation) alter the pressure at 
the channel inlet and the effective pressure N there. The inlet condition can be written as 
 

d   
d

L
L

w

V A N m Q
t g t�

�� �� � � �� 	 �� 

 ,                                              (2.13) 

 

where AL is lake surface area and mL is the rate of water input to the lake from elsewhere (e.g. 
from rain and snowmelt, and subglacial geothermal melting, as is significant at Grímsvötn).  

When boundary condition (2.13) is applied, the theory can provide an excellent fit to 
observed flood hydrographs; e.g. Fig. 5. The original key studies that simulated flood 
hydrographs are those of Nye (1976), Spring and Hutter (1981) and Clarke (1982). Recently, 
more predictions have stemmed from the theory. By analysing the co-evolution of N and Q in 
the model, Ng and Björnsson (2003) showed that the volume and peak discharge of the 
simulated floods obey scaling relationships that had been discovered by empirical studies 
(Clague and Mathews, 1972). By incorporating a subglacial hydraulic seal near the channel 
inlet (at Grímsvötn, this seal exists in the caldera rim around the lake), Fowler (1999) showed 
that the model can produce regular oscillations representing repeating floods, and these floods 
initiate at lake levels below that needed to float the overlying ice, as seen in some systems.  

In between jökulhlaups, Q �����������	���
�����
��
�
��
������
������������dV/dt ��mL; 
over the long term this interacts with the flood initiation threshold to create cycles of filling 
and drainage, where the lake level shows a sawtooth-shaped history. At marginal ice-dammed 
lakes, the water input mL depends on weather and varies seasonally, so the cycles yield a 
highly irregular sequence of flood dates. The mechanisms behind its timing pattern have been 
explained on dynamical maps that relate one flood date to the next (Ng and Liu 2009). Recent 
work extends the basic model described here to explore the influence of environmental factors 
on the flood initation process (Kingslake and Ng, 2013), motivated by the possibility of using 
a realistic description of a time-varying outburst threshold to forecast flood dates. 

A success of the channel theory is the application to floods from ice-dammed lakes
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with a lake filling equation

Fowler 2009
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Creep
Sliding

Walder 1986, Kamb 1987

Cavities grow through sliding over bedrock
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Cavity size is controlled by parameter
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i.e. depends on effective pressure and sliding speed

Flow is distributed

Smaller ‘orifices’ control the flow

Model
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n

@Ŝ
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Drainage system stability

Creep
Sliding

Melting

Walder 1986, Kamb 1987, Schoof 2010, Hewitt 2011

A linked cavity system can become unstable to produce channels 
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eg. if discharge becomes sufficiently large, or sliding speed sufficiently low

Conversely, a channel can become unstable to cavities
eg. if discharge low, or sliding speed sufficiently high
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overburden, pi, minus water pressure, pw). Q is related to S and Y
through the Darcy–Weisbach law26, Q5 c3S

ajYj21/2Y, where
a5 5/4 and c3 is related to the Darcy–Weisbach friction factor. The
first term in equation (1) is the rate of conduit opening due to wall
melting, the second is the rate of opening due to sliding of ice at speed

ub over bed protrusions of size h and the third is conduit roof closure
due to viscous creep; c1, c2 andnare constants related to the latent heat
of fusion and ice viscosity.
In the steady state, the effective pressure and discharge in a conduit

are then related through (Fig. 1d)

Nn~
c1QYzubh

c2c
{1=a
3 Q1=aY{1=(2a)

ð2Þ

At low discharge, Q, the effective pressure, N, decreases with Q, as is
expected for cavities, whereas at higher discharge, N increases with Q
and the conduit behaves as a Röthlisberger channel. The switch-over in
behaviour occurs at a critical discharge

Qc~
ubh

c1 a{1ð ÞY
Below Qc, the conduit is kept open mainly by ice flow over bed pro-
trusions; above Qc, it is kept open by wall melting.
A linear stability analysis (Supplementary Information) also shows

that discharge becomes concentrated into a few conduits when the
meanwater discharge through an array of laterally connected conduits
exceeds Qc: driven by wall melting, a single conduit will grow into a
large channel (with the properties of a Röthlisberger channel, its size, S,

d
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Figure 2 | Steady-state drainage systems. a, b, Example of a drainage system
formed spontaneously through the channelizing instability. a, Conduit sizes.
Channels aremuch larger (dark blue and purple) than the surrounding cavities.
b, Channels are shown in blue and effective pressure contours are shown at
0.05-MPa intervals. The pressure distribution reveals how channel–cavity
interactions control the drainage pattern. Channels are at higher effective
pressure than the surrounding cavities. Local water pressure maxima (minima
ofN) separate the channels, driving water flow towards them. c, d, Steady-state
drainage system characteristics as functions of water supply rate,m. c, Channel
density (average number of channels per unit width of the domain) plotted
against m. d, Mean of N over the domain plotted against m. Red triangles
correspond to channelized systems; blue circles correspond to unchannelized
ones. Open circles show unstable unchannelized systems (which will evolve
into a channelized state if perturbed). Instability first occurs at a critical water
supply, mc, corresponding to a critical discharge, Qc. Mean effective pressure
decreases with water supply (and, hence, discharge) for stable unchannelized
systems, and increases with water supply for channelized ones. For some
intermediate values ofm (betweenmc and a lower limit,mm, that corresponds
to a critical lower discharge, Qm), both channelized and unchannelized states
are possible: their lowwater pressure allows channels to suck in enoughwater to
keep themselves open, but the discharge through the system is too low for an
unchannelized system to channelize spontaneously. A video animation is
included in Supplementary Information.
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Figure 3 | Idealized seasonal evolution of the drainage system. a, The spatial
mean of effective pressure, N (red lines), plotted against time. The simulations
shown are forced by a sharp increase (over 1 d) in water supply,m (black line),
from a wintertime value of 0.33 cmd21 to a summertime value of 10 cmd21

(solid lines) and 20 cmd21 (dashed lines). This is followed by steady supply for
100d and a gradual return to 0.33 cmd21. The dots marked b–e correspond to
the spatial drainage configurations shown in panels b–e, respectively. b–e, The
drainage system starts close to an unchannelized steady state with small
conduits (b). The abrupt increase inm leads to a sharp drop in effective pressure
(a ‘spring event’9), which opens the drainage conduits to accommodate the
additional discharge but does not immediately channelize the system
(c). Efficient channelization causes effective pressure to increase only after some
time (d), reaching values above those of wintertime. The final drop inm causes
a temporary jump in effective pressure that leads the system to shut down for
winter (e). Both simulations in panel a show qualitatively the same response.
However, the larger jump in water supply (dashed lines in a) leads to a shorter
and less pronounced period of low effective pressure than the smaller jump
(solid lines in a). A video animation is included in Supplementary Information.
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Ice-sheet acceleration driven by melt supply
variability
Christian Schoof1

Increased ice velocities in Greenland1 are contributing signifi-
cantly to eustatic sea level rise. Faster ice flow has been associated
with ice–ocean interactions in water-terminating outlet glaciers2

and with increased surface meltwater supply to the ice-sheet bed
inland. Observed correlations between surface melt and ice accel-
eration2–6 have raised the possibility of a positive feedback in which
surface melting and accelerated dynamic thinning reinforce one
another7, suggesting that overall warming could lead to accelerated
mass loss. Here I show that it is not simply mean surface melt4 but
an increase in water input variability8 that drives faster ice flow.
Glacier sliding responds to melt indirectly through changes in
basal water pressure9–11, with observations showing that water
under glaciers drains through channels at low pressure or through
interconnected cavities at high pressure12–15 . Using a model that
captures the dynamic switching12 between channel and cavity
drainage modes, I show that channelization and glacier decelera-
tion rather than acceleration occur above a critical rate of water
flow. Higher rates of steady water supply can therefore suppress
rather than enhance dynamic thinning16 , indicating that the melt/
dynamic thinning feedback is not universally operational. Short-
term increases in water input are, however, accommodated by the
drainage system through temporary spikes in water pressure. It is
these spikes that lead to ice acceleration, which is therefore driven
by strong diurnal melt cycles4,14 and an increase in rain and surface
lake drainage events8,17,18 rather than an increase in mean melt
supply3,4.
The effective pressure in the subglacial drainage system, defined as

overburdenminus basal water pressure, controls coupling between ice
and bed: lower effective pressure weakens the ice–bed contact and
permits faster sliding9–11. Effective pressure is controlled by subglacial
drainage, which occurs through two principal types of conduit (Fig. 1):
Röthlisberger channels19,20 are kept open by a balance between a
widening of the channel by wall melting due to heat dissipation in
the water flow, and a narrowing that results from the inward creeping
motion of the surrounding ice. By contrast, cavities11,21,22 are formed
where ice is forced upwards by horizontal sliding over protrusions on
the glacier bed. This opens a gap in the lee of the protrusion, with gap
size controlled by the opening rate due to sliding and by creep closure
of the cavity roof.
An increase in effective pressure leads to faster creep closure. In an

equilibrium channel, this must be balanced by greater wall melt.
Greater wall melt in turn requires higher discharge and, thus, a larger
channel. Röthlisberger channels therefore increase in sizewith increas-
ing effective pressure (decreasing water pressure). This causes water
flow fromsmaller channels into larger ones, favouring the formation of
an arterial network with few main channels at low water pressure19,23.
Cavities differ from channels as their size is not controlled by wall melt
and increases rather than decreaseswithwater pressure. A reduction in
effective pressure suppresses creep closure and allows larger cavities to
form11,22.This favoursmacroporousbehaviour24with spatiallydistributed
drainage along the ice–bed interface and water discharge increasing with
water pressure. The abundance of channels relative to cavities therefore

determines whether water pressure is low or high in the steady state:
channels canefficiently transportwater athigheffectivepressurewhereas
cavities require low effective pressure to transport the same flux. Past
models23,25, however, donot capture switches fromcavities to channels in
spatially extended drainage or the formation of an arterial network, and
cannot predict the spatial configuration of the drainage system.
Here I unify the description of cavities and channels and predict

how spatially extended drainage systems can switch from cavities to
channels and back. The basic physics of cavities and channels can be
captured in a single equation for the cross-sectional area, S, of a sub-
glacial conduit, which can be a channel or cavity (Supplementary
Information and Fig. 1):

dS
dt

~c1QYzu bh{c2NnS ð1Þ

where Q is the water discharge, Y is the hydraulic gradient along the
conduit and N5 pi2 pw is the effective pressure in the conduit (ice

1Department of Earth and Ocean Sciences, University of British Columbia, 6339 Stores Road, Vancouver, British Columbia V6T 1Z4, Canada.

a

Melt

Creep closure
b Sliding

Creep closure

0.01 1

10−4

10−5

10−6

10−7

S (m2)

R
at

e 
(m

2  
s−

1 )
c

Channel

Cavity

0.01 1 100
2.5

3

3.5

4

Q (m3 s−1)
N

 (M
P

a)

(Qc, Nc)

d

Figure 1 | Properties of a single conduit. a, b, Physics of channels (a) and
cavities (b). c, Conduit opening rate, c1QY1 u bh (dashed line), and closure
rate, c2N

nS (solid line), plotted against S. d, Steady-stateN versusQ in a conduit
(equation (2)). Parameter values are given inMethods Summary. Each conduit
can generally attain one of two equilibria (points of intersection given as circles
in c). These can be identified as channel and cavity. The larger (channel)
equilibrium is prone to instability20: if perturbed to slightly larger size, the
conduit will continue to grow (opening rate exceeds closing rate to the right of
the intersection). In a network of conduits, this eventually leads to one channel
growing at the expense of all other nearby ones. The cavity equilibrium, by
contrast, is stable, and cavities of similar size can coexist. In the steady state,
effective pressure increases with discharge in a channel (increasingNmakes the
closure curve steeper,moving the channel intersection in c to larger values of S),
and decreases with discharge in a cavity. A conduit becomes a channel above a
critical discharge, Qc (dashed curve in d), and remains a cavity below Qc.
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Drainage through sediments
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Ñ ⇥ 0.8 MPa

Ŝ
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> Seismic and gravity inversion studies have continued
to refine the dimensions of Lake Vostok, which is
now known to have a maximum depth of 1067m and
a surface area of 14 000 km2 (e.g. Masolov et al. 2006,
Filina et al. 2008). Similar studies at Concordia
Subglacial Lake reveal a maximum depth of 126m
and a surface area of 600–800 km2 (Filina 2007).

> A dedicated seismic field investigation of the lake
near to South Pole Station has revealed the lake to
have a sediment floor and a maximum water depth of
32m (Peters et al. 2008).

In two further cases, lakes included in the last inventory
from short or incomplete RES transects have been greatly
extended based on their associated ice sheet surface
features. Lake Sovetskaya (unofficial name; SPRI-1 in
Siegert et al. 2005) is now thought to be around 75 km long
and around 1600 km2 in surface area, while 908E lake
(unofficial name; recorded in the 2005 inventory as LVS/
WCx/X37b) is estimated to be 123 km long with an area of
2000 km2 (Bell et al. 2006).

Increased understanding of subglacial hydrology

Perhaps the most significant developments since the last
inventory have been in our appreciation of the subglacial
hydrology of Antarctica. Localized ice sheet surface height

changes have been detected on monthly timescales and are
ascribed to the movement of subglacial water pockets. This
area of study has undergone something of a revolution as
previous ideas of subglacial lakes as isolated bodies have
been transformed by the discovery of active subglacial
hydrological systems capable of discharging several cubic
kilometres of water per year within the largest drainage
basins on the continent.

The first subglacial water flow events to be detected from
space were made through the interferrometric analysis of
radar altimetry data on the Kamb and Bindschadler ice
streams on the Siple Coast of West Antarctica (Gray et al.
2005). Since then radar altimetry has been used to identify
sources and sinks of subglacial water transfer deep in the
interior of East Antarctica (Wingham et al. 2006). It is,
however, repeat-pass laser altimetry using the GLAS
instrument on board the ICESat satellite that has really
demonstrated the frequency and scale of subglacial water
movements in Antarctica. An analysis of all repeat tracks
during the period of operation (2003–08) identified a total
of 130 sites where two or more satellite measurements
indicated either drainage or accumulation of subglacial
water, i.e. 130 ‘active subglacial lakes’ (Smith et al. 2009).
Many of these ‘active lakes’ form clusters associated with
fast flow features in both East and West Antarctica and in
several cases, as with other studies (e.g. Wingham et al.
2006, Fricker et al. 2007, Fricker & Scambos 2009,

Fig. 2. Map of Antarctica showing the
locations of all lakes included in the
current inventory. Colours/shapes
indicate the type of investigations
undertaken at each site: Black/
triangle5 radio-echo sounding,
yellow5 seismic sounding,
green5 gravitational field mapping,
red/circle5 surface height change
measurement, square5 shape identified
from ice surface feature. Vostok
Subglacial Lake is shown in outline.
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Subglacial lakes

Hundreds of lakes have been detected using 
radar and satellite observations. 

Siegert 2005, Wingham et al 2006, Fricker et al 2007, Stearns et al 2008

‘Active’ lakes grow and drain quite frequently 
- through a jokulhlaup-like instability? 

Wright & Siegert 2012

The formation and drainage of lakes may be important for ice-stream dynamics.



On a large scale, distributed systems are described as a ‘sheet’ flow 

+ some additional ingredients to determine water pressure
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Ice-sheet modelling

Basal melting
Englacial/supraglacial source
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Combined sheet / channel modelling Hewitt 2013,  Werder et al 2013



Summary

Uniform water film is unstable.

Röthlisberger channels form arterial networks.

Distributed flow in linked cavities or patchy films is possible.

Evolution of the drainage system has important consequences for ice dynamics 

(surges, ice streams, seasonal/diurnal velocity changes)

On a large scale, the drainage system can be modelled as 
a water layer with variable thickness and permeability.


