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Constitutive law

Rheology is the study of how materials flow.

We seek a constitutive law or flow law to relate stress and strain rate.

deviatoric stress tensor strain rate tensor⌧
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stress = force per unit area strain rate = normalised stretching rate

The general form is a tensorial relationship
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e.g.  Newtonian fluid ⌧
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More generally
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       is an effective viscosity tensor (4th order - 36 components) that may depend on 
invariants of the stress tensor, temperature, grain size, fabric, impurities, ….

If the ice is assumed to be isotropic, with stress and strain rate aligned
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Time

Uni-axial compression
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Simple shear
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Example modes of deformation



Law Dome Flow Regime Law Dome Strain Regime 
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Fig. 1. Law Dome flow and strain regimes. The cross-sections of Law Dome from the summit to Cape Folger are shown with 
surface and bedrock from echo-sounding (to 0.25 km resolution). (a) The computed particle paths (full curves) are shown with 
the ages (dashed lines in ka). The position ofboreholes are indicated I.SGD; 2.BHD; 3.Q; 4.B; 5.P; 6.F; 7.A; 8.BHCI; 9.BHC2. 
(b)  The smooth horizontal surface velocity V (ma-L ) and the average accumulation rate A (ma ~ water) are shown from the 
summit to the coast. (c) The accumulated vertical compressive strain computed for the upper part of the Law Dome section for 
e: from 0.1 to 0.5. (d)  The accumulated horizontal shear strain is shown for ~ ~: from 0.1 to 10. 

minimum or tertiary strain rates, cf. Russel l -Head 
and Budd (1979),  Lile (1978, 1984), Jacka 
(1984b),  Gao and Jacka (1987). It is important  to 
understand the properties of  this initial upper ice 
since it represents the starting material for the sub- 
sequent developments within the ice sheet. One 
proviso for this concept is that for the old ice at 
depth previous conditions (such as chemical and 
dust content, etc.) may have been different at the 
surface in the past from those which pertain at pres- 
ent, so this may also need to be considered. 

Below this initial upper ice is a region which shows 
the effect of increasing vertically compressive stress 
and strain. The fabrics tend to be symmetrical about 
the vertical with either a small circle girdle associ- 
ated with uniform unconfined compression, cf. 
Budd (1972), a 2-maxima fabric associated with 
confined compression, cf. Budd and Matsuda 
(1974), or a state intermediate between these two 

depending on the relative magnitudes of the longi- 
tudinal and transverse strains. 

By the time that about one-third of  the depth is 
reached, typically in the age range of 1000-2000 
years, horizontal shear starts to dominate and by 
about two-thirds of  the depth there may develop a 
zone of strong horizontal shear with a high concen- 
tration of vertical c-axes in the ice. The lower part 
of  the ice sheet has a very variable stress and strain 
rate regime as the ice flows over and around the wide 
spectrum of bedrock variations. Although the basal 
ice is relatively very old, and has accumulated large 
strains, the highly variable stress field near the base 
can cause the ice crystal structure to be also very 
variable, depending on the most recent stress and 
strain regime for the ice, and possibly some residual 
effects of  prior strains. In some cases the basal ice 
may be almost stagnant in low stress regions where 
large intertwined ice crystals grow with multi-max- 

Budd & Jacka 1989

Example strain regimes in Antarctica



Glen’s law

Glen’s law is the most commonly used flow law for 
ice in glaciers and ice sheets.

(In general fluid mechanics terminology Glen’s law is referred to as a ‘power-law’).
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ĉ

"̇ = A⌧

n

"

ij

= A⌧

n�1
⌧

ij

⌘ =
1

2A1/n
"̇

1�1/n

⌘ =
1

2A⌧n�1

⌧

2 = 1
2⌧ij⌧ij =

1
2

�
⌧

2
xx

+ ⌧

2
yy

+ ⌧

2
zz

�
+ ⌧

2
xy

+ ⌧

2
xz

+ ⌧

2
yz

1

⌧

ij

= 2⌘"̇
ij

⌧

ij

= c

ijkl

"̇

kl

"̇

ij

=
1

2

✓
@u

i

@x

j

+
@u

j

@x

i

◆

"̇

ij

=

✓
"̇

xx

"̇

xz

"̇

xz

"̇

zz

◆

D

ij

D

⌧ =
F

A

"̇ =
1

L

dL

dt

"̇ =
u

L

c

ijkl

ĉ
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But the most appropriate values in reality may 
depend on temperature, stress regime, grain size, etc
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In tensorial form

This can also be written as

is the effective viscosity
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second invariant - ‘effective stress’
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(different lines for 
different temperatures)

Glen’s law



11,020 GOLDSBY AND KOHLSTEDT: SUPERPLASTIC DEFORMATION OF ICE 

.Ol 
cr (MPa) 

o.1 1 lO 

lO 0 

10 -3 

10 -6 

1 0 -9 

10 -•2 

10-5 

MONOCRYSTAL DATA 

e Wakahama (1967) 
I9 Higashi (1967) 
x Nakaya (195.8) 
+ Wakahama .(1967.) 
ß Artder'mann (.1982). 
'•' Wakahama (,.1967). 
ß Artder'mann (,1982) 

263 K 

n=2.4 
ß 

n<2 ß' 
POLYCRYSTAL DATA n=4 

ß Glen (1955) _ 
O Butkovitch and La.ndauer. (1 uou) 
A Melior and Testa (1969b) 
0 Barnes et al. (1.971) 

-.-Durham et al, (1992), Po=50 MPa 

10 -2 10 10 ø 10 
o-(MPa) 

Figure 1. (a) Log-log plot of/• versus o comparing data for 
polycrystalline ice and single crystals oriented for basal and 
nonbasal slip. Data have been normalized (when necessary) to 
263 K. Basal slip single crystals are characterized by a stress 
exponent of -•2.4; nonbasal slip single crystals are 
characterized by a stress exponent close to 4. At high stresses 
the stress exponent for polycrystalline samples is 4; at low 
stresses the data suggest a transition to n •2. Note that Glen' s 
experimental data lie in the vicinity of the transition between 
creep regimes characterized by n=4 and n •2. 

fabricated as described above were pressurized inside the 
molding cylinder into the ice II stability field by applying an 
axial stress of ~ 300 MPa. After a brief equilibration time the 
axial stress was quickly decreased to bring the sample back 
into the ice I field. The pressure was then adjusted to 
100 MPa, and the sample was hot pressed for an additional 
2 hours. This technique yielded fully dense samples with 
uniform grain sizes of 3-5 ttm. 

Finally, samples with grain sizes > 30-40 ttm were formed 
either by annealing 30-40 ttm samples at elevated temperatures 
or by hot pressing coarser-grained powders. Coarser-grained 
powders with particle sizes between 0 and ~200 •m were 
formed by grinding laboratory grown ice in a coffee grinder in 
a cold chamber. These coarser particles were then sieved to 
obtain particle sizes between 175 and 200 •tm. The powders 
were packed into a stainless steel molding cylinder and hot 
pressed in the exact manner described for the finer-grained 
samples. 

3.2. Mechanical Testing 

Creep experiments were conducted in a high-resolution 
dead weight load apparatus [Mackwell et al., 1990] fitted with 
a cold chamber to permit control of sample temperature for 
170< T <273 K. The large thermal mass of the cold cell 
limited temperature fluctuation to _+0.5 K at •233 K and to 
ß +0.25 K at >233 K. The maximum temperature gradient 
across the sample was 0.05 K mm -l' 

Changes in sample length were measured by monitoring the 
spacing between two machineable glass ceramic plates, one 
positioned directly above and the other directly below the 
sample. The body of a linear variable displacement transducer 
(LVDT) was mounted outside the cold cell on thin 
machineable glass ceramic sensor rods attached to the top 
sample plate, while the LVDT core was attached to sensor 
rods attached to the bottom plate. The use of an identical 
material for the plates above and below the sample and for the 
LVDT sensor rods minimizes the effect of thermal expansion 
or contraction of these load train components on the creep 
curve. The resolution of this apparatus allow experiments at 
strain rates as slow as 1 x 10 -8 s -•. 

of ice at temperatures between 170 and 268 K, differential 
stresses of 0.2 to 20 MPa, and hence strain rates of 10 -8 to 
10 -4 s -•. With this wide range of experimental conditions we 
were able to quantify the flow laws for both dislocation creep 
and grain size sensitive flow. Often both creep regimes could 
be explored with a single sample of appropriate grain size. 

3.1. Sample Preparation 

Samples were fabricated by hot pressing fine-grained ice 
powders into fully dense aggregates. These fine-grained 
powders were formed by spraying a mist of distilled water into 
a reservoir of liquid nitrogen to form an ice/liquid nitrogen 
slurry. Ice powders with particle sizes < 25 •m were separated 
from this slurry by sieving. These powders were then packed 
into the stainless steel cylinder and hot pressed under an axial 
stress of 100 MPa at a temperature of 196 K for a period of 
N2 hours. This technique yielded uniform grain sizes of-• 30- 
40 tt m, as determined using a line intercept technique with a 
correction factor of 1.5. Samples were -• 10 mm in diameter 
and -20 mm in length. 

Finer-grained samples were fabricated using a modified 
version of the technique of Durham et al. [1994]. Samples 

3.3. Microstructural Analyses 

Deformed samples were analyzed in an environmental 
scanning electron microscope (ESEM) modified for low- 
temperature use. Higher pressures can be maintained in the 
sample chamber of an ESEM than in a conventional SEM, 
allowing sublimation of ice samples. To reveal grain size and 
shape, grain boundaries were thermally etched at 200 to 
230 K. The cold stage allowed samples to be analyzed at 
temperatures as low as 170 K. 

4. Experimental Data 
A subset of our creep data for samples with grain sizes of 

-•8-200 •tm is plotted as log /• versus log o in Figure 2a. 
Included in Figure 2a are the flow laws for single crystals 
oriented for basal slip [Wakahama, 1967] and for dislocation 
creep of polycrystalline ice at high pressure [Durham et al., 
1992]. The high-pressure data were normalized from a 
confining pressure of 50 MPa to atmospheric pressure using 
an activation volume of- 13x 10 -6 m 3 mo1-1 [Kirby et al., 1987]. 
(The sample with a grain size of 200 •tm was deformed at 
268 K and extrapolated to 236 K using the appropriate 
activation energies, as described below.) 

Evidence for Glen’s flow law

Laboratory experiments (Glen 1955, Weertman 1983, Budd & Jacka 1989)

Measurements of the stretching of ice shelves (Jezek et al 1985)

Measurements of the closure of subglacial tunnels (Nye 1953)

Note: calibrating the flow law from field measurements is challenging! It is difficult to 
unambiguously separate out the contributions of stress, temperature and fabric. 

Most of these studies suggest values of the power-law 
exponent
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There is a general indication of lower exponents at 
lower stress (Schulson & Duval 2009).

Goldsby & Kohlstedt 2001

Measurements of the tilting of boreholes (Paterson 1981)



A typical laboratory experiment performed under constant stress conditions shows 
evolution of strain rate with strain (Budd & Jacka 1989).

The minimum strain rate (secondary creep) is usually used for the flow law (occurs at ~1% strain).

Laboratory experiments

In contrast, most glacial ice has experienced larger strain, so is in the tertiary creep regime (?)

Stiffening due to redistribution of stress between grains

Softening due to recrystallisation and rotation of crystals

Steady state fabric



An individual crystal structure

Cuffey & Paterson 2010

Glacial ice is of ice type Ih (h = hexagonal)

Individual H2O molecules are are arranged 
in tetrahedral patterns that tessellate to 
form hexagonal rings of oxygen atoms.

A single ice crystal consists of stacked 
layers of these rings.

The plane of the hexagons is called the 
basal plane, and the normal is called the 
c-axis.

Hobbs 1974 ‘Ice Physics’



Polycrystalline ice

http://www.iceandclimate.nbi.ku.dk/

Individual grains in glacial ice are typically 1–10 mm 
in size.

Polycrystalline ice contains many grains (crystals), 
with different orientations of their c-axes.

In cross-polarised light, thin-sections of ice cores show 
different orientations of the c-axis as different colours.

The ensemble of c-axis orientations is referred to as the 
fabric of the ice - it can evolve, as grains grow and 
deform, and as new crystals form.



Schmidt diagrams
The fabric is visualised with a Schmidt diagram:

Viewed from above, 
each c-axis is a dot

With a larger samples of crystals (from thin-sections of NGRIP ice core):
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Figure 4. (continued) 
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size is 1.6 mm at this level. A steady increase in crystal size is 
observed from then on down to 700 m, where the horizontal 
diameter reaches a limiting value of about 4 mm. The vertical 
diameter attains a maximum of 3 mm at a similar depth. 
Crystal size is nearly constant in the remaining part of the 
Holocene ice but has decreased to 2.9 mm at 1625.8 m, 2.2 m 
below the transition into the Wisconsin ice. A further decrease 
is observed downward in the Wisconsin part, reaching a 
minimum of 2.0 mm at 1980-m depth. Below this depth, the 
tendency is toward slightly increasing grain sizes downward. 

Grain size almost triples across the transition between 
Wisconsin and Eemian ice, which occurs at 2790 m. A value of 
9 mm is obtained at 2795 m and 15 mm at 2860 m. Between 
these depths, however, a value lower than 4 mm is found in 
one of the cold stages of the Eemian sequence. A continuous 
record of vertical crystal size from the Eemian [Thorsteinsson 

et al., 1995] indicates that crystal size is strongly correlated 
with climatic parameters in this part of the core. A background 
size of 3-5 mm, similar to early Wisconsin values, is found in 
the cold stages (5e2 and 5e4), but much larger crystals (7-20 
mm) are observed in the warm stages (5el, 5e3, and 5e5). 

Below the Eemian, isotopically cold ice, which probably 
dates from the Saalean glacial period, is found between 2865 
and 2900 m. Here crystal size returns to smaller values (4-5 
mm), but below 2900 m a steady increase is observed, which 
continues down to the transition into debris laden basal ice 
(silty ice) at 3022.5 m. Just above this transition, crystal size 
reaches the highest value observed in the whole core, 33.3 
mm. An abrupt decrease to 5 mm (not shown in Figure 2) is 
observed as the silty ice is entered. For information on 
textures and fabrics in the basal ice, the reader is referred to a 
detailed study reported by Tison et al. [1994]. 

139 rn n=200 249 rn n=200 359 rn n=200 

470 rn n=200 579 rn n=200 

ß . ..:..¾...-} .• 
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Figure 4. Fabric diagrams from 36 different depth levels, displaying the c axis orientations in the GRIP 
core. The data are plotted on an equal-area Schmidt net. The true azimuth of each diagram is not known. 
Diagrams 34-36 have been rotated in the horizontal plane such that the point distributions appear stretched in 
the same direction. 

Thorsteinsson et al 1997
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size is 1.6 mm at this level. A steady increase in crystal size is 
observed from then on down to 700 m, where the horizontal 
diameter reaches a limiting value of about 4 mm. The vertical 
diameter attains a maximum of 3 mm at a similar depth. 
Crystal size is nearly constant in the remaining part of the 
Holocene ice but has decreased to 2.9 mm at 1625.8 m, 2.2 m 
below the transition into the Wisconsin ice. A further decrease 
is observed downward in the Wisconsin part, reaching a 
minimum of 2.0 mm at 1980-m depth. Below this depth, the 
tendency is toward slightly increasing grain sizes downward. 

Grain size almost triples across the transition between 
Wisconsin and Eemian ice, which occurs at 2790 m. A value of 
9 mm is obtained at 2795 m and 15 mm at 2860 m. Between 
these depths, however, a value lower than 4 mm is found in 
one of the cold stages of the Eemian sequence. A continuous 
record of vertical crystal size from the Eemian [Thorsteinsson 

et al., 1995] indicates that crystal size is strongly correlated 
with climatic parameters in this part of the core. A background 
size of 3-5 mm, similar to early Wisconsin values, is found in 
the cold stages (5e2 and 5e4), but much larger crystals (7-20 
mm) are observed in the warm stages (5el, 5e3, and 5e5). 

Below the Eemian, isotopically cold ice, which probably 
dates from the Saalean glacial period, is found between 2865 
and 2900 m. Here crystal size returns to smaller values (4-5 
mm), but below 2900 m a steady increase is observed, which 
continues down to the transition into debris laden basal ice 
(silty ice) at 3022.5 m. Just above this transition, crystal size 
reaches the highest value observed in the whole core, 33.3 
mm. An abrupt decrease to 5 mm (not shown in Figure 2) is 
observed as the silty ice is entered. For information on 
textures and fabrics in the basal ice, the reader is referred to a 
detailed study reported by Tison et al. [1994]. 
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Figure 4. Fabric diagrams from 36 different depth levels, displaying the c axis orientations in the GRIP 
core. The data are plotted on an equal-area Schmidt net. The true azimuth of each diagram is not known. 
Diagrams 34-36 have been rotated in the horizontal plane such that the point distributions appear stretched in 
the same direction. 
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Deformation of a single crystal

A single crystal deforms easily if shear stress is applied along its basal plane - 
such deformation is termed basal glide.

Deformation is much harder if shear stress is applied along a different plane (Duval et al 1983).
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Deformation is achieved through the motion of dislocations in the crystal lattice, along 
basal planes (dislocation glide), and across basal planes (dislocation climb).
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Compressive stress applied to individual crystals causes their c-axes to rotate towards 
the compressive axis.



Deformation of polycrystalline ice

Dislocation creep  - dislocation climb enables non-basal-plane motion. 

- favoured at high stress.

Grain boundary sliding

Diffusion creep

The rate limiting process, responsible for controlling the macroscopic strain rate (described 
by the flow law) depends on magnitude of stress, temperature, and grain size.

Most of the deformation in polycrystalline ice occurs by basal glide.  But the different 
orientations of crystals mean that this is not usually the rate-limiting process.

- independent of grain size.

- favoured at very low stress.

- sensitive to grain size. 

- molecules diffuse through crystals or along grain boundaries

- favoured at low stress

- sensitive to grain size.
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Grain size and fabric evolution

Normal grain growth occurs in the absence of deformation 
- grain boundaries are energetically unfavourable. 

Dynamic recrystallisation occurs during deformation - this 
includes polygonisation (subdivision of grains resulting from 
alignment of dislocations) and nucleation of new grains (with no 
initial strain energy and c-axes at ~45° to compression axis).

In general, grain size, fabric, and strain rate, all co-evolve.

Alley 1992A favoured orientation of c-axes yields an anisotropic 
response of strain rate to stress.

Deviatoric stress causes individual c-axes to rotate 
towards the compression axis.

Under constant stress, a steady-state balance between grain 
growth, rotation, and recrystallisation may be possible.



Alternative flow laws
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Figure 5. Schematic diagram depicting the relative 
contributions of each of the four creep mechanisms for ice as 
a function of stress. 

GBS is slower than basal slip, the creep rate of polycrystalline 
ice is limited by GBS, characterized by n = 1.8. When 
intracrystalline slip on the basal slip system is slower than 
GBS, the creep rate is limited by basal slip, characterized by 
n = 2.4. For the range of conditions explored in our experi- 
ments this transition from GBS-limited to basal slip-limited 
creep occurs at practical strain rates (i.e., above 10 -8 s -1) only 
for the finest grained samples. For coarser-grained samples 
the transition to the basal slip-limited regime occurs at strain 
rates too slow to allow a significant amount of deformation on 
a laboratory timescale. 

5.2. Summary of Rheology 
The flow of ice can be described in terms of four deforma- 

tion mechanisms: dislocation creep, grain boundary sliding, 
basal or easy slip, and grain boundary diffusion. As illustrated 
schematically in Figure 5, four creep regimes characterize the 
flow of ice over a wide range of stress, strain rate and tempera- 
ture. At high stresses in the n = 4.0 regime, dislocation creep 
is the primary deformation mechanism with both basal and 
nonbasal slip contributing to deformation. With decreasing 
stress, GBS becomes the rate-controlling mechanism in the 
superplastic or n = 1.8 regime in which basal slip is accommo- 
dated by GBS. At lower stresses, GBS is faster than basal slip 
such that in the n = 2.4 regime GBS is accommodated by basal 
slip. Finally, at still lower stresses, grain boundary diffusion 
creep with n = 1.0 is the dominant deformation process [Raj 

and Ashby, 1971 ]. This regime has not been observed experi- 
mentally for ice even in our low-stress experiments using 
samples with a grain size as small as 3 t•m. 

5.3. New Constitutive Equation 

As demonstrated by our experimental observations, the flow 
of ice cannot be adequately described by one flow law with a 
single set of creep parameters. To date, the flow of glaciers 
and ice sheets has generally been modeled using the Glen flow 
law, a power law relation based on the pioneering laboratory 
experiments of Glen [1952, 1955]: 

= B o". (2) 
In the Glen flow law, n has a value of 3 and B is taken to be 
constant at a given temperature. Glen's data, shown in 
Figure 1, lie in the vicinity of the transition from the disloca- 
tion creep regime to the superplastic flow regime. Conse- 
quently, the Glen law oversimplifies the flow behavior of 
polycrystalline ice, yielding a single power law with a stress 
exponent equal to an average value for the slope in the 
transition region between two creep regimes. As illustrated 
recently by Peltier et al. [2000] and to be demonstrated in 
detail by D.L. Goldsby and D.L. Kohlstedt (manuscript in 
preparation, 2001), the superplastic creep regime is very 
important for the description of the flow of glaciers and ice 
sheets for which differential stresses are typically <0.1 MPa, 
values smaller than those explored in Glen's experiments 
(Figure 1). The Glen law underestimates the creep rate of ice 
at glaciologically important stresses. 

The constitutive equation for the flow of ice is composed of 
at least 4 individual flow laws of the form of equation (1), one 
each for dislocation creep, GB S-accommodated basal slip (i.e., 
"superplastic flow"), basal slip-accommodated GBS, and 
diffusional flow. On the basis of our experimental observa- 
tions as illustrated in Figure 5, we propose the following 
constitutive equation as modified from Goldsby and Kohlstedt 
[1997b]: 

• = 13diff + ß + 7 + •disl ' (3) 
13basa I 13gbs 

where the subscripts refer to diffusional flow (diff), basal or 
easy slip (basal), grain boundary sliding (gbs), and dislocation 
creep (disl). Each of the terms on the right-hand side of 
equation (3) can be described by a flow law of the form given 
in equation (1). Our experimentally determined flow law 
parameters for each creep mechanism are listed in Table 5. 
We have determined flow laws for all of the individual 
components in equation (3) except diffusional flow. Below, 
we will estimate the diffusional flow rate using our experimen- 
tal data as constraints. 

To compare our constitutive equation, which includes both 
dislocation and grain size sensitive flow mechanisms, with 

Table 5. Constitutive Equation Parameters 
Creep Regime A, units n Q, kJ mol 'l 

Dislocation creep (T<258 K) 
Dislocation creep (T>258 K) 
GBS-accommodated basal slip (T<255 K) 
GBS-accommodated basal slip (T>255 K) 
Basal slip-accommodated GBS 

4.0 x iO s MPa '4'ø S 'l 4.0 60 
6.0 x 1028 MPa '4'ø S -1 4.0 • 18 

3.9 x 10 '3 MPa -l's m TM S '1 1.8 49 
3.0 x 10 26 MPa 4'8 m TM S '1 1.8 -- 192 

5.5 X 107 MPa '2'4 s 'l 2.4 60 
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Combining deformation mechanisms suggests a flow law like

This allows different mechanisms to dominate at different stresses, temperatures, and grain sizes.

Goldsby & Kohlstedt 2001



Glen’s law - parameter dependence
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Return to Glen’s law

Effect of temperature

Appears to be reasonably described with an Arrhenius law

Apparent activation energy increases above ~-10C  - perhaps due to pre-melted films 
on grain boundaries, facilitating grain boundary sliding (Barnes et al 1971).

(varies by a factor of ~1000 over range of glacial temperatures -55C—0C)

Effect of water content
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For temperate ice (at the melting point), inter-granular water content      softens the 
ice (Duval 1977)
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(varies by a factor of ~3 for     in range 0–1%)
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Effect of impurities

Impurities likely soften ice by facilitating the motion of dislocations and enhancing pre-
melting on grain boundaries.  Their effect is not usually included explicitly in flow laws.
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Enhancement factors

An enhancement factor     is sometimes introduced into the flow law to account for un-
resolved effects of grain size, fabric and impurities. 
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The enhancement factor should not be treated as a known parameter; ideally is should be fitted 
to observations at each point in the ice (e.g. using inverse methods).

Example: an enhancement factor is often applied 
to ice-age ice, which is observed to be softer than 
neighbouring Holocene ice (due to smaller grain 
size).
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Fig. 1. (a) Isotopic record from the Dome C ice core (from Lorius et al. [6]). Ages in years before present are est imated from a 
simple ice flow model  assuming a variable rate o f  accumulat ion.  All depths  are expressed in meters of  ice equivalent. (b) Crystal 
size versus depth from the Dome C ice core. The straight lines are obtained from the finear regression of  crystal size data between 
60 and 360 m and between 510 and 720 m. All depths  are expressed in meters of  ice equivalent. 

served to increase in size between 60 and 360 m and 
below 510 m. There was, however, a marked decrease 
in crystal size between 380 and 510 m. This change, 
like the one observed in the Vostok [2] and Devon 
[3] ice cores, corresponds to a marked discontinuity 
in the stable isotope prortle (Fig. l a). 

3. Climatic record revealed by the crystal size 

The mare features of the crystal size changes with 
depth are then associated with corresponding features 
in the isotopic curve which has been interpretated as 
a climatic record [6]. Other smaller variations cannot 
be compared as the length of samples for the contin- 
uous analysis of  stable isotope was about 4 m and 
the one for crystal size measurements varied between 
4 and 8 cm. 

Crystal size data must be examined by taking into 

account the grain growth process. In terms of  the age 
of  samples, the growth relation can be expressed in 
the form: 

0 2 =020 +Kt  (1) 

where D 2 is the measured mean crystal size at time t, 
Dg the mean crystal size at time zero and K a con- 
stant [4]. Data on crystal growth in dry polar snow 
have shown the validity of  relationship (1) [7]. The 
temperature dependence of the crystal growth rate 
K is correctly expressed by the equation: 

K = Ko e x p ( - Q / R T )  (2) 

where Q is the activation energy of  the growth pro- 
cess, T the temperature Kelvin and R the gas con- 
stant. From Gow [7], the activation energy is about 
l 1 kcal/mole. 

Following the ice core chronology given by Lorius 
et al. [6] and assuming isothermal conditions for the 

Crystal sizeδ 18O



Elastic deformation

Creep deformation occurs when stress is applied for a 
sufficiently long time (longer than the Maxwell time, 
around a day).

The response to short time-scale forcing is elastic - this is 
particularly important for the tidal flexure of ice shelves.

Elastic deformations are described by a constitutive law relating stress and strain

To describe both elastic and creep deformations, a viscoelastic constitutive law can be 
used, such as a Maxwell model
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Young’s modulus

Poisson’s ratio
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This encompasses linear elasticity on short timescales, and Glen’s law on long timescales
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Summary

Glen’s law is the standard rheology used for ice-sheet modelling - but it does not 
account for the complex evolution of fabric and resulting anisotropy.

Glacial ice has a polycrystalline structure that evolves in response to flow.

Macroscopic deformation occurs predominantly by basal glide, accommodated and 
rate-limited by a combination of dislocation creep and grain boundary sliding.

Strain rates are particularly sensitive to temperature.  They also depend on grain size, 
impurities, and water content.

The most appropriate parameters depend on the ice under consideration and its 
deformation history. 


