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Why is temperature important?

Flow law coefficient iy = A" Ty, A = Agexp (—Q>

RT

Coefficient in Glen’s flow law varies by around 3 orders of magnitude over range of
glacial temperatures.

Knowing the temperature is crucial to predicting how fast the ice deforms.

Basal conditions
Thermal conditions at the bed exert primary control on basal sliding.

Many areas of ice sheets have basal temperature at or very close to the melting point.



Example temperature profiles
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Energy equation

The energy equation describes how the temperature evolves in space and time

advection conduction VI.SC.OUS :
dissipation
density p~ 910 kg m~?
specific heat capacity c~2x10° J kg ! K
thermal conductivity k~21Wm 'K
In components
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Derivation of energy equation (one dimension)

Consider the change in energy over time At of a section of ice between z and = + Az

q(z) —

+s&_

X

b q(z + Ax)

T+ Ax

Change in energy = flux in - flux out + heat source

pcAT| Ax = [q(x) — q(z + Azx) + SAx| At

Divide by AtAx and let At, Ax — 0
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heat flux q = pcul — k—
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t Fourier’s law
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Boundary conditions

ice



Surface boundary condition

Condition at surface expresses surface energy balance. It is related to the surface mass balance
(kinematic) condition.

oT
Q(l—a)—eoT* +hp(T, - T) = ko T < Ty,
Z
net shortwave radiation conduction into ice
(account for albedo) (Fourier’s law)
longwave radiation sensible heat transfer
(Stefan-Boltzmann law) (turbulent heat transfer coefficient

- depends on wind speed)

When melting occurs, we must also account for latent heat fluxes.

Conduction term is relatively small - energy balance effectively determines surface temperature

T'=T1T; (t)



Basal boundary condition

A number of different thermal conditions are possible at the bed

T="1T,, \ frozen bed
temperate ice above bed T

(requires viscous heating) temperate bed - freezing

temperate bed - melting



Basal boundary condition

Condition at bed expresses basal energy balance.

oT

G=—-k— T <1,
0z
geothermal heat flux conduction into ice
G
[T
0z
If bed is at melting point
G—|—Tbub—mL:—]€a—T T'="1n
0z
frictional heating basal melt rate

(freeze-on if negative)

latent heat L ~ 3.4 x 10° J kg™ !



Polythermal ice

Temperate ice (ice at the pressure melting point) can result from

- heating caused by viscous dissipation.

- heating caused by refreezing of infiltrating surface melt water.

Many mountain glaciers are entirely temperate - referred to as temperate glaciers.

Some areas of ice sheets have temperate ice near the bed - they are referred to as polythermal.

The energy equation in temperate ice becomes an equation for water content ¢

0P 1 72
it : — _V. - T ="1T,,
0t+u Vo V q—l—prn

K— viscous dissipation now causes internal melting

+ additional assumptions for how water moves (eg Aschwanden et al 2012, Schoof & Hewitt 2015).



Surface seasonal wave

Near the surface, suppose we may ignore advection (ok if accumulation not too large)
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Conductive profile

Away from the surface, consider steady state temperature profiles. — p_ 1 Y — |

The simplest case is if conduction dominates

O0*T
0=k
Depthﬁ
1
z=H
A O I >

Temperature T,

Es 7,-T,~50K G~60mW m *

=> H,= k(TmG_ T5) 1750 m

ice

For thicker ice, the bed is at the melting point

T=T,+(Tn-T) (1- =)

H
Depthﬁ T,
z=H
e Melting
z =10 >

Temperature T,



Example temperature profiles
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lce divides

Near an ice divide, advection is mostly vertical - a simple
assumption is linear vertical velocity (Robin 1955)

¥ > surface accumulation

az . ! g
w=—— Y
Energy equation balances advection and conduction ' : ‘
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Horizontal advection

Colder interior temperatures are a result of horizontal advection

oT oT 0*T Ou Ow
+ W= = K=

Uy TV, T e oz "B

Generally requires a numerical solution...

But it is easy to see schematically why this can produce colder interior ice
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Numerical calculations

Simulations of ice flow require a good estimate of ‘initial’ temperature.

These estimates are challenging due to uncertainty in forcing parameters (surface temperature
history, geothermal heat flux, etc). Improvements in data assimilation are ongoing.
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Surging

Thermo-mechanical coupling may be responsible for interesting dynamical phenomena.

T
pe (%—t +u- VT) = kV?T + 2A(T)r"H

One possibility is thermal runaway (Clarke et al 1977) - an increase in temperature causes
increase in viscous dissipation that increases temperature further - positive feedback.

Mechanism for surging? Probably not, in the absence of sliding (Fowler et al 2010).

y
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e
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lce streams

Field observations show ice-streams are associated with a temperate bed (Engelhardt et al 1990).

Themo-mechanical instability may provide a mechanism for forming ice streams on an
otherwise uniform bed.

(a) Upper surface at time = 300 ka (b) Speed (m/a)
0 ' ' 5000 0 ' '
100 100
200 4000 200
300} 300
13000
400+ 400 ¢
500} r 12000 500¢
600 | 600 |
1000
700 700 ¢
0 200 400 600 0 200 400 600
(d) Temperature aty = 247.5 km
(c) Basal temperature 5000
0 -10
100 4000
1-20
200
300 3000 1-30
400
500 2000 |40
600

200 1000

0 200 400 600

Hindmarsh 2009




Summary

Temperature is important for determining ice flow and basal conditions.

Temperatures generally increase with depth as a result of geothermal and frictional
heating, and viscous dissipation.

Simple analytical solutions of the energy equation help explain qualitative features
of observations.

Thermo-mechanical coupling has important dynamical consequences for ice flow.



