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Abstract

We study the Hitchin component in the space of representations of the

fundamental group of a Riemann surface into a split real Lie group in

the rank 2 case. We prove that such representations are described by a

conformal structure and class of Higgs bundle we call cyclic and we show

cyclic Higgs bundles correspond to a form of the affine Toda equations. We

also relate various real forms of the Toda equations to minimal surfaces in

quadrics of arbitrary signature. In the case of the Hitchin component for

PSL(3,R) we provide a new proof of the relation to convex RP
2-structures

and hyperbolic affine spheres. For PSp(4,R) we prove such representations

are the monodromy for a special class of projective structure on the unit

tangent bundle of the surface. We prove these are isomorphic to the

convex-foliated projective structures of Guichard and Wienhard.

We elucidate the geometry of generic 2-plane distributions in 5 dimen-

sions, work which traces back to Cartan. Nurowski showed that there is

an associated signature (2, 3) conformal structure. We clarify this as a re-

lationship between a parabolic geometry associated to the split real form

of G2 and a conformal geometry with holonomy in G2. Moreover in terms

of the conformal geometry we prove this distribution is the bundle of max-

imal isotropics corresponding to the annihilator of a spinor satisfying the

twistor-spinor equation.

The moduli space of deformations of a compact coassociative submanifold

L in a G2 manifold is shown to have a natural local embedding as a

submanifold of H2(L,R). We consider G2-manifolds with a T 4-action of

isomorphisms such that the orbits are coassociative tori and prove a local

equivalence to minimal 3-manifolds in R3,3 ∼= H2(T 4,R) with positive

induced metric. By studying minimal surfaces in quadrics we show how

to construct minimal 3-manifold cones in R3,3 and hence G2-metrics from

a set of affine Toda equations. The relation to semi-flat special Lagrangian

fibrations and the Monge-Ampère equation is explained.
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Chapter 1

Introduction

The space of representations of the fundamental group π1(Σ) of a compact Riemann

surface into a simple Lie group is a rich source of geometry. If we restrict attention

to the case that Σ has genus g > 1 and consider representations into PSL(2,R), there

is a component in the space of such representations consisting of the Fuchsian repre-

sentations. These correspond to constant negative curvature metrics by means of an

identification Σ ≃ H/π1(Σ) where H is the upper half-plane. The space of Fuchsian

representations is then identified with Teichmüller space.

For groups other than PSL(2,R) one might hope to similarly find geometric struc-

tures on Σ from which the representations arise. To be more specific let H be the

adjoint form of a simple, split real Lie group. Hitchin [51] has identified a component

of the space of representations of π1(Σ) into H that is contractible and naturally

contains a copy of Teichmüller space. It is for representations in this space, which

following Labourie [62] we call the Hitchin component, that we seek a geometric in-

terpretation. Our approach succeeds in the case that H has rank 2 while for higher

rank it gives only a hint as to what such representations may describe.

Associated to a representation in the Hitchin component is a Higgs bundle which

is determined by a series of holomorphic differentials. We prove that when all but

the highest differential vanishes the Higgs bundle takes on a special form. The corre-

sponding Higgs bundle equations relate to a real form of the affine Toda equations.

We then consider in generality the affine Toda equations and prove their relation to

harmonic maps.

In Chapter 2 we study Higgs bundles and their relation to harmonic maps and

the affine Toda equations. We begin in Section 2.1 with a review of Higgs bundles
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and the relationship with harmonic maps. In Section 3.1 we introduce the Hitchin

component and the construction of Higgs bundles for representations in this com-

ponent. The link with the Toda equations comes about through studying a special

class of Higgs bundles that we call cyclic. We introduce cyclic Higgs bundles in Sec-

tion 2.2.3 and prove their equivalence to the Toda equations with particular reality

conditions. In Section 2.3 we propose a general form of the affine Toda equations

with a reality condition that covers a wide range of instances of the equations. In

Section 2.4 we define superconformal and superminimal surfaces in quadrics of arbi-

trary signature and show how they relate to the Toda equations and to Higgs bundles.

In Chapter 3 we then use our results on cyclic Higgs bundles to understand the

geometry of representations in the Hitchin component for rank 2 groups. That is

for PSL(3,R), PSp(4,R) and the split real form of G2. In such cases we find that

all such representations can be related to a set of Toda equations which allows us

to understand in some detail the geometry underlying the representations. In the

rank 2 case all such representations are described by two holomorphic differentials a

quadratic differential and a higher differential. In Section 3.1 we examine how the

quadratic differential is closely related to the space of complex structure on the surface

and based on work by Labourie [62] we show it is sufficient to consider representations

where the quadratic differential vanishes.

In the case of PSL(3,R) the Hitchin component is known to correspond to con-

vex projective structures and hyperbolic affine spheres. In Section 3.4 we directly

construct the projective and affine structures using Higgs bundles.

For PSp(4,R) it is known that such representations correspond to the convex-

foliated projective structures of Guichard and Wienhard [43] on the unit tangent

bundle of the surface. In Section 3.5 we construct projective structures on the unit

tangent bundle and prove they differ from the convex-foliated structures only by

homeomorphism of the surface, but have their own distinct features. In particular

the fibres of the unit tangent bundle define lines in our projective structure.

Section 3.6 we are able to relate the Hitchin component for G2 to almost complex

curves in a quadric. This is a split real version of the usual notion of almost complex

curves for the compact real form of G2, although this is a less intrinsic structure than

in the other rank 2 cases.

The next two chapters move away from Higgs bundles but continue the theme of

G2 geometry. We study a geometry associated with the split real form of the excep-
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tional Lie algebra G2. This geometry is most conveniently described by the language

of Cartan geometries, more specifically parabolic geometries.

Cartan geometries are a curved generalisation of homogeneous spaces. As the def-

inition is very broad more important to us will be the notion of a parabolic geometry.

Here the homogeneous model space is one associated to a parabolic subgroup. In

addition to projective and conformal geometries the parabolic geometry of interest to

us is one associated to the split real form of G2. This geometry is the structure that

naturally arises from a generic 2-distribution in 5 dimensions. Here generic means

that taking successive commutators generates the entire tangent bundle. Such dis-

tributions were studied by Cartan in a section of his famous 5 variables paper [20].

This geometry has been briefly touched upon in a few places for example [39] and

[90] and later Nurowski [76] in the context of studying a class of differential equations

discovered there is an associated conformal structure on the 5-manifold with split

G2 holonomy. Our contribution is to clarify the geometry from the parabolic Cartan

geometry point of view and also to give an interpretation in terms of spinors.

The homogeneous space for this G2 geometry is a 5-dimensional quadric which

can also be identified as the homogeneous model space for conformal geometry of

signature (2, 3). As a result we are able to relate the structure to the more famil-

iar conformal geometry. To each generic 2-distribution we can therefore associate a

unique conformal structure. We show the distribution consists of maximal isotropic

subspaces in the conformal structure. Moreover since the distribution V is maximal

isotropic there is locally a spinor ψ defined up to scale for which V is the annihilator

of ψ. We prove that we can scale ψ so that it satisfies the twistor spinor equation.

Chapter 4 begins with background material on parabolic geometries and Cartan

connections in Section 4.1 and continues with tractor bundles in Section 4.2. We also

consider conformal geometry specifically in Section 4.3 as this will relate to the G2 ge-

ometry of the following chapter. Chapter 5 begins with Section 5.1 where we introduce

a parabolic subgroup of split G2 and study the corresponding parabolic geometry. We

relate this to generic 2-distributions in 5 dimensions. In Section 5.2 we prove that this

G2 geometry is equivalent to conformal geometry with G2 holonomy thus moving the

geometry into the realm of conformal geometry. In Section 5.3 we consider the use

of spinors in conformal geometry and prove the result that constant spinors for the

tractor connection correspond to solutions of the twistor spinor equation. Returning
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to the 5-dimensional geometry, the existence of the conformal structure allows one to

define, at least locally, spinor bundles. We then prove the existence of a pure spinor

for the 2-distribution satisfying the twistor spinor equation.

Section 5.4 considers two examples of this 5-dimensional geometry, the rolling of

two surfaces and a class of differential equations.

In Chapter 6 we move onto a geometry involving the compact form of G2, namely

the coassociative submanifolds of G2 manifolds and coassociative fibrations.

The well-known conjecture of Strominger, Yau and Zaslow [91] provides a geomet-

ric picture of mirror symmetry, at least in the so-called large complex structure limit.

The conjecture proposes mirror pairs of Calabi-Yau manifolds which are special La-

grangian torus fibrations over the same base, but with dual fibres. In understanding

limiting cases of the conjecture one is motivated to study semi-flat special Lagrangian

fibrations. These are fibrations in which the fibres are flat tori. It is known in this

case that the base has natural affine coordinates and a function φ satisfying the real

Monge-Ampère equation detH(φ) = 1, where H(φ) is the Hessian of φ with respect

to the affine coordinates [49].

In M-theory G2-manifolds play a role equivalent to Calabi-Yau manifolds in String

theory, so it is natural to ask whether there is an analogue of the SYZ conjecture for

G2-manifolds. Gukov, Yau and Zaslow argue that the G2 equivalent is a pair of G2-

manifolds fibred by coassociative submanifolds over the same base [44]. We take this

as motivation to study G2-manifolds fibred by flat coassociative tori. More specifically

we call a coassociative fibration X semi-flat if there is a T 4-action of isomorphisms

of X such that the orbits are coassociative submanifolds. The key result is Theorem

6.2.1 which states that the base M locally maps into H2(T 4,R) (equipped with the

intersection form) as a minimal 3-submanifold and conversely such a minimal sub-

manifold gives rise to a semi-flat coassociative fibration.

Before studying the specific case of semi-flat G2-manifolds, we investigate the

structure of the moduli space of deformations of a compact coassociative submanifold

in Section 6.1. Adapting the approach of [49] which studies the moduli space of special

Lagrangians, we find that the moduli space M of deformations of a compact coas-

sociative submanifold L has locally a natural map u : M → H2(L,R) defined up to

an affine map. The L2 metric on the moduli space is then the induced metric under u.
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Section 6.1.3 considers the case of a G2-manifold that is a product X = Y × S1

of a Calabi-Yau manifold Y and a circle. In this case the coassociative and special

Lagrangian moduli spaces can be related. Moreover, in the semi-flat case we show

that the minimal submanifold equations reduce to the Monge-Ampère equation, re-

covering the known result on semi-flat Calabi-Yau manifolds.

Section 6.2.1 is on compact coassociative fibrations. We show that a compact

manifold with holonomy equal to G2 can only have degenerate coassociative fibrations.

We then briefly consider the nature of the singularities and provide examples of torus

fibrations that might serve as a model for the expected behaviour of coassociative

fibrations. In Section 6.2.2 we consider semi-flat coassociative fibrations. These are

coassociative fibrations with a torus action of isometries generating the fibres. In

Section 6.2.3 we prove the main result on semi-flat fibrations that they are locally

equivalent to positive definite minimal 3-submanifolds in H2(T 4,R) ≃ R
3,3.

In [67] the authors seek solutions to the Monge-Ampère equation on a 3-dimensional

base that is a cone. This reduces to equations on a surface, in fact the equations for

an elliptic affine sphere. This amounts to solving the following equation on a Riemann

surface

ψzz + |U |2e−2ψ + 1
2
eψ = 0

where U is a holomorphic cubic differential. Up to sign changes this is the Toda

equation for the affine Dynkin diagram A
(2)
2 , studied by Tzitzéica [97]. In a similar

fashion in Section 6.3 we reduce from the minimal submanifold equations on a 3-

manifold to equations on a surface. We consider semi-flat G2-manifolds with a vector

field commuting with the T 4-action which essentially scales the associative 3-form.

This corresponds to the minimal 3-manifold being a cone, which in turn is equivalent

to a minimal surface in the quadric of unit vectors. We then apply the results of

Section 2.4.1 to show that in the case of the unit quadric in R3,3 the equations for a

superconformal minimal surface are

2(w1)zz = −e2w2−2w1 − e2w1 ,

2(w2)zz = qqe−2w2 + e2w2−2w1 .

where q is a holomorphic cubic differential. The case where the G2-manifold is a prod-

uct of a Calabi-Yau manifold and a circle corresponds to the reduction e2w2 = qqe−2w1

in which case the equations reduce to the equation of [67].
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In Section 6.4 we extend the results on semi-flat coassociative fibrations to the

case of manifolds with a split G2 structure. In particular if they reduce to equations

on a surface we can obtain different real forms of the Toda equations including the

case that coincides with the Hitchin component for PSp(4,R) which ties in with the

earlier work of the Thesis.

We conclude with Chapter 7 in which we discuss some further questions that merit

investigation.
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Chapter 2

Higgs Bundles, harmonic maps and
Toda equations

In this chapter we examine the links between Higgs bundles, harmonic maps and

the affine Toda equations. In Section 2.1 we begin with a review of Higgs bundles

followed by harmonic maps. We then explain how Higgs bundles are related to a

class of harmonic map. In Section 3.1 we introduce a class of Higgs bundles which

parameterise a component in a space of representations of the fundamental group of

the surface. We introduce a special case of such Higgs bundles which we call cyclic

and we relate these to the affine Toda equations. In Section 2.3 we introduce the affine

Toda equations more generally and in Section 2.4 relate them to minimal surfaces in

quadrics.

2.1 Higgs bundles and harmonic maps

Here review introduce the basic theory of Higgs bundles and harmonic maps and show

their relationship.

2.1.1 Higgs bundles

Let Σ be a Riemann surface. To each holomorphic vector bundle E over Σ we define

the slope µ(E) by

µ(E) =
degE

rankE
. (2.1)

We say that E is semi-stable if for any proper, non-zero holomorphic sub-bundle

F ⊂ E we have the inequality µ(F ) ≤ µ(E). We say E is stable if the above inequal-

ity is strict µ(F ) < µ(E) and we say E is polystable if E is a direct sum of stable

7



bundles all with the same slope.

The collection of all holomorphic bundles considered up to isomorphism over a

compact Riemann surface Σ can not in general be given the structure of a Hausdorff

topological space in any reasonable way. However Mumford’s geometric invariant

theory showed that by restricting to stable bundles a reasonable moduli space can be

constructed. In fact the moduli space of stable bundles of given rank and degree has

a natural structure of an algebraic variety. The stability condition is also important

from another point of view. If E is a holomorphic vector bundle of degree zero we

can ask whether E can be given a Hermitian metric such that the associated Chern

connection is flat. The answer is the well-known result of Narasimhan and Seshadri

[73]. Such a metric exists if and only if E is poly-stable. This provides a link be-

tween the moduli space of semi-stable bundles of degree zero and representations of

the fundamental group π1(Σ) into the unitary groups U(n). A similar relation holds

for arbitrary degree by considering Hermitian-Einstein connections. In another direc-

tion the Narasimhan-Sashadri theorem is extended to non-unitary representations by

means of Higgs bundles.

The Higgs bundle equations were introduced by Hitchin in [50] as a dimensional

reduction of the Yang-Mills self-duality equations. Let Σ be a Riemann surface with

canonical bundle K. Let K (not to be confused with the canonical bundle) be the

compact real form of a complex semisimple Lie group G with corresponding Lie

algebras k ⊂ g = k ⊗ C. Let ρ denote the anti-linear involution corresponding to g.

If x⊗ y 7→ k(x, y) is the Killing form on g then corresponding to ρ is the Hermitian

form x ⊗ y 7→ −k(x, ρ(y)). The Hermitian adjoint of adx is −adρ(x), hence we will

denote −ρ(x) by x∗.
The Higgs bundle equations for the group K are equations for a pair (∇A,Φ)

consisting of a connection ∇A on a principal K-bundle P and a section Φ of the

vector bundle AdP c⊗K where AdP c = P ×Ad g is the complex adjoint bundle. The

Higgs bundle equations are

FA + [Φ,Φ∗] = 0 (2.2)

∇0,1
A Φ = 0 (2.3)

where FA is the curvature of ∇A and ∇0,1
A is the (0, 1) part of ∇A. Note also that

a solution to these equations defines a flat G-connection ∇ = ∇A + Φ + Φ∗ and

hence a representation of the fundamental group π1(Σ) of Σ into G. We will have

8



more to say on the link with representations of the fundamental group in Section 2.1.3.

Suppose we have a solution (∇A,Φ) to the SU(n) Higgs bundle equations. We

have a rank n vector bundle E of degree zero associated to the standard representa-

tion of SU(n) and ∇0,1
A defines a holomorphic structure on E. We also have that Φ is

a trace free section of End(E)⊗K and from the Higgs bundle equations we have that

Φ is holomorphic. This leads us to the following definition: a Higgs bundle is a pair

(E,Φ) consisting of a holomorphic vector bundle E and Φ a holomorphic section of

End(E) ⊗K. Since the Higgs bundle pair consists of holomorphic objects they can

be approached from a purely algebro-geometric point of view.

So far we have that a solution to the SU(n) Higgs bundle equations (∇A,Φ) de-

fines a Higgs bundle (E,Φ) where degE = 0 and Φ is trace free. Naturally we may

ask the converse question. Suppose (E,Φ) is a Higgs bundle. Given a Hermitian

form h on E we then have the Chern connection ∇A, the unique connection that pre-

serves h and is compatible with the holomorphic structure on E. This defines a pair

(∇A,Φ) and we are interested in whether we can find such a pair that solves the Higgs

bundle equations (2.2), (2.3). Since Φ is holomorphic equation (2.3) is automatically

satisfied. A necessary condition for a solution to equation (2.2) is that degE = 0,

however this is not sufficient. This leads us to the notion of stability for Higgs bundles.

We define the slope µ(E) of a Higgs bundle (E,Φ) to be the slope of E, µ(E) =

degE/rankE. A Higgs bundle (E,Φ) is said to be semi-stable if for each proper,

non-zero sub-bundle F ⊂ E which is Φ-invariant, that is Φ(F ) ⊂ F ⊗ K we have

µ(F ) ≤ µ(E). Similarly we have notions of stable and polystable Higgs bundles.

Let us return to the question of the existence of a solution (∇A,Φ) of the Higgs

bundle equations corresponding to a Higgs bundle (E,Φ) with degE = 0. The result

of Hitchin [50] and Simpson [84] is that such a connection ∇A exists if and only if

(E,Φ) is polystable and in this case the connection ∇A is unique. In the case of a

stable bundle the Hermitian metric is unique up to scale.

We can express this correspondence on the level of gauge isomorphism classes as

follows. Let us fix a smooth vector bundle E of rank n and degree 0. We restrict to

Higgs bundle pairs consisting of a holomorphic structure ∂E on E such that detE = O
is the trivial holomorphic line bundle and trace free Higgs field Φ. Two such Higgs
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bundles are isomorphic if and only if they are SL(n,C) gauge equivalent. Fix a

Hermitian metric h on E compatible with the volume form given by the SL(n,C)-

structure. Then given a holomorphic structure ∂E on E we have a corresponding

Chern connection.

The result of Hitchin and Simpson is that within an SL(n,C) gauge isomorphism

class of Higgs bundles (here the metric h is fixed and the Higgs bundle (∂E ,Φ) is

gauge transformed) there is a solution to the Higgs bundle equations if and only if

the corresponding isomorphism class is polystable. Moreover in the stable case the

solution is unique up to SU(n) gauge isomorphism.

So far we have only considered the correspondence between Higgs bundles and

the Higgs bundle equations in the SU(n) case. More generally we can set up a

correspondence between the Higgs bundle equations for a complex semisimple Lie

group G and Higgs bundles of a particular form. Indeed If (∇A,Φ) is a solution of

the Higgs bundle equations with ∇A a connection on a principal K-bundle P then the

complex adjoint bundle E = AdP c is a holomorphic bundle and since Φ is a section

of E ⊗K it can also be considered as a section of End(E)⊗K thus defining a Higgs

bundle pair (E,Φ) which is clearly polystable.

Conversely we can consider Higgs bundles (E,Φ) such that E is the adjoint bundle

associated to a holomorphic principal G-bundle P c and Φ is a holomorphic section

of AdP c ⊗ K. Clearly we have degE = 0, so if (E,Φ) is polystable we know there

exists an SU(n) solution to the Higgs bundle equations. In fact one can show there

is a unique solution (∇A,Φ) where ∇A is a K-connection [51]. The flat connection

∇ = ∇A + Φ − ρ(Φ) is then a G-connection, hence the monodromy defines a repre-

sentation of π1(Σ) in G.

2.1.2 Harmonic maps

We review harmonic maps, minimal submanifolds and establish some of their basic

properties which we will have need for on several occasions. Standard references for

harmonic maps are [35], [33], [34].

Let M,N be manifolds with (possibly indefinite) metrics g, h respectively. Given

a smooth map φ : M → N , the differential φ∗ : TM → TN can be regarded as a

section of T ∗M⊗φ−1(TN). Using the Levi-Civita connections onM and N we have a

natural connection on T ∗M⊗φ−1(TN) which we simply denote ∇. Then we may take
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the covariant derivative ∇φ∗ which turns out to be a section of S2(T ∗M)⊗ φ−1(TN)

called the second fundamental form of φ. The trace of ∇φ∗ over the S2(T ∗M) factor

is a section τ(φ) of φ−1(TN) called the tension field of φ. We say that φ is harmonic

if the tension field vanishes.

In local coordinates {xi}mi=1 on M and {yα}nα=1 on N such that φ = {φα(x)}nα=1

the tension field is given by

τγ(φ) = gij
(
∂2ijφ

γ − M
Γkij∂kφ

γ + NΓγαβ∂iφ
α∂jφ

β
)

(2.4)

where
M
Γkij and

NΓγαβ are the Christoffel symbols on M and N respectively.

We say that φ : M → N is a minimal immersion if φ is harmonic and g is the

pull-back metric g = φ∗h. Equivalently a minimal immersion is an immersion that

is a solution of the Euler-Lagrange equations for the volume functional φ 7→
∫
M
vol

where vol is the volume form on M induced by the metric on N .

We will establish a formula for the Levi-Civita connection on certain homogeneous

spaces for later use concerning harmonic maps into such spaces. Similar results can

be found in [74]. Let G be a Lie group, V ⊂ G a subgroup, v ⊂ g the corresponding

Lie algebras. Suppose v admits an AdV -invariant complement h so g = v ⊕ h as

V -modules. Then via the Maurer-Cartan form ω : TG→ g we have the trivialisation

TG = G× g.

In a similar fashion we can identify the tangent space of the quotient G/V with

T (G/V ) = G×V h.

Write ω = ωv + ωh with ωv ∈ v, ωh ∈ h. Then since v and h are AdV -invariant, this

decomposition is itself invariant.

Let p : G → G/V be the natural projection. Suppose now U ⊂ G/V is an open

subset over which we have a local section σ : U → G so p σ : U → G/V is simply the

inclusion. Then we will denote σ∗ωv and σ∗ωh simply by ωv and ωh. Now ωh provides

a canonical identification of TU with U × h by sending X ∈ TuU to (u, ωh(X)).

We wish to define a torsion free connection over U . Given vector fields X, Y it

suffices to define ωh(∇XY ). We find that a torsion free connection has the form

ωh(∇XY ) = X(ωhY ) +
1

2
[ωX, ωY ]h +

1

2
M(ωX, ωY ) (2.5)

11



where [ , ]h denotes the h-component of the Lie bracket and M is a symmetric map

M : g⊗ g → h (depending on u ∈ U).

Suppose now that 〈 , 〉 is a G-invariant inner product on g such that v and h are

orthogonal. Then 〈 , 〉 transports to a metric on G via ω and descends to G/V by

invariance. So for vector fields X, Y on U , the inner product 〈X, Y 〉 is given by

〈X, Y 〉 = 〈ωhX,ωhY 〉.

If we require that (2.5) preserves the metric this determines M . In fact we find

M(A,B) =
[
Av, Bh

]
−

[
Ah, Bv

]
. (2.6)

Substituting we find that the Levi-Civita connection is given by

ωh(∇XY ) = X(ωhY ) +
1

2
[ωX, ωY ]h +

1

2

[
ωvX,ωhY

]
− 1

2

[
ωhX,ωvY

]
. (2.7)

But since v and h are adv-invariant this simplifies a little to

ωh(∇XY ) = X(ωhY ) +
[
ωvX,ωhY

]
+

1

2

[
ωhX,ωhY

]h
. (2.8)

Now we shall apply equation (2.8) to the case of a harmonic map from a Riemann

surface to a homogeneous space G/V as above. Note that the harmonic equation

for a map from a surface Σ depends only on the conformal structure on Σ. Let

φ : Σ → G/V be a map from a Riemann surface to G/V . Locally we compose with

the section σ : U → G to get a lift φ̃ : U → G. We have φ∗σ∗ω = φ̃∗ω = φ̃−1dφ̃.

Suppose h is a metric on Σ compatible with the complex structure. Let z denote a

local holomorphic coordinate on Σ. One finds that the map φ is harmonic if and only

if ∇zφz = 0. Let us write

φ̃∗ω = Adz +Bdz = (Av + Ah)dz + (Bv +Bh)dz. (2.9)

Then the equation for φ to be harmonic is

ωh(∇zφz) = Ah
z +

[
Bv, Ah

]
+

1

2

[
Bh, Ah

]h
= 0 (2.10)

and equivalently we have the conjugate equation

ωh(∇zφz) = Bh
z +

[
Av, Bh

]
+

1

2

[
Ah, Bh

]h
= 0. (2.11)
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2.1.3 Relation between Higgs bundles and harmonic maps

We consider a certain class of harmonic maps from a Riemann surface into G/K where

G is a complex simple Lie group and K is a maximal compact subgroup. Following

[27] we will show how such harmonic maps are related to Higgs bundles.

Let Σ be a Riemann surface and Σ̃ the universal cover. Let θ : π1(Σ) → G be

a representation of the fundamental group of Σ in G. Consider a θ-equivariant map

ψ : Σ̃ → G/K, that is if we think of Σ̃ as a principal π1(Σ)-bundle over Σ then for

each γ ∈ π1(Σ) we have ψ(uγ) = θ(γ)−1ψ(u).

We can view ψ as a reduction of structure of the principal G-bundle P = Σ̃×θG to

the principal K-subbundle PK = {[(x, u)] ∈ Σ̃×θG | u ∈ ψ(x)} where [(x, u)] denotes

the equivalence class of (x, u) in Σ̃×θ G. We can view this reduction of structure as

equivalent to defining an anti-involution ρ on the adjoint bundle P ×Ad g and hence

a corresponding Hermitian metric.

Locally we can take a lift ψ̃ : U → G of ψ. Then ψ̃ is a local section of PK . The

flat connection over Σ corresponding to the monodromy representation θ descends

from the Maurer-Cartan form ω on Σ̃ × G. So in the local trivialisation given by ψ̃

the flat connection is ψ̃∗ω = ψ̃−1dψ̃.

Let k be the subalgebra of g corresponding to K and let k⊥ be the orthogonal

complement with respect to the Killing form. Then the compact antilinear involution

ρ corresponding to K is given by the identity on k and minus the identity on k⊥.

The decomposition g = k⊕ k⊥ is K-invariant so upon restriction to the principal K-

subbundle PK ⊂ P we have that the flat connection ω can be invariantly decomposed

into k and k⊥-valued parts:

ω = A+ φ. (2.12)

Now in the gauge corresponding to ψ̃ we have

ω = ψ̃−1dψ̃ = αdz + βdz. (2.13)

Moreover if we let α = αk + α⊥, β = βk + β⊥ be the corresponding decompositions

then

A = αkdz + βkdz, (2.14)

φ = α⊥dz + β⊥dz. (2.15)

Let us call α⊥ = Φ. Now since ψ̃ is a local lift of ψ we have that ψ̃ corresponds

to a local frame such that the anti-involution ρ on the adjoint bundle matches the
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fixed anti-involution ρ corresponding to K ⊂ G. Therefore β⊥ = Φ∗ = −ρ(Φ). The

Maurer-Cartan equations, i.e. the fact that ω is a flat connection yields

FA +
1

2
[φ, φ] = 0 (2.16)

dφ+ [A, φ] = 0 (2.17)

where FA = dA+ 1
2
[A,A] is the curvature of the connection defined by A.

We now consider the condition for ψ to be harmonic with respect to any metric

compatible with the conformal structure on Σ. Recall equation (2.8) giving the Levi-

Civita connection on G/K. Put ω = ωk + ω⊥. Then

ω⊥(∇XY ) = X(ω⊥Y ) +
[
ωkX,ω⊥Y

]
+

1

2

[
ω⊥X,ω⊥Y

]⊥
.

In the present case
[
k⊥, k⊥

]
⊂ k so the last term vanishes. Put Y = ∂z and X = ∂z.

So ωkY = αk, ω⊥Y = Φ, ωkX = βk, ω⊥X = Φ∗. The harmonic equation ∇zφz = 0 is

then 0 = Φz +
[
βk,Φ

]
, that is

(∇A)zΦ = 0

where ∇A is the connection corresponding to A. Therefore we have one of the Higgs

bundle equations from the Maurer-Cartan equations FA+ [Φ,Φ∗] = 0 and the second

of the Higgs bundle equations is equivalent to the map ψ being harmonic.

To summarise we have found that given a representation of the fundamental group

θ : π1(Σ) → G, the corresponding flat connection ∇ can be decomposed into ∇ =

∇A + Φ + Φ∗ satisfying the Higgs bundle equations if and only if there exists a θ-

equivariant map ψ : Σ̃ → G/K which is harmonic. Conversely a solution of the Higgs

bundle equations defines a flat connection with a monodromy representation θ and

we get a θ-equivariant harmonic map.

The natural question is then to which representations does there exist such a

harmonic map and hence a corresponding Higgs bundle. The result of Donaldson

[31] and Corlette [27] is that a θ-equivariant harmonic map exists if and only if the

representation θ is reductive, that is if the induced representation of π1(Σ) on g is

a direct sum of irreducible representations. Moreover when such a map ψ exists it

is essentially unique. Any other such solution is of the form gψ where g is in the

centraliser of θ(π1(Σ)).
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2.2 The Hitchin component

Higgs bundles provide an interpretation for representations of the fundamental group

of a surface into a simple Lie group. A particular explicit construction of Higgs

bundles by Hitchin [51] identifies a component of the space of representations into the

split real form of a Lie group. This component is often called the Hitchin component.

We consider within the Hitchin component those representations for which only the

highest holomorphic differential is non-vanishing and show in this case the Higgs

bundle equation reduces to a set of Toda equations.

2.2.1 Principal three-dimensional subalgebras

Let g be a complex simple Lie algebra of rank l, let h be a Cartan subalgebra with ∆,

∆+ and Π denoting the root system, a system of positive roots and the corresponding

simple roots, lastly fix a corresponding basis {hβ, eα, e−α| β ∈ Π, α ∈ ∆+}. Kostant

[59] defines a subalgebra (unique up to conjugacy) called the principal 3-dimensional

subalgebra of g. We construct the principal 3-dimensional subalgebra as follows. Let

x =
1

2

∑

α∈∆+

hα (2.18)

then x =
∑

α∈Π rαhα for some positive half-integers rα. We use these to further define

e =
∑

α∈Π

√
rαeα, ẽ =

∑

α∈Π

√
rαe−α. (2.19)

Then we define s as the linear span of {x, e, ẽ}. We must verify that s is a subalgebra:

Lemma 2.2.0.1. [81] For any β ∈ Π we have β(x) = 1.

Proof. Let Rβ denote the reflection in the hyperplane in h∗ orthogonal to β, namely

Rβ(α) = α− 2
(α, β)

(β, β)
β.

The dual action of Rβ on h is then

Rt
β(h) = h− β(h)hβ. (2.20)

From this one verifies the relation Rt
β(hα) = hRβ(α). We then have that

Rt
β(x) =

1

2

∑

α∈∆+

hRβ(α).

However we also have that for α ∈ ∆+, Rβ(α) ∈ ∆+ except for α = β in which case

Rβ(β) = −β. It follows that Rt
β(x) = x− hβ, hence by (2.20), β(x) = 1.
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Given a root λ ∈ ∆, let λ =
∑

α∈Π nαα. Then we define the Π-height of λ to be

the integer height(λ) =
∑

α∈Π nα. The above lemma shows that for y ∈ gα, we have

[x, y] = height(α)y, that is x is the grading element corresponding to the gradation

of g by height. We now deduce the following commutation relations for s:

[x, e] = e, [x, ẽ] = −ẽ, [e, ẽ] = x. (2.21)

Thus s is a copy of sl(2,C).

We have that the element e is regular, that is it has an l-dimensional centraliser

spanned by elements e1, . . . , el. Moreover on restriction to s the adjoint representation

decomposes into irreducible subspaces:

g =

l⊕

i=1

Vi. (2.22)

We can take e1, . . . , el as highest weight elements of V1, . . . , Vl which shows there are

indeed l summands. Since s itself must appear as one of the Vi, we take it to be V1

so we may take e1 = e. Let m1, . . . , ml denote the exponents of g. These can be

described as follows [80]: arrange the positive roots of g into an array with the k-th

row consisting of all roots of height k, filling in rows from right to left. Then the

lengths of the columns from left to right are the exponents. In particular we see that

if the highest root δ has height M then ml =M is the largest exponent.

Returning to the decomposition of g given by (2.22), we have that the dimensions

of V1, . . . , Vl are (2m1 + 1), . . . , (2ml + 1), from which we may write

g =

l⊕

i=1

S2mi(V ) (2.23)

where V is the 2-dimensional fundamental representation for s. Observe that [x, el] =

Mel and thus el is a highest weight vector.

We may also decompose g according to the action of x, i.e. by height:

g =

M⊕

m=−M
gm. (2.24)

2.2.2 Higgs bundle construction

We now consider the construction of Higgs bundles in [51]. Let G denote the adjoint

form of g. Let Σ be a compact Riemann surface of genus g > 1 with K the canonical
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bundle. There are homogeneous generators p1, . . . , pl for the invariant polynomials

on g such that for all elements f ∈ g of the form

f = ẽ+ α1e1 + · · ·+ αlel, (2.25)

we have

pi(f) = αi. (2.26)

We also have that pi has degree mi + 1.

Recall that if M is the moduli space of Higgs bundles (E,Φ) for the group G then

there is a map

p : M →
l⊕

i=i

H0(Σ, Kmi+1) (2.27)

obtained by applying the invariant polynomials p1, . . . , pl to Φ. We will construct a

section of this map.

Consider the bundle

E =
M⊕

m=−M
gm ⊗Km. (2.28)

This is the adjoint bundle of g associated to the principal G-bundle P = P1 ×i G

where P1 is the holomorphic principal SL(2,C)-bundle associated to K1/2 ⊕ K−1/2

(for a choice of K1/2) and i : SL(2,C) → G is the inclusion corresponding to the

principal 3-dimensional subalgebra s. We see from (2.28) that E is independent of

choice of K1/2 and defines for us a holomorphic bundle with the structure of g.

Next we construct a Higgs field Φ. Let q1, . . . , ql be holomorphic differentials of

degrees m1 + 1, . . . , ml + 1. Then we may define Φ ∈ H0(Σ, E ⊗K) as follows:

Φ = ẽ + q1e1 + · · ·+ qlel. (2.29)

Here, since ẽ ∈ g−1, we regard ẽ as a section of (g−1⊗K−1)⊗K and similarly qiei can

be considered as a section of (gi ⊗Ki) ⊗K so that Φ is a well defined holomorphic

section of E ⊗K. The Higgs bundles (E,Φ) constructed here are polystable and in

fact correspond to smooth points of the moduli space M [51]. We have from (2.26)

that pi(Φ) = qi and it follows that (q1, . . . , ql) 7→ (E,Φ) is our desired section.
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So far we have constructed Higgs bundles with holonomy in G. We show that in

fact the Higgs bundles constructed have holonomy in the split real form of G. We

define an involutive automorphism σ on g as follows:

σ(ei) = −ei, σ(ẽ) = −ẽ. (2.30)

Since g is obtained from e1, . . . , el by repeated application of adẽ, we see that such

a σ must be unique. We state some properties of σ [51]; σ exists, and defines a

Cartan involution corresponding to the split real form of g. That is if ρ is a compact

anti-involution defining a Hermitian metric solving the Higgs bundle equations then

in fact ρ and σ commute and λ = ρσ is an anti-involution for the split real form of

g. Clearly our Higgs field satisfies σΦ = −Φ. If (∇A,Φ) satisfies the Higgs bundle

equations then so does (σ∗∇A, σ
∗Φ) and hence so does (σ∗∇A,Φ). Uniqueness of ∇A

now shows that σ is preserved by ∇A. Note also that λΦ = −ρ(Φ) = Φ∗. It now

follows that the flat connection ∇A + Φ + Φ∗ has holonomy in the split real form of

G. Therefore we have constructed representations of the fundamental group of Σ into

the split real form.

Our section s :
⊕l

i=iH
0(Σ, Kmi+1) → M takes values in the smooth points of

M and identifies the vector space V =
⊕l

i=iH
0(Σ, Kmi+1) with a submanifold of M.

Moreover the map s actually maps V into the moduli space Mλ of flat Gλ-connections

where Gλ is the split real form of G. Around the smooth points Mλ is a manifold

of dimension (2g − 2) dim(Gλ). Moreover we find from the Riemann-Roch theorem

that dim(V ) = (2g − 2) dim(Gλ) also. Since the image s(V ) ⊂ Mλ is open, closed

and connected it defines a smooth component of the space of representations of the

fundamental group in Gλ. We call this the Hitchin component.

2.2.3 Cyclic Higgs bundles

We now consider a special case of this construction in which all but the highest

differential are set to zero. We will call such a Higgs bundle cyclic. Thus our Higgs

field is of the form

Φ = ẽ+ qel. (2.31)

Here q ∈ H0(Σ, KM+1) is a holomorphic (M + 1)-differential, where M = ml.

We will also call an element X ∈ g cyclic if it has the form

X =
∑

α∈Π∪{−δ}
cαeα (2.32)
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where −δ is the lowest root and all cα are non-zero. Thus our Higgs field is cyclic as

an element of g at all points where q 6= 0.

Solutions of the form (2.31) have the property that they are fixed points in the

moduli space of Higgs bundles of the action of certain roots of unity in C
∗. From the

properties of the element x we have

[x,Φ] = −ẽ +Mqel.

Let us now define g = exp(2πix/(M + 1)). It follows that

AdgΦ = exp(2πiM/(M + 1))Φ = ωΦ (2.33)

where ω is a (M + 1)-th root of unity. Now if (∇A,Φ) is the solution to the Higgs

bundle equation corresponding to Φ then we may gauge transform this solution by g

to get the equivalent solution (g∗∇A, ωΦ), we can then use the U(1)-action to obtain

the solution (g∗∇A,Φ). The uniqueness theorem for solutions to the Higgs bundle

equations now implies that A is gauge invariant under g, which in turn is equivalent

to covariant constancy of g with respect to the connection ∇A. Thus the action of

g and ∇A on sections of E commutes. Observe that the Cartan subalgebra h is the

unity eigenspace of Adg from which it follows that ∇A preserves the subbundle of E

corresponding to h and thus the connection form A is h-valued.

We now seek an explicit form of the Higgs bundle equations for the special class of

solutions (2.31). For this we adopt the following point of view: given the holomorphic

data (E,Φ), we seek a Hermitian metric H on E such that the Chern connection

A = H−1∂H satisfies the Higgs bundle equations:

FA + [Φ,Φ∗] = 0 (2.34)

where FA = ∂(H−1∂H) is the curvature of ∇A.

More specifically, in our case a Hermitian metric is a reduction of the structure

group of E to the maximal compact subgroup Gρ of G. This is equivalent to finding

an anti-linear involution ρ : E → E preserving the Lie algebra structure of the fibres,

i.e. it is a choice of compact real form of g on each fibre of E. The associated

Hermitian form is then

H(u, v) = hρ(u, v) = −k(u, ρ(v)) (2.35)
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where k is the Killing form on g. Recall that for u ∈ g, the adjoint of u thought of as

the endomorphism adu is given by x∗ = −ρ(x). Now since G is the adjoint form of g

we can think of G as a group of linear transformations in g. Corresponding to the real

form ρ on g we may define a map ρ : G → G by ρ(g) = (g∗)−1. Here the adjoint is

with respect to the corresponding Hermitian form H . Note that the differential of ρ

at the identity is simply the anti-involution ρ which explains why we denote both by ρ.

In order to write down an arbitrary such anti-involution ρ we first define the

following fixed anti-involution ρ̂ of g:

ρ̂(hα) = −hα; ρ̂(eα) = −e−α; ρ̂(e−α) = −eα. (2.36)

The fixed set of ρ̂ defines a compact real form of g and moreover any other compact

real form is conjugate to ρ̂ by an inner automorphism.

We emphasize that ρ is an anti-involution on the adjoint bundle E while ρ̂ is a

fixed anti-involution on the Lie algebra g. Consider now a trivialisation of E over

an open subset U which identifies the fibres of E with g preserving the Lie algebra

structure. The anti-involution ρ : E → E defines on each fibre Ex an anti-involution

ρx : Ex → Ex and upon identifying Ex with g, ρx defines an anti-involution on

g. Hence for each x ∈ U there exists a p(x) ∈ G such that ρx = αxρ̂α
−1
x where

αx = Adp(x). Allowing x to vary over U we have a map p : U → G such that in the

trivialisation over U , ρ = Adp ◦ ρ̂ ◦ Ad−1
p . Thus

ρ = Adh ◦ ρ̂ (2.37)

where h = pρ̂(p)−1. Equation (2.37) is a local formula relating ρ to ρ̂. Note also that

Adh is a positive symmetric operator with respect to ρ̂. The following lemma will

show that we then have h = exp(2Ω) for some Ω ∈ g with the property ρ̂(Ω) = −Ω.

Lemma 2.2.0.2. Let g be a complex Lie algebra with Hermitian form. If h ∈ Aut(g)

is positive and symmetric then h = eH where H is symmetric and H ∈ der(g) is a

derivation of g.

Proof. We may decompose g into the eigenspaces of h

g =
⊕

λ

gλ.

Since h is an automorphism we have [gλ1 , gλ2 ] ⊆ gλ1λ2. Now we may write h = eH

where H = log(h) is symmetric. Further H acts on gλ with eigenvalue log(λ). The

fact thatH is a derivation follows immediately since log(λ1λ2) = log(λ1)+log(λ2).
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Consider how to find the Chern connection associated to the Hermitian metric hρ.

In a local trivialisation where ρ = Adh ◦ ρ̂ we have:

hρ(u, v) = −k(u,Adh(ρ̂(v)))
= hρ̂(u,Adh−1v).

We can regard hρ̂ as a fixed Hermitian form on g, hence we can think of the metric

hρ as being locally associated to the matrix h−1 = exp(−2adΩ). The connection form

in this trivialisation is then A = h∂h−1.

We will need the following

Lemma 2.2.0.3. The anti-involution ρ solving the Higgs bundle equations is unique

Proof. Any other solution is related by a G-valued gauge transformation L : E → E

such that L preserves the holomorphic structure and Φ. We will argue that L is the

identity. It is a general fact [50] that a gauge transformation that is holomorphic

and commutes with Φ is in fact covariantly constant with respect to the unitary

connection ∇A. Now as in (2.28) we may write

E =

M⊕

m=−M
gm ⊗Km. (2.38)

But we have seen that ∇A is h = g0-valued, hence ∇A preserves the subbundles

Em = gm ⊗ Km. If we decompose L into endomorphisms Lij : Ei → Ej then each

Lij must be covariantly constant. But since Ei ⊗ E∗
j = gi ⊗ g∗j ⊗ Ki−j there can

only be a non-vanishing covariantly constant section if i = j (since Σ is assumed to

have genus g > 1). Therefore L preserves gi for all i. Since L preserves the Cartan

subalgebra h = g0 then L is valued in the normaliser N(T ) of the maximal torus T .

But L also preserves g1 =
⊕

α∈Π gα. Therefore the induced action of L on the roots

of g preserves the choice of simple roots, hence L is valued in the maximal torus T .

We also have that L commutes with Φ = ẽ+qel, in particular AdLẽ = ẽ. It follows

that L is the identity.

We can now prove the following

Proposition 2.2.1. The anti-involution ρ locally has the form ρ = Adh ◦ ρ̂ where

h = e2Ω and Ω is valued in h.
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Proof. We have seen that the connection A is valued in h and that ∇A preserves the

element g. Note that g commutes with the action of x so that g is a well defined

global gauge transformation. Consider a new globally defined anti-involution given

by µ = Adg ◦ ρ ◦ Adg−1 = Adq ◦ ρ where q = gρ(g)−1.

Now since both g and H are covariantly constant we see that µ yields a metric

compatible with A. Thus the Chern connection corresponding to µ is also A. Now if

we take the Higgs bundle equation for ρ:

FA + [Φ,−ρ(Φ)] = 0

and apply Adg, noting that g commutes with elements of h we get

FA + [ωΦ,−Adgρ(Φ)] = 0

but since ωAdg ◦ ρ(Φ) = Adg ◦ ρ ◦Adg−1Φ = µ(Φ) we get

FA + [Φ,−µ(Φ)] = 0.

By uniqueness of solutions to the Higgs bundle equations we have that µ = ρ, and

so Adq is the identity. Thus q lies in the centre of G which is trivial since G is the

adjoint form, hence ρ(g) = g.

Locally we write ρ = Adh ◦ ρ̂ where h = e2Ω. Then g = ρ(g) = Adh(ρ̂(g)) =

Adh(g). Thus g and h commute. This implies that h preserves the eigenspaces of g,

in particular h preserves the Cartan subalgebra h. Thus h is valued in the normaliser

N(T ). We will further argue that h is valued in the maximal torus T .

Since N(T )/T is a finite group (the Weyl group) there is some positive integer a

such that ha = e2aΩ is valued in T , say ha = eX where X is valued in h. However ha

is a positive symmetric operator in the sense that ha = ha/2ρ̂(h−a/2) = ha/2(ha/2)∗.

Therefore h2a = eX−ρ̂(X) is also positive and symmetric. So h2a has a unique positive

symmetric 2a-th root which is h. Taking this root yields

h = e(X−ρ̂(X))/a.

Replacing 2Ω by (X − ρ̂(X))/a if necessary we have that h = e2Ω is valued in T and

Ω is valued in h with ρ̂(Ω) = −Ω.

We need to understand the transition functions in order to form a global picture.

On a trivialising open set Uα the adjoint bundle E becomes Uα× g. Let gαβ be tran-

sition functions for the canonical bundle, so that a section s of K consists of local
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sections sα such that sα = gαβsβ. Suppose that the Uα are simply connected so we

have gαβ = efαβ where fαβ is holomorphic. From (2.28) we have that the transition

functions for E are Adgαβ
x = Ad

e
fαβx . Note in particular that corresponding to the

Cartan subalgebra h is a trivial subbundle.

On the open set Uα the compact anti-involution ρ is represented by an anti-

involution ρα = Adhα ◦ ρ̂ where hα = e2Ωα . The corresponding Hermitian form is

−k(u, ρα(v)) = −k(u,Ade2Ωα ρ̂(v))

= −k(u, ρ̂(Ade−2Ωαv))

= hρ̂(u,Ade−2Ωαv).

Since the Hermitian forms for ρα and ρβ should agree on the overlap we can determine

the transition behaviour for hα and Ωα:

hρ̂(uα,Adh−1
α
vα) = hρ(Adgαβ

xuβ,Adh−1
α
(Adgαβ

xvβ))

= −k(Adgαβ
xuβ, ρ̂(Adh−1

α gαβ
xvβ))

= −k(uβ,Adgαβ
−x ρ̂(Adh−1

α gαβ
xvβ))

= −k(uβ, ρ̂(Adgαβ
xh−1

α gαβ
xvβ))

= hρ̂(uβ, (Adgαβ
xh−1

α gαβ
xvβ))

= hρ̂(uβ,Adh−1

β
vβ).

So h−1
β = efαβxh−1

α efαβx and hence

hα = efαβxhβe
fαβx (2.39)

2Ωα = (fαβ + fαβ)x+ 2Ωβ . (2.40)

In particular the local transformation law for hα can be rewritten

hα = e(fαβ+fαβ)xhβ. (2.41)

Having established that Ω is h-valued, we have that Ω and ∂Ω commute and the

connection is simply A = −2∂Ω. We have in turn that the curvature is FA = −2∂∂Ω.

Next we determine Φ∗ = −ρ(Φ). Recall that Φ = ẽ + qel. Thus ρ̂(Φ) = −e− qẽl

where ẽl is a lowest weight vector for g. Thus

Φ∗ = Adh(e + qẽl)

=
∑

α∈Π

√
rαe

2α(Ω)eα + qe−2δ(Ω)ẽl.
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We can now determine the commutator [Φ,Φ∗]:

[Φ,Φ∗] =

[
∑

α∈Π

√
rαe−α + qel,

∑

α∈Π

√
rαe

2α(Ω)eα + qe−2δ(Ω)ẽl

]

= −
∑

α∈Π
rαe

2α(Ω)hα − qqe−2δ(Ω)h−δ.

Although it has been suppressed, this should really be multiplied by a dz ∧ dz term.

The Higgs bundle equation for Ω now becomes:

− 2Ωzz +
∑

α∈Π
rαe

2α(Ω)hα + qqe−2δ(Ω)h−δ = 0. (2.42)

If g is a simple Lie algebra of type Ln then these are a version of the affine

Toda field equations [71] for the Affine Dynkin diagram L
(1)
n which we introduce more

generally in Section 2.3. Note that since Ω is h-valued we have ρ(Ω) = ρ̂(Ω) = −Ω

and similarly for hα, h−δ. Thus Ω is a real linear combination of the hα. However

there is an additional constraint on Ω that we have yet to consider. By examining

this condition we will find that in some cases the above equations will reduce to affine

Toda field equations for a smaller affine Dynkin diagram.

2.2.4 Reality

The additional constraint on Ω that we have yet to consider relates to the reality

properties of Ω. Recall that we define an involutive automorphism σ on g by the

properties

σ(ei) = −ei, σ(ẽ) = −ẽ.

We also note that σ commutes with ρ̂ and λ̂ = σρ̂ = ρ̂σ is an anti-involution corre-

sponding to the split real form of g. As before we have σ(Φ) = −Φ and σ is covariantly

constant with respect to ∇A.

We shall argue that in fact σ(Ω) = Ω. First note that since σA = A we have

σ(Ωzz) = Ωzz. Thus the remaining terms of the Toda equations (2.42) must also be

fixed by σ. We also know [51] that σ = φ ◦ ν̂ where φ is the inner automorphism

corresponding to a rotation by π in the principal 3-dimensional subgroup and ν̂ is a

lift of an automorphism ν of the Dynkin diagram for Π. In fact ν is trivial except for

the simple Lie algebras of type An, D2n+1, E6 for which it has order 2.

In any case, φ is a conjugation by an element of h, so that σ agrees with ν̂ on h,

that is we have

σ(hα) = hν(α), σ(h−δ) = h−δ. (2.43)
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We also have that σ(x) = x from which it follows that rν(α) = rα. By invariance

of the right hand side of (2.42) under σ we see that e2α(Ω) = e2ν(α)(Ω), now since

Ω is real with respect to the basis {hα} we may take logarithms to conclude that

α(Ω) = ν(α)(Ω) for all α ∈ Π, that is σ(Ω) = Ω.

From the relation σ(Ω) = Ω we have that ρ and σ commute and thus λ = σρ = ρσ

is a real structure on E conjugate to λ̂, hence λ defines a reduction of structure to

the split real form Gλ of G.

Now we have that A is invariant under ρ and σ, hence λ also. Therefore ∇A has

holonomy in K = Gρ ∩ Gλ, the maximal compact subgroup of Gλ, in fact A takes

values in a maximal torus T of K.

Let t denote the Lie algebra of T , that is t = hλ. The inclusion i : t → h induces

the restriction map r : h∗ → t∗. Since Ω is t-valued we wish to reinterpret the Toda

field equations in terms of the restricted roots on t∗. Intuitively speaking we are

dividing out the action of ν.

We can realise t∗ as a subspace of h∗. In fact the kernel of the restriction map

is the −1-eigenspace of ν̂t so that t∗ identifies with the +1 eigenspace. Under this

identification the restriction map becomes the orthogonal projection map

r(α) = 1
2
(α+ ν̂t(α)).

For any β ∈ t∗ define the dual vector h̃β by the usual formula

α(h̃β) = 2
(α, β)

(β, β)

for all α ∈ t∗. Then, for possibly different constants r̃β the Toda equation (2.42)

reduces to:

− 2Ωzz +
∑

β∈r(Π)

r̃βe
2β(Ω)h̃β + qqe−2δ(Ω)h̃−δ = 0. (2.44)

The elements of r(Π) together with −δ = −r(δ) correspond to an affine Dynkin

diagram as explained in Section 2.3. That is we have a system of vectors in a Euclidean

vector space t∗ whose Dynkin diagram is an affine Dynkin diagram. Equation (2.44)

is then the affine Toda field equation for the corresponding affine Dynkin diagram.

All that remains is to actually determine which affine root system they correspond

to. If ν is trivial then t = h and the affine diagram is just the extended Dynkin
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diagram L
(1)
n obtained by adding to the root system Ln the lowest weight −δ. The

remaining cases follow from a straightforward calculation and are as follows: for g of

type A2n, A2n−1, D2n+1, E6, the corresponding affine diagrams are A
(2)
2n , C

(1)
n , B

(1)
2n , F

(1)
4

respectively.

2.3 The affine Toda equations

We have already encountered a class of equations that we termed affine Toda equa-

tions. The Toda equations have been extensively studied from the point of view of

integrable systems [71], [68], [79], [65] as well as their relation to minimal surfaces

and harmonic maps [8] [28], [7], [29], [30]. This should not be surprising given the

link between Higgs bundles and harmonic maps. However our treatment of the affine

Toda equations allows for more general real forms of the equations than are usually

considered. We also review the links to minimal surfaces and harmonic maps.

Let A be an n × n indecomposable generalised Cartan matrix of affine type. We

label the rows and columns by 0, 1, · · · , l, where l = n − 1. We arrange so that the

l × l matrix A0 formed by removing row 0 and column 0 is the Cartan matrix for

the root system of a complex simple Lie algebra. So there is a real l-dimensional

Euclidean vector space (h, 〈 , 〉) with basis {hi}, i = 1, . . . , l such that if we define a

corresponding basis {αi}, i = 1, . . . , l of h∗ by αi = 2hi/〈hi, hi〉 then Aij = αj(hi) for

i, j = 1, . . . , l.

Moreover [23] there exists positive integers a0, a1, . . . , al with no common factor

such that A(a0, . . . , al)
t = 0. Similarly there exists positive integers c0, c1, . . . , cl with

no common factor such that (c0, . . . , cl)A = 0. Let us define h0 ∈ h and α0 ∈ h∗ by

h0 = −
l∑

i=1

cihi, (2.45)

α0 = −
l∑

i=1

aiαi. (2.46)

Then it follows that

αi(hj) = Aji, i, j = 0, 1, . . . , l. (2.47)

Now we may define the affine Toda equations

Definition 2.3.1. Given an n×n indecomposable generalised Cartan matrix of affine

type let h, {hi}, {αi} be as above. Let Σ be a Riemann surface. A map Ω : Σ → h⊗C
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is said to satisfy the affine Toda equations if it is a solution to

2Ωzz =

l∑

i=0

kie
2αi(Ω)hi, (2.48)

where ki ∈ C are constants, ki 6= 0, i = 0, . . . , l.

Typically the affine Toda equations arise with reality conditions on Ω. If however

this is not the case then we can replace Ω by Ω + u where the constant u ∈ h ⊗ C

satisfies e−2αi(u) = ki for i = 1, . . . , l. This new Ω then satisfies

2Ωzz =
l∑

i=1

e2αi(Ω)hi + qe2α0(Ω)h0 (2.49)

for some constant q. However when reality conditions are imposed we might only be

able to reduce the ki to ±1.

Let us now consider a reality condition that will arise in connection with τ -

primitive maps. Let µ be the anti-linear extension to h⊗C of an involutive isometry

on h. Further assume that there is an involutive permutation σ of {0, 1, . . . , l} such

that µ(hi) = −hσ(i). We can now impose the following reality condition on solutions

Ω of the affine Toda equations:

µ(Ω) = −Ω. (2.50)

For consistency this requires the coefficients ki satisfy kσ(i) = ki.

If σ(i) = i and i 6= 0 then ki is real and by a suitable replacement of Ω by Ω + u

we may replace ki by ±1. On the other hand in the case σ(i) = j, with i 6= j and

i, j 6= 0 then a suitable replacement of Ω allows us to set ki = kj = 1. Therefore aside

from k0 and kσ(0) we may set all ki equal to ±1.

2.3.1 Primitive maps and the affine Toda equations

We extend the notion of τ -primitive maps defined in [7] and show they are essentially

equivalent to the affine Toda equations.

Let G be a connected complex semisimple Lie group with Lie algebra g. Let h

be a Cartan subalgebra and T a corresponding maximal torus. As in Section 2.2.3

let g = e2πix/(M+1) and let τ = Adg be the corresponding automorphism of G. Then

τ has order M + 1 and fixes T . Let gm denote the eigenspace of g on which τ has
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eigenvalue e2πim/(M+1). Let us denote by W the orthogonal complement of g0 in g

with respect to the Killing form. Then

W =

M⊕

m=1

gm. (2.51)

and W is preserved by the the adjoint action of T . Using the Maurer-Cartan form we

have an isomorphism T (G/T ) = G×T W and G/T inherits a metric from the Killing

form on W . Hence τ is also as an isometry on G/T . Furthermore the decomposition

of W leads to a corresponding decomposition for T (G/T )

T (G/T ) =
M⊕

m=1

Em (2.52)

where Em = G×T gm.

Let Gµ be the connected subgroup of G generated by the exponents of the fixed

points gµ of an antilinear involution µ on g. We say that µ is compatible with τ if τ

preserves gµ or equivalently if τ and µ commute.

Suppose that µ is a compatible real form. We note that µ maps gi to g−i and in

particular µ preserves g0. Let g
µ
0 denote the fixed point set of µ acting on g0. The

corresponding subgroup T µ is a maximal connected abelian subgroup of Gµ. So τ

also acts on Gµ/T µ and the tangent space decomposition now takes the form

T (Gµ/T µ)⊗ C =
M⊕

m=1

Em. (2.53)

Definition 2.3.2. Let Σ be a connected Riemann surface. A map φ : Σ → Gµ/T µ is

called τ -primitive if φ∗(T
1,0Σ) ⊆ E1 and is cyclic in the sense of Section 2.2.3 for at

least one value of p ∈ Σ.

Proposition 2.3.1. Every τ -primitive map is harmonic.

Proof. Suppose φ : Σ → Gµ/T µ is a τ -primitive map. Locally we can find a lift

φ̃ : U → Gµ where U is an open subset of Σ. Let z be a local holomorphic coordinate

on U . The τ -primitive condition is equivalent to

φ̃−1∂zφ̃ ∈ g0 ⊕ g1. (2.54)

Let us write φ̃−1∂zφ̃ = A0 + A1 with Ai ∈ gi for i = 0, 1. Then we also have

φ̃−1∂zφ̃ = µ(A0) + µ(A1) ∈ g0 ⊕ g−1. (2.55)
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Now the Maurer-Cartan equation for φ̃−1dφ̃ gives

µ(A0)z − (A0)z + [A1, µ(A1)] = 0 (2.56)

−(A1)z + [A1, µ(A0)] = 0 (2.57)

µ(A1)z + [A0, µ(A1)] = 0. (2.58)

Now let us consider the harmonic map equations (2.10), (2.11) in the case of a

map φ : Σ → Gµ/V into a homogeneous space such that V = T µ is a torus.

In this case Av, Bv ∈ g0 ⊗ C, Ah ∈ g1, B
h ∈ g−1 and we have

[
Bh, Ah

]h
= 0 since

[g1, g−1] ⊂ g0. The harmonic map equations are

Ah
z +

[
Bv, Ah

]
= 0,

Bh
z +

[
Av, Bh

]
= 0.

If we put Av = A0, A
h = A1, B

v = µ(A0), B
h = µ(A1) then the above equations are

clearly seen to be just be two of the Maurer-Cartan equations for a primitive map.

Therefore primitive maps are harmonic.

2.3.2 Toda framing

We follow [7] in introducing the notion of a Toda framing, which will lead to the affine

Toda equations. Let p1, . . . , pl be homogeneous generators of the ring of invariant

polynomials with pl having the highest degreeM+1. If φ : Σ → Gµ/T µ is τ -primitive

then we define a (M + 1, 0)-differential q on Σ as

q = pl(∂φ, . . . , ∂φ). (2.59)

Lemma 2.3.1.1. The differential q is holomorphic.

Proof. Let ∇ be the Levi-Civita connection on Gµ/T µ. Since pl is an invariant poly-

nomial it is parallel. Thus

∂zpl(φz, . . . , φz) = (M + 1)pl(∇zφz, φz, . . . , φz). (2.60)

But since φ is harmonic, this vanishes.

Now if φ is τ -primitive then by definition φz must be cyclic at at least one point,

so the corresponding holomorphic differential q does not identically vanish. So q

vanishes only at isolated points and φz is cyclic except at isolated points. As before

let φ̃ : U → Gµ be a local lift of φ and write φ̃−1∂zφ̃ = A0 + A1. Let us define

Φ = e + qe−δ. (2.61)
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We take pl as in (2.26) so that pl(Φ) = q. Away from the zeros of q, Φ is cyclic and

it follows that locally there exists a map Ω : U → g0 such that

AdeΩ(Φ) = A1. (2.62)

If we change the lift φ̃ we may further assume that µ(Ω) = −Ω. A lift φ̃ : U → Gµ

with this property is called a Toda framing in [7]. Now differentiating (2.62) gives

(A1)z = [Ωz, A1] . (2.63)

Combined with the Maurer-Cartan equation we find

[Ωz + µ(A0), A1] = 0 (2.64)

which is only possible if µ(A0) = −Ωz , that is

A0 = Ωz. (2.65)

Combining with the first Maurer-Cartan equation now yields

2Ωzz = [Ade2Ω(Φ), µ(Φ)] . (2.66)

Now if we write e =
∑l

i=1 tiei for some positive constants ti and denote e−δ by e0.

Then

Φ =

l∑

i=1

tiei + qe0. (2.67)

Now if we denote −δ by α0 then

Ade2Ω(Φ) =
l∑

i=1

tie
2αi(Ω)ei + qe2α0(Ω)e0. (2.68)

To work out µ(Φ) we need to consider the action of µ on h = g0. We define an

antilinear action µ∗ of µ on h∗ ⊗ C by

µ∗(α)(X) = α(µ(X)), (2.69)

where α ∈ h∗ ⊗ C, X ∈ h. Now if h ∈ h and α ∈ h∗ is a root then there exists a

non-zero X ∈ g with [h,X ] = α(h)X . If we replace h by µ(h) and apply µ we then

find [h, µ(X)] = µ∗(α)µ(X), since α(h) is real. Thus µ∗ acts as an involution on the

roots of g. In particular µ preserves h and h∗. It is also clear that µ preserves the

Killing form on h. Finally since µ(gi) = g−i we have that µ∗ sends {α0, α1, . . . αl} to
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{−α0,−α1, . . . − αl}. Therefore there is an involutive permutation σ of {0, 1, . . . , l}
such that

µ∗(αi) = −ασ(i), µ(hi) = −hσ(i). (2.70)

Now since µ sends the root space of αi to the root space of µ∗(αi) we further deduce

that

µ(ei) = sifσ(i), µ(fi) = sσ(i)
−1eσ(i). (2.71)

For some complex constants si 6= 0. Now applying µ to [ei, fi] = hi we also find

sσ(i) = si. We can now determine µ(Φ):

µ(Φ) =
l∑

i=1

tisifσ(i) + qs0f0. (2.72)

Therefore equation (2.66) becomes

2Ωzz =

l∑

i=0

titσ(i)sσ(i)e
2αi(Ω)hi (2.73)

where t0 = q. Away from the zeros of q we can find a local holomorphic coordinate

such that q is constant. Then this equation is an affine Toda equation for the extended

Dynkin diagram of g with reality condition µ(Ω) = −Ω. Conversely a solution of

(2.73), regardless of whether q vanishes or not defines a solution of the Maurer-Cartan

equations and hence a τ -primitive map φ : Σ̃ → Gµ/T µ where Σ̃ is the universal cover

of Σ.

2.3.3 Relation to Higgs bundles

Here we show that for cyclic Higgs bundles the harmonic primitive map is closely

related to the harmonic map corresponding to the Higgs bundle.

Suppose we have a cyclic Higgs bundle. Then in the notation of Section 2.2.3 we

may locally define the following g-valued 1-forms:

Bα = −∂Ωα +Ade−Ωα (Φα) + ∂Ωα − AdeΩα (ρ̂Φα). (2.74)

We have that τ̂ (Bα) = Bα and that dBα + 1
2
[Bα,Bα] = 0. Hence locally there exist

maps Dα : Uα → Gτ̂ into the split real form of G such that D−1
α dDα = Bα. The maps

Dα are defined up to left multiplication by a constant element of Gτ̂ .

Based on the transformation laws for Ωα and Φα, we can show that if Dα is a

solution toD−1
α dDα = Bα then on the intersection Uα∩Uβ, Dαe

1
2
(fαβ−fαβ)x is a solution
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to D−1
β dDβ = Bβ. Therefore if we start with a fixed Uα and fixed Dα, we can choose

the Dβ on neighboring open sets Uβ such that on the overlap Dβ = Dαe
1
2
(fαβ−fαβ)x.

We can continue on in this fashion, though if we continue around a loop we need not

return to the original Dα. This means that we get a map

ψ : Σ̃ → Gτ̂/(T τ̂ ∩K) (2.75)

where Σ̃ is the universal cover of Σ and T τ̂ is the maximal abelian subgroup of Gτ̂

corresponding to hτ̂ .

Note that the connection form Bα is gauge equivalent to the connection forms

Aα = −2∂Ωα + Φα −Ade2Ωα (ρ̂Φα) (2.76)

under a gauge change eΩα . The Aα are connection forms for the flat connection

corresponding to the Higgs bundle. Note that the Hermitian connection ∇A in this

gauge is −2∂Ωα. If we gauge transform this into the gauge corresponding to the

Bα then it becomes −∂Ωα + ∂Ωα. This Lie algebra valued 1-form is valued in the

fixed compact real form C of Gτ̂ defined by ρ̂. This shows that the map ψ : Σ̃ →
Gτ̂/(T τ̂ ∩ K) projects to the map π(ψ) : Σ̃ → Gτ̂/C which defines the Hermitian

metric satisfying the Higgs bundle equations. That is, the map ψ projects to the

harmonic map corresponding to the Higgs bundle. If we instead project from ψ to

p(ψ) : Σ̃ → Gτ̂/T τ̂ we see that this map is τ -primitive and hence harmonic. In fact

it is straightforward to show that ψ itself is harmonic. Thus ψ is a harmonic mutual

lift of the harmonic map corresponding to a Higgs bundle and a τ -primitive map.

2.4 Minimal surfaces and affine Toda equations

The affine Toda equations are well known to be related to certain cases of mini-

mal surfaces [28], [7]. The relationship is established through what is known as the

harmonic sequence [14], [36], [53]. We extend the notion of harmonic sequences to

arbitrary signature. Furthermore the harmonic sequence can be related easily to the

Higgs bundle picture. This shows how our restricted class of Higgs bundles can be

interpreted as a minimal surface into a quadric.

2.4.1 Minimal surfaces in quadrics

We will develop some general theory of minimal surfaces in a quadric. For the most

part this is a straightforward generalisation of the case of minimal surfaces in a sphere
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[14]. See also [53] for the case of De Sitter space. This leads us to define superminimal

and superconformal maps which are solutions of certain real forms of the Toda field

equations [7].

Let R
p,q denote the p + q-dimensional vector space with bilinear form 〈 , 〉 of

signature (p, q) and let Qh0 = {x ∈ Rp,q | 〈x, x〉 = h0} where h0 = ±1. Let Σ be

a connected oriented surface. An immersion φ : Σ → Qh0 ⊂ Rp,q that sends each

tangent space of Σ to a positive definite subspace of Rp,q induces a metric and hence

a conformal structure on Σ. These give Σ the structure of a Riemann surface with

compatible metric. The map φ is then a minimal immersion if and only if it is

harmonic.

Let us regard φ as a vector valued function on Σ such that 〈φ, φ〉 = h0. Let D

denote the trivial connection on Rp,q and ∇ the induced Levi-Civita connection on Q.

Let z be a local holomorphic coordinate on Σ. We use z and z subscripts to denote

partial differentiation with respect to ∂
∂z

and ∂
∂z
. The harmonic equation for φ is

∇zφz = 0. (2.77)

However we also have that D = ∇+Π where Π is the second fundamental form which

is valued in the normal bundle of Q, since Q is given the induced metric. Therefore

the harmonic equation for φ reduces to

φzz = λφ (2.78)

for some function λ. In fact we can show λ = −〈φz, φz〉/h0. Note that since

〈φ, φ〉 = h0 we have 〈φ, φz〉 = 〈φ, φz〉 = 0 and since φ is a Riemannian immer-

sion 〈φz, φz〉 = 〈φz, φz〉 = 0 and 〈φz, φz〉 = h1 defines the induced metric on Σ.

Following the definite signature case [7] we will inductively construct a sequence

φ0, φ1, φ2, . . . . We define φ0 = φ, φ1 = φz and we define φi+1 from φi under the

assumption that hi = 〈φi, φi〉 is non-vanishing by

φi+1 = (φi)z −
〈(φi)z, φi〉

hi
φi. (2.79)

So φi+1 is the projection of (φi)z onto the orthogonal complement of φi with respect

to the Hermitian form h(X, Y ) = 〈X, Y 〉. Note that unlike the definite signature case
it may be that hi vanishes even if φi 6= 0.
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Let r ≥ 1 be an integer. Following [13], [53] we say φ has isotropy of order r if we

can construct the sequence φ0, φ1, . . . , φr, φr+1 (so h1, . . . , hr are non-vanishing) and

〈φi, φi〉 = 0 for 1 ≤ i ≤ r. Since the hi are non-vanishing we may write hi = ǫiHi

where Hi = e2wi and ǫi = ±1. We then have

Proposition 2.4.1. Let φ be a minimal surface with isotropy of order r ≥ 1. We

have the following

• The sequence φr, . . . , φ1, φ0, φ1, . . . , φr is pairwise orthogonal with respect to the

Hermitian form,

• φr+1 and φr+1 are orthogonal to φr, . . . , φ1, φ0, φ1, . . . , φr,

• 〈φr+1, φr+1〉 defines a holomorphic degree 2r + 2-differential on Σ,

• (φi)z = φi+1 + 2(wi)zφi, for 1 ≤ i ≤ r,

• (φi)z = −(hi/hi−1)φi−1, for 1 ≤ i ≤ r + 1,

• 2(wi)zz = hi+1/hi − hi/hi−1, for 1 ≤ i ≤ r.

Proof. These are all reasonably straightforward verifications nearly identical to the

definite signature case.

Definition 2.4.1. Let φ : Σ → Qh0 ⊂ Rp,q be a minimal surface. Suppose φ has

isotropy of order r and that p+ q = 2r + 2 or 2r + 3. We say φ is superminimal [13],

[9] if hr+1 = 0 and superconformal [7], [13] if hr+1 6= 0.

We now consider a superconformal or superminimal surface φ : Σ → Qh0 ⊂ Rp,q

in the case p + q is even. So φ has isotropy of order r such that p + q = 2r +

2. Now φr, · · · , φ1, φ0, φ1, · · · , φr span a real codimension 1 subspace which is not

null, therefore there is a real vector valued function φ̃ with 〈φ̃, φ̃〉 = ǫ = ±1 and

complex valued function q such that φr+1 = qφ̃ and φr+1 = qφ̃. Thus hr+1 = ǫqq and

〈φr+1, φr+1〉 = ǫq2 is holomorphic. Hence q(dz)r+1 is a holomorphic (r+1)-differential.

We then have the following set of equations:

2(wi)zz = hi+1/hi − hi/hi−1, 1 ≤ i ≤ r − 1,

2(wr)zz = ǫqq/hr − hr/hr−1.
(2.80)

Notice that the superminimal case where φr+1 = 0 corresponds to setting q = 0. We

can also write the equations directly in terms of the wi. Let µi = ǫiǫi+1 for 1 ≤ i ≤ r

and µr+1 = ǫǫr. Then

2(wi)zz = µi+1e
2wi+1−2wi − µie

2wi−2wi−1 , 1 ≤ i ≤ r − 1,

2(wr)zz = µr+1qqe
−2wr − µre

2wr−2wr−1.
(2.81)
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We find this is a set of affine Toda equations for the affine Dynkin diagram D
(2)
r+1. The

different choices of signs µi = ±1 determine different real forms of the Toda equations.

Let us now consider the alternate case of a superconformal or superminimal surface

when p + q is odd. So in this case φ : Σ → Qh0 ⊂ Rp,q has isotropy of order r and

p + q = 2r + 3. We have that φr, · · · , φ0, · · · , φr spans 2r + 1 dimensions and φr+1,

φr+1 lie in the 2-dimensional orthogonal complement. If φr+1 and φr+1 are linearly

dependent then they span a real subspace and we are in the 2r + 2 dimensional

situation. Therefore we assume that φr+1 and φr+1 are linearly independent, at least

on some open subset.

There are two cases to consider according to whether the 2-dimensional space W

spanned by φr+1 and φr+1 is definite or indefinite. We will consider the definite case,

the indefinite being similar. Therefore we can locally find a vector valued function w

such that w and w are a complex basis for W and such that 〈w,w〉 = 0, 〈w,w〉 = 2ǫ

where ǫ = ±1 according to whether W is positive or negative definite. We may write

φr+1 =
1

2
Aw +

1

2
Bw (2.82)

for two functions A,B. Now 〈φr+1, φr+1〉 = ǫAB is a holomophic differential q = ǫAB.

Aside from the isolated zeros of q we have A and B are non-vanishing. Further we

can redefine w so that A is real valued and positive. Set A = e2η. Now hr+1 =

ǫ/2(AA+BB) = ǫ/2(e2η + qqe−2η). Now it remains to find the equation for (φr+1)z.

If we differentiate the orthogonality relations for φr+1 we find that (φr+1)z must be a

linear combination of φr, φr+1 and φr+1 say

(φr+1)z = αφr + µφr+1 + λφr+1. (2.83)

Furthermore differentiating the orthogonality relation 〈φr+1, φr〉 = 0 gives α = −q/hr.
Similarly differentiating 〈φr+1, φr+1〉 = q and 〈φr+1, φr+1〉 = hr+1 determines µ and

λ. For simplicity we will use local coordinates z in which the holomorphic differential

is (dz)2r+2, hence we may set q = 1. With some care one may put q back into the

equations later. We now have

µ+ hr+1λ = 0

hr+1µ+ λ = (hr+1)z.
(2.84)

We may also find the equation for ηzz. This equation is found by equating the φr+1

components of (φr+1)zz evaluated in two ways. This gives

− hr+1/hr = µz + λλ. (2.85)
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This simplifies to

2ηzz = −ǫ sinh(2η)
hr

. (2.86)

Now we can collect the equations for h1, · · · , hr, η. At the same time we will

reintroduce the holomorphic differential q.

2(wi)zz = hi+1/hi − hi/hi−1, 1 ≤ i ≤ r − 1,

2(wr)zz =
ǫ

2hr

(
e2η + qqe−2η

)
− hr/hr−1,

2(η)zz = − ǫ

2hr

(
e2η − qqe−2η

)
.

(2.87)

These are a set of affine Toda equations for the affine Dynkin diagram B
(1)
r+1.

Similarly if one considers the case when the space W has signature (1, 1) one finds

the following equations

2(wi)zz = hi+1/hi − hi/hi−1, 1 ≤ i ≤ r − 1,

2(wr)zz =
(qeiη + qe−iη)

2hr
− hr/hr−1,

2(η)zz = −(qeiη − qe−iη)

2ihr
.

(2.88)

This is also a set of affine Toda equations for B
(1)
r+1 but with a different reality condi-

tion.

2.4.2 Flat connection description

We will show that conversely a solution of the Toda equations for a minimal sur-

face into a quadric (2.80), (2.87) or (2.88) on a surface Σ defines a minimal surface

φ : Σ̃ → Qh0 from the universal cover of Σ. Indeed we show a solution of the equa-

tions defines a flat connection on a Rp,q-bundle over Σ with a distinguished section φ.

Identifying fibres through parallel translation, φ corresponds to a minimal immersion.

That such a flat connection description exists is a well known aspect of integrability

[71].

Let us consider the case with p+q even using the notation of the previous section.

The idea is to use the harmonic sequence to build a vector bundle with flat connection.

First we define a holomorphic vector bundle E

E = L−r ⊕ · · · ⊕ Lr+1 (2.89)
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where

Li = K−1 i 6= r + 1, Lr+1 = 1. (2.90)

With respect to a local holomorphic coordinate z we define a frame {e−r, . . . , er+1}
for E as follows

ei = (∂z)
i i 6= r + 1, er+1 = 1. (2.91)

The idea is that e0, . . . , er corresponds to a harmonic sequence φ0, . . . , φr. So far E

has structure group SL(p+ q,C). We define an antilinear involution λ on E reducing

the structure group to SL(p+ q,R) as follows

λ(e0) = e0, λ(ei) = hie−i 1 ≤ i ≤ r, λ(er+1) = er+1 (2.92)

and this determines λ. We also use λ to conjugate endomorphisms by T (x) = T (x).

Next we define a non-degenerate bilinear form 〈 , 〉 on E

〈ei, ej〉 = 0 i 6= −j,
〈ei, e−i〉 = 1,

〈e0, e0〉 = h0,

〈er+1, er+1〉 = ǫ.
(2.93)

This defines a further reduction of structure to SO(p, q). We also have a signature

(p, q) Hermitian form h(x, y) = 〈x, λ(y)〉. Let ∇A = d + Adz denote the associated

Chern connection. Then A is given by

A(ei) = 2(wi)zei (2.94)

where hi = ǫie
2wi , ǫi = ±1 for i = 1, . . . , r and we put w0 = wr+1 = 0.

Now define a K-valued endomorphism Φdz by

Φ(ei) = ei+1 0 ≤ i ≤ r − 1,

Φ(e−i) = −e−i+1 2 ≤ i ≤ r,

Φ(er) = qer+1, Φ(er+1) = −ǫqe−r,
Φ(e−1) = −h0e0.

(2.95)

We see that Φ is holomorphic. We now see that the Toda equations (2.80) are locally

equivalent to

FA + [Φ, λ(Φ)] = 0 (2.96)

where FA is the curvature of ∇A. This is also equivalent to flatness of the SO(p, q)-

connection

∇ = ∇A + Φ+ λ(Φ). (2.97)

If we consider the hi to transform as (i, i)-forms for i = −r, . . . , r then we also have

a global correspondence. Now suppose we have a solution of the equations. On the

universal cover Σ̃ we can trivialise the flat SO(p, q)-connection. The bundle E has a
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global section φ = e0. Note that φ is real and 〈φ, φ〉 = h0. Thus on the universal

cover φ defines a developing map

φ : Σ̃ → R
p,q (2.98)

which maps into the quadric Qh0 of vectors v with 〈v, v〉 = h0. If ∇ has monodromy

representation ρ : π1(Σ) → SO(p, q) then φ is ρ-equivariant. Moreover we see that

∇zφ = e1 and ∇z∇zφ = −h1/h0φ. Hence φ is a minimal immersion. Moreover we

can take the harmonic sequence defined by φ which gives us back the solution to the

Toda equations.

We now show that under certain circumstances equation (2.98) is a special case

of the Higgs bundle equations. Define an involution σ : E → E by

σ(ei) = ǫiei (2.99)

where we have put ǫ−i = ǫi. We let σ act on End(E) act in the natural way. Then

σ commutes with λ and ρ = σλ defines a compact real form of SO(p + q,C). Now

we can interpret (2.98) as a special solution of the SO(p+ q) Higgs bundle equations

provided that σ(Φ) = −Φ. This in turn is true if and only if

ǫi+1 = −ǫi, −r ≤ i ≤ r. (2.100)

In this case the flat connection has holonomy SO(r + 1, r + 1). Note that if we wish

for the minimal immersion to induce a positive definite (as opposed to a negative

definite) metric on Σ then we must put ǫ0 = −1. It is also clear from the form of

(E,Φ) that it is a Higgs bundle in the Hitchin component. We also note that the

holomorphic (r + 1)-differential q corresponds to the Pfaffian of Φ. This is therefore

not a cyclic Higgs bundle (as the Pfaffian is not the highest differential), but it does

share many similarities with the cyclic case.

We have a similar construction in the case p + q is odd. We consider only the

case corresponding to equations (2.87) the other case being similar. We have that

p+ q = 2r + 3. Define a holomorphic bundle

E = L−r−1 ⊕ · · · ⊕ L0 ⊕ · · · ⊕ Lr+1 (2.101)

where Li = K−i. Define a frame {e−r−1, . . . , er+1} of E where ei = (∂z)
i. Define an

anti-linear involution λ by the conditions

λ(e0) = e0, λ(ei) = e−ihi 1 ≤ i ≤ r, λ(er+1) = ǫe4ηe−r−1 (2.102)
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and an inner product by

〈ei, ej〉 = 0 i 6= −j, 〈e0, e0〉 = 0, 〈ei, e−i〉 = 1 i 6= 0. (2.103)

As before we have a corresponding indefinite Hermitian form h(x, y) = 〈x, λ(y)〉 and
we let ∇A be the corresponding Chern connection. Define a section Φ of End(E)⊗K
by

Φ(ei) = ei+1 0 ≤ i ≤ r − 1, Φ(er) =
1√
2
(er+1 + qe−r−1),

Φ(er+1) = − 1√
2
qe−r, Φ(e−r−1) = − 1√

2
e−r,

Φ(e−i) = −e−i+1 2 ≤ i ≤ r, Φ(e−1) = −h0e0.

(2.104)

As before the Toda equations are equivalent to∇A+Φ+λ(Φ) being flat. We can again

relate this to Higgs bundles in a certain special case. As before define σ : E → E by

σ(ei) = ǫiei (2.105)

where ǫr+1 = ǫ−r−1 = ǫ. Then (∇A,Φ) is seen to solve the Higgs bundle equations

provided that σ(Φ) = −Φ. This holds if and only if

ǫi+1 = −ǫi, −r − 1 ≤ i ≤ r. (2.106)

In this case it is again clear that the constructed Higgs bundle belongs to the Hitchin

component for SO(r + 1, r) and moreover is a cyclic Higgs bundle. Therefore we can

use existence of solutions to the Higgs bundle equation to show the existence of the

corresponding minimal immersions.

In order to find specific solutions we can consider solutions that are invariant

under a translational symmetry. Suppose we have a local coordinate z = x+ iy such

that ∇A and Φ are y-invariant. If we write ∇A = d + Ady, Φ = 1/2(φ1 + iφ2)dz

and λ(Φ) = 1/2(φ1− iφ2)dz such that A, φ1, φ2 are y-independent then the equations

reduce to
∂xA = [φ1, φ2]

∂xφ1 = [A, φ2]

∂xφ2 = [φ1, A] .

(2.107)

These equations are a different real form of Nahm’s equations sometimes called

Schmid’s equations from their appearance in [86]. These can be put into Lax form
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using a spectral parameter ζ . Let α = (φ1 + iφ2) + 2ζA + ζ2(φ1 − iφ2) and β =

iA + iζ(φ1 − iφ2). Then the Lax equation is

∂xα = [α, β] . (2.108)

It follows that the spectral curve det(η−α(ζ, x)) = 0 is independent of x and can be

thought of as a curve in the total space of O(2) = TCP1. By studying the spectral

curve one can solve the equations using standard techniques [52].
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Chapter 3

Geometric structures from the
Hitchin component

Given the split real form Gτ of the adjoint form of a simple Lie group G we have

seen that there is a distinguished component H(Gτ ) of the space of representations

of the fundamental group of a compact oriented surface Σ of genus g > 1 called the

Hitchin component. Our aim will be to attempt to interpret the Hitchin component

as a moduli space of geometric structures on Σ. As motivation we note that in the

simplest case of Gτ = PSL(2,R) the Hitchin component corresponds to the Fuchsian

representations of the fundamental group, hence in this case the Hitchin component

identifies naturally with Teichmüller space, which is the moduli space of hyperbolic

metrics modulo diffeomorphisms isotopic to the identity.

The techniques we use will allow us to understand the Hitchin component when Gτ

has rank 2. In this case all such representations are described by just two holomorphic

differentials, one being quadratic. Based on a result of Labourie [62] we find that as

long as we let the conformal structure on the surface vary it suffices to consider only

representations where the quadratic differential vanishes. In the rank 2 case this leaves

just the highest differential non-zero which means we have a cyclic Higgs bundle so

we can use the results we have established for such Higgs bundles.

3.1 Quadratic differentials and energy

Representations in the Hitchin component are described by a series of holomorphic

differentials. The lowest is always a quadratic differential. We introduce the energy

functional and explain its relation to the quadratic differential. We recall a conjecture

related to the energy functional and quadratic differential and discuss the result of

Labourie that provides a partial proof of the conjecture.
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3.1.1 Holomorphic quadratic differentials

In the Higgs bundle description of the Hitchin component we first choose a conformal

structure on Σ, then the Hitchin component can be identified with the vector space

l⊕

i=1

H0(Σ, Kmi+1) (3.1)

where m1 ≤ · · · ≤ ml are the exponents of G. In the case Gτ = PSL(2,R) this is the

space of holomorphic quadratic differentials H0(Σ, K2), which by Serre duality is dual

to H1(Σ, K∗) which naturally identifies with the space of deformations of complex

structure on Σ.

More generally for any simple Lie group we have m1 = 1 so that there is al-

ways a space of holomorphic quadratic differentials in (3.1). In fact the holomorphic

differential can generally be described as

q2 = k(Φ,Φ) (3.2)

where Φ is a Higgs field and k is the Killing form on the adjoint bundle. Suppose

we have a representation θ : Σ̃ → Gτ in the Hitchin component for Gτ . Choose a

conformal structure on Σ so that there is a corresponding Higgs bundle (E,Φ). Let

K be a maximal compact subgroup of Gτ with Lie algebra k ⊂ gτ . Give Gτ/K the

metric h induced by the Killing form on the orthogonal component k⊥ of k. We know

there is a θ-equivariant harmonic map ψ : Σ̃ → Gτ/K. Moreover if we take a local

lift ψ̃ of ψ then Φ is the component of ψ̃−1∂ψ̃ in k⊥. It now follows that

(ψ∗h)2,0 = k(Φ,Φ) = q2. (3.3)

Thus the holomorphic quadratic differential q2 vanishes if and only if the map ψ

is conformal. This leads us to a particular form of a conjecture of Goldman and

Wentworth [42] and of Labourie [62]:

Conjecture 3.1.1. Given a representation θ in the Hitchin component there is a

unique conformal structure on Σ such that the Higgs bundle (E,Φ) associated with θ

satisfies q2 = k(Φ,Φ) = 0.

If this conjecture is true then it provides an alternative description of the Hitchin

component, namely as a vector bundle over Teichmüller space V → T with fibres

Vp = ⊕l
i=2H

0(Σ, Kmi+1) consisting of differentials which are holomorphic with respect

to the complex structure corresponding to p ∈ T .
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The advantage of such a description is that we need only consider Higgs bundles

(E,Φ) where the holomorphic quadratic differential vanishes simplifying the task of

interpreting the Hitchin component. In particular in the rank 2 case we need only

assume that the highest differential is non-zero. Therefore we can use the affine Toda

description of Section 2.2.3 to provide a complete description of the component.

3.1.2 The energy functional on Teichmüller space

We will introduce the energy functional [31], [62] and explain its relation to the

quadratic differential. This will lead to a second form of Conjecture 3.1.1 in terms of

the energy functional. We then examine the extent to which the conjecture is known

to hold.

Let θ be a representation of the fundamental group of Σ into a semisimple Lie

group G and let K be a maximal compact subgroup. Let ψ : Σ̃ → G/K be a θ-

equivariant map, not necessarily harmonic. Then ψ defines a reduction of structure

of the principal G-bundle P = Σ̃ ×θ G to a principal K-bundle PK and an anti-

involution ρ on the adjoint bundle P ×θ g. Let k be the Lie algebra of K and k⊥ the

orthogonal component with respect to the Killing form. One finds that the pull-back

bundle ψ∗(T (G/K)) is naturally identified with π∗(PK)×K k where π is the projection

π : Σ̃ → Σ. Thus dψ = φ can be regarded as a 1-form valued section of the adjoint

bundle which is self-adjoint in the sense that ρ(φ) = −φ.

Choose a conformal structure on Σ. This is equivalent to defining a Hodge star

operator ∗ : T ∗Σ → T ∗Σ on the space of 1-forms. We define the energy Eθ(ψ, ∗) of ψ
with respect to ∗ by

Eθ(ψ, ∗) =
∫

Σ

k(φ ∧ ∗φ) (3.4)

where k is the Killing form on the adjoint bundle. If we fix the conformal structure

∗ then the stationary points of Eθ correspond to the map ψ being harmonic. Let us

suppose that the representation θ is reductive. So from Corlette [27] we know that

such a harmonic map exists and is unique up to an isometry of G/K. Therefore if we

impose the constraint that ψ be harmonic it follows that Eθ(ψ, ∗) depends only on θ

and ∗. Keeping θ fixed we have that Eθ depends only on the conformal structure ∗.
We write Eθ(∗) for Eθ(ψ, ∗) where ψ is any θ-equivariant harmonic map.
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Suppose now that f : Σ → Σ is a diffeomorphism isotopic to the identity. Let

ψ : Σ̃ → G/K be a θ-equivariant harmonic map with respect to a conformal structure

∗ on Σ. Then ψ ◦ f is harmonic with respect to the conformal structure f−1(∗) and
since f is isotopic to the identity we see that ψ ◦ f is θ1-equivariant where θ1 is a

representation conjugate to θ. Applying a left translation by a fixed g ∈ G we have

that gψ ◦ f is a θ-equivariant map harmonic with respect to f−1(∗). Therefore it

follows that Eθ(∗) depends only on the diffeotopy class of ∗. Therefore Eθ can be

viewed as a map on Teichmüller space.

It is well known that the stationary points of the energy functional where both

the function and conformal structure are allowed to vary correspond to conformal

harmonic maps. Therefore the stationary points of Eθ as a function on Teichmüller

space are precisely the conformal structures for which the holomorphic quadratic

differential of the associated Higgs bundle vanishes. Therefore Conjecture 3.1.1 is

equivalent to the following

Conjecture 3.1.2. For any representation θ in the Hitchin component there exists

a unique stationary point of the energy function Eθ on Teichmüller space.

In fact it is shown in Tromba [96] that in the case of the Hitchin component for

PSL(2,R) the energy functions are proper and have a unique minimum. This proves

the conjecture in the case of PSL(2,R) and suggests a more refined conjecture:

Conjecture 3.1.3. For a representation in any Hitchin component the associated

energy function is proper and all stationary points are non-degenerate minima.

Note that this implies the previous conjecture. Indeed since the energy function is

positive then if it is also proper it must have a minimum. But if all stationary points

are non-degenerate minima then there can be at most one minima.

Labourie [62] shows that in the case of the Hitchin components for PSL(n,R), the

energy functions are indeed proper. We now argue that this implies the same result

for at least some of the other Hitchin components. Suppose g is a complex simple

subalgebra of sl(n,C) with the property that there is a principal 3-dimensional subal-

gebra ι : sl(2,C) → g such that the composition sl(2,C) → sl(n,C) is also a principal

3-dimensional subalgebra. In this case the Hitchin component for the split real form

of g identifies as a subspace of the Hitchin component for PSL(n,R). This subspace is

characterised by the vanishing of a subset of the holomorphic differentials. It is clear
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that for these representations the energy function is the same as the corresponding

energy function for PSL(n,R).

Now one can readily show that above situation occurs at the very least for so(2n+

1,C) ⊂ sl(2n+ 1,C), sp(2n,C) ⊂ sl(2n,C) and g2 ⊂ sl(7,C).

Properness of the energy function implies at least in these cases of the existence of

a conformal structure such that the corresponding holomorphic quadratic differential

vanishes, however it does not establish uniqueness of the conformal structure. To

summarise we have

Proposition 3.1.1. For a representation in the Hitchin component associated to a

Lie algebra of type An, Bn, Cn or G2 there exists a conformal structure for which the

associated Higgs bundle has vanishing quadratic differential.

3.2 Construction of cyclic representations

We are going to consider Higgs bundles for the Hitchin component such that only the

highest differential is non-zero which we call cyclic representations. We will outline

the general procedure from Section 2.2.3 to be followed here.

Let Σ be a Riemann surface with canonical bundle K. Let g be a complex simple

Lie algebra of rank l with exponents m1 ≤ · · · ≤ ml. Associated to each holomorphic

l + 1-differential q there is a Higgs bundle (E,Φ) in the Hitchin component for g

with only the highest differential non-vanishing. Let i : sl(2,C) → g be a principal

three dimensional subalgebra and let x, e, ẽ be a basis for sl(2,C) with commutation

relations

[x, e] = e, [x, ẽ] = −ẽ, [e, ẽ] = x. (3.5)

Let el be a highest weight vector for g satisfying [x, el] = mlel. The holomorphic

bundle E and Higgs field Φ are given by

E =
l⊕

i=1

(
Kmi ⊕Kmi−1 ⊕ · · · ⊕K−mi

)
(3.6)

Φ = ẽ+ qel (3.7)

In fact there is a holomorphic SL(2,C)-bundle P such that E is the associated bundle

E = P ×i g. Choose a holomorphic square root K1/2 of K. Then we may take P to

be the SL(2,C) frame bundle of K1/2 ⊕K−1/2.
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Given a complex representation ξ : G → GL(V ) we may take the associated

bundle

V = P ×ξ◦i V. (3.8)

We can then regard ξ(Φ) as a K-valued endomorphism of V. Provided that ξ is

faithful it is sufficient to consider the Higgs bundle (V, ξ(Φ)). We will simply write Φ

for ξ(Φ). The advantage of this is that the bundle V will provide a simpler description

of the Higgs bundle.

For example in the case of g = sl(2n+1,C) we may take ξ to be the fundamental

representation in which case

V = Kn ⊕Kn−1 ⊕ · · · ⊕K−n. (3.9)

This is also the case for the fundamental representation of so(2n+1,C) ⊂ sl(2n+1,C)

and for g2 ⊂ so(7,C). On the other hand the fundamental representation for sl(2n,C)

yields

V = Kn/2 ⊕Kn/2−1 ⊕ · · · ⊕K−n/2 (3.10)

and this likewise applies to the fundamental representation of sp(2n,C) ⊂ sl(2n,C).

Now in g we define commuting anti-involutions ρ̂, λ̂ and Cartan involution σ = ρ̂λ̂

where ρ̂ defines a compact real form and λ̂ defines a split real form. Moreover we

have
ρ̂(x) = −x, ρ̂(e) = −ẽ, ρ̂(ẽ) = −e,
λ̂(x) = −x, λ̂(e) = ẽ, λ̂(ẽ) = e.

(3.11)

Now on the adjoint bundle E there will be corresponding anti-involutions ρ, λ and

Cartan involution σ. The relation is that over any local trivialisation of E there is a

h-valued function Ω, where h is the centraliser of x in g such that

ρ = Ade2Ω ◦ ρ̂, ρ̂(Ω) = −Ω,

λ = Ade2Ω ◦ λ̂, λ̂(Ω) = −Ω.
(3.12)

and σ is unchanged.

Let k be the Killing form for g then the Hermitian metric hρ on E solving the

Higgs bundle equations is given by

hρ(x, y) = −k(x, ρ(y)). (3.13)

We let ∇A be the Chern connection associated to hρ and let the curvature be FA.

Then the Higgs bundle equation is

FA − [Φ, ρ(Φ)] = 0. (3.14)
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In the cases we will consider ρ and λ have a more direct interpretation in terms

of the bundle V. In the case of ρ there will be a Hermitian form h on V such that if

we consider E as a subbundle of End(V) then for A ∈ E we have ρ(A) = −A∗ where

A∗ is the adjoint of A with respect to h.

In the case of λ there will be an anti-involution on V which we also denote by λ with

the property that for A a section of E and v a section of V we have λ(Av) = λ(A)λ(v).

We can think of λ as defining a conjugation on V so V has a real form Vλ which is

preserved by the flat connection ∇ = ∇A + Φ− ρ(Φ).

3.3 Uniformising representations

We first consider Higgs bundles in the Hitchin component for PSL(2,R). Not only is

this useful as a warm-up for the following sections but we will need some of the results

here for later use in Section 3.5.2. A study of these representations is also found in

[50] where it is shown how this component corresponds to Teichmüller space.

In the case of PSL(2,R) representations we can describe the Hitchin component

as follows. The Lie algebra is sl(2,R) = 〈x, e, ẽ〉 and we suppose that X, Y is a basis

for R2 so that

xX =
1

2
X, eX = 0, ẽX =

1√
2
Y,

xY = −1

2
Y, eY =

1√
2
X, ẽY = 0.

(3.15)

Choose a conformal structure on Σ and a holomorphic quadratic differential q. To

this data we associate a Higgs bundle (E,Φ) in the Hitchin component for PSL(2,R).

In this case E is the adjoint bundle of the following rank 2 bundle

W = K1/2 ⊕K−1/2 (3.16)

where K1/2 is a choice of holomorphic square root of the canonical bundle K. The

Higgs field is

Φ = ẽ+ qe. (3.17)

Fix an anti-involution ρ̂ and an anti-involution λ̂ = ρ̂σ for the split real form as

defined by (3.11) and we have an associated anti-involution λ̂ on the representation

R2 given by

λ̂X = Y, λ̂Y = X (3.18)

with the property that for any endomorphism A and vector v, λ̂(Av) = λ̂(A)(λ̂v).
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Now the Hermitian metric solving the Higgs bundle equations is associated to an

anti-involution ρ which locally has the form ρ = Ade2Ω ◦ ρ̂ where

Ω = vx (3.19)

where if we set H = e2v then H is a (1/2, 1/2)-form. We find that

− ρ(Φ) = H2e+H−2qẽ. (3.20)

The connection ∇ = ∇A + Φ− ρ(Φ) is then

∇ = d− 4∂(v)x+ (H2 + q)e+ (1 +H−2q)ẽ. (3.21)

The Higgs bundle equation is

4vzz = H2 − qqH−2. (3.22)

Solutions to this equation correspond to hyperbolic metrics [50] and from this one has

a correspondence between holomorphic quadratic differentials and Teichmüller space.

We will be interested in the case where q = 0. The equation reduces to 4vzz = H2

which says that the metric H2 has curvature −2. On a compact Riemann surface of

genus g > 1 we can find identify the universal cover Σ̃ of Σ with the upper half plane

H2 such that

H2 =
dx2 + dy2

2y2
. (3.23)

We seek the real covariant constant sections of ∇ (on the universal cover). Note that

the real structure preserved by ∇ on the rank 2 bundle W is given by

λ(dz1/2) = H−1dz−1/2, λ(dz−1/2) = Hdz1/2. (3.24)

The real covariant constant sections are s = s1dz
1/2 + s2dz

−1/2 where

s2 = (az + b)eiπ/4dz−1/2, s1 =
s2√
2y
. (3.25)

This provides the trivialisation for W and ∇ over Σ̃.

3.4 Convex RP
2-structures

We now turn to the Hitchin component for PSL(3,R). In this case the Hitchin com-

ponent is known to be the moduli space of convex RP
2-structures on the surface [25],
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[26]and these are also known to correspond to hyperbolic affine spheres in R3 invari-

ant under a representation of the fundamental group. Using cyclic Higgs bundles

we can obtain the affine and projective structures from the Higgs bundle in a direct

manner. Although these results are already known our method provides an alterna-

tive proof for existence of the affine and projective structures associated to such a

representation.

3.4.1 Flat projective structures

We introduce the notion of an RP
n-structure and then explain how this is the flat case

of the more general notion of a projective structure. Although we are only interested

in the flat projective structures the general case which also provides a framework that

will be useful even in the flat case. Some references for projective structures are [82],

[41].

An RP
n-manifold is roughly speaking an n-manifold built out of open patches

of projective space glued together by projective transformations. More precisely an

atlas {Uα, φα} for an n-manifold M consisting of an open cover {Uα} and coordinate

charts φα : Uα → R
n ⊂ RP

n is called a projective atlas if the transition maps φβ ◦φ−1
α

are restrictions of projective transformations RPn → RP
n. Two projective atlases are

called equivalent if their union is also a projective atlas. An RP
n-structure on M is

then an equivalence class of a projective atlas on M and if M has an RP
n-structure

then M is called an RP
n-manifold. The diffeomorphism group of M clearly acts on

the set of RPn-structures on M .

Given an RP
n-manifoldM let M̃ be the universal cover ofM . Take a point x ∈M

and let (U, φ) be a coordinate chart containing x so φ is a map φ : U → RP
n. Now

take any curve γ : [0, 1] → M in M starting at x and finishing at another point

y ∈ M . We can find 0 = t0 < t1 < · · · < tk−1 < tk = 1 partitioning [0, 1] such that

for i = 1, . . . , k, γ([ti − 1, ti]) lies in an open subset Ui where (Ui, φi) is a compatible

coordinate chart. By suitably choosing the pairs (Ui, φi) we can arrange so that φi

and φi+1 agree on Ui ∩ Ui+1. To the curve γ we then assign the point φk(y) ∈ RP
n.

One shows that the element in RP
n associated to a curve γ depends only on the

homotopy class of γ. Therefore we have a map

dev : M̃ → RP
n (3.26)
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called a developing map. The developing map is not unique since it depends on

the choice of the initial chart (U, φ) but all developing maps constructed in this way

differ by the action of a projective transformation on RP
n, that is have the form g dev

where g ∈ PGL(n+1,R). Note that dev determines the RPn-structure on M , in fact

by suitably restricting the domain of dev to coordinate charts we get a compatible

projective atlas. Another property of the developing map and most significant for

our purposes is that there is an associated monodromy representation. That is there

is a representation θ : π1(M) → PGL(n+1,R) such that dev is θ-equivariant, that is

dev(mγ) = θ(γ)−1dev(m) (3.27)

where m ∈ M̃ and γ ∈ π1(M). Note that changing the developing map by an overall

projective transformation changes the monodromy representation by conjugation.

There is an alternative description of RPn-structures such that the monodromy

representation of the developing map is the monodromy of a flat connection on a

rank n+ 1-bundle over M . To see this we first introduce the more general notion of

a projective structure.

Just as the projective geometry of RPn is concerned with lines and points, pro-

jective differential geometry is concerned with the study of geodesics of an affine

connection. Projective structures are an example of the parabolic geometries studied

in Chapter 4, see also [58], [41], [82]. Given an affine connection ∇ on a manifold M

the parameterised geodesics are the curves p(t) in M defined by the equation

∇ ˙p(t)
˙p(t) = 0

or if we allow for arbitrary parameterisations the unparametrised geodesic equation

is

∇ ˙p(t)
˙p(t) = f(t) ˙p(t)

for some function f(t). We will consider only torsion free connections since torsion

does not enter into the geodesic equation.

We say that two connections ∇, ∇̃ are projectively equivalent if there is a 1-form

λ such that for all vector fields X, Y we have

∇̃XY = ∇XY + λ(X)Y + λ(Y )X. (3.28)
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We have that two torsion free connections have the same (unparametrised) geodesics

if and only if they are projectively equivalent. Given this, we define a projective

structure onM to be an equivalence class of projectively equivalent torsion free affine

connections on M . An affine connection within this equivalence class is called a

preferred connection or Weyl connection. A projective structure is flat if each point

of M has a neighborhood over which there is a flat preferred connection for the

projective structure.

A partition of unity argument shows that for an RP
n-manifold exists a projec-

tively flat affine connection ∇ on M such that locally the geodesics of ∇ correspond

to straight lines in RP
n in any projective coordinate chart. That is RP

n-structures

are flat projective structures. Conversely a flat projective structure defines local flat

coordinates. One checks that this defines an RP
n-structure so a flat projective struc-

ture is precisely an RP
n-structure.

Rather than work with a family of equivalent connections we can construct a

unique connection on a vector bundle which equivalently describes the geometry. We

will assume for simplicity that M is an oriented n-manifold with projective structure

defined by an affine connection ∇. Since M is oriented we may define the line bundle

L such that L−n = ∧nT ∗M . For any bundle E we then define E [k] = E ⊗ Lk where

k may be any real number. For any bundle associated to the tangent bundle by a

representation of GL(n,R) we let ∇ denote the inherited connection.

Define the tractor bundle T to be the SL(n+ 1,R)-bundle

T = TM [µ]⊕ Lµ (3.29)

where µ = −n/(n+1). The tractor bundle also has a natural SL(n+1,R)-connection

∇̃ called the tractor connection for projective geometry. It is defined as follows

∇̃X

[
Y
s

]
=

[
∇XY +Xs

∇Xs+P(X, Y )

]
(3.30)

where P is the tensor

P(X, Y ) = − n

n2 − 1
Ric(X, Y )− 1

n2 − 1
Ric(Y,X) (3.31)

and Ric is the Ricci tensor tr(Z → R(Z,X)Y ) for ∇, where R is the curvature of ∇.

From a representative ∇ for the projective structure on M we construct the pair

(T , ∇̃) consisting of a bundle and connection. If we take a different connection ∇1
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on M which is projectively equivalent to ∇ then we produce an isomorphic pair

(T , ∇̃1), i.e. the tractor connection changes by an SL(n+1,R) gauge transformation

preserving Lµ ⊂ T . In this sense the tractor connection is uniquely constructed from

the projective structure. Furthermore the line bundle Lµ ⊂ T is independent of the

choice of affine connection.

A key result for us is that the projective structure on M is flat if and only if

the associated tractor connection is flat as a connection. Let us examine the flat

case further. On the universal cover M̃ of M we may trivialise the tractor bundle

T ≃ M̃ ×Rn+1 such that the tractor connection becomes the trivial connection. The

line bundle Lµ ⊂ T then defines a map (defined up to the action of SL(n + 1,R))

dev : M̃ → RP
n (3.32)

which is in fact the developing map. From equation (3.30) we verify that the develop-

ment map is an immersion. Moreover if θ : π1(M) → SL(n+1,R) is the monodromy

of the tractor connection then θ is clearly also the monodromy of the developing map.

We would like a way of knowing when a flat connection is the tractor connection for

a flat projective structure. This leads us to the following notion of a non-degenerate

section:

Definition 3.4.1. Let E be a rank n + 1 bundle with connection ∇̃ on an n-

dimensional manifold. A non-vanishing section s spanning a line subbundle L of

E is called non-degenerate or generic if the map TM → E/L given by

X → ∇̃Xs (modL) (3.33)

is an isomorphism. Similarly we say that a line subbundle L ⊂ E is generic if any

non-vanishing local section of L is generic.

Now suppose we have a rank n + 1 bundle E with flat connection ∇̃ and generic

line subbundle L ⊂ E. As before we may trivialise E on the universal cover M̃ of M

and the generic line bundle L defines a development map dev : M̃ → RP
n which is

θ-equivariant where θ is the monodromy of the connection. The fact that L is generic

is then equivalent to dev being an immersion so when L is generic this defines a flat

projective structure.

We can further identify E as a tractor bundle overM and find an affine connection

on M representing the projective structure as follows. Choose any splitting E =

W ⊕ L. If E is an SL(n+ 1,R) bundle then we also find L = Lµ = (∧nT ∗M)1/(n+1).
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The non-degeneracy of L gives an isomorphism e : TM⊗L →W . Now by projection

∇̃ defines connections ∇L and ∇W on L and W respectively. Therefore we can use

the isomorphism TM ≃W ⊗L∗ to define an affine connection ∇. Let s be a section

of L and let p : E →W be the projection onto W . Then we define ∇ as follows

∇̃(∇XY )s = ∇̃X(p(∇̃Y s))− ∇̃Y∇L
Xs (modL). (3.34)

Note that changing the section s or choosing a different splitting of E will result

in projective changes in ∇. It follows that (E, ∇̃) is the tractor bundle and tractor

connection for the projective structure defined by ∇. If we can find a section s of

L that is covariantly constant with respect to ∇L then the formula for the induced

affine connection simplifies to

∇̃(∇XY )s = ∇̃X(∇̃Y s) (modL). (3.35)

3.4.2 Convex projective structures

An RP
2-structure is called convex if the developing map dev : Σ̃ → RP

2 is an embed-

ding of the universal cover Σ̃ onto a convex subset Ω contained in some affine patch.

See [40] for an introduction. In such a case the fundamental group π1(Σ) identifies

with a discrete subgroup Γ ⊂ PSL(3,R) which acts freely and properly on Ω, hence

Σ identifies with Ω/Γ. From the Poincaré disc model we see that a uniformising rep-

resentation is an example of a convex RP
2-structure.

We define the moduli space C(Σ) of convex RP
2-structures on Σ to be the set of all

equivalence classes of convex projective RP2-structures on Σ where two structures are

considered equivalent if they are related by a diffeomorphism isotopic to the identity.

The space has a natural topology and Goldman [40] shows the monodromy map

hol : C(Σ) → Hom(π1(Σ),PSL(3,R))/PSL(3,R) (3.36)

is an embedding onto an open, Hausdorff subspace homeomorphic to a Euclidean

space of dimension 16g−16. Since C(Σ) is connected it is contained within a compo-

nent of the space of representations. But since the uniformising representations yield

convex RP
2-structures this component must be the Hitchin component. Therefore the

monodromy map identifies C(Σ) with an open subspace of the Hitchin component

for PSL(3,R). Naturally one might expect C(Σ) to be the whole component and this

was indeed proved by Choi and Goldman [25].
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Our contribution will be to show how one can obtain the convex RP
2-structures

directly from the Higgs bundle construction of the Hitchin component. In doing so

the connection between convex projective structures and affine spheres will naturally

emerge.

Recall the procedure of Section 3.1 for constructing Higgs bundles in the Hitchin

component. We are interested in the sl(3,C) case. A representation in this compo-

nent is described by a quadratic and cubic differential. We use the result of Labourie

that we can choose a conformal structure on Σ so that the associated quadratic dif-

ferential vanishes. This leaves a holomorphic cubic differential.

Let V be a complex 3-dimensional vector space. Let ρ̂ be the anti-involution

ρ̂(A) = −At for a compact real form and λ̂ the anti-involution λ̂(A) = HAH for a

split real form where

H =




0 0 1
0 1 0
1 0 0



 . (3.37)

Moreover we have an anti-involution also denoted λ̂ on V given by λ̂v = Hv. The

split real form for λ̂ preserves the fixed point subspace of λ̂ on V .

We have a principal 3-dimensional subalgebra s = 〈x, e, ẽ〉 where

x =




1 0 0
0 0 0
0 0 −1



 , e =




0 1 0
0 0 1
0 0 0



 , ẽ =




0 0 0
1 0 0
0 1 0



 . (3.38)

LetW be the associated bundle on Σ, so from the form of x we have W = K⊕1⊕K−1.

Let q be a holomorphic cubic differential. The corresponding Higgs field Φ is then

Φ =



0 0 q
1 0 0
0 1 0


 . (3.39)

Let h = e2Ω be the corresponding Hermitian metric on W. Then

h =



h1 0 0
0 h−1

1 h−1
2 0

0 0 h2


 , Ω =



w1 0 0
0 −w1 − w2 0
0 0 w2


 (3.40)

but since ρ̂Ω = λ̂Ω = −Ω we find that w2 = −w1 so way may write

h =



h 0 0
0 1 0
0 0 h−1


 , Ω =



w 0 0
0 0 0
0 0 −w


 . (3.41)
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We know that h transforms as a (1, 1)-form, hence it can be regarded as a metric on Σ.

The compact and split anti-involutions on the adjoint bundle are ρ = Adh ◦ ρ̂,
λ = Adh ◦ λ̂. Moreover, there corresponds to λ a real structure on W given by

λv = hHv. For v = [A,B,C]t we have λv = [hC,B, h−1A]t. The associated flat

connection preserves the real subbundle Wλ of fixed points of λ.

We may now determine Φ∗ = −ρΦ and the connection form A = −2∂Ω+Φ+Φ∗:

Φ∗ =




0 h 0
0 0 h

h−2q 0 0


 , A =



−2∂w h q

1 0 h
h−2q 1 2∂w


 . (3.42)

To obtain a projective structure on Σ from this data we also need to choose a

generic real line subbundle. An obvious candidate is the real subspace of the trivial

factor of W = K⊕1⊕K−1. Let s denote the section s(x) = [0, 1, 0]t, L = 1λ the real

line bundle spanned by s. We have

∇s =



h
0
1


 =



h′dz ⊗ dz

0
dz−1 ⊗ dz


 (3.43)

where h = h′dz⊗dz. This proves s is generic and hence we have a projective structure

on Σ.

So far we have not shown the projective structure is convex. For this we will need

to examine the projective structure in more detail.

Our flat connection on a rank 3 bundle together with a generic global section s

not only defines a development map Σ̃ → RP
2 but also a lift Σ̃ → R

3. This gives Σ̃

the structure of an immersed surface in R3. There is an induced affine connection on

Σ̃ representing the projective structure. In fact the isomorphism TΣ → Wλ/L given

by X → ∇Xs (modL) induces an affine connection ∇a from ∇. It is defined by the

relation

∇(∇a
X
Y )s = ∇X∇Y s (modL). (3.44)

Let X = u ∂
∂z

+ u ∂
∂z

be a vector field on Σ. We have

∇∇Xs =




(d(h′u)− 2(∂w)h′u+ q′udz)⊗ dz

0
(du+ uq′/h′dz + 2(∂w)u)⊗ dz−1



 (modL) (3.45)
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where q = q′(dz)3. It follows, writing tangent vectors as column vectors X = [u, u]t

that

∇a

[
u
u

]
=

[
du+ 2(∂w)u+ uq′/h′dz

du+ 2udw − 2(∂w)u+ q′u/h′dz

]
. (3.46)

Therefore the connection form Aa for ∇a is

Aa =

[
2∂w q/h

q/h 2∂w

]
. (3.47)

The Higgs bundle equation −2∂∂Ω + [Φ,Φ∗] = 0 becomes the following equation

for h:

2∂∂w + qqe−4w − e2w = 0. (3.48)

This real form of the sl(3,C) affine Toda equation is known as the Tzitzeica equation

[66]. We will see in Section 3.4.3 that this structure is precisely the requirement for

dev : Σ̃ → R3 to be an immersed hyperbolic affine sphere. Moreover 2h is the affine

metric and ∇a is the Blaschke connection [66]. Since the metric 2h on Σ̃ is complete

it will follow from the results in Section 3.4.3 that Σ̃ is in fact a properly embedded

submanifold of R3 and under the projection R3 → RP
2 maps bijectively with a convex

subset Ω ⊂ R2 ⊂ RP
2 contained in an affine subspace. Hence the projective structure

constructed is indeed convex.

3.4.3 Affine spheres

We provide a brief review on affine differential geometry and affine spheres leading to

the connection between hyperbolic affine spheres in R3 and convex RP
2-structures.

Some references for affine differential geometry and affine spheres are [75], [66].

Affine differential geometry concerns the properties of hypersurfaces in Rn+1 in-

variant under the action of the special affine group SL(n+1,R)⋉Rn+1. Let D denote

the trivial affine connection on Rn+1. Given an immersed hypersurface f :M → Rn+1

and a transverse vector field ξ on M , the decomposition f ∗(TRn+1) = TM ⊕ Rξ in-

duces a torsion free affine connection ∇ on M with the properties

DXY = ∇XY + h(X, Y )ξ (3.49)

DXξ = −S(X) + τ(X)ξ (3.50)

for any two vector fields X, Y on M . Here h is a symmetric bilinear form, S an

endomorphism of TM and τ a 1-form on M . We will restrict attention to convex

hypersurfaces, which amounts to assuming that h is positive definite and that ξ points
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to the convex side. In this case h defines a metric on M .

For a convex hypersurface the affine normal is the unique transverse vector field ξ

with the properties that ξ points to the convex side, τ = 0 and dvolh = ιξω where ω

is the standard volume form on R
n+1. From now on we always take the affine normal

so that (3.49)-(3.50) reduce to

DXY = ∇XY + h(X, Y )ξ (3.51)

DXξ = −S(X). (3.52)

In this case h is called the affine metric, ∇ the Blaschke connection and S the shape

operator. Since h is non-degenerate we also have the Levi-Civita connection ∇h for

h on M . The difference C = ∇h −∇ is called the Pick form.

An affine sphere is a convex hypersurface f : M → Rn+1 such that the shape

operator has the form S = λI where I is the identity operator and λ is a constant.

We say that M is an elliptic affine sphere if λ > 0, parabolic if λ = 0 and hyperbolic if

λ < 0. We see that λf + ξ is constant along M , so in the parabolic case ξ is constant

along M while in the other cases we may translate M so that ξ = −λf . Moreover we

can rescale so that λ = 1 in the elliptic case and λ = −1 in the hyperbolic case.

The key result that ties affine spheres to convex projective structures is the fol-

lowing [66]

Proposition 3.4.1. Given a convex bounded domain Ω ⊂ Rn where Rn ⊂ Rn+1 is

the affine plane xn+1 = 1, there is a unique properly embedded hyperbolic affine sphere

with λ = −1 and centre 0 asymptotic to the boundary of the cone {tΩ | t > 0}. Any

immersed hyperbolic affine sphere is properly embedded if and only of the affine metric

is complete. Any such affine sphereM is asymptotic to the boundary of the cone given

by the convex hull of M and 0.

We saw in Section 3.4.2 how for a compact Riemann surface Σ of genus g > 1,

a choice of complex structure and cubic holomorphic differential gives rise to an

immersed affine sphere Σ̃ → R3. Moreover the affine metric on Σ̃ is complete so that

Σ̃ is in fact properly embedded and thus gives rise to a convex projective structure.

Conversely a convex RP
2-structure arises from a convex subset Ω ⊂ RP

2 which is

acted upon by a subgroup of Γ ⊂ SL(3,R). Since there is a unique hyperbolic affine

sphere M → R3 asymptotic to Ω it follows that Γ acts on M and the quotient M/Γ

57



identifies with Σ. Now the affine metric on M descends to Σ defining a conformal

structure. The affine connection likewise descends, in particular the Pick form is de-

fined on Σ and identifies with the holomorphic cubic differential of Section 3.4.2.

The correspondences just described are mutually inverse so we have constructed

a bijection between pairs (∗, q) consisting of a complex structure on Σ and a holo-

morphic cubic differential and the convex RP
2-structures on Σ. Recall the result of

Choi and Goldman that the moduli space of convex RP
2-structures is the Hitchin

component for PSL(3,R). Therefore we have shown in the case of PSL(3,R) that for

each representation in the Hitchin component there is a unique conformal structure

for which the associated holomorphic quadratic differential vanishes.

3.5 Hitchin component for PSp(4,R)

We now turn our attention to the Hitchin component for PSp(4,R). In this case the

Hitchin component is seen to identify with a subspace of the Hitchin component for

PSL(4,R) which was studied by Guichard and Wienhard [43] in which it was shown

that representations in this component correspond to convex-foliated projective struc-

tures, a class of projective structure on the unit tangent bundle of the surface. Given a

compact Riemann surface Σ the unit tangent bundle M is the bundle of unit tangent

vectors with respect to any Riemannian metric on Σ. Within this space the projec-

tive structures corresponding to PSp(4,R) are precisely those with a contact structure

which in local projective coordinates matches the canonical contact structure on RP
3.

In Section 3.5.1 we use Higgs bundle techniques to construct projective structures

on the unit tangent bundle M with contact structures. We will then argue in Section

3.5.2 that our construction fills out the space of projective structures (with contact

structure) of Guichard and Wienhard. Finally in Section 3.5.3 we relate our projec-

tive structures to line congruences and minimal surfaces.
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3.5.1 Projective structures for PSp(4,R)

We begin by describing the complex Lie algebra sp(4,C). Let W be a complex 4-

dimensional vector space with symplectic form ω(u, v) = utωv where ω is the matrix

ω =




0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0


 (3.53)

then sp(4,C) is the subalgebra of gl(W ) of endomorphisms A such that Atω+ωA = 0.

We fix compact and split real structures ρ̂ and τ̂ as follows: ρ̂(A) = −At
, τ̂(A) =

HAH , where

H =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 . (3.54)

Moreover corresponding to τ̂ is an anti-involution onW also denoted τ̂ . It is given by

τ̂ v = Hv and the fixed point subspace defines the real 4-dimensional subspace which

the split real form preserves.

We can choose for the principal 3-dimensional subgroup s = 〈x, e, ẽ〉, where

x =




3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2


 , e =




0
√
3/2 0 0

0 0
√
2 0

0 0 0
√
3/2

0 0 0 0


 ,

ẽ =




0 0 0 0√
3/2 0 0 0

0
√
2 0 0

0 0
√

3/2 0


 .

(3.55)

Now recall the construction of the Higgs bundle (E,Φ) for the Hitchin component.

Choose a spin structure K1/2. The bundle E is the PSp(4,C)-bundle associated to

the SL(2,C)-bundle K1/2 ⊕K−1/2 under the inclusion of the principal 3-dimensional

subalgebra. However we can lift the structure group to Sp(4,C) so that E = sp(W)

where W is the rank 4-symplectic vector bundle W = K3/2 ⊕K1/2 ⊕K−1/2 ⊕K−3/2.

Let q ∈ H0(Σ, K4) be a holomorphic quartic differential. The associated Higgs field

is

Φ =




0 0 0 q√
3/2 0 0 0

0
√
2 0 0

0 0
√

3/2 0


 . (3.56)
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Let h = e2Ω be the associated Hermitian structure:

h =




h 0 0 0
0 k−1 0 0
0 0 k 0
0 0 0 h−1


 , Ω =




a 0 0 0
0 −b 0 0
0 0 b 0
0 0 0 −a


 . (3.57)

Then the compact and split anti-involutions for the adjoint bundle are ρ = Adh ◦ ρ̂,
τ = Adh ◦ τ̂ . The real real rank 4 subbundle Wτ preserved by ∇ is the fixed point set

of the anti-involution τv = hτ̂v. Now we may calculate Φ∗ = −ρΦ and the connection

form A = −2∂Ω + Φ+ Φ∗:

Φ∗ =




0
√
3/2hk 0 0

0 0
√
2/k2 0

0 0 0
√
3/2kh

q/h2 0 0 0


 , (3.58)

A =




−2∂a
√

3/2hk 0 q√
3/2 2∂b

√
2/k2 0

0
√
2 −2∂b

√
3/2kh

q/h2 0
√
3/2 2∂a


 . (3.59)

Let π : UΣ → Σ be the unit tangent bundle over Σ. We may pull back W and

∇ to UΣ. In particular, π∗Wτ is a real rank 4 bundle over the 3-dimensional space

UΣ with flat connection π∗∇. We describe a canonical real non-trivial line subbundle

L ⊂ π∗Wτ and show that any non-vanishing local section of L is generic with respect

to π∗∇. This shows there is a canonical flat projective structure associated to the

Higgs bundle.

Let z be a local holomorphic coordinate for an open subset U of Σ. We have

local coordinates z, θ for the open set π−1(U) of UΣ where for a given tangent vector

X ∈ TzU , θ represents the angle between ∂
∂x

and X . The canonical line bundle L

is defined as follows: the fibre L(z,θ) is the real 1-dimensional subspace spanned by

±eiθ/2dz−1/2 + τ(±eiθ/2dz−1/2). Note that the points ±eiθ/2dz−1/2 in PR(K
−1/2) cor-

respond to the ray of tangent vectors in the direction eiθ ∂
∂z

where K−1 is identified

with the tangent bundle. This shows that L is canonically defined.

For a vector v = [A,B,C,D]t we have that τv = [hD, k−1C, kB, h−1A]t. Therefore

we may write

τ(ei/2θdz−1/2) = k−1e−iθ/2dz −1/2 = A = A′dz1/2 ∈ K1/2. (3.60)
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If we write k = k′dz−1/2dz −1/2, h = h′dz3/2dz −3/2 where k′, h′ are non-vanishing real

functions then

A′ = (k′)−1e−iθ/2 (3.61)

and L(z,θ) is the real span of

s(z, θ) = [0, A, Ak, 0]t. (3.62)

Now A is non-vanishing so s defines a local section of L. However s does not extend

to a global section for if we go once around the fibre we end up with −s. In fact

L restricted to any fibre is clearly non-orientable. We could on the other hand pass

to the double cover of UΣ, the unit circle bundle of K−1/2 on which L is clearly trivial.

In order to prove the genericity of L it suffices to consider the local sections of

form s as defined. We have

∇s =




√
3/2h′k′A′dz3/2 ⊗ dz

dA+ 2(∂b)A +
√
2k−1A

d(Ak) +
√
2A− 2(∂b)Ak√

3/2A′k′dz−3/2 ⊗ dz


 . (3.63)

The bottom and top entries are non-vanishing multiples of dz and dz respectively, so

to prove non-degeneracy it suffices to show that ι ∂
∂θ

∇s does not lie in L for any point

(z, θ). We have

ι ∂
∂θ

∇s =




0
∂A′

∂θ
dz1/2

∂(A′k′)
∂θ

dz−1/2

0


 =




0
− i

2
A

i
2
Ak
0


 (3.64)

which proves non-degeneracy since − i
2
A is a non-vanishing imaginary multiple of

A. Thus we have found a flat projective structure on UΣ. The monodromy of this

structure is a representation in the Hitchin component for PSp(4,R). We make two

observations from this: first the monodromy of the projective structure around the

fibres is trivial, second since PSp(4,R) preserves a contact distribution on RP
3, there

is an associated contact distribution on UΣ. In fact a contact form is obtained by

contracting the symplectic form on π∗Wτ in the direction corresponding to the line

bundle L, so we see that the contact distribution is transverse to the fibres.

One final observation is that the fibres of UΣ are geodesics in the projective struc-

ture. This amounts to showing ∇ ∂
∂θ

(∇ ∂
∂θ

s) = 0 mod(s) which follows from a direct

computation.
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3.5.2 Convex-foliated projective structures

We will show that the projective structures constructed by the Higgs bundle approach

coincide with the convex-foliated projective structures for uniformising representa-

tions.

Let us first explain the convex-foliated projective structure for a uniformising

representation [43]. Let H2 represent 2-dimensional hyperbolic space with the hy-

perbolic metric. As usual let Σ be a compact Riemann surface of genus g > 1. If

Σ is given a constant curvature metric then Σ̃ is identified with H2 up to isome-

try, such that π1(Σ) acts by isometries, hence defining a uniformising representation

ρ : π1(Σ) → PSL(2,R) up to conjugation.

Let UH2 denote the unit tangent bundle of H2. We may define a projective

structure on UΣ with trivial holonomy around the fibres of UΣ → Σ by describ-

ing a developing map, that is a local diffeomorphism ψ : UH2 → RP
3 such that

ψ(uγl) = ρ̂(γ)−1ψ(u) where γl ∈ π1(UΣ) is any lift of γ ∈ π1(Σ) and ρ̂ is the compo-

sition of ρ with the map PSL(2,R) → PSL(4,R) given by the principal 3-dimensional

subalgebra.

Let us note that UH2 can be identified with PSL(2,R). In fact PSL(2,R) acts

freely and transitively on UH2. Moreover if H2 is identified with PSL(2,R)/U(1),

then UH2 is identified with the principal U(1)-bundle PSL(2,R) → H2 over H2.

Under the inclusion SL(2,R) → SL(4,R) of the principal 3-dimensional subalge-

bra, the fundamental representation of SL(4,R) becomes the third symmetric power

S2(R2) of the fundamental representation of SL(2,R). This is clear since the adjoint

representation of SL(4,R) under the principal 3-dimensional subgroup contains an

S6(R2) factor. We may consider RP3 as P(S3(R2)), the projectivisation of the third

symmetric power of the fundamental representation for SL(2,R). Then PSL(2,R)

acts on RP
3 and has two open orbits. Elements of RP3 can be thought of a cubic

polynomials up to scale, hence they are given by specifying their zeros. The two open

orbits are those cubics with positive or negative discriminant. If the discriminant of

a real cubic is positive then it has 3 distinct real roots, if it is negative then it has 1

real root and two distinct complex conjugate roots.

We may utilise either of the two open orbits to define a developing map. Taking

a cubic C with non-zero discriminant we have a map PSL(2,R) → RP
3 given by

g 7→ gC. Upon identifying UH2 with PSL(2,R) we have an equivariant map and
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since the orbit is open and 3-dimensional the map is a local diffeomorphism, hence

serves as a developing map. Note that if the discriminant of C is positive then the

stabiliser of C is Z3 while if the discriminant is negative then the stabiliser is trivial.

The choice of open orbit with negative discriminant yields the convex foliated pro-

jective structure for ρ [43]. We examine this structure more carefully.

Given an element u ∈ UH2 we can associate to u an element g ∈ PSL(2,R) and

hence a cubic gC. However there is a more direct way of associating a cubic to u

with negative discriminant. To describe a cubic up to scale it suffices to specify the

roots, one real and two conjugate. Let the unit tangent vector u lie over the base

point α ∈ H2. This is a complex number in the upper half plane, hence α and α will

serve to define the conjugate roots. Consider the geodesic starting at α and heading

in the direction u. We may follow this geodesic to the boundary and associate to it

the boundary point a ∈ RP
1. This will serve to define the real root. Since PSL(2,R)

acts on H2 by isometries it is clear that we have an equivariant sequence of maps

PSL(2,R) → UH2 → H
2 × RP

1.

An equivariant map UH2 → P(S3(R2)) is then obtained by taking the symmetric

product of equivariant maps ψ2 : H2 → P(S2(R2)) and ψ1 : ∂H2 = RP
1 → P(R2).

These maps are as follows:

ψ2(α) = (αZ + 1)(αZ + 1),

ψ1([a0, a1]) = (a0Z + a1)

where Z is an indeterminate and a = [a0, a1] ∈ RP
1. Note that the roots of these

polynomials are not the points α, α, a but rather the corresponding points under the

isomorphism of representations R2 ≃ R2∗. This is so that the polynomials transform

under the representation Sk(R2) rather than Sk(R2∗), that is a polynomial P (Z) of

degree k transforms as

[
a b
c d

]
· P (Z) = P

(
aZ + b

cZ + d

)
· (cZ + d)k.

By equivariance this is simply an alternative way of describing the developing map

ψ : UH → RP
3. It has the advantage that the map is naturally a product of two

simpler maps ψ1, ψ2. By finding Higgs bundle interpretations for these two maps

we will be able to identify this projective structure with the projective structure we
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constructed by Higgs bundle methods.

Now we show that the projective structure constructed in Section 3.5.1 matches

this. To do this we must trivialise the bundle E = K3/2⊕K1/2⊕K−1/2⊕K−3/2 with

respect to the flat connection corresponding to the uniformising representation. The

non-degenerate line bundle then defines a developing map and we check that up to a

projective transformation this is the same map we get from the construction for the

convex foliated projective structure.

Since the uniformising representation has holonomy in the principal three di-

mensional subgroup SL(2,R) ⊂ SL(4,R) we may first trivialise the associated two

dimensional representation K1/2⊕K−1/2 with respect to the flat connection and then

identify the rank 4 bundle E with S3(K1/2 ⊕K−1/2).

Since we work with the uniformising representation we identify the universal cover

of the surface with the upper half-plane H2 with the constant curvature −2 metric
dzdz
2y2

. The real covariant constant sections of K1/2 ⊕K−1/2 are

s =

[
s1
s2

]
(3.65)

such that
s1 =

s2√
2y

s2 = (az + b)eiπ/4dz−1/2
(3.66)

where a, b are real constants. Setting (a, b) = (1, 0), (0, 1) we get two sections

e1 = z√
2y
λ−1X + zλY

e2 = λ−1√
2y
X + λY

where λ = eiπ/4, X =

[
1
0

]
, Y =

[
0
1

]
.

The non-degenerate line bundle L ⊂ K3/2 ⊕ K1/2 ⊕ K−1/2 ⊕K−3/2 defining the

projective structure constructed by Higgs bundle means can be thought of as the

product of a line bundle L1 ⊂ K1/2 ⊕ K−1/2 with the evident trivial line bundle

L2 = 1 ⊂ K ⊕ 1 ⊕ K−1 = S2(K1/2 ⊕ K−1/2). When identifying K ⊕ 1 ⊕K−1 with

S2(K1/2 ⊕ K−1/2) and similarly for the third symmetric power we must be careful

to ensure that the identification recovers the flat connection on the rank 4 bundle E

since this is the connection we wish to trivialise. We have a standard matrix form
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of the principal three dimensional subgroup as subgroups of SL(3,R) and SL(4,R).

With respect to these one finds that dz, 1, dz−1/2 should identify with X2,
√
2XY, Y 2

and dz3/2, dz1/2, dz−1/2, dz−3/2 should identify with X3,
√
3X2Y,

√
3XY 2, Y 3.

The line bundle L2 corresponds to
√
2XY , so we need to express this in terms of

the covariantly constant basis e1e1, e1e2, e2e2. One finds that

√
2XY = 1

2y
(e1 − ze2)(e1 − ze2).

Now the non-degenerate line bundle L is spanned locally by a section [0, A, Ak, 0]t

where A = ±k−1eiθ/2. In terms of X and Y this is
√
3AX2Y +

√
3AkXY 2 =√

3/2(AX+AkY )(
√
2XY ). The line bundle L1 is therefore spanned by

√
3/2(AX+

AkY ). If we write this as a1e1 + a2e2 then we solve for a1, a2. Since the line bundle

is real we need only equate Y coefficients:

±
√

3/2eiθ/2 = (a1z + a2)e
iπ/4.

Thus

±a1 =
√

3/2

(
1

y

)
sin(θ/2− π/4)

±a2 =
√

3/2cos(θ/2− π/4)−
√

3/2

(
x

y

)
sin(θ/2− π/4).

(3.67)

Now we can express the non degenerate line bundle L as the span of

φ =
√

3/2
1

2y
(e1 − ze2)(e1 − ze2)(a1e1 + a2e2). (3.68)

Now let us compare this with the convex foliated projective structure. This has

developing map ψ : UH2 → RP
3 = P(S3(R2)) given by

ψ(z, u) = (zZ + 1)(zZ + 1)(aZ + 1)

where u is a unit tangent to z ∈ H2 and a ∈ RP
1 = ∂H2 is the point of the boundary

which the geodesic through z in the direction u approaches.

As before let θ denote the angle of clockwise rotation from ∂x to the tangent

direction u. Then we may express a in terms of z and θ as follows. We may suppose

u = cos(θ)∂x + sin(θ)∂y. Let the geodesic γ through z in the direction u be given by

the equation

(x̃− c)2 + ỹ2 = r2
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for constants c, r. Then by the definition of γ and a we have

(x− c)2 + y2 = r2

(a− c)2 = r2

(x− c)cos(θ) + y sin(θ) = 0.

Solving we find that

a = x+ y

(
1 + sin(θ)

cos(θ)

)
.

Now let us compare developing maps φ and ψ. We may relate the basis e1, e2 to Z, 1

by the projective transformation e1/e2 = −1/Z. Then in terms of Z φ becomes

φ =
√

3/2
1

2y
(zZ + 1)(zZ + 1)(a2Z − a1).

To check that φ and ψ are the same map it remains only to show that (a2Z − a1) is a

multiple of (aZ + 1) (continuity takes care of the case θ = π/2 where a = ∞ ∈ RP
1).

A simple calculation shows aa1 + a2 = 0 and this proves the two linear factors are

multiples of one another, hence the developing maps are equal.

Now our construction takes a conformal structure on Σ and a holomorphic quartic

differential and produces a projective structure on UΣ. In the case of a uniformis-

ing representation we see that the projective structure agrees with the corresponding

convex-foliated projective structure of Guichard and Wienhard. But the convex-

foliated projective structures forms a component of the space of projective structures

on UΣ [43]. By continuity our construction maps into the same component so we

have constructed the same projective structures up to homeomorphism. Moreover

the monodromy map on this component is a homeomorphism with the Hitchin com-

ponent. It follows that our construction fills out the entire space of convex-foliated

projective structures with contact structure. If Conjecture 3.1.1 holds then in fact

our construction is a bijection.

3.5.3 Relation to line congruences and minimal surfaces

So far we have provided an alternative description for the convex-foliated projective

structures but we have not provided any characterisation of our projective structures.

We will relate the projective structures to line congruences and minimal surfaces.
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We have constructed a projective structure on the unit tangent bundle UΣ with

the properties that the fibres are lines and the holonomy around the fibres is trivial.

If we let Σ̃ be the universal cover of Σ and UΣ̃ the unit tangent bundle of Σ̃ then

the developing map descends to a map dev : UΣ̃ → RP
3 with the property that the

fibres of UΣ̃ → Σ̃ are mapped bijectively to lines in RP
3. By means of the Plücker

embedding we have a map

φ : Σ̃ → P(∧2
R

4). (3.69)

Moreover if the projective structure has holonomy θ then φ is θ-equivariant. We call

such a map a θ-equivariant line congruence. It is a 2-parameter family of lines in RP
3.

Let us recall the Klein quadric. The space of lines in RP
3 is a projective variety

embedded in RP
5 = P(∧2R4) by the Plücker embedding. This sends the projective

line spanned by two vectors v, w to the point in projective space corresponding to

v ∧ w.
A 2-vector µ ∈ ∧2R4 is the wedge product of two vectors if and only if µ∧ µ = 0.

Therefore the Grassmannian of lines in RP
3 is the variety Q = {µ ∈ P(∧2R4) | µ∧µ =

0}. Moreover the wedge product ∧2R4⊗∧2R4 → ∧4R4 defines a signature (3, 3)-inner

product (understood as representations of SL(4,R)) for which Q is the projectivised

null quadric, usually called the Klein quadric. From this point of view it follows that

Q has a natural signature (2, 2)-conformal structure.

We now define what is meant by a line congruence [85]:

Definition 3.5.1. Let Σ be a surface. A line congruence on Σ is a map φ : Σ → Q

from the surface into the Klein quadric. Suppose further that Σ̃ is the universal cover

of Σ. Let ρ : π1(Σ) → SL(4,R) be a representation of the fundamental group of Σ

into SL(4,R). A ρ-equivariant line congruence on Σ is a map φ : Σ̃ → Q such that

φ ◦ γ = ρ(γ)−1φ for all γ ∈ π1(Σ).

Consider now a flat projective structure on a circle bundle B over Σ. Let us

assume that the fibres of B are lines in the sense that development once around a

fibre maps bijectively onto a line in RP
3. Notice that the holonomy around the loop

must preserve every point of the corresponding line. Since this is true for all fibres and

since the development map is a local diffeomorphism, it follows that the holonomy

around a loop must in fact fix each point in an open subset of RP3 and hence is trivial.

The holonomy of such a projective structure must then descend to a representa-

tion ρ : π1(Σ) → SL(4,R). If B̃ is the universal cover of B then the developing map

ψ : B̃ → RP
3 descends to a map ψ : B → RP

3 where B is a circle bundle over Σ̃
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(in fact the pull-back of B to a bundle over Σ̃). Since each fibre of B → Σ̃ maps

bijectively to a line in RP
3 we obtain a ρ-equivariant line congruence on Σ where ρ

is the holonomy of the projective structure.

Given a ρ-equivariant line congruence on Σ we will produce a circle bundle B over

Σ and a ρ-equivariant map ψ : B → RP
3. If the map ψ is a local diffeomorphism then

it defines a developing map for a projective structure on B where the fibres develop

into lines.

The Klein quadric Q has a natural RP1-bundle over it E → Q. In terms of the

geometry of Q this is one of the two bundles of maximal isotropic subspaces (the

α-planes). Viewing Q as the Grassmannian of lines in RP
3 the bundle E is the tau-

tological bundle. Evidently there is a natural map e : E → RP
3. Define B = φ∗(E),

the pull-back of E to a circle bundle over Σ. There is a natural map ψ : B → RP
3

obtained by composing the natural maps φ∗(E) → E and e : E → RP
3.

Now we find a natural action of π1(Σ) on B lifting the action on Σ̃. Let a ∈ φ∗(E)u

where u ∈ Σ̃, we have that ψ(a) ∈ φ(u) thought of as a line in RP
3. Given γ ∈ π1(Σ)

we have ρ(γ)−1ψ(a) ∈ ρ(γ)−1φ(u) = φ(uγ). Now the line φ(uγ) is the image un-

der ψ of the fibre of B over uγ so there is a unique point b ∈ Buγ such that

ψ(b) = ρ(γ)−1ψ(a). Hence define aγ = b. This gives the desired action which is

clearly smooth. Now B is the pull-back to Σ̃ of the bundle B = B/π1(Σ) over B.

Now if ψ is a local diffeomorphism it follows that ψ is the developing map of a pro-

jective structure on B such that development maps a fibre bijectively to a line.

We now determine the condition under which ψ : B → RP
3 is a local diffeo-

morphism. Note that since the Klein quadric Q has a (2, 2)-conformal structure we

can use φ : Σ̃ to pull this back to a (possibly degenerate) conformal structure on Σ̃,

moreover SL(4,R) acts on Q by conformal transformations so the pull-back structure

descends to Σ.

Lemma 3.5.0.1. The map ψ is a local diffeomorphism if and only if the pull-back

conformal structure is definite (positive or negative definite).

Proof. Locally we may write φ = v ∧ w where v, w are vector valued functions on a

coordinate chart with complex coordinate function z. Then locally E has coordinates

(z, u) where u is real and ψ is given by ψ(z, u) = v(z) + uw(z). Now ψ is a local
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diffeomorphism if and only if ψ ∧ ψu ∧ ψx ∧ ψy is non-vanishing. Clearly ψ ∧ ψu =

v ∧ w = φ. Suppose at some point ψ ∧ ψu ∧ ψx ∧ ψy = 0. Then

A(v + uw)x +B(v + uw)y = 0 ( mod v, w).

That is

vX + uwX = 0 ( mod v, w)

where X = A∂x +B∂y . Now

φX = vX ∧ w + v ∧ wX

so

φX ∧ φX = 2vX ∧ w ∧ v ∧ wX = 0.

Thus the tangent vector X is null in the induced conformal structure. So if ψ is a

local diffeomorphism then the induced conformal structure is definite. Reversing the

argument proves the converse.

If we start with a projective structure on a circle bundle B over Σ where devel-

opment of each fibre is a bijection to a line in RP
3, then it is clear that locally there

exist coordinates (z, u) ∈ C×RP
1 on B such that the development map has the form

ψ(z, u) = v(z) + uw(z). Therefore the induced line congruence induces a definite

conformal structure on Σ. We say that two projective structures on a circle bundle

B → Σ are gauge equivalent if they are related by a diffeomorphism φ : B → B lifting

the identity Σ → Σ. We have thus shown the following:

Proposition 3.5.1. Let θ : π1(Σ) → SL(4,R) be a representation. There is a bijec-

tion between θ-equivariant line congruences inducing a definite conformal structure on

Σ and gauge equivalence classes of flat projective structures on circle bundles B → Σ

with monodromy θ such that each fibre develops bijectively into a line of RP3.

Now let us restrict to line congruences with symplectic monodromy. Then there

is a preserved symplectic form ω on on R4 and a corresponding symplectic form

on (R4)∗, that is an element ω∗ ∈ ∧2R4. Suppose the line congruence φ induces a

definite conformal structure so that there is a projective structure on the circle bundle

B = φ∗(E). The symplectic form ω induces a contact structure on B such that the

contact distribution is transverse to the fibres if and only of φ ∧ ω∗ is non-vanishing

at all points on Σ̃. In particular this is the case for the projective structures we have

constructed.
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Let us assume this transversal condition. We can then uniquely lift φ to a map

φ : Σ̃ → ∧2R4 such that φ ∧ ω∗ = −ω∗ ∧ ω∗ = −dvol4. Then consider the map

s : Σ̃ → ∧2R4 defined by

s = φ+ ω∗. (3.70)

This map has the properties that s ∧ s = −dvol4 and s ∧ ω∗ = 0. Therefore s maps

into the 5-dimensional orthogonal complement of ω∗ which is an irreducible represen-

tation of Sp(4,R) corresponding to the 5-dimensional fundamental representation of

SO(2, 3). Moreover s maps into the quadric of vectors of length −1. We have the

following

Proposition 3.5.2. Let φ be a line congruence constructed from a representation θ

in the Hitchin component for PSp(4,R). Then the associated map s into the quadric

of length −1 vectors in (ω∗)⊥ is a θ-equivariant minimal immersion. Conversely a

θ-equivariant minimal immersion into this quadric such that the image does not lie

in any proper subspace defines precisely the line congruence and projective structure

we have constructed.

Proof. The rank 5 bundle associated to the 5-dimensional representation is V =

K2 ⊕K ⊕ 1⊕K−1 ⊕K−2 and we find that s corresponds to the line bundle 1 ⊂ V .

We have already seen that this corresponds to a minimal immersion in the quadric.

3.6 G2 Representations

We will show that representations into the G2 Hitchin component yield almost com-

plex curves into a 6-dimensional quadric. For details on the split real form of G2 and

the split octonions see Section 5.1. Our approach is is based on similar results for

almost complex curves in S6, which relates to the compact form of G2 [7].

Consider the 7-dimensional representation V of the split real form of G2. This

space identifies with the imaginary split octonions and has a metric of signature (3, 4).

Consider the quadric Q+ = {x ∈ V | 〈x, x〉 = 1}. Then x ∈ V is an element of Q if

and only if x2 = −1. The map Jx : V → V given by

Jx(y) = x× y (3.71)

where × denotes the split octonion cross product defines a complex structure on TxQ.

Letting x vary over all elements of Q this defines an almost complex structure J on

Q. Consider now a Riemann surface Σ and a map φ : Σ → Q. The map φ is called
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an almost complex curve if it intertwines the almost complex structures of Σ and Q,

that is if

φ× ∂φ = i∂φ. (3.72)

We see that for such a map 〈∂φ, ∂φ〉 = 0. Assuming φ is an immersion then we

have that φ is conformal in the sense that if g is the metric on Q then either φ∗(g)

or −φ∗(g) is a metric representing the conformal class on Σ. In the split G2 case

both possibilities can occur. In either case the cone {tφ(x) |t > 0} locally defines an

associative submanifold of V which can have signature (3, 0) or (1, 2). In fact a cone

in V with non-degenerate induced metric is associative if and only if the associated

surface in the quadric is an almost complex curve. It also follows that almost complex

curves are minimal surfaces of Q.

We now construct almost complex curves using Higgs bundles. First we describe

the necessary algebra. Let V = C7 be a complex 7-dimensional vector space. We

represent elements of V as column vectors. Define an inner product

〈X, Y 〉 = X tEY (3.73)

where

E =




0 0 0 0 0 0 −1
0 0 0 0 0 1 0
0 0 0 0 −1 0 0
0 0 0 1 0 0 0
0 0 −1 0 0 0 0
0 1 0 0 0 0 0
−1 0 0 0 0 0 0




. (3.74)

Then 〈 , 〉 has signature (3, 4). Let ρ̂(X) = −X t
be an anti-involution for the compact

real form SO(7,R) indeed one may check that the endomorphisms X of V such that

X tE + EX = 0 and X
t
+X = 0 form a Lie algebra isomorphic to so(7,R). Let us

define a Cartan involution σ on so(7,C)

σ(X) = −HX tH (3.75)

where

H =




0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0




. (3.76)
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We then have an anti-involution λ̂ = ρ̂σ which defines the split form so(3, 4). Indeed

there is a corresponding anti-involution also denoted λ̂ which acts on V such that

λ̂(Ax) = λ̂(A)λ̂(x), namely

λ̂(x) = Hx. (3.77)

On the real subspace V λ̂ the inner product restricts to a real inner product of signa-

ture (3, 4).

Now we introduce the G2 structure of V . Let e3, e2, . . . , e−3 be the standard basis

on V , that is for any vector we have v = [v3, v2, . . . , v−3]
t
= v3e3 + · · ·+ v−3e−3. We

define a G2 structure on V by the following identification:

e3 =
1√
2
(jl +

√
−1kl), e2 =

1√
2
(j +

√
−1k),

e1 =
1√
2
(l +

√
−1il), e0 = i.

(3.78)

and e−i is obtained from ei by replacing
√
−1 with −

√
−1. Here i, j, k, l, il, jl, kl is a

basis for the split octonions. With this assignment the anti-involutions ρ̂, λ̂ preserve

the Lie algebra g2 ⊂ so(7,C).

We may define a principal 3-dimensional subalgebra x, e, ẽ as follows:

x = diag(3, 2, 1, 0,−1,−2,−3)

e =




0
√
3 0 0 0 0 0

0 0
√
5 0 0 0 0

0 0 0
√
−6 0 0 0

0 0 0 0
√
−6 0 0

0 0 0 0 0
√
5 0

0 0 0 0 0 0
√
3

0 0 0 0 0 0 0




ẽ = −ρ̂(e).

(3.79)

Now we may carry out the Higgs bundle construction for the Hitchin component

for G2. Such representations are described by holomorphic differentials of degrees

2 and 6. As usual for any such representation we may choose a complex structure

on the Riemann surface so that the quadratic differential vanishes leaving only a

degree 6 differential q. The holomorphic adjoint bundle can be described as the G2

endomorphisms of the following rank 7 holomorphic bundle

W = K3 ⊕K2 ⊕ · · · ⊕K−3. (3.80)
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The Higgs field Φ has the form

Φ =




0 0 0 0 0 q 0√
3 0 0 0 0 0 q

0
√
5 0 0 0 0 0

0 0 −
√
−6 0 0 0 0

0 0 0 −
√
−6 0 0 0

0 0 0 0
√
5 0 0

0 0 0 0 0
√
3 0




. (3.81)

The metric is h = e2Ω where Ω has the form

Ω = diag(X + Y,X, Y, 0,−Y,−X,−(X + Y )). (3.82)

We let ρ = Ade2Ω ◦ ρ̂ and λ = ρσ be the compact and split anti-involutions preserved

by the associated connection ∇A. Let us also define s = e2X and t = e2Y so s is a

(2, 2)-form and t is a (1, 1)-form. Then

Φ∗ = −ρ(Φ) =




0
√
3t 0 0 0 0 0

0 0
√
5s/t 0 0 0 0

0 0 0
√
−6t 0 0 0

0 0 0 0
√
−6t 0 0

q/(s2t) 0 0 0 0 0
√
3t

0 q/(s2t) 0 0 0 0 0




(3.83)

and the connection form for ∇A is −2∂Ω.

Consider the section s = [0, 0, 0, 1, 0, 0, 0]t. We have that s is real with respect to

the real structure on W associated to λ. In terms of the G2 structure we can identify

s with e0 = i, so s2 = −1. Therefore s develops into a map

φ : Σ̃ → Q ⊂ V λ̂. (3.84)

This map is an almost complex curve. This amounts to showing s×∇zs = i∇zs where

∇ = ∇A + Φ − ρ(Φ) is the flat connection. This is a straightforward computation.

It is also clear that φ is an immersion and that the corresponding associative cone

is of signature (1, 2). Therefore we have constructed almost complex curves to each

representation in the Hitchin component for G2.
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Chapter 4

Parabolic Cartan geometries

Cartan geometries are a curved generalisation of homogeneous spaces that emerged

from the works of E. Cartan [21], [22] and also from T. Y. Thomas [94], [95] from a

different perspective. To each homogeneous space G/H the associated Cartan geome-

tries are spaces locally modeled on the homogeneous space. Parabolic geometries are

a special case where the model space G/P involves a parabolic subgroup. We have

already encountered one type of parabolic geometry namely projective geometry for

which the homogeneous model is projective space. Another familiar parabolic geom-

etry is conformal geometry and Chapter 5 is concerned with a parabolic geometry

associated to the split form of G2. In this chapter we will provide a rapid introduction

to the theory of parabolic geometries as preparation for Chapter 5.

Section 4.1 introduces Cartan geometries in general before specialising to parabolic

geometries which require some algebraic background on parabolic subalgebras. Sec-

tion 4.2 introduces the tractor connection and tractor bundles. These allow Cartan

geometries to be understood in terms of more familiar objects namely vector bundles

and connections. We finish with Section 4.3 which examines the particular case of

conformal geometry in more detail.

4.1 Cartan and parabolic geometries

We give a general introduction into the theory of parabolic geometries. References

for parabolic geometries include [5], [16], [18], [17]. See also [87] for an introduction

to Cartan geometries.
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4.1.1 Cartan geometries

Definition 4.1.1. Let g be a Lie algebra and p a subalgebra. Let P be a Lie group

with Lie algebra p. A Cartan geometry over a manifold M is a principal P -bundle G
together with a g-valued differential form ω ∈ Ω1(G, g), called a Cartan connection,

such that the following properties hold:

1. At each point u ∈ G, ωu : TuG → g is an isomorphism.

2. If X̃ is the vector field on G associated to X ∈ p then ω(X̃) = X .

3. If Rp denotes the right translation on G associated to p ∈ B then R∗
pω =

Adp−1(ω).

When referring to Cartan geometries or Cartan connections we sometimes need

to make the group P and Lie algebra g clear in which case we will speak of a (P, g)

Cartan geometry or (P, g) Cartan connection. Often a group G ⊃ P for which g is

the Lie algebra will be present but it is not necessary for the definition. The idea

behind Cartan geometries is that they are a curved generalisation of homogeneous

spaces, specifically the principal P -bundle G →M generalises the principal P -bundle

G→ G/P over the homogeneous space. The Cartan connection identifies the tangent

space at each point of G with the tangent space g of the homogeneous bundle.

A homogeneous space G/P is equipped with a canonical Cartan connection, the

Maurer-Cartan form for G. Recall that the Maurer-Cartan form ω of a Lie group G is

the g-valued 1-form defined by sending X ∈ TgG to Lg−1∗(X) ∈ TeG = g. Therefore

Cartan connections can be thought of as a generalisation of the Maurer-Cartan forms.

The key difference is that the translational property of a Cartan connection is only

assumed to hold for the subgroup P of G.

One of the key concepts in Cartan geometries is that of curvature. For a Cartan

geometry G → M with connection ω the curvature of the Cartan geometry is the

g-valued 2-form κ ∈ Ω2(G, g) given by

κ = dω + 1
2
[ω, ω] (4.1)

where the term [ω, ω] is the combination of exterior product and the Lie bracket for g,

namely 1
2
[ω, ω](X, Y ) = [ω(X), ω(Y )]. Clearly κ measures the failure of ω to satisfy

the Maurer-Cartan equation and thus how deformed the Cartan geometry is from
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the homogeneous space. Via ω we can also view the curvature as a
∧2

g∗ ⊗ g-valued

function on G which we denote by K, so Ku(X, Y ) = κu(ω
−1
u (X), ω−1

u (Y )). Then

(4.1) becomes

K(X, Y ) = [X, Y ]− ω([ω−1(X), ω−1(Y )]), (4.2)

that is the curvature measures the difference between the Lie bracket on g and the

Lie bracket of the associated vector fields on G.
The transformation property R∗

pω = Adp−1ω of a Cartan connection can be dif-

ferentiated to give LỸ ω = −[Y, ω] where Y ∈ p and Ỹ = ω−1(Y ) is the associated

vertical vector field. This simplifies to dω(Ỹ , ) = −[ω(Ỹ ), ω]. It follows that the

curvature vanishes if either argument is vertical. Thus K can be thought of as a
∧2(g/p)∗ ⊗ g-valued function on G. Lastly the transformation property of ω implies

the same transformation property for the curvature R∗
pκ = Adp−1κ. These properties

allow us to view curvature as a 2-form valued section of the adjoint bundle G ×P g

on M , similar to the usual notion of the curvature of a connection.

4.1.2 Parabolic subalgebras

We shall consider a special case of Cartan geometries known as parabolic geometries.

To understand these geometries we first have to undertake some algebraic prelimi-

naries on parabolic subalgebras.

Let g be a real or complex semisimple Lie algebra and p a subalgebra. Recall that

p is called a parabolic subalgebra [18] if p contains a maximal solvable subalgebra, i.e.

a Borel subalgebra. An alternative definition is given in [15].

By means of Dynkin diagrams (or Satake diagrams for real algebras), all parabolic

subalgebras can be dealt with in a uniform manner. Any parabolic subalgebra p ⊂ g

of a (real or complex) semisimple Lie algebra can be described as follows [18]: there

exists a Cartan subalgebra h ⊂ g, a system of positive roots ∆+ for (h, g) and a

subset Σ ⊂ ∆0 of the corresponding simple roots. We define the Σ-height of a root

α = Σαj∈∆0
njαj as the integer Σαj∈Σnj. Then p is the subalgebra of g spanned by all

root spaces of non-negative Σ-height (this contains h).

Conversely given any subset Σ ⊂ ∆0 of a system of simple roots the above con-

struction defines a parabolic subalgebra, provided that g is over the complex numbers.

In the real case there are restrictions on which subsets Σ define a subalgebra and this

is described by Satake diagrams. In either case we see that parabolic subalgebras can
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be described by taking the Dynkin diagram for g and crossing out the simple roots

corresponding to Σ.

This method of describing parabolic subalgebras also gives g the structure of a

|k|-graded Lie algebra, namely we have that g = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk where gj

is the subspace of g with Σ-height equal to j. It should be noted that this grading

is not canonical as it depends on the Cartan subalgebra and choice of positive roots,

though it is unique up to conjugacy.

We define the following subalgebras of g: first g− = g−k ⊕ · · · ⊕ g−1 which as a

representation of g0 is isomorphic to g/p and second p+ = g1 ⊕ · · · ⊕ gk.

4.1.3 Lie algebra cohomology

The Lie algebra cohomology [24] of g− with coefficients in g appears in the theory of

parabolic geometries in two different ways. The first cohomology appears as obstruc-

tions to the prolongation procedure and the second cohomology is related to possible

values the curvature can take. As such we provide a definition and state a key result.

Powerful results for calculating Lie algebra cohomology are obtained by harmonic

Hodge theory [60], [78].

We define the space of n-cochains as Cn(g−, g) =
∧n

g∗− ⊗ g viewed as alternating

multilinear maps. The differential ∂ : Cn(g−, g) → Cn+1(g−, g) is given by

(∂φ)(X0, X1, . . . , Xn) =

n∑

i=0

(−1)i[Xi, φ(X0, . . . , X̂i, . . . , Xn)]

+
∑

i<j

(−1)i+jφ([Xi, Xj], X0, . . . , X̂i, . . . , X̂j , . . . , Xn). (4.3)

The differential satisfies ∂2 = 0 and the cohomology groups are denoted Hn(g−, g).

The spaces Cn(g−, g) can be decomposed into homogeneous components where φ ∈
Cn(g−, g) has homogeneity l if for Xj ∈ gij , φ(X1, . . . , Xn) ∈ gi1+···+in+l. We denote

by Cn
l (g−, g) the homogeneity l subspace of Cn(g−, g). The differential ∂ preserves

homogeneity so it follows that the cohomology groups likewise have a decomposition

Hn(g−, g) = ⊕lH
n
l (g−, g) into homogeneous subspaces. The Lie algebra g0 has a nat-

ural action on the cochains and the differential commutes with this action. It follows

that the cohomology groups Hn
l (g−, g) have naturally defined g0-module structures.
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Via the Killing form, the subalgebras g− and p+ are dual. It follows that the neg-

ative of the dual of the differential ∂ : Cn(p+, V ) → Cn+1(p+, V ), (defined similarly

to (4.3)) where V is any g-module, is a linear map ∂∗ : Cn+1(g−, V
∗) → Cn(g−, V

∗).

In particular we have a map ∂∗ : Cn+1(g−, g) → Cn(g−, g) satisfying (∂∗)2 = 0. The

map ∂∗ is called the codifferential. In this context it is actually more natural to work

with the codifferential and the resulting Lie algebra homology since there is a natural

action of p, hence when g is replaced with an adjoint bundle with structure group P ,

the codifferential is naturally defined as a bundle map.

Let B denote the Killing form on g. There exists an involution ρ : g → g, linear

in the real case or antilinear in the complex case for which B∗(X, Y ) = −B(X, ρ(Y ))

defines a positive definite inner product in the real case or a positive definite Hermitian

inner product in the complex case [18]. Moreover ρ can be chosen so that ρ(gi) = g−i.

The inner product B∗ on g induces inner products on the Cn(g−, g), which will also

be denoted B∗. The key properties of the codifferential are given by the following:

Proposition 4.1.1. [18] The differential ∂ and codifferential ∂∗ are adjoint with

respect to B∗, i.e., B∗(∂φ, ψ) = B∗(φ, ∂∗ψ). Each space Cn
l (g−, g) splits as a direct

sum of the image of ∂ and the kernel of ∂∗. Each cohomology class contains a unique

∂∗-closed representative (i.e., ∂-closed and ∂∗-closed).

An element of Cn(g−, g) that is ∂-closed and ∂∗-closed is called harmonic. Thus

the harmonic elements define unique representatives for each cohomology class.

4.1.4 Parabolic geometries

In this section following [18] we take the algebraic structure of parabolic subalgebras

and translate them into a geometric picture via Cartan geometries.

Let g be a real or complex semisimple Lie algebra and p a parabolic subalgebra.

As in Section 4.1.2, give g the structure of a |k|-graded algebra.

For the purpose of giving a uniform treatment it will be useful to assume we have a

given Lie group G with Lie algebra g. Let P ⊂ G be the subgroup of elements g such

that Adg preserves the filtration g(−k) ⊃ · · · ⊃ g(k) where g(i) = gi ⊕ gi+1 ⊕ · · · ⊕ gk,

i = −k, . . . , k. Further define G0 ⊂ G as the subgroup of elements g such that Adg

preserves the gradation of g. Then P has Lie algebra p and G0 has Lie algebra g0

[18]. The structure of P is given by the following:
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Proposition 4.1.2. [18] Given g ∈ P there exists unique elements g0 ∈ G0 and

Xi ∈ gi for i = 1, 2, . . . k such that g = g0exp(X1) · · · exp(Xk).

Now define the subgroup P+ ⊂ P as the image of p+ under the exponential map.

One finds that P is the semidirect product of G0 and P+.

Having established the various groups involved we now proceed to the geometry

itself.

Definition 4.1.2. Let (P, g) be as above. A (P, g) Cartan geometry is called a

parabolic geometry. Let G → M be a parabolic geometry with Cartan connection ω

and curvature K ∈ Ω0(G,
∧2

g∗− ⊗ g). The Cartan connection ω is called normal if

∂∗K = 0 where ∂∗ is the codifferential ∂∗ : C2(g−, g) → C1(g−, g).

Suppose we have a parabolic geometry π : G → M with Cartan connection ω.

Given any x ∈M and u ∈ π−1(x) the exact sequence

0 −→ p −→ g
π∗ω

−1
u−→ TxM −→ 0 (4.4)

induces an isomorphism φu : g− = g/p → TxM of vector spaces and the transforma-

tion property of ω implies φup ◦ Adp−1 = φu. Therefore we have an isomorphism

TM ≃ G ×Ad g/p.

Now when P acts on g it preserves the filtration g(−k) ⊃ · · · ⊃ g(k) and thus it also

preserves the induced filtration g(−k)/p ⊃ · · · ⊃ g(−1)/p ⊃ g(0)/p = {0} on g−. Hence

there is a corresponding filtration

TM = T−kM ⊃ · · · ⊃ T−1M ⊃ T 0M = 0

of the tangent bundle. Now it is clear that we also have isomorphisms

T jM/T j+1M ≃ G ×Ad g(j)/g(j+1)

for j = −k, . . . ,−1. Therefore we can give the associated graded space T−k
x M/T−k+1

x M⊕
· · · ⊕ T−1

x M/{0} the structure of the Lie algebra g−. Now the action of P on

g(−k)/g(−k+1) ⊕ · · · ⊕ g(−1)/g(0) factors through to G0 which acts by automorphisms

of the Lie algebra structure. Thus the bundle

GrTM = T−kM/T−k+1M ⊕ · · · ⊕ T−1M (4.5)
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has on each fibre the structure of the Lie algebra g−. We call GrTM the associated

graded bundle. The associated graded bundle has a reduction of structure group to

G0. Note that while G0 preserves the algebraic structure on g− it can happen that

G0 is a proper subgroup of Aut(g0). In this sense the associated graded bundle may

have more structure than just the algebraic bracket operation.

Given a manifold M with a filtration TM = T−kM ⊃ · · · ⊃ T−1M of the tan-

gent bundle we can likewise form the associated graded bundle GrTM . Suppose the

filtration has the property that if X and Y are respectively sections of T rM and

T sM , then their commutator [X, Y ] is a section of T r+sM . We denote this prop-

erty by [T rM,T sM ] ⊂ T r+sM . The commutator bracket then induces a bracket

[ , ] : T rM/T r+1M ⊗ T sM/T s+1M → T r+sM/T r+s+1M . Note that only zero order

terms survive the quotient so that this is an algebraic Lie bracket operation defined

on the fibres of GrTM . We say that M satisfies the structure equations for the pair

(P, g) if

1. The associated graded bundle GrTM has a reduction of structure to G0, hence

in particular each fibre has the algebraic structure of g−.

2. The Lie algebra structure on each fibre induced from vector field commutators

matches the Lie algebra structure obtained from the reduction of structure to

G0.

Remark 4.1.1. Note that in the |1|-graded case the requirement that M satisfies the

structure equations reduces to the requirement that TM has a reduction of structure

to G0.

Suppose we have a (P, g) parabolic geometry G →M inducing a filtration on TM

and an associated graded bundle GrTM . We will determine the conditions under

which the structure equations hold.

Let κ =
∑3k

i=−k+2 κ
i be the decomposition of the curvature into homogeneous

components so that if X ∈ gr and Y ∈ gs then κ(X, Y ) ∈ gr+s+i. Recall that the

curvature measures the difference between Lie brackets in g and their associated vec-

tor fields. It follows that a parabolic geometry satisfies the structure equations if

and only if κi = 0 for i ≤ 0. We call a Cartan connection regular if it satisfies this

homogeneity condition on the curvature.

A regular parabolic geometry yields a filtration on the tangent bundle solving the

structure equations. Naturally one is interested in the converse question of whether
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a solution of the structure equations corresponds to a regular parabolic geometry.

This is closer to the original notion of Cartan geometries and Cartan’s equivalence

method where structures on the base manifold define a canonical Cartan connection.

The following proposition will confirm this point of view. Note that similar results

but expressed differently can be found in earlier works [92], [93], [72]:

Proposition 4.1.3. [18, Corollary 3.23] Let M be a manifold that satisfies the struc-

ture equations for (P, g). Assume that (p, g) is such that all the cohomology groups

H1
l (g−, g) with l > 0 are trivial. Then there is a bijective correspondence between

reductions of the associated graded bundle to G0 and isomorphism classes of regular,

normal (P, g) Cartan connections which recover the structure on GrTM .

Under the hypotheses of this proposition there will generally exist many Cartan

connections that yield the given structure on GrTM but there exists a unique such

Cartan connection that is normal.

Remark 4.1.2. The parabolic subalgebras p ⊂ g such that not all the cohomology

groups H1
l (g−, g) with l > 0 are trivial are known [18]. These cases can be interpreted

to mean that aside from the structure equations, additional structure has to be given

to define the parabolic geometry. For the parabolic geometries we shall be henceforth

considering this issue will not come into play, although it does matter for projective

geometries. In the case of projective geometries the structure equations are vacu-

ous and so additional structure is required to describe such geometries (namely the

equivalence class of affine connections).

4.2 Tractor description of parabolic geometries

Now that we have introduced parabolic geometries, we introduce the tractor bundle

framework for describing such geometries in the more familiar terms of vector bundles

and connections (in the usual sense). The formalism dates back to the work of T. Y.

Thomas and was revived in modern form in [5], see also [16].

Let G → M be a (P, g) Cartan geometry with Cartan connection ω. Let G ⊃ P

be a Lie group with Lie algebra g. Then the bundle G̃ = G ×P G has an ordinary

g-valued connection ω̃ such that i∗ω̃ = ω where i is the inclusion G → G̃. To see this

note that ω̃ is defined on i∗(TG) to agree with ω and then ω̃ is automatically defined

on all other tangent vectors by means of the defining properties of a connection. This
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connection is called the tractor connection.

Let V be any representation of G. Then there is an associated bundle

V = G ×P V = G̃ ×G V.

Such bundles are useful because the tractor connection can then be considered as

a connection
−→∇ on V. We call V a tractor bundle. Typically a parabolic subgroup

P ⊂ G is the subgroup of G preserving some partial flag in V and this induces a flag

structure on V which defines a reduction of structure from G̃ to G. More generally

if a tractor bundle V can be given structure so as to define a reduction of structure

from G̃ to G then we can recover the Cartan geometry from V and
−→∇.

In the case of parabolic geometries it is possible to relate the tractor connection

to certain affine connections which we now introduce. A Weyl structure is a reduction

of structure σ : G0 → G to a principal G0-bundle. Such sections always exist globally

[89], since P/G0 ≃ P+ is contractible.

A Weyl structure provides a splitting of the filtration on the tangent bundle and

hence an isomorphism TM ≃ GrTM . Furthermore the G0-invariant grading of g

allows us to decompose σ∗ω = ω−k+ · · ·+ωk where ωi is gi-valued. One sees that the

g0 component σ∗(ω0) is an ordinary g0-valued connection ∇σ on G0. This connection

can then be viewed as a connection on any vector bundle associated to a representa-

tion of G0. In particular ∇σ can be regarded as a connection on TM . We call ∇σ a

Weyl connection or preferred connection.

Given a Weyl structure σ : G0 → G let us write ω− = ω−k + · · · + ω−1 and

ω+ = ω1 + · · · + ωk so that σ∗ω = ω− + ω0 + ω+. Now since ω− and ω+ vanish on

the vertical distribution for G0 they can be viewed as 1-form valued sections of the

adjoint bundle A = G ×Ad g ≃ A− ⊕ A0 ⊕ A+. The relation between the tractor

connection
−→∇ and the Weyl connection ∇σ can then be written as

−→∇ = ω− +∇σ + ω+.

We note further that ω− : TM → A− provides an isomorphism TM ≃ A−. Now

since A0 acts faithfully on A− we can identify A0 with a subbundle of End(TM). Via

the Killing form A+ and A− are dual so A+ ≃ T ∗M . The adjoint bundle now has

the form

A = TM ⊕A0 ⊕ T ∗M.
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So for any tangent vector X we can identify ω−(X) with X and ω+(X) can be

identified with a 1-form which we denote Pσ(X). Under these identifications we have

−→∇X = X +∇σ
X +Pσ(X). (4.6)

This is the fundamental relation between the tractor connection and the Weyl con-

nections. The map Pσ : TM → T ∗M is called the rho tensor and depends on the

choice of σ.

4.3 Conformal geometry

We now consider in more detail a specific instance of a parabolic geometry, namely

conformal geometry. Although conformal geometry can be approached as a topic

within Riemannian geometry, it is beneficial to take a more invariant approach, the

history of which traces back to the work of Cartan in [21]. We now understand this

work as an example of a parabolic Cartan geometry, see for example [16], [58].

4.3.1 Möbius space

Our first step is to understand the homogeneous model space for conformal geometry.

Let V be a vector space of dimension n and [g] a conformal class of (p, q) signature

inner products (henceforth referred to as metrics) on V . Throughout this section we

will assume n ≥ 3. We define the conformal group CO(V ) = O(V )× R∗ and index 2

subgroup CO+(V ) = {g ∈ CO(V ) | det g > 0}.

Our homogeneous model for conformal geometry consists of Lie algebras p ⊂ g

where g = g−1 + g0 + g1 ≃ V + co(V ) + V ∗ and p = g0 + g1. Thus g is a |1|-graded
Lie algebra given by the relations

[v, v̂] = [λ, λ̂] = 0

[A, Â] = AÂ− ÂA

[A, v] = Av

[λ,A] = A∗λ

[v, λ] = λ⊗ v − (gv)⊗ (g−1λ) + λ(v)I

(4.7)

where v, v̂ ∈ V, λ, λ̂ ∈ V ∗, A, Â ∈ co(V ). Notice that the last of these commutators

depends only on the conformal class of the metric g.
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There is an isomorphism V +co(V )+V ∗ ≃ so(E) where E is an (n+2)-dimensional

vector space with signature (p + 1, q + 1) metric g̃. As vector spaces we write E =

R⊕ V ⊕ R, then the metric is given by

g̃ =




0 0 −1
0 g 0
−1 0 0



 (4.8)

and the isomorphism of algebras is given by sending (v, A, λ) ∈ V + co(V ) + V ∗ to



−α λ 0

v Â g−1λ
0 gv α


 (4.9)

where A = Â+αI and Â ∈ so(V ) (so α = tr(A)/n). It follows that as a representation

of co(V ), we have E ≃ L[−1]⊕ V [−1] ⊕ L[1], where L[w] denotes the 1-dimensional

representation given by co(V ) ∋ φ 7→ (w/n)tr(φ) and we use the notation W [w] =

W ⊗ L[w] for a representation W .

Thus far the construction of the metric g̃ on E depends on the choice of repre-

sentative g of the conformal structure on V . However we may instead consider the

conformal metric g = det(g)−1/ng. A short calculation shows that g ∈ S2(V ∗)[2]

and is independent of the representative metric g. Now g is a well-defined metric

on V [−1] and so we can replace g by g in the formulas (4.8) and (4.9) to obtain a

uniquely defined metric on E. To summarise we have that E = L[−1]⊕V [−1]⊕L[1]

with metric

g̃ =




0 0 −1
0 g 0
−1 0 0


 (4.10)

and an isomorphism of Lie algebras V + co(V ) + V ∗ ≃ so(V) where (v, A, λ) maps to



−α λ 0

v Â g−1λ
0 gv α


 . (4.11)

We shall call E the tractor space.

Our homogeneous model for conformal geometry is now SO(E)/P where P is the

stabiliser in SO(E) of the null line L[−1] ⊂ L[−1] ⊕ V [−1] ⊕ L[1]. Note that the

Lie algebra of P is p. The group SO(E) acts transitively on the projectivised null

quadric Q = {u ∈ P(V)| g̃(u, u) = 0} and P is the stabiliser of a point in Q so the

homogeneous space SO(E)/P is diffeomorphic to the quadric Q. Note that in place of
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SO(E) we could just as easily use O(E) and replace P by the appropriate stabiliser.

The only difference is that SO(E) preserves an orientation on Q so we are considering

oriented conformal geometry.

Given a scale, that is a non-zero element ξ ∈ L[1] we can embed V in E via

v 7→ (ξ−1, ξ−1v, 1/2 ξg(v, v))t where g = ξ−2g is the metric corresponding to the

scale. Although this map depends on a choice of scale, the induced map V → P(E) is

uniquely defined as v 7→ [1, v, 1/2 g(v, v)]t. Clearly this map gives a diffeomorphism

between V and a neighborhood of the origin o = [1, 0, 0]t such that 0 ∈ V maps to

the origin.

The conformal structure on V can be extended to Q in such a way that SO(E)

acts as the group of conformal transformations of Q (or more strictly PSO(E)). In

this context SO(E) may be called the Möbius group and Q Möbius space. We can

think of the Möbius space Q as the conformal compactification of V , on which all

the infinitesimal automorphisms of the flat conformal structure can be integrated to

automorphisms, not just locally defined as is the case for V .

4.3.2 Normal conformal Cartan connections

We now consider an n-dimensional oriented manifold M with signature (p, q) confor-

mal structure [g]. The conformal structure can be equivalently viewed as a CO+(p, q)-

structure on M , let G0 denote this CO+(p, q)-principal bundle. Naturally one wishes

to classify these and to that end one may apply the equivalence method. This was

achieved by Cartan in [21], the result is that to each conformal structure is associated

a canonical normal Cartan connection, which is called the normal conformal Cartan

connection.

The principal bundle for this Cartan geometry is the first prolongation of G0

[58] and one finds that the Cartan geometry is modeled on G/P = Q, the Möbius

space of Section 4.3.1 (strictly speaking G should be PSO(p + 1, q + 1) but in odd

dimensions this is isomorphic to SO(p + 1, q + 1)). In fact one can deduce the ex-

istence and uniqueness of the normal conformal connection without going through

the prolongation procedure. It follows from Proposition 4.1.3 that normal conformal

connections are in bijection with reductions of the structure group of the tangent

bundle to G0 = CO+(p, q), which implies the existence and uniqueness.

85



The normal conformal connection is distinguished by its curvature κ having the

following form: viewed as a g-valued 2-form we have that the g−1 = V -valued compo-

nent vanishes, the g0 = co(p, q)-valued component is the conformal Weyl curvature.

Moreover it then follows that the g1 = V ∗-valued component is the Cotton-York ten-

sor [16].

Consider the tractor bundle E associated to the standard representation of G =

SO(p+1, q+1). In our previous terminology we called this representation the tractor

space E, hence the tractor bundle is E = G̃ ×GE. As a representation of G0, we have

found that E = L[−1] ⊕ V [−1] ⊕ L[+1], where V is the fundamental representation

of G0. Thus on restriction to structure group G0 via a Weyl structure we have that

E = L[−1]⊕ TM [−1]⊕ L[+1] (4.12)

where we use the notation L[w] to denote the line bundle associated to the represen-

tation L[w].

It can be shown that the preferred connections corresponding to the normal con-

formal Cartan connection are precisely those connections that are torsion free and

preserve the conformal structure [89]. Thus amongst the preferred connections are

the Levi-Civita connections of representative metrics of the conformal class; however

not every preferred connection preserves a metric. In fact a preferred connection pre-

serves a metric if and only if it preserves a scale, i.e., a non-vanishing section of E [1].

Let
−→∇ denote the tractor connection and let ∇σ denote the preferred connection

corresponding to a Weyl structure σ. Then as in equation (4.6) we have

−→∇X = ∇σ
X +X +Pσ(X). (4.13)

In the case of conformal geometry the rho tensor Pσ can be expressed in terms of the

Ricci curvature of the corresponding Weyl connection [16]. We let R be the Riemann

curvature of ∇σ, Ric(X, Y ) = tr(Z → R(Z,X)Y ) the Ricci curvature and s = tr(Ric)

the scalar curvature. Then

Pσ(X, Y ) = − 1

n− 2

(
1

n
Ric(X, Y ) +

n− 1

n
Ric(Y,X)− 1

2n− 2
sg(X, Y )

)
. (4.14)

Given a Cartan geometry we have an intrinsically defined connection, the tractor

connection. Thus we can consider the holonomy of this connection, which we call

tractor holonomy. In the case of conformal geometry we call this the conformal

holonomy of the conformal structure. In Chapter 5 we will consider G2 conformal

holonomy.
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Chapter 5

Conformal G2 holonomy

In this chapter we will study signature (2, 3) conformal geometry with holonomy in

the split form of G2. As discussed in the introdution this has a history that traces

back to the work of Cartan [20]. This geometry has examined for several different

perspectives including the works of Bryant and Hsu [10], Agrachev [1], Nurowski [76],

[77], Zelenko [98], [99], Čap and Sagerschnig [19] and Hammerl [45]. Our contribution

is mostly to clarify the geometry at first from the point of view of parabolic geometries

then later purely in terms of conformal geometry. We start off in Section 5.1 by

studying split G2 and the corresponding homogeneous space. The corresponding

parabolic geometry is then considered and shown to be equivalent to a generic 2-

plane distribution in 5 dimensions. Then in Section 5.2 we relate this G2 geometry

to conformal G2 holonomy. In Section 5.3 we consider the geometry from the point

of view of spinors and show that G2 holonomy corresponds to a spinor satisfying the

twistor spinor equation and further that the generic 2-plane distribution corresponds

to the annihilator of this spinor. Finally in Section 5.4 we give two examples of such

generic 2-distributions.

5.1 Split octonions and split G2

We will study a parabolic geometry for the split real form of G2. In order to under-

stand the geometry we must first examine the algebraic structure of split g2 and the

parabolic subalgebra.

The split form of G2 can be conveniently described in terms of the split octonions,

a split signature version of the more familiar octonions. For more details see [48].

We define the split octonions Õ as the 8-dimensional algebra over R spanned by

elements 1, i, j, k, l, li, lj, lk satisfying the multiplication given in Figure 5.1.
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1 i j k l li lj lk
i −1 k −j −li l −lk lj
j −k −1 i −lj lk l −li
k j −i −1 −lk −lj li l
l li lj lk 1 i j k
li −l −lk lj −i 1 k −j
lj lk −l −li −j −k 1 i
lk −lj li −l −k j −i 1

Figure 5.1: Multiplication table for the split octonions

Let x = x01+x1i+ · · ·+x7lk denote an element of Õ. We define the conjugate as

x̄ = x0− x1i− · · ·− x7lk, and the norm of x as N(x) = xx̄ = x20 + x21+ x22 + x23− x24 −
x25 − x26 − x27. In fact the norm is the quadratic form associated to the split signature

metric g(x, y) = Re(xȳ).

Consider the group Aut(Õ) of linear isomorphisms of Õ preserving the algebra.

This is a Lie group and we can show that the Lie algebra is g̃2, the split real form

of G2. We note that any automorphism must preserve the norm so that Aut(Õ) is a

subgroup of O(4, 4). But an automorphism must also preserve the identity 1 ∈ Õ and

hence acts trivially on the 1-dimensional subspace Re(Õ). Thus the automorphisms

are determined by their action on the orthogonal complement Re(Õ)⊥ = Im(Õ) which

has a signature (3, 4) metric. Thus the automorphism group is a subgroup of O(3, 4),

in fact a subgroup of SO(3, 4).

Let x, y ∈ Im(Õ). We define the cross product × : Im(Õ)× Im(Õ) → Im(Õ) by

x× y =
1

2
(xy − yx) (5.1)

and we also note since x and y are imaginary we have

g(x, y) = −1

2
(xy + yx). (5.2)

The algebraic structure of the split octonions is encoded in the trilinear form φ

on Im(Õ) given by

φ(x, y, z) = g(x× y, z). (5.3)

As the split octonions are an alternative algebra we find that φ is skew-symmetric.

In fact

φ = dx123 + dx145 + dx167 + dx246 + dx275 + dx347 + dx356 (5.4)
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where dxijk denotes dxi ∧ dxj ∧ dxk. Since the 3-form φ encodes the algebraic struc-

ture of the split octonions, the automorphism group is simply the stabiliser of φ in

GL(Im(Õ)). We denote the automorphism group by G̃2 and the corresponding Lie

algebra by g̃2. We shall see that this is indeed the split real form of G2.

We use a basis that most clearly shows the parabolic structure of g̃2. With respect

to the ordered basis
{

1√
2
(i+ li), 1√

2
(lj − j), 1√

2
(k − lk), l, 1√

2
(k + lk), 1√

2
(j + lj), 1√

2
(i− li)

}

the algebra g̃2 consists of matrices of the form:




u1 + u4 λ1 λ2 λ3 λ4 λ5 0

v1 u1 u2
√
2λ2 1√

2
λ3 0 λ5

v2 u3 u4 −
√
2λ1 0 1√

2
λ3 −λ4

v3
√
2v2 −

√
2v1 0 −

√
2λ1 −

√
2λ2 λ3

v4 1√
2
v3 0 −

√
2v1 −u4 u2 −λ2

v5 0 1√
2
v3 −

√
2v2 u3 −u1 λ1

0 v5 −v4 v3 −v2 v1 −u1 − u4




. (5.5)

The parabolic structure now becomes clear. The 14 variables u1, . . . , λ
5 can be

thought of as linear coordinates on g̃2 and thus as a basis for the dual g̃∗2. The entries

u1, u4 correspond to a Cartan subalgebra, with the element u1 = u4 = 1 serving as a

grading element. The root space decomposition is as shown in Figure 5.2. Note we

have included a dividing line to establish a system of positive roots.

������*
λ5

�
�
�
�
�
��

λ4

�
�
��

λ3

- λ2
6

λ1

@
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@R u2

@
@
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�v2
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v1

�
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�	v3

�������v5

�
�
�

�
�
��v4

B
B
B
B
B
B

B
B
B
B
B
B

− +

Figure 5.2: Root space decomposition

We see that for the given system of positive roots the simple roots correspond

to u2 and λ1. A simple calculation shows u2 is the larger of the two. Let p̃ be the
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parabolic subalgebra corresponding to the diagram × ⇚ ◦. We see that p̃ consists

of those elements with v1 = · · · = v5 = 0. Moreover this is precisely the subalgebra

that preserves the line o spanned by i + li. The graded structure associated to the

parabolic subalgebra p̃ is as follows:

g∗−3 g∗−2 g∗−1 g∗0 g∗1 g∗2 g∗3
v5, v4 v3 v2, v1 u1, u2, u3, u4 λ2, λ1 λ3 λ5, λ4

Now let us define P̃ and G̃0 to be the subgroups of G̃2 preserving respectively the

filtration and grading on g̃2. Then the corresponding Lie algebras are p̃ and g0.

Lemma 5.1.0.1. The natural map

φ : G̃0 → GL(g−1) (5.6)

is an isomorphism.

Proof. First we show φ is injective. Suppose g ∈ G̃0 and φ(g) = 0, that is g acts

trivially on g−. Taking Lie brackets of elements of g−1 generates g− so g acts trivially

on g−. Moreover g0 can be identified with gl(g−1) so g also acts trivially on g0. Now

suppose Y ∈ gi for i > 0 then for all X ∈ g−i we have

[AdgY − Y,X ] = 0.

This is only possible if AdgY = Y . Thus we have shown g acts trivially on g̃2. We

can think of g as an endomorphism of the imaginary split octonions that commutes

with g̃2. But the only such endomorphisms are multiples of the identity and then

in fact then we must have g is the identity since no other multiple of the identity is

contained in G̃2.

Next we show φ is surjective. Since g0 is isomorphic to gl(2) we need only show

that in the image of φ is an orientation reversing element. For this define an involution

τ which is the identity on k, l, lk and acts as multiplication by −1 on i, j, li, lj. Then

it is clear that τ ∈ G̃2. In fact τ ∈ G̃0 and the action of τ on g−1 is orientation

reversing.

Proposition 5.1.1. Let Po be the subgroup of G̃2 preserving the line spanned by

o = i+ li. Then Po = P̃ .
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Proof. From Lemma 5.1.0.1 we find that G̃0 consists of matrices of the form




a 0 0 0 0
0 A 0 0 0
0 0 1 0 0
0 0 0 a−1A 0
0 0 0 0 a−1




where A ∈ GL(2) and a = det(A). Furthermore we have that P̃ = G̃0⋉ P̃+ where P̃+

is the group generated by exponentials of elements of p̃+ = g1 ⊕ g2 ⊕ g3. From this

we see immediately that P̃ preserves the null line spanned by i+ li.

Conversely suppose g ∈ G̃2 preserves the line spanned by i+ li. Since g preserves

the cross product structure we can show that g has the form

g =




a ∗ ∗ ∗ ∗
0 A ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 a−1A ∗
0 0 0 0 a−1




where again A ∈ GL(2) and a = det(A). From this it is straightforward to show that

g preserves the filtration on g̃2 hence g ∈ P̃ .

Let Q be the space of all null lines in Im(Õ). This space can be identified with

the null quadric in P(Im(Õ)). The group G̃2 acts transitively on this space and the

stabiliser of the line spanned by o = i+li is the parabolic subgroup Po = P̃ . Therefore

Q identifies with the homogeneous space G̃2/P̃ . This is the homogeneous space on

which the parabolic geometry for (P̃ , g̃2) is modeled.

Suppose we have a regular parabolic geometry P̃ → M for (P̃ , g̃2). Then we have

a filtration of TM

V −1 ⊂ V −2 ⊂ V −3 = TM (5.7)

where V −1 is 2-dimensional and V −2 is 3-dimensional. We also have the associated

graded bundle

GrTM = V −1 ⊕
(
V −2/V −1

)
⊕

(
V −3/V −2

)
. (5.8)

Since the parabolic geometry is regular we have that M satisfies the structure equa-

tions. Let us examine the structure equations in more detail. The Lie algebra
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g− = g−1 ⊕ g−2 ⊕ g−3 is spanned by a1, . . . , a5 where a1, a2 span g−1, a3 spans g−2

and a4, a5 span g−3. The algebra is determined by the relations

[a1, a2] = a3, [a1, a3] = a4, [a2, a3] = a5 (5.9)

with all other commutators given by skew symmetry or vanish. It follows that M

satisfies the structure equations if and only if the 2-distribution V = V −1 ⊂ TM

is maximally non-integrable or generic. By this we mean that ∂V = V + [V, V ] is

three dimensional and ∂(∂V ) = ∂V +[∂V, ∂V ] is 5-dimensional. These are the largest

possible dimensions that ∂V and ∂∂V can have.

Now the Lie algebra g0 is isomorphic to gl(2) and as representations of g0 we have

g−1 = V ∗

g−2 = ∧2V ∗

g−3 = V ∗ ⊗ ∧2V ∗

(5.10)

where V is the standard 2-dimensional representation. But this is precisely the re-

duction of structure provided by the Lie bracket of vector fields, therefore there is a

unique reduction of structure of GrTM to g0 which is compatible with the structure

equations. In light of this we now have

Proposition 5.1.2. Let M be a 5-manifold with generic 2-plane distribution V .

There exists a unique normal, regular parabolic geometry P → M modeled on the

homogeneous space Q = G̃2/P̃ such that the filtration on TM induced by the parabolic

geometry agrees with the filtration induced by V

5.2 Conformal G2 geometry

As shown in the previous section the Cartan geometry (P̃ , ω) obtained from a generic

2 distribution on a 5-dimensional manifold M is modeled on the homogeneous space

G̃2/P̃ which is signature (2, 3) conformal Möbius space. We now show that the mani-

foldM has a naturally defined signature (2, 3) conformal structure [g]. This conformal

structure was discovered by Nurowski [76]. The connection between the G2-geometry

and the conformal geometry can be understood as a special case of a more general

relation between parabolic geometries of different types [32].

Let us note that given a generic 2-distribution V on a 5-dimensional manifold

M , the associated graded bundle GrTM ≃ V ⊕ ∧2V ⊕ (∧2V ⊗ V ) has a natural

92



(∧2V )2-valued pairing such that V is isotropic and V ⊥ = V ⊕ ∧2V , so it is perhaps

not so surprising that M should have a natural (2, 3)-conformal structure. However

a conformal structure on the associated graded bundle does not uniquely determine

a conformal structure on the tangent bundle. The additional information is encoded

into the parabolic geometry associated to the distribution.

Recall that Q = G̃2/P̃ is the space of null lines in the 7-dimensional representation

V = Im(Õ). But G̃2 ⊂ SO(3, 4) and Q can also be identified with the homogeneous

space Q = SO(3, 4)/P where P is the stabiliser in SO(3, 4) of a null line. This sug-

gests a relation between Parabolic geometries for (P̃ , g̃2) and for (P, so(3, 4)). We

will show that a (P̃ , g̃2) geometry defines a conformal parabolic geometry and that

conversely a conformal geometry with G̃2 holonomy reduces to a (P̃ , g̃2) geometry.

First consider going from a parabolic geometry for (P̃ , g̃2) to a conformal geometry.

For this we have the following:

Proposition 5.2.1. Let G be a Lie group with Lie algebra g and let G1, G2 be Lie

subgroups with corresponding Lie algebras g1, g2 such that g = g1 + g2. Let G → M

be a (g2, G1 ∩ G2) Cartan geometry with Cartan connection ω. Then there exists a

unique (g, G1) Cartan connection ω1 on G1 = G ×G1∩G2
G1 such that i∗ω1 = ω where

i∗ is the inclusion i : G → G1.

Proof. This is a straightforward exercise in using the Cartan connection axioms.

In our case we have that G = SO(3, 4), G2 = G̃2, G1 = P and G1 ∩G2 = P̃ . We

have g = g1 + g2. It follows that ω uniquely extends to a conformal Cartan connec-

tion. When ω is normal it is not immediately clear that the corresponding conformal

connection is normal. It was recently proven that in fact the associated conformal

connection is indeed normal [45].

It follows that the tangent bundle of M has a corresponding reduction of struc-

ture to CO(2, 3), that is M has an associated conformal structure. Furthermore the

conformal structure has conformal holonomy contained in G̃2.

We now consider the converse situation. Let P → M be a conformal parabolic

geometry with Cartan connection ω. Let G = P×P SO(3, 4) be the associated tractor

bundle and extend ω to G defining the associated tractor connection. We are inter-

ested in the case where the tractor connection has holonomy in G̃2. This means that
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there is a reduction of structure to a principal G̃2-subbundle G̃ ⊂ G preserved by the

tractor connection. Therefore ω restricts to a g̃2-valued connection form on G̃.
Now P is the bundle of frames in G that fix a certain line bundle L ⊂ T in the

tractor bundle. Therefore we have a principal P̃ -subbundle P̃ of G̃ defined as the

bundle of frames of G̃ preserving the line bundle L. The tractor connection restricts

to a g2-valued 1-form ω on P̃ which we can show is a Cartan connection.

Proposition 5.2.2. The g̃2-valued 1-form defined on P̃ as above is a Cartan con-

nection. Moreover if the conformal connection is torsion free then the (P̃ , g̃2) Cartan

connection is regular.

Proof. The only thing that is not immediate is that for each u ∈ P̃ , ω : TuP̃ → g̃2 is

an isomorphism. This is easily seen from the following commutative diagram

TuG̃
ω

  B
BB

BB
BB

B

// TuG
ω

zzvvvvvvvvv

g̃2 // so(3, 4)

TuP̃

ω

>>||||||||

OO

// TuP

ω
ddHHHHHHHHH

OO

and the fact that ω : TuP → so(3, 4) is an isomorphism.

We note again that when the conformal connection is normal the associated (P̃ , g̃2)

Cartan connection is normal [45]. Thus we have two constructions that are mutually

inverse which allow us to regard the geometry as either a conformal geometry with

G̃2 holonomy or as a (P̃ , g̃2) geometry.

Let P̃ → M be the parabolic geometry associated to a generic 2-distribution on

M . Associated to the 7-dimensional representation of G̃2 is a tractor bundle T on M

which is equipped with the tractor connection. Now since P̃ has structure group P̃

which is the subgroup of G̃2 fixing a null line, there is a corresponding line subbundle

L ⊂ T which is null with respect to the signature (3, 4) metric on T . We will say that

a local frame {e1, . . . , e7} for T is a P̃ -frame if the identification of {e1, . . . , e7} with

our standard basis { 1√
2
(i+li), 1√

2
(lj−j), 1√

2
(k−lk), l, 1√

2
(k+lk), 1√

2
(j+lj), 1√

2
(i−li)}

respects the G̃2 structure and if the line bundle L is spanned by e1. Clearly we can

always locally find a P̃ -frame.

In a P̃ -frame the tractor connection will have a connection matrix of the form (5.5)

where the coefficients v1, v2, . . . are now to be considered as 1-forms. The conformal
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structure on M can be described as follows. Let 〈 , 〉 be the metric on T . Choose

a local non-vanishing section s of the line bundle L. Then a local metric g on M

representing the conformal structure is given by

g(X, Y ) = 〈−→∇Xs,
−→∇Y s〉. (5.11)

Taking s = e1 as a local section we find the conformal structure is represented by

g = −2v1v5 + 2v2v4 − (v3)2. (5.12)

The 1-forms v1, . . . , v5 define a coframe on M . Moreover the graded structure of g̃2

shows that the annihilator of v3, v4, v5 is the generic 2-distribution V −1 and the anni-

hilator of v4, v5 is the 3-distribution V −2 = V +[V, V ]. From this we note that V −1 is

a bundle of maximal isotropics of the conformal structure and V −2 is the annihilator

of V −1.

5.3 Twistor spinor formulation

We show for arbitrary dimension and signature that a constant spinor for the tractor

bundle corresponds to a solution to the twistor spinor equations. Now the group G2

occurs as the stabiliser of a spinor in 7 dimensions. This implies in the case of (2, 3)

conformal structures arising from 2-distributions that there exists a constant spinor

for the tractor connection. Since in this case we are considering indefinite conformal

structures we can also consider pure spinors. It so happens that in signature (2, 3),

all non-vanishing spinors are pure so that in particular the twistor spinor defines

a 2-dimensional maximal isotropic distribution. We show that this is in fact the

original distribution. Thus the twistor spinor has a direct interpretation in terms of

the 5-dimensional geometry.

5.3.1 The twistor spinor equation

We shall refer to a manifold with a Spin(p, q) × R
∗ structure as a conformal spin

manifold. Any representation of Spin(p, q) is also a representation of Spin(p, q)× R∗

for which R∗ acts trivially. Hence one can define spin bundles for a conformal spin

manifold. Moreover one can take the tensor product with a 1-dimensional represen-

tation of R∗ to obtain weighted spinor bundles.
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On a (p, q) signature conformal manifold we also have the tractor bundle E which

is an SO(p + 1, q + 1)-bundle, so we can also consider lifting the structure of E to

Spin(p + 1, q + 1). The existence of splittings E ≃ L[−1] ⊕ T [−1] ⊕ L[1] shows
that on a conformal spin manifold this is possible. Given a spinor representation for

Spin(p + 1, q + 1) we can then form the associated spinor bundle. In any case we

can always form this bundle locally. In this section we study such spinors and show

how to relate them to spinors of the underlying manifold. In particular covariant

constancy under the tractor connection will lead to the twistor spinor equation [83],

[46].

Let V be a vector space with (p, q) signature conformal structure [g] and let g

be the conformal metric on V [−1]. Let E = L[−1]⊕ V [−1]⊕ L[1] be the associated

tractor space with signature (p+ 1, q + 1) metric

g̃ = 2e0e∞ + g, (5.13)

where e0 ∈ L∗[−1], e∞ ∈ L∗[1]. Note for convenience both g̃ and g have changed sign

from the conventions of Section 4.3.1.

We use the convention that the Clifford algebra Cl(W ), associated to a vector

space W with metric g is defined by the relation x2 = −g(x, x) [63]. Let S(E) denote
an irreducible Cl(E) module, so that by restriction S(E) is a Spin(E) module. Our

first objective is to understand the structure of S(E) with respect to the isomorphism

spin(E) ≃ V ⊕ co(V )⊕ V ∗. We consider each of the various parts in turn.

Consider spin(V [−1]) ⊂ spin(E). By restriction S(E) is a Cl(V [−1])-module and

the action of spin(V [−1]) on S(E) is simply this Clifford multiplication. We now

make use of the isomorphism Clp+1,q+1 ≃ Cl1,1 ⊗Clp,q. We can think of L[−1]⊕L[1]

as a 2-dimensional space with metric

g1,1 = 2e0e∞ = ê2 − ǫ̂2 (5.14)

where {ê, ǫ̂} is a dual basis to the basis {e, ǫ} given by
[
e
ǫ

]
=

1√
2

[
1 1
1 −1

] [
e0
e∞

]
. (5.15)

Now Cl1,1 ≃ End(R2) with an explicit representation given by

e =

[
0 1
−1 0

]
ǫ =

[
0 1
1 0

]
. (5.16)
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Consider the linear map φ : E → Cl1,1 ⊗ Cl(V [−1]) defined by

φ(u) = eǫ⊗ u u ∈ V,

φ(e) = e⊗ 1, (5.17)

φ(ǫ) = ǫ⊗ 1.

Since φ has the property φ(x)2 = −g̃(x, x), φ extends uniquely to an isomorphism

φ : Cl(E) → Cl1,1 ⊗ Cl(V [−1]). Now as a Cl(V [−1])-module, S(E) splits into the

±1 eigenspaces S± of eǫ:

S(E) = S+ ⊕ S−. (5.18)

Moreover, the action of e and ǫ intertwine S± so we see that S± are isomorphic as

vector spaces with Clifford multiplication by V [−1] differing only by a factor of −1.

It follows that S± are irreducible Cl(V [−1])-modules. Under this decomposition we

see that spin(V [−1]) just acts diagonally by Clifford multiplication.

To understand how the remaining parts of spin(E) act we must understand the

isomorphism so(E) → spin(E). Given x, y ∈ E, let x∧y denote the element of so(E)

given by

(x ∧ y)z = g̃(x, z)y − g̃(y, z)x. (5.19)

Then the isomorphism so(E) → spin(E) is given by [63]

x ∧ y 7→ 1
4
[x, y] = 1

4
(xy − yx),

the product being Clifford multiplication.

Now consider the homothety part kI ∈ co(V ) as contained in so(E) and hence

in spin(E). One verifies that the corresponding element is 1
2
kǫe. This acts on S± as

multiplication by ∓1
2
k and it follows that S+ has conformal weight −1

2
and S− has

conformal weight 1
2
so a better way to express the decomposition of S(E) is

S(E) = S+[−1
2
]⊕ S−[

1
2
]. (5.20)

Now consider the action of V ⊂ spin(E). One verifies the corresponding Clifford

action is −1
2
Xe∞ or in matrix form this is

ρ(X) =

[
0 0

− 1√
2
X· 0

]
. (5.21)
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Note that this is consistent with the fact that Clifford multiplication by an element

of V will raise the conformal weight by 1.

Lastly consider λ ∈ V ∗. The corresponding element of spin(E) is 1
2
(g−1λ)e0, or in

matrix form

ρ(λ) =

[
0 1√

2
(g−1λ)·

0 0

]
. (5.22)

Once again note that this is consistent with the conformal weights.

The tractor connection
−→∇ on a conformal spin manifold M induces a connection

on the spinor bundle associated to S(E). We denote this bundle by S(E) and the

associated connection will be denoted the same as the tractor connection
−→∇. After

reducing the structure group of E to Spin(p, q) by a choice of Weyl structure we have

that S(E) decomposes as

S(E) = S+(M)[−1
2
]⊕ S−(M)[1

2
] (5.23)

where S+(M), S−(M) are the spin bundles associated to S+, S−. A choice of Weyl

structure also allows us to write the tractor connection as
−→∇X = ∇X+ρ(X)+ρ(P(X))

from which we deduce the tractor connection on S(E) has the following form:

−→∇X =

[
∇X

1√
2
g−1P(X)·

− 1√
2
X· ∇X

]
. (5.24)

Now suppose Ψ is a covariantly constant spinor with respect to the tractor con-

nection. Let

Ψ =

[
ψ1

ψ2

]
(5.25)

be the decomposition of Ψ into ±1 eigenspaces of eǫ. The the equation
−→∇Ψ = 0

becomes [
∇Xψ1 +

1√
2
g−1P(X) · ψ2

∇Xψ2 − 1√
2
X · ψ1

]
=

[
0
0

]
(5.26)

for all vector fields X . Contracting the second of the two equations over a dual basis

via Clifford multiplication yields

Dψ2 +
1√
2
nψ1 = 0 (5.27)

where D is the Dirac operator and n = dim(M). Substituting back into the second

equation of (5.26), we arrive at the twistor spinor equation:

∇Xψ2 +
1
n
X ·Dψ2 = 0. (5.28)
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Now ψ2 is the conformal weight 1
2
component of Ψ. Let us now consider the

parabolic subalgebra p = co(V ) ⊕ V ∗. This preserves the subspace of conformal

weight −1
2
spinors and gives rise to an exact sequence:

0 → S+[−1
2
] → S(E) → S−[

1
2
] → 0. (5.29)

Thus a spinor with values in S(E) projects onto a weight 1
2
spinor on M and since

the V ∗ part of p acts trivially on the projection, this spinor is independent of choice

of Weyl structure.

Conversely suppose we have a spinor ψ on M of conformal weight 1
2
that satisfies

the twistor spinor equation (5.28). We can show this lifts to a unique spinor Ψ for the

bundle S(E) that is preserved by the tractor connection. We define Ψ = (ψ1, ψ2)
t by

setting ψ2 = ψ and we define ψ1 so as to satisfy equation (5.27) by ψ1 = −
√
2/nDψ.

We then find that the second equation of (5.26) holds. In fact the first equation holds

as well although the computation is somewhat lengthy. Thus we have deduced:

Proposition 5.3.1. A covariantly constant spinor for the tractor connection on S(E)
projects to a solution of the twistor spinor equation. Conversely a spinor satisfying

the twistor spinor equation uniquely lifts to a covariantly constant section of S(E).

5.3.2 Spinors in signatures (2,3) and (3,4)

We now specialise to the case of (2, 3) conformal structures. Consider a basis α, β, c, u, v

with dual basis û, v̂, ĉ, α̂, β̂ for V [−1] in which the metric becomes

g = 4ûβ̂ − 4v̂α̂− ĉ2. (5.30)

The utility of this basis is that it has a convenient matrix representation. We have

that Cl2,3 ≃ End(R4) ⊕ End(R4) and the two (2, 3) spin representations are the

corresponding copies of R4. Letting S2,3 denote one of these copies we can find an

explicit representation of Cl2,3 on S2,3 given by

u =




0 1 0 −1
1 0 −1 0
0 1 0 −1
1 0 −1 0


 , v =




0 −1 0 1
1 0 1 0
0 1 0 −1
1 0 1 0


 , c =




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


 ,

α =




0 1 0 1
−1 0 1 0
0 1 0 1
1 0 −1 0


 , β =




0 −1 0 −1
−1 0 −1 0
0 1 0 1
1 0 1 0


 .

(5.31)
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Viewing E as the imaginary split octonions we can realise the metric g̃ = 4ûβ̂ −
4v̂α̂− ĉ2+e2− ǫ2 as the standard metric through the following identification of bases:

u = k − lk, v = lj − j, c = l, α = j + lj,

β = k + lk, e = i, ǫ = li.
(5.32)

In particular we have that the generic distribution corresponds to the isotropic 2-

plane V spanned by u, v and the corresponding 3-plane distribution W is spanned by

u, v, c. Up to scale the pure spinor for this distribution is

ψ =




0
1
0
1


 . (5.33)

Now G̃2 can be realised as the subgroup of SO(3, 4) fixing a spinor. Using

the matrix form of g̃2 given in (5.5) we can determine the spinor. For this to

work we first note that the matrix of (5.5) is with respect to the basis { 1√
2
(e +

ǫ), 1√
2
v, 1√

2
u, c, 1√

2
β, 1√

2
α, 1√

2
(e− ǫ)}. From this one finds that up to scale, the unique

spinor Ψ preserved by G̃2 is

Ψ = (1
4
αβψ, ψ) (5.34)

thus ψ satisfies the twistor spinor equation. We summarise this result as follows:

Proposition 5.3.2. Let M be a 5-manifold with a generic 2-distribution V . On M

there is a naturally associated signature (2, 3) conformal structure with G̃2 conformal

holonomy, such that V becomes a distribution of maximal isotropics. Locally there

exists a pure spinor for V which satisfies the twistor spinor equation.

With this result we have come full circle in the following sense: starting with a

generic 2-distribution on a 5-manifold we found a uniquely defined (2, 3) conformal

structure with G̃2 conformal holonomy. Since G̃2 preserves a spinor, locally there

is a constant spinor for the tractor connection. This spinor projects to a solution

to the twistor spinor equation. Taking the annihilator of the twistor spinor yields

a distribution of maximal isotropics which happens to be the distribution we began

with.

Remark 5.3.1. We can also describe the 3-distribution W directly in terms of the

twistor spinor ψ. It is the space of vectors satisfying X ·ψ = kψ for some real number

ψ. Moreover one can easily verify that this space is the orthogonal complement of

the 2-distribution from this description.
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5.4 Examples

A well-known example of generic 2-plane distributions in 5 dimensions occurs in the

description of two surfaces with metrics in contact. The distribution corresponds to

motions of the surfaces without slipping or twisting. A second example is given by a

class of differential equations. In both instances we can actually determine explicitly

the conformal structure, though without further assumptions the conformal structure

is too complicated to be particularly useful.

5.4.1 Surfaces in contact

We follow [1] in describing the motions of two rigid bodies in contact. We consider

the two rigid bodies as Riemannian surfaces M, M̂ with metrics g, ĝ although the

extension to split signature metrics is straightforward. For simplicity we assume M

and M̂ are oriented. Then the configuration space Q describing all possible ways in

which M and M̂ can touch shall be defined as

Q = {ϕ : TxM → Tx̂M̂ | x ∈M, x̂ ∈ M̂, φ is an orientation preserving isometry}.
(5.35)

Note that we are ignoring any constraints corresponding to admissibility of contact

when embedded in R3. This is a 5-dimensional principal SO(2)-bundle fibred over

the product M × M̂ .

We consider the local description of Q. Let {e1, e2} and {ê1, ê2} denote oriented

orthonormal frames for M and M̂ and let {e1, e2} and {ê1, ê2} be the dual coframes.

Then Q can be given local coordinates (x, x̂, θ) where x ∈ M, x̂ ∈ M̂ and the point

ϕ(x, x̂, θ) ∈ Q is the isometry sending {e1, e2} to {ê1, ê2} rotated clockwise by an

angle θ, i.e.,

ϕ

[
e1
e2

]
=

[
cos θ sin θ
− sin θ cos θ

] [
ê1
ê2

]
. (5.36)

We shall now show that on Q there is a canonically defined connection. Let

FM and FM̂ denote the SO(2)-frame bundles for M and M̂ . Let V denote a 2-

dimensional vector space with the standard Riemannian metric. Then we can view

FM as the set of isometries u : V → TxM and similarly FM̂ is the set of isome-

tries v : V → Tx̂M̂ . Therefore given (u, v) ∈ FM × FM̂ we can define the isometry

ϕ = v◦u−1 : TxM → Tx̂M̂ . It follows that Q can be expressed as Q = FM̂×SO(2)FM
where the left action on FM is just the inverse of the usual right action. Note that
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only because SO(2) is abelian do we get that the left and right actions on FM com-

mute, and only for this reason Q is a principal bundle.

On FM and FM̂ we have the Levi-Civita connection forms and one finds that

the difference of these two forms is a connection form ω defined on Q. In fact since

SO(2) is 1-dimensional we can view ω as a differential form on Q. Let B = αe1+ βe2

and B̂ = α̂ê1 + β̂ê2 denote the Levi-Civita connection forms on M and M̂ . Then

ω = dθ + (αe1 + βe2)− (α̂ê1 + β̂ê2). (5.37)

Note that the structure functions α, β are given by

[e1, e2] = αe1 + βe2 (5.38)

and similarly for α̂, β̂. We can show that ω is uniquely defined independent of the

choice of coframes on M and M̂ .

The motions of the two surfaces are described by curves γ(t) : I → Q from an

interval I into Q. The corresponding paths x(t), x̂(t) on M and M̂ are given by

projecting γ to M and M̂ . We say that the motion γ corresponds to rolling without

slipping if

ϕ(γ(t))(∂tx(t)) = ∂tx̂(t). (5.39)

We further say that γ is a motion without twisting if a parallel vector field along

x(t) gets mapped under φ(γ) to a parallel vector field along x̂(t). This condition can

be rephrased as saying that the canonical section of γ∗Hom(TM, TM̂) defined by γ is

covariantly constant with respect to the corresponding pull-back connection induced

from the Levi-Civita connections. One readily checks that γ defines a motion without

twisting if and only if γ∗(ω) = 0, that is if and only if γ̇ is horizontal.

Thus a motion γ corresponds to rolling without slipping and without twisting if

and only if γ̇ lies in a 2-dimensional distribution V on Q defined as

V = {X ∈ TϕQ |ω(X) = 0, and ϕ(π∗(X)) = π̂∗(X)} (5.40)

where π and π̂ denote the projections from Q to M and M̂ . We can further write

down an explicit basis for V . Let E1, E2, Ê1, Ê2 denote the horizontal lifts of the

vector fields e1, e2, ê1, ê2. Thus

E1 = e1 − α∂θ, E2 = e2 − β∂θ,

Ê1 = ê1 + α̂∂θ, Ê2 = ê2 + β̂∂θ.
(5.41)
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Let us further define the following vector fields

[
Ē1

Ē2

]
=

[
cos θ sin θ
− sin θ cos θ

] [
Ê1

Ê2

]
. (5.42)

Then a basis for V is given by {X4, X5} where

X4 = E1 + Ē1

X5 = E2 + Ē2.
(5.43)

Now one can verify the following commutation relation

[X4, X5] = −(k − k̂)∂θ + αX4 + βX5 (5.44)

where k and k̂ are the Gaussian curvatures of M and M̂ , that is dB = ke1 ∧ e2,

dB̂ = k̂ê1 ∧ ê2. We further have the following commutation relations:

[X4, ∂θ] = −Ē2

[X5, ∂θ] = Ē1.
(5.45)

We conclude that the distribution V is generic if and only if the difference in Gaussian

curvatures η = k − k̂ is non-vanishing.

From this point one can proceed to explicitly determine the conformal structure

but we omit this long and tedious calculation. Note that motions of rolling without

slipping or twisting correspond to curves that are tangent to the generic distribution.

On the other hand we see that a null geodesic in the conformal structure that is

initially tangent to the 2-distribution will be tangent to the distribution at all other

points. Therefore motion of the two surfaces rolling without slipping or twisting can

be described by a class of null geodesic.

5.4.2 Differential equation example

Here we give an example of a generic distribution arising from a differential equation

studied in [76] and [77]. Consider the differential equation

z′ = F (x, y, y′, y′′, z) (5.46)

for two functions y = y(x) and z = z(x) of one variable x. The standard technique for

studying such equations is to view (5.46) as defining a submanifold inside a jet bundle.
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Therefore let J be the 5-dimensional jet bundle consisting of variables x, y, z, p =

y′, q = y′′. Then equation (5.46) is encoded in the following system of 1-forms:

ω1 = dz − F (x, y, z, p, q)dx

ω2 = dy − pdx (5.47)

ω3 = dp− qdx.

The forms ω2, ω3 are the contact forms which determine when a section γ : R → J

is the prolongation of a section R ∋ x 7→ (x, y(x), z(x)) ∈ R
3, while the form ω1

represents the original differential equation. Thus a solution to (5.46) is equivalent

to a section γ : (a, b) → J such that γ∗(ωi) = 0 for i = 1, 2, 3.

Define the vector field D = ∂x + p∂y + q∂p + F∂z. Then the annihilator V of

ω1, ω2, ω3 is the 2-dimensional distribution spanned by D, ∂q. Thus we have a 5-

dimensional manifold J with a 2 distribution V such that solutions of (5.46) are

precisely the curves γ ⊂ J tangent to V .

We consider now the question of genericity of V . First one has that [∂q, D] =

∂p + Fq∂z 6= 0 mod(V ). Thus V is never integrable and taking commutators yields a

3 distribution W = V (1). Taking commutators a second time, we find that V (2) = TJ

if and only Fqq is non-vanishing at each point of J . Thus the condition for genericity

of V is the non-vanishing of Fqq.

As in the previous example one can proceed to determine the corresponding con-

formal structure by a lengthy calculation. The conformal structure can be found in

[77]. We also note that solutions to the differential equation now correspond to null

geodesics tangent to the distribution at one point (hence at all points).
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Chapter 6

Coassociative submanifolds and
semi-flat coassociative fibrations

As mentioned in the Introduction we expect that for G2 manifolds there is an ana-

logue of the SYZ conjecture involving coassociative fibrations. Therefore we study the

deformation theory of coassociative submanifolds and the structure of coassociative

fibrations, in particular a special class we call semi-flat where there is a torus action

by isometries generating the fibres. The main result is that semi-flat coassociative

fibrations are locally equivalent to positive definite minimal 3-submanifolds in R3,3.

We then reduce to equations on a surface which relate to minimal surfaces in a quadric

in R3,3. This ties in with our earlier work on the affine Toda equations.

In Section 6.1.1 we review the structure of the moduli space of deformations

of a compact special Lagrangian submanifold in a Calabi-Yau manifold. Section

6.1.2 adapts this approach to study the moduli space of deformations of a compact

coassociative submanifold in a G2-manifold. In Section 6.1.3 we show the relation

between two moduli spaces for a G2-manifold X that is cylindrical, i.e. X = Y × S1

where Y is a Calabi-Yau manifold. Section 6.2.1 considers coassociative fibrations

of compact manifolds. We show that if the holonomy is equal to G2 then such a

fibration must have singularities. We give examples of torus fibrations which provide

a model for the possible singularities we might expect. In Section 6.2.2 we study

semi-flat coassociative fibrations. These are analogous to semi-flat special Lagrangian

fibrations. In Section 6.2.3 we prove Theorem 6.2.1 giving a local equivalence between

semi-flat G2-manifolds and minimal 3-manifolds in R3,3. In Section 6.2.4 we show

that in the cylindrical case the minimal submanifold equations reduce to the Monge-

Ampère equation. In Section 6.3.1 we show how an additional scaling symmetry of

the semi-flat G2-manifold corresponds to a minimal surface in a quadric. In Section
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6.3.2 we consider the equations for a superconformal minimal surface in the unit

quadric in R3,3. We finish with Section 6.4 in which we extend the results on semi-

flat coassociative fibrations to the case of split G2. This involves other real forms of

the Toda equations which we can relate to our earlier work.

6.1 Deformations of coassociative submanifolds

6.1.1 Deformations of special Lagrangian submanifolds

We review the case of special Lagrangian submanifolds, following Hitchin [49]. Let

X be a Calabi-Yau manifold of complex dimension n, ω the Kähler form and Ω1 the

real part of the holomorphic volume form Ω. A submanifold L ⊂ X will be called

special Lagrangian if it is a Lagrangian submanifold for ω such that Ω1 vanishes when

restricted to L. Suppose L ⊂ X is a compact special Lagrangian submanifold and let

M denote the (local) moduli space of special Lagrangian submanifolds isotopic to L.

By McLean [70], we have

Proposition 6.1.1. A normal vector field ν to a compact special Lagrangian sub-

manifold L is the vector field normal to a deformation through special Lagrangian

submanifolds if and only if the corresponding 1-form ινω|L is harmonic. There are no

obstructions to extending a first order deformation to a family of actual deformations.

In particular this implies that the moduli space M is a smooth manifold of di-

mension b1(L). For each t ∈ M let Lt denote the corresponding special Lagrangian

submanifold. Fix a basepoint t0 ∈ M and let L = Lt0 . The proposition says we have

a natural isomorphism λt : TtM → H1(Lt,R), where H1(Lt,R) is the space of har-

monic 1-forms on Lt. Since all the Lt are isotopic we have (over a simply connected

open subset of M) canonical isomorphisms [ ] : H1(Lt,R) → H1(L,R) by taking co-

homology classes. Working locally, we will not distinguish between M and a simply

connected open subset in M . Therefore we have a natural H1(L,R)-valued 1-form

[λ] on M .

Proposition 6.1.2. The 1-form [λ] on M is closed. Thus locally we may write [λ] =

du where u :M → H1(L,R) is a local diffeomorphism, unique up to a translation.

Proof. Let M = M × L and let f : M → X represent the full local family of

deformations. If π : M → M is projection onto the first factor and we let ft denote

f |π−1(t) then ft is a diffeomorphism ft : π
−1(t) → Lt ⊂ X and we can take ft0 = id.

Since L is a calibrated submanifold it is oriented and we have also assumed L is
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compact, hence given a homology class A ∈ H1(L,R) let ηA ∈ Ωn−1(L,R) represent

the Poincaré dual, that is for any σ ∈ H1(L,R),

〈σ,A〉 =
∫

L

σ ∧ ηA.

Extend ηA to a form on M = M × L in the natural way. We claim that the 1-form

〈λ,A〉 is given by p∗(f
∗ω ∧ ηA) where p∗ represents integration over the fibres of M.

Since ω is closed and integration over fibres takes closed forms to closed forms, this

will prove the proposition.

Let t1, . . . , tm be local coordinates on M . Then by the definition of f we have

for each i and each t ∈ M a vector field representing the corresponding deformation

νi : Lt → TX|Lt
given by νi(a) = f∗(t, a)∂i. Note that νi need not be normal to

Lt. Define the 1-forms θi on Lt by θi = (ινiω)|Lt
. Since ω|Lt

= 0 only the normal

component of νi contributes so the θi are harmonic by 6.1.1. Moreover since M

represents all local deformations the θi span H1(Lt,R). We also have [λ] = [θi]dt
i.

Now consider f ∗ω. Since each submanifold Lt is Lagrangian we have (f ∗ω)|π−1(t) =

0. It follows that we can write f ∗ω = dti ∧ θ̂i for some 1-forms θ̂i. Moreover we see

that θ̂i|π−1(t) = (ft)
∗θi(t). Now when we perform integration over the fibres of M we

find

p∗(f
∗ω ∧ ηA) = p∗(dt

i ∧ θ̂i ∧ ηA)

= dti
∫

Lt

θ̂i|π−1(t) ∧ ηA

= dti
∫

A

θ̂i|π−1(t)

= dti
∫

(ft)∗A

θi

= 〈λ,A〉,

where we have used the fact that ft0 = id.

So far we have not used the form Ω1. By a similar argument we have that a

tangent vector in TtM corresponds to a harmonic (n − 1)-form, in fact it is just

the Hodge dual of the above 1-forms. Therefore we have natural isomorphisms

µt = ∗tλt : TtM → Hn−1(Lt,R), where ∗t is the Hodge star using the induced

metric on Lt. Taking cohomology classes we get a Hn−1(L,R)-valued 1-form on M ,

[µ]. The same proof as before shows that [µ] = dv where v : M → Hn−1(L,R) is a
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local diffeomorphism defined up to a translation.

The moduli spaceM has a natural metric G induced by the L2-metric on harmonic

forms. Indeed if U ∈ TtM then λ(U) ∈ H1(Lt,R) is the corresponding harmonic 1-

form and we take

G(U, U) =

∫

L

λ(U) ∧ ∗λ(U). (6.1)

But we know that ∗λ(U) = µ(U), so then G(U, U) is just the Poincaré duality

pairing. Thus G is the pull-back under F = (u, v) : M → H1(L,R)⊕Hn−1(L,R) of

the natural duality induced metric. The space H1(L,R)⊕Hn−1(L,R) also has a natu-

ral symplectic form ω, again from the duality pairing. Explicitly for (u1, u2), (v1, v2) ∈
H1(L,R)⊕Hn−1(L,R),

ω((u1, u2), (v1, v2)) = 〈u1 ` v2 − v1 ` u2, [L]〉. (6.2)

Using the algebraic property ω ∧ Ω = 0, contracting twice and restricting to L, we

readily find that for U, V ∈ TtM ,

[λ(U)] ` [µ(V )]− [λ(V )] ` [µ(U)] = 0. (6.3)

Thus F embeds M as a Lagrangian submanifold of H1(L,R)⊕Hn−1(L,R).

6.1.2 Deformations of coassociative submanifolds

We consider now the moduli space M of deformations of a coassociative submanifold

L of a G2-manifold.

Let us briefly review some G2-geometry. A general reference for G2-manifolds is

[56]. By a G2-manifold we mean a Riemannian manifold with holonomy contained in

G2. Recall that G2 is the stabiliser of a generic 3-form φ on R7 called the associative

3-form. Since G2 ⊂ SO(7), we also have that G2 preserves a 4-form ψ called the

coassociative 4-form. We use the convention in [56] for the standard 3 and 4 forms

on R7. Hence if e1, . . . , e7 are a standard basis of 1-forms for R7, the standard 3 and

4-forms φ0, ψ0 are taken as

φ0 = e123 + e1∧(e45 + e67) + e2∧(e46 − e57) + e3∧(−e47 − e56) (6.4)

ψ0 = e4567 + e23∧(e45 + e67) + e31∧(e46 − e57) + e12∧(−e47 − e56) (6.5)

where we use the notation eij...k = ei ∧ ej ∧ · · · ∧ ek.
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A G2-structure on a 7-manifold thus defines a 3-form φ, a 4-form ψ and a metric

g. A well known result [37] is that for a G2-structure the Levi-Civita connection for

g has G2-holonomy if and only if φ and ψ are closed.

In [47] the notion of calibrations and calibrated submanifolds were defined. More-

over the 3 and 4-forms φ and ψ are shown to be calibrations. The corresponding

calibrated submanifolds are called associative and coassociative submanifolds respec-

tively. It is also shown in [47] that a 4-dimensional submanifold L is coassociative if

and only if φ|L = 0 and in such a case L inherits an orientation ψ|L. The deformation

theory of coassociative submanifolds was considered in [70] where it was shown that

Proposition 6.1.3. A normal vector field ν to a compact coassociative submanifold

L is the vector field normal to a deformation through coassociative submanifolds if and

only if the corresponding 2-form ινφ|L is a closed self-dual 2-form, hence harmonic.

There are no obstructions to extending a first order deformation to a family of actual

deformations.

Actually, McLean uses a convention for the associative 3-form leading to anti-

self dual harmonic forms. Once again we have a moduli space M of coassociative

submanifolds isotopic to L. The proposition shows that M is a smooth manifold of

dimension b2+(L).

We now further investigate the structure of the moduli space. From the propo-

sition we have for each t ∈ M a natural isomorphism λt : TtM → H2
+(Lt,R), where

H2
+(Lt,R) is the space of harmonic self-dual 2-forms on Lt. Since the self-dual coho-

mology on Lt depends on the metric which varies with t we do not have a natural

identification of all the H2
+(Lt,R). However we can still take the cohomology class

of λt giving an element of H2(L,R). Therefore we have a natural H2(L,R)-valued

1-form [λ] on M . Repeating the proof of 6.1.2 we find

Proposition 6.1.4. The 1-form [λ] on M is closed. Thus locally we may write

[λ] = du where u :M → H2(L,R) is an immersion unique up to a translation.

We will see that the map u is in a sense the correct analogy of the map F obtained

in the special Lagrangian case. From the previous proposition we immediately have

Proposition 6.1.5. The natural L2-metric G on M given by

G(U, U) =

∫

L

λ(U) ∧ λ(U) (6.6)
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is the pull-back under u : M → H2(L,R) of the non-degenerate inner product on

H2(L,R) given by the intersection form. Since u maps each tangent space to a positive

definite subspace, G is positive definite.

Compared with the special Lagrangian case, we have lost the Lagrangian aspect

of M as there is no canonical symplectic structure on H2(L,R).

Next we turn to global issues. Suppose we have two points s, t ∈ M and two

curves joining them. Along the curves we get isotopies between Ls and Lt and hence

corresponding isomorphisms of their cohomology. If the two curves are not homotopic

these two isomorphisms need not agree, though in either case a basis for H2(Ls,Z)

(modulo torsion) will be sent to a basis for H2(Lt,Z) preserving the intersection form.

Therefore the ambiguity is an element of SO(Q,Z) = SO(Q) ∩ SL(b2,Z) where Q

denotes the intersection form and b2 is the second Betti number of L. The unit

determinant condition follows since for any closed curve we have an isotopy through

coassociative submanifolds preserving the orientation induced by the calibrating form

ψ. In the case where L = T 4, cohomology is generated by the 1-cocycles so the am-

biguity can be thought of as an element of SL(4,Z) acting via the representation

SL(4,Z) → SO(3, 3,Z) on 2-forms.

The above ambiguity prevents us from defining [λ] as a global 1-form on M .

However we can define [λ] on the universal cover M̂ of M . Then since [λ] is closed

and M̂ simply connected we may write [λ] = dû giving a developing map û : M̂ →
H2(L,R) of the universal cover M̂ of M . Note that while [λ] is defined on M up

to ambiguity in SO(Q,Z), there is a second ambiguity in u, namely translations.

Therefore the monodromy representation has the form ρ : π1(M) → SO(Q,Z) ⋉

Rb2(L).

6.1.3 Cylindrical G2-manifolds

Following [57] we call a G2-manifold cylindrical if it has the form X̂ = X × S1 where

X is a Calabi-Yau manifold. In this case we expect a relation between the moduli

space of special Lagrangian submanifolds L ⊂ X and the corresponding coassociative

submanifold L̂ = L × S1 ⊂ X̂ . This will be shown to be the case and justifies our

claim that we have found the analogous structure on the moduli space of coassociative

submanifolds.
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Definition 6.1.1. We say that a G2-manifold (X̂, φ, ĝ) is cylindrical if there is a

Calabi-Yau manifold (X, g, ω,Ω) such that X̂ is diffeomorphic to X × T , where T is

the flat torus (R/Z, dt2), and such that the metric ĝ and 3-form φ are given by

ĝ = g + dt2 (6.7)

φ = Re(Ω) + ω ∧ dt. (6.8)

To be more explicit give C3 a dual basis (z1, z2, z3) = (e1 + ie4, e2 + ie5, e3 + ie6).

Let ω be the Kähler form, Ω = Ω1 + iΩ2 the holomorphic 3-form, namely

ω = e1 ∧ e4 + e2 ∧ e5 + e3 ∧ e6 (6.9)

Ω = (e1 + ie4) ∧ (e2 + ie5) ∧ (e3 + ie6). (6.10)

Therefore

φ = e123 − e345 + e246 − e156 + (e14 + e25 + e36) ∧ dt. (6.11)

The volume form is −e123456 ∧ dt. Therefore we have

ψ = −(e456 − e126 − e153 − e423) ∧ dt− e2536 − e1436 − e1425 (6.12)

= Im(Ω) ∧ dt− 1
2
ω2. (6.13)

It is clear that the last identity ψ = Im(Ω) ∧ dt− 1
2
ω2 will be true for any cylindrical

G2-manifold.

Let L ⊂ X be a compact special Lagrangian submanifold, then L̂ = L × T ⊂ X̂

is a coassociative submanifold. We wish to compare the deformation theory of these

two submanifolds. In fact they are easily seen to be the same as follows from the

following straightforward proposition

Proposition 6.1.6. Let (L, g) be a compact oriented Riemannian 3-manifold and let

(L̂, ĝ) be the Riemannian 4-manifold with L̂ = L × S1, ĝ = g + dt2 and orientation

dVL̂ = dVL ∧ dt. Let H1(L) denote harmonic 1-forms on L and H2
+(L̂) the harmonic

self-dual 2-forms on L̂. Then the map e : H1(L) → H2
+(L̂) defined by

e(α) = 1√
2
(∗gα + α ∧ dt) (6.14)

is an isomorphism and an isometry of L2 metrics.

Now suppose we have a deformation of L in X through special Lagrangian sub-

manifolds. Let ν be the corresponding normal vector field on L. We can also consider

111



ν to be a normal vector field to L̂. Then

ινφ = ινΩ1 + ινω ∧ dt
= ∗gινω + ινω ∧ dt
=

√
2e(ινω).

We see now that not only do tangent vectors in the moduli space coincide, but the

corresponding metrics coincide, up to a constant factor. Therefore, at least locally,

the moduli space of deformations of L in X and L̂ in X̂ are isometric. More explicitly

let M be the (local) moduli space. Let F = (u, v) :M → H1(L,R)⊕H2(L,R) be the

natural immersion obtained in the special Lagrangian case. Let U : M → H2(L̂,R)

be the natural immersion in the coassociative case. The map e of equation (6.14) can

be replaced by a more general isometry e : H1(L,R) ⊕ H2(L,R) → H2(L̂,R) given

by

e(α, β) = 1√
2
(β + α ` [dt]). (6.15)

Then we may take U =
√
2e◦F (recall F and U are only defined up to a translation).

6.2 Coassociative fibrations

We now turn our attention to the case of coassociative fibrations. In particular we

will consider a relatively simple class of fibrations we call semi-flat (perhaps more

correctly 4/7 flat) which extend the similar notion of a semi-flat special Lagrangian

fibration. To start though, we look at some global aspects of coassociative fibrations

of compact manifolds in Section 6.2.1.

6.2.1 Coassociative fibrations of compact manifolds

We will be considering fibrations π : X → B of G2-manifolds such that the fibres are

coassociative submanifolds. Such fibrations may have important application to string

theory and M-theory [44].

Given the general difficulty of constructing G2-manifolds it should be no surprise

that finding coassociative fibrations with G2-holonomy is a difficult task. It follows

from the work of Bryant [11] that many examples of coassociative fibrations exist,

but these need not be compact or complete. An example of a complete coassociative

fibration S3 × R4 → S3 is found in [12].
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We can also consider fibrations which degenerate, that is π need not be a locally

trivial fibre bundle. In fact we will show that if X is compact and has finite funda-

mental group then any fibration coassociative or not must degenerate. Even allowing

degeneracy it is still difficult to find coassociative fibrations. The author is aware of

only one class of examples of compact coassociative fibrations of G2-holonomy [61].

Proposition 6.2.1. Let X be a compact G2-manifold with finite fundamental group.

Then X admits no locally trivial fibre bundles X → B onto a 3-dimensional base.

Proof. Wemay assumeX is connected. Further it suffices to replaceX by its universal

cover which is also compact, so we assume X is simply connected. Let π : X → B be

a locally trivial fibre bundle where B is a 3-manifold and let F be one of the fibres. If

F is not connected we may replace B by its universal cover B̃ to get another fibration

π1 : X → B̃ with fibre equal to a connected component of F . So we may as well

assume B is simply connected and F is connected.

Now since B is a compact simply connected 3-manifold it is oriented andH1(B,Z) =

H2(B,Z) = 0. Then by the Hurewicz theorem π2(B) = 0 also (of course the Poincaré

conjecture implies the base is diffeomorphic to the 3-sphere but we don’t need this

fact). The long exact sequence of homotopy groups implies that π1(F ) = 0. Further

F must be oriented since X and B are.

We will make use of the Leray-Serre spectral sequence (with coefficients in R)

in order to gain information on the cohomology of X . Since B is simply connected

we have Ep,q
2 = Hp(B,R)⊗Hq(F,R). In order to calculate H2(X,R) and H3(X,R)

there is only one relevant non-trivial differential to consider d3 : E0,2
3 → E3,0

3 , with

E0,2
3 = H2(F,R) and E3,0

3 = H3(B,R). We then have H2(X,R) = ker(d3) and

H3(X,R) = coker(d3). However the differential d3 must vanish for otherwise we have

H3(X,R) = 0 which is impossible on a compact G2-manifold. Thus d3 = 0 and it

follows that the following maps are isomorphisms

i∗ : H2(X,R) → H2(F,R)

π∗ : H3(B,R) → H3(X,R)
(6.16)

where i∗ is induced from the inclusion of some fibre i : F → X and π∗ is induced by

the projection π : X → B.

Let φ be the G2 3-form on X . Then the cohomology class of φ has the form

[φ] = cπ∗ [dvolB] where dvolB is a volume form on B such that
∫
B
dvolB = 1 and
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c is some non-vanishing constant. We claim that π∗(dvolB) is Poincaré dual to the

fibre F . This is a straightforward consequence of fibre integration. Therefore if µ is

a closed 4-form on X we have
∫

F

i∗µ =

∫

X

µ ∧ π∗(dvolB) = c−1

∫

X

µ ∧ φ. (6.17)

Let us recall two cohomological properties of compact G2 manifolds [56] where we

continue to assume that H1(X,R) = 0. First there is a symmetric bilinear form 〈 , 〉
on H2(X,R) given by

〈η, ξ〉 =
∫

X

η ∧ ξ ∧ φ. (6.18)

This form is negative definite. Secondly if p1(X) ∈ H4(X,R) is the first Pontryagin

class of X then ∫

X

p1(X) ∧ φ < 0. (6.19)

Combining (6.18) with (6.17) and the fact that i∗ : H2(X,R) → H2(F,R) is an

isomorphism we find that the intersection form on F is negative definite. Hence

Donaldson’s theorem implies the intersection form of F is diagonalisable, i.e. of the

form diag(−1,−1, . . . ,−1). Now F is a spin manifold because X is spin and the

normal bundle N of F in X is trivial so that w2(TF ) = w2(TF ⊕N) = i∗w2(TX) = 0

where w2 denotes the second Stiefel-Whitney class. But now from Wu’s formula the

intersection form of F must be even. Therefore the intersection form must be trivial

and H2(F,R) = 0.

Now we also have that p1(F ) = p1(TF ⊕N) = i∗p1(X). Therefore

∫

X

p1(X) ∧ φ = c

∫

F

p1(F ) = 0

where the last equality follows from the Hirzebruch signature theorem. But this

contradicts (6.19), hence such fibre bundles π : X → B can not exist.

Remark 6.2.1. The above proposition assumed that X is a G2-manifold with finite

fundamental group. For a compact G2-manifold X this is equivalent to the holonomy

of X being equal to the whole of G2 [56].

Next we consider the question of what smooth fibres a compact coassociative

fibration can have. Clearly if F is such a fibre we must have b2+(F ) ≥ 3 and more-

over ∧2
+T

∗F has a trivialisation by harmonic forms (in particular F has an SU(2)-

structure). From [11] any such 4-manifold is a fibre of a coassociative fibration, though

it need not be compact or complete. We also have:
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Proposition 6.2.2. Let π : X → B be a coassociative fibration with compact fibres.

Then the base B can be given a metric such that π is a Riemannian submersion

(around non-singular fibres) if and only if the fibres are Hyperkähler. Moreover in

this case the base identifies with the moduli space of deformations of a fibre and the

base metric gB is related to the moduli space L2 metric gL2 by

gB =
1

2vol(F)
gL2 . (6.20)

Proof. Let b ∈ B and F = π−1(b). Choose a basis vi for TbB and let ṽi be the

horizontal lifts. Define corresponding harmonic 2-forms ωi by ωi = ιṽiφ|F . Then the

ωi are a frame for ∧2
+T

∗F . Now if g is the metric on X then

g(A,B)dvolX =
1

6
φ ∧ ιAφ ∧ ιBφ. (6.21)

From this it follows that

ωi ∧ ωj = 2g(ṽi, ṽj)dvolF . (6.22)

Now suppose B has a metric such that π is a Riemannian submersion. Choose the

vi to be an orthonormal basis. Then the ωi are Hyperkähler forms on F . Conversely

suppose F is a compact Hyperkähler 4-manifold. Then since b2+(F ) = 3 we have that

the space of self-dual harmonic 2-forms is 3-dimensional, spanned by the Hyperkähler

forms. Thus the ωi are constant linear combinations of the Hyperkähler forms, hence

g(ṽi, ṽj) is constant along the fibres. So B can be given a metric gB making π a

Riemannian submersion. In this case since b2+(F ) = 3 we see that the base exhausts all

deformations of a fibre through coassociative submanifolds so that the base identifies

with the moduli space of deformations. Moreover if we integrate (6.22) over F we get

(6.20).

Note that a smooth Hyperkähler 4-manifold is either a torus or a K3 surface.

Therefore these are likely candidates for the fibres of a compact coassociative fibra-

tion.

We now move on to the question of what sort of singularities can occur for a

compact coassociative fibration f : X → B and what does the discriminant locus

∆ = {b ∈ B | ∃ x ∈ f−1(b), rank(dfx) < 3} ⊂ B look like?

In the case of special Lagrangian fibrations Y → B that are sufficiently well

behaved the discriminant locus has codimension 2 [4]. Under assumptions that the

singularities are well behaved Baier [4] shows that if ∆ is smooth then Y has vanishing

Euler characteristic, so generally we expect ∆ not to be smooth.
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Returning to the case of coassociative fibrations X → B we might likewise ex-

pect under reasonable assumptions on the singularities that the discriminant locus

∆ ⊂ B has codimension 2. Interestingly the constraint on smoothness in the special

Lagrangian case no longer seems to be an issue since X is odd dimensional, hence

always has vanishing Euler characteristic. Moreover Kovalev has constructed exam-

ples of compact coassociative K3 fibrations with discriminant locus a smooth link [61].

We will not investigate the issue of singularities in any depth and instead we will

simply provide a model for producing examples of compact coassociative fibrations

on manifolds with G2-structures with torsion, that is the 3-form will not be closed.

Suppose we have a compact Hyperkähler 8-manifold M with holomorphic La-

grangian fibration π : M → CP
2 (with singularities). That is if ωI , ωJ , ωK are the

Hyperkähler forms then the non-singular fibres of π are complex submanifolds with

respect to ωI and are Lagrangian with respect to the holomorphic symplectic form

Ω = ωJ + iωK . Note that the non-singular fibres are necessarily tori. We can give M

the structure of a Spin(7)-manifold where the 4-form is

Φ =
1

2
ω2
I +

1

2
ω2
J −

1

2
ω2
K . (6.23)

This makes the fibres of π into Cayley 4-folds, indeed since we can write Φ = ω2
I/2+

Ω ∧ Ω/2 it follows that Φ|kerπ∗ = ω2
I/2 which is the volume form on the fibres since

the fibres are complex submanifolds. We have therefore produced an example of

a compact Cayley 4-fold fibration (albeit with holonomy in Sp(2)). Note that the

discriminant locus ∆ ⊂ CP
2 is an algebraic curve CP

2.

To get a coassociative fibration let us take a smooth embedded 3-sphere S3 ⊂ CP
2

that meets ∆ transversally and avoids any singular points of ∆. Therefore if ∆ has

real dimension 2 then ∆∩S3 will be a smooth link in S3. Let X = π−1(S). We claim

that X has an almost G2 structure such that π : X → S3 is a coassociative fibration

with discriminant locus the link ∆ ∩ S3. To see this let v be the unit normal to TX

and let v∗ = g(v, ) where g is the metric on M . Then on TM |X we may write

Φ = v∗ ∧ φ+ ψ (6.24)

where ιvφ = ιvψ = 0. Then φ defines an associative 3-form on X which is generally

not closed and ψ is the corresponding 4-form. Note on the other hand that ψ is closed

since Φ|X = ψ. This also shows that the smooth fibres of π are coassociative subman-

ifolds. To make this example more explicit let f : S → CP
1 be an elliptic fibration

of a K3 surface over CP
1. Then we will take our Hyperkähler 8-manifold M to be
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the Hilbert scheme Hilb2S of pairs of points on S. This can be concretely described

as follows: the product S × S has a natural Z2-action given by exchanging points.

The Hilbert scheme Hilb2S is obtained from the quotient (S × S)/Z2 by blowing up

the diagonal. Now if we combine the map M = Hilb2S → (S × S)/Z2 with the map

f : S → CP
1 we see that we can map each point of M to a pair of unordered points

in CP
1 which we can think of as the zeros of a quadratic polynomial, hence we get

an induced map π :M → CP
2. This is in fact an example of holomorphic symplectic

fibration.

To complete our example we should discuss what sort of singularities can be

obtained and what the discriminant locus looks like. Matsushita [69] determines

the types of singularities that can occur (except over a finite set of points) in a

holomorphic symplectic fibration of the type we are considering. In fact most of the

singularities listed in [69] are realised by taking the Hilbert scheme of two points on

a K3 elliptic fibration in the previously described way. From this one should be able

to the determine the monodromy representation on the fibre homology. It is also

known the type of links that can occur as the result of placing a 3-sphere around a

singularity of a curve in CP
2 [6]. For example a singularity of the form zp1 + zq2 = 0

(in affine coordinates) where p and q are coprime leads to a (p, q)-torus knot.

6.2.2 Semi-flat coassociative fibrations

Definition 6.2.1. Let X be a G2-manifold. We say that X is semi-flat if there is a

T 4-action on X preserving the 3-form and such that the orbits are coassociative tori.

In this section we will denote the metric associated to a G2-manifold X by g. The

cross product × : ∧2TX → TX is then defined by the relation

g(A× B,C) = φ(A,B,C) (6.25)

for all tangent vectors A,B,C in a given tangent space.

Let X be a semi-flat G2-manifold. We have a distribution V on X tangent to

the T 4-action which we call the vertical distribution. We also have the corresponding

distribution of normals V ⊥ which we call the horizontal distribution. We will show

that the horizontal distribution is integrable.

Lemma 6.2.2.1. Let K be a vector field preserving the 3-form on a G2-manifold.

Then K preserves the metric and 4-form.
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Proof. We note that for any two tangent vectors A,B

g(A,B)dvol =
1

6
φ ∧ ιAφ ∧ ιBφ. (6.26)

This is an isomorphism TX → T ∗X ⊗ ∧7T ∗X . Taking the determinant gives an

isomorphism ∧7TX → (∧7T ∗X)8 or a section of (∧7T ∗X)9. This is essentially dvol9.

Since K preserves φ it now follows that K preserves dvol and hence by (6.26) the

metric. Finally ψ = ∗φ must then be preserved as well.

Lemma 6.2.2.2. Let X be a G2-manifold. Suppose V is a distribution of coas-

sociative subspaces and V ⊥ the corresponding orthogonal distribution of associative

subspaces. Then locally there exists orthonormal frames {ej}, 1 ≤ j ≤ 4 for V and

{ai}, 1 ≤ i ≤ 3 for V ⊥ such that the 3-form φ and 4-form ψ have the following forms

with respect to the corresponding coframe:

φ = a123 + a1∧(e12 + e34) + a2∧(e13 − e24) + a3∧(−e14 − e23) (6.27)

ψ = e1234 + a23∧(e12 + e34) + a31∧(e13 − e24) + a12∧(−e14 − e23). (6.28)

Proof. Follows since G2 is transitive on the set of associative (or coassociative) sub-

spaces [47].

Proposition 6.2.3. Let X be a semi-flat G2-manifold. The horizontal distribution

is integrable.

Proof. We denote the vertical distribution spanned by the T 4-action by V and the

corresponding horizontal distribution by V ⊥. Let ej , j = 1, 2, 3, 4 denote a basis for

the infinitesimal action. The ej define a commuting frame for V . Moreover since the

ej span a coassociative distribution, the products ej × ek are horizontal vector fields

that span V ⊥. For any vector fields A,B we have

Lej(A× B) = Lej(A)× B + A× Lej(B). (6.29)

Indeed for any vector field C we have the relation g(A×B,C) = φ(A,B,C). Taking

the Lie derivative with respect to ej we obtain (6.29). If we take A = ek, B = el we

now obtain [ej , ek × el] = 0. We can therefore take any three linearly independent

products ek × el to obtain a frame for V ⊥. Denote such a frame a1, a2, a3. Therefore

we have [ej , ai] = [ej , ek] = 0. Let ej and ai denote the corresponding coframe. We

then have Lej(ek) = Lej(ai) = 0.
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We now introduce a bi-grading on differential forms as follows. We identify V ∗

and (V ⊥)∗ as subbundles of T ∗X . Then a differential form of type (p, q) is a section

of ∧p(V ⊥)∗ ⊗∧qV ∗. It follows directly that Lie differentiating with respect to ej pre-

serves the bi-grading. Let α be a (p, q)-form invariant under the T 4-action. We claim

that dα is a sum of homogeneous components, each of type (a, b) with b ≤ q. Indeed

we have dej(ek, el) = −ej([ek, el]) = 0 and dej(ek, ai) = −ej([ek, ai]) = 0 so dej is of

type (2, 0). Similarly dai is of type (2, 0). The general result now follows.

It follows from (6.2.2.2) that φ is a sum of (3, 0) and (1, 2) terms and ψ is a sum

of (2, 2) and (0, 4) terms. Now since φ and ψ are preserved by the ej , their grading

homogeneous components must also be preserved. In particular if we decompose ψ as

ψ = ψ(0,4)+ψ(2,2), we find that d(ψ(0,4)) is of type (1, 4)+(2, 3) while d(ψ(2,2)) is of type

(3, 2). Therefore since dψ = 0 the (2, 3) component of d(ψ(0,4)) must vanish. Now

since the vertical V consists of coassociative subspaces ψ(0,4) = fe1234 for a nowhere

vanishing function f . We find

[d(ψ(0,4))](2,3) = fde1 ∧ e234 − fe1 ∧ de2 ∧ e34 + fe12 ∧ de3 ∧ e4 − fe123 ∧ de4. (6.30)

Setting this to zero implies that de1 = · · · = de4 = 0. It follows that the horizontal

distribution is integrable.

From the proof of this proposition we see that on a semi-flat G2-manifold we can

find invariant local frames {ej} for the vertical V and {ai} for the horizontal V ⊥.

Invariance means we have commutation relations [ej , ek] = [ej , ai] = 0. Since φ is

also invariant we can make invariant frame changes such that φ and ψ have the forms

(6.27) and (6.28). This frame is necessarily orthonormal.

Let w ∈ U ⊂ R3 be local coordinates for a leaf of the horizontal distribution. We

can take U sufficiently small that we have an embedded submanifold i : U → X .

Define a map f : U × T 4 → X by f(w, x) = x · i(w) where x acts on i(w) by the

T 4-action. It is immediate that f is an immersion sending T (T 4) to the vertical dis-

tribution and TU to the horizontal. Moreover by sufficiently restricting U we may

assume f is injective. Let π : X → U denote the locally defined projection. The

fibres of π are coassociative submanifolds. Therefore we can identify U as the local

moduli space of coassociative deformations of fibres as in Proposition 6.2.2.

The metric g has the form g = gV + gV ⊥ where gV and gV ⊥ are metrics on the

vertical and horizontal respectively. Now since g is T 4-invariant we have that gV is a
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flat metric on each orbit and gV ⊥ is the pull-back under π of a metric gU on the base

U which is related to the L2 moduli space metric by (6.20).

We see that a semi-flat G2 manifold is a principal T 4-bundle π : X → M over a

base M that can be identified with the moduli space of deformations of the fibres.

6.2.3 Construction of semi-flat G2-manifolds

We find an equivalent local characterisation of semi-flat G2-manifolds in terms of

minimal submanifolds.

Suppose for the moment that we have a semi-flat G2-manifold. As usual let us

take an invariant local frame a1, a2, a3, e1, . . . , e4 such that φ has the form (6.27). Let

w = (w1, w2, w3) denote local horizontal coordinates and let xi ∈ R/Z, 1 ≤ i ≤ 4 be

standard coordinates for T 4. So the dwi are (1, 0)-forms and the dxa are (0, 1)-forms.

Hence we see that we can uniquely write φ as

φ = dvolM + dwi ∧ θi (6.31)

where the θi are (0, 2)-forms. It is also clear that θi|Tw is a harmonic self-dual 2-form

on Tw representing the deformation of Tw in the ∂/∂wi direction.

Thinking of M as the moduli space of coassociative deformations we recall that

there is a locally defined function u : M → H2(T,R) such that du is the H2(T,R)-

valued 1-form w 7→ [θi|Tw ]dwi. We can give H2(T,R) coordinates aij such that aij

corresponds to the cohomology class [aijdx
ij ]. Therefore we have 6 functions uab on

M such that u(w) = [uab(w)dx
ab]. We then have

du = d[uabdx
ab]

=

[
∂uab
∂wi

dxab
]
dwi

= [θi|Tw ]dwi.

Hence [θi|Tw ] = [∂uab
∂wi (w)dx

ab], in fact since the θi have no dwj terms and are constant

with respect to fibre coordinates (being harmonic) we have

θi =
∂uab
∂wi

dxab. (6.32)
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By (6.20) the base metric gM and L2 moduli space metric on M are related by

gL2 = 2vol(T 4)gM . We can explicitly integrate the L2 metric. If gM = gijdw
idwj then

gij =
1

2vol(T4)

∫

T 4

u∗

(
∂

∂wi

)
∧ u∗

(
∂

∂wj

)

=
1

2vol(T4)

∫

T 4

∂uab
∂wi

dxab ∧ ∂ucd
∂wj

dxcd

=
1

2vol(T4)
ǫabcd

∂uab
∂wi

∂ucd
∂wj

where ǫabcd is antisymmetric and ǫ1234 = 1. So we have

2gM(A,B)vol(T4)dx1234 = u∗(A) ∧ u∗(B), (6.33)

so gM is essentially the pull-back of the wedge product.

We are now in a position to reverse the construction. Suppose M is an oriented

3-manifold with a function u : M → H2(T,R), u = [uabdx
ab]. We assume that u∗

sends the tangent spaces of M into maximal positive definite subspaces of H2(T,R).

Choose a positive constant τ . The significance of τ is that it represents the volume of

the coassociative fibres. We may pull back the intersection form to define a positive

definite metric h on M given by

2h(A,B)τdx1234 = u∗(A) ∧ u∗(B). (6.34)

Let dvolh denote the volume form for this metric. We may then define self-dual

2-forms θi by equation (6.32), hence we can define a 3-form φ on M × T 4 by

φ = dvolh + dwi ∧ θi. (6.35)

We can easily verify that φ is closed by noting that from (6.32) we have (∂/∂wj)θi =

(∂/∂wi)θj .

It is clear that for any given u and τ , φ has the correct algebraic form for an

associative 3-form. By (6.26), φ determines a metric g on X and a corresponding

volume form dvolX = dvolM ∧ dvolT . It follows from (6.35) that the induced metric

g agrees with h on the horizontal distribution so that dvolM = dvolh. Moreover one

can further show dvolT = τdx1234.

Now consider ψ = ∗φ. Since the θi are self-dual 2-forms on each fibre we find

ψ = dvolT + ∗3dwi ∧ θi (6.36)
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where ∗3 denotes the Hodge star with respect to g restricted to the base. We can

see that a necessary condition for ψ to be closed is that c is constant. Indeed if ψ is

closed then since it is a calibrating form and the fibres of X are isotopic calibrated

submanifolds they must have equal volume. Therefore assume c is constant. We

calculate

dψ = 0 + d(∗3dwi) ∧ θi + ∗3dwi ∧ dθi

= ∆widvolM ∧ θi + gijιjdvolM ∧ dwk ∧ ∂2uab
∂wk∂wi

dxab

= ∆widvolM ∧ ∂uab
∂wi

dxab + gijdvolM ∧ ∂2uab
∂wj∂wi

dxab

=

(
∆wi

∂uab
∂wi

+ gij
∂2uab
∂wj∂wi

)
dvolM ∧ dxab.

Hence ψ is closed if and only if for each a, b we have

gij
∂2uab
∂wj∂wi

+∆wi
∂uab
∂wi

= 0. (6.37)

Note that the Laplacian on functions on the base ∆ = ∗−1d ∗ d = −δd is given by

∆f = gij
(

∂2f

∂wi∂wj
− Γkij

∂f

∂wk

)
. (6.38)

Where Γkij are the Christoffel symbols

Γkij =
1

2
gkm(∂igjm + ∂jgim − ∂mgij). (6.39)

In particular, applied to a coordinate function we have ∆wk = −gijΓkij. Substituting
this into equation (6.37) we get

∆uab = 0. (6.40)

This says that the map u : M → H2(T,R) is harmonic where M is given the metric

g. However the pull-back metric on M induced by u differs from g only by a constant

so equivalently u is harmonic with respect to the induced metric. Another way of

saying this is that the map u is a minimal immersion or that M is locally embedded

as a minimal 3-submanifold [33].

Theorem 6.2.1. Let M be an oriented 3-manifold and u :M → ∧2R4 a map with the

property that u maps the tangent spaces of M into maximal positive definite subspaces

of ∧2R4 and let τ be a positive constant. Let h be the pull-back metric defined in

equation (6.34) with volume dvolh. Let X =M × (R/Z)4 and define φ ∈ Ω3(X,R) by

φ = dvolh + du, (6.41)
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where u is considered as a 2-form on X. Then (X, φ) is a semi-flat G2-manifold if

and only if u is a minimal immersion. Moreover every semi-flat G2-manifold locally

has this form.

We can improve on Theorem 6.2.1 by determining the global properties of semi-

flat G2-manifolds. For completeness we may define a locally semi-flat G2-manifold as

a locally trivial T 4-fibration π : X → M with semi-flat local trivialisations. Now M

identifies as the moduli space of deformations of the fibres, so we have a developing

map ũ : M̃ → ∧2R4 on the universal cover M̃ of M with monodromy representation

ρ : π1(M) → SL(4,Z) ⋉ ∧2R4. Moreover ũ is a minimal immersion. Therefore we

have a semi-flat G2-manifold X̃ = M̃ × (R/Z)4. The 3-form φ̃ is

φ̃ = dvolh + dũ.

Clearly φ̃ can be identified with the lift of the 3-form φ on X .

Considering transition functions for X as a bundle over M we have X = M̃ ×λ

(R/Z)4 where λ is a representation λ : π1(M) → SL(4,Z) ⋉ (R/Z)4. Now for φ̃ to

descend to φ on X we must have that the SL(4,Z) parts of ρ and λ agree.

Conversely given an oriented 3-manifold M we see that locally semi-flat G2-

manifolds with base M correspond to data (τ, ũ, ρ, λ) where

• τ is a positive constant,

• ρ is a representation ρ : π1(M) → SL(4,Z)⋉ ∧2R4,

• λ is a representation λ : π1(M) → SL(4,Z)⋉ (R/Z)4,

• ũ is a map ũ : M̃ → ∧2R4 sending the tangent spaces of M̃ to positive definite

subspaces,

with the properties that ũ is a minimal immersion and the SL(4,Z) parts of ρ and λ

agree. The semi-flat case occurs when the SL(4,Z) parts of ρ and λ are trivial.

6.2.4 Cylindrical semi-flat G2-manifolds

We will show that the semi-flat G2 equations reduce to the Monge-Ampère equation

if we assume that the resulting G2-manifold is cylindrical. This coincides with the
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result of Hitchin [49] in which special Lagrangian fibrations with flat fibres are pro-

duced from the Monge-Ampère equation.

Let us write the 4-torus T 4 as a product T 4 = T 3 × T 1. We have an isometry

e : H1(T 3,R)⊕H2(T 3,R) → H2(T 4,R) as follows:

e(α, β) = (α ` [dt] + β)/
√
2 (6.42)

where t ∈ R/Z is the standard coordinate for T . We can express a map ũ :

M → H2(T 4,R) as the composition ũ =
√
2e(u, v) where u : M → H1(T 3,R),

v :M → H2(T 3,R).

From the map ũ : M → H2(T 4,R) we can construct a semi-flat G2-manifold

π : X →M as before. Now we assume there is a T 1 subgroup of the T 4-action on X

such that the orbits have constant length. Therefore we can write X = Y × T and

the G2-equations then imply that X is a cylindrical G2-manifold constructed from a

Calabi-Yau manifold Y . Note also that Y is a semi-flat special Lagrangian fibration

over the same base.

As in Section 6.1.1 we have a symplectic structure (6.2) on H1(T 3,R)⊕H2(T 3,R)

arising from duality such that (u, v) locally embeds M as a Lagrangian submani-

fold. The maps u, v are local diffeomorphisms hence writing u = [uidx
i] and v =

[ 1
2!
ǫijkv

idxjk] we may take either the ui or v
j as coordinates on M . Moreover since M

is Lagrangian it is locally the graph of a gradient, that is there exist functions φ, ψ

on M such that vi = ∂φ
∂ui

, ui =
∂ψ
∂vi

. A little arithmetic shows that after applying an

element of SL(4,Z) we may assume t = x4. Now we write ũ = [ũijdx
ij] then we find

ũi4 = ui, (6.43)

ũij = 1
2
ǫijkv

k, i, j, k ≤ 3. (6.44)

If we check the formula for the metric induced by ũ we find that up to a multiple it

is given by

g =
∂2φ

∂ui∂uj
duiduj =

∂2ψ

∂vi∂vj
dvidvj. (6.45)

Now starting with the relation vj = ∂φ
∂uj

we find dvj = ∂2φ
∂uj∂uk

duk. Substituting this

into the expression for g we find that hij = ∂2ψ
∂vi∂vj

is the inverse of gij =
∂2φ

∂ui∂uj
, that is

gijh
jk = δki . Let us introduce some notation: ∂i =

∂
∂ui

, ∂j = ∂
∂vj

, φij...k = ∂i∂j . . . ∂kφ,
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ψij...k = ∂i∂j . . . ∂kψ. We also note that ∂j = ψjk∂k. Now we can calculate the

Christoffel symbols in the ui coordinates:

Γkij =
1

2
ψkmφmij . (6.46)

Now we calculate ∆ũab. First suppose b = 4 so that ũab = ua. Then we find

∆ua = ψij
(
0− 1

2
ψkmφmijδ

a
k

)

= −1

2
ψijψamφmij . (6.47)

If we take the relation φijψ
jk = δki and differentiate we find

φmijψ
jk = −φijφmrψrjk. (6.48)

Substituting into equation (6.47) we find that

∆ua =
1

2
φijψ

aij . (6.49)

Similarly we find

∆va =
1

2
ψijφaij . (6.50)

Therefore the G2-equations in this case reduce to

φijψ
aij = 0,

ψijφaij = 0.

Now let us recall Jacobi’s formula in the case where the matrix valued function φ

is invertible:

ddet(φ) = det(φ)tr(φ−1dφ). (6.51)

Therefore the Monge-Ampère equation ddet(φ) = 0 is equivalent to tr(φ−1dφ) = 0.

But

tr(φ−1dφ) = tr(ψdφ)

= ψijφaijdua.

Similarly we can interchange the roles of φ and ψ. Hence the G2 equations in this

case are equivalent to the Monge-Ampère equation.

Remark 6.2.2. We note that in [49] the Monge-Ampère equation is also shown to

be equivalent to M being calibrated with respect a calibrating form that is a linear

combination of the volume forms of H1(T 3,R) and H2(T 3,R). This agrees with the

fact that M is minimally immersed.
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6.3 Relation to minimal surfaces

We impose an additional degree of symmetry on a semi-flat G2-manifold. The addi-

tional symmetry is shown to correspond to the base locally having the structure of a

minimal cone in R3,3 which in turn is equivalent to a minimal surface in the quadric

of unit vectors.

6.3.1 Reduction to surface equations

Let π : X → M be a semi-flat G2-manifold constructed from a minimal immersion

u :M → R3,3. We suppose there is a vector field U on X such that U commutes with

the T 4-action. It is not possible for such a vector field to preserve the 3-form φ up to

scale, that is LUφ = λφ for some non-vanishing function λ, for in this case the fibres

of the T 4-fibration would not have constant volume. Therefore we consider a slightly

different symmetry. We suppose that

LUφ = λφ+ 2λdvolM (6.52)

as such a symmetry will preserve the volume of the fibres.

Let U = V + W = V i ∂
∂wi + W a ∂

∂xa
. For U to commute with the T 4-action we

must have the W a and V i are independent of x. We will show that W is a vector

field generated by the T 4-action, hence we need only consider V .

Recall that locally a semi-flat G2-manifold X = M × T 4 with coordinates (w, x)

has the 3-form

φ = dvolM + duab ∧ dxab = dvolM + dwi ∧ θi (6.53)

where u : M → H2(T 4,R) is a minimal immersion and θi =
∂uab
∂wi dx

ab. For simplicity

we will take vol(T 4) = 1.

Since φ is closed, the condition on U is that LUφ = d(iUφ) = λφ+ 2λdvolM . We

find that

iUφ = iV dvolM + V iθi + dwi ∧ iW θi

and that

d(iUφ) = div(V )dvolM + d(V iθi)− dwi ∧ d(W a∂uab
∂wi

dxb).
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Equating this to (6.52) we find

div(V ) = 3λ, (6.54)

d(V iθi) = λdwi ∧ θi, (6.55)

∂W a

∂wi
∂uab
∂wj

=
∂W a

∂wj
∂uab
∂wi

. (6.56)

We can show that W must be independent of the base variables. This follows from

the algebraic fact that if θ1, θ2, θ3 are a basis of self-dual 2-forms and A1, A2, A3 are

vectors such that iAi
θj = iAj

θi then Ai = 0. Hence W is a vector field coming from

the T 4-action. Therefore we ignore W .

Now the equations for V are 3λ = div(V ) and d(V iθi) = λdwi ∧ θi = λdu. Taking

exterior derivatives we find 0 = dλ∧du hence ∂λ
∂wi

∂u
∂wj = ∂λ

∂wj
∂u
∂wi , that is

∂λ
∂wi θj =

∂λ
∂wj θi.

But {θi} are linearly independent so we have dλ = 0. Therefore the second equation

for V becomes d(V iθi − λu) = 0 or V i ∂u
∂wi = λu + c where c is constant. There are

now two cases to consider; when λ = 0 and λ 6= 0.

The λ = 0 case can readily be shown to correspond to minimal surfaces in R2,3.

Such minimal surfaces correspond locally to holomorphic maps τ : Σ → Q from a

Riemann surface into an open subset of a quadric given by Q = {v ∈ C⊗R2,3 | 〈v, v〉 =
0, 〈v, v〉 > 0}. There is a local Weierstrass representation for the corresponding

minimal immersion φ [55]:

φ(z) = φ(0) + Re

∫ z

0

τ(ζ)dζ.

Now assume λ 6= 0. Then we can redefine u to absorb the constant c so we have

u∗(V ) = V i ∂u
∂wi = λu. Now we can rescale V such that u∗(V ) = u. If the vec-

tor field V vanishes at a point w ∈ M then u(w) = u∗(Vw) = 0. Now the map

u :M → H2(T 4,R) is an immersion so V vanishes at isolated points. Away from the

zeros of V we may find local coordinates (x, y, t) ∈ Σ × I such that V = ∂
∂t
. Hence

we have ∂u
∂t
(x, y, t) = u(x, y, t). The solution is of the form u(x, y, t) = u(x, y)et. The

induced metric g on M has the property that g(x, y, t) = e2tg(x, y), hence ∂
∂t

satisfies

div( ∂
∂t
) = 3 as required.

We will attempt to find local coordinates that diagonalise the metric on M . By

changing the local slice Σ → M along the t direction we have freedom u(x, y) 7→
u(x, y)eρ(x,y) where ρ is an arbitrary smooth function on Σ. We calculate (on t = 0)

2g

(
∂

∂t
,
∂

∂x

)
dx1234 = e2ρ(u ∧ ∂u

∂x
+ u ∧ u∂ρ

∂x
)
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and similarly for g
(
∂
∂t
, ∂
∂y

)
. Let us define functions r, s by

ru ∧ u = −u ∧ ∂u

∂x
(6.57)

su ∧ u = −u ∧ ∂u

∂y
. (6.58)

Note that this is possible because 2g( ∂
∂t
, ∂
∂t
)dx1234 = u ∧ u 6= 0. Then we can locally

find a function ρ(x, y) such that g( ∂
∂t
, ∂
∂x
) = g( ∂

∂t
, ∂
∂y
) = 0 if and only if ∂r

∂y
= ∂s

∂x
. This

follows easily from the definitions of r and s. Therefore our metric now has the form

g(x, y, t) = e2t(c(x, y)dt2 + gΣ(x, y)).

Setting r = et we may write this as

g(x, y, r) = c(x, y)dr2 + r2gΣ(x, y).

Let us also note that 2cdx1234 = u ∧ u so that 2 ∂c
∂x
dx1234 = 2u ∧ ∂u

∂x
= 0 and similarly

for y. Thus c is constant and by scaling we can assume c = 1. Therefore the metric

is

g = dr2 + r2gΣ (6.59)

and our minimal 3-fold is a cone.

It is well known that given a minimal M submanifold in Sn, the cone M × (0,∞)

over M is a minimal submanifold of Rn+1 [88]. We give a generalization of this result.

For a manifold M with (possibly indefinite) metric g let (CM, ĝ) denote the cone

where CM =M × (0,∞) , ĝ = dr2+ r2g. Given a map φ : (M, g) → (N, h) we define

the radial extension φ̂ : CM → CN by φ̂(x, r) = (φ(x), r).

Proposition 6.3.1. The radial extension φ̂ : CM → CN is minimal if and only if

φ :M → N is minimal.

Proof. First we note that φ is a Riemannian immersion if and only if φ̂ is a Rie-

mannian immersion. Let us use coordinates x1, . . . , xm on M and let r = x0. We

use the convention that indices i, j, k, . . . do not take the value 0. Likewise give CN

coordinates r = y0, y1, . . . , yn. We have

ĝ00 = 1, ĝ0i = 0, ĝij = r2gij

ĝ00 = 1, ĝ0i = 0, ĝij =
1

r2
gij.

(6.60)
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We readily verify the following relation between the Christoffel symbols on M and

CM :
CM

Γkij =
M
Γkij,

CM
Γ0

ij = −rgij,
CM

Γk0j =
1

r
δkj ,

CM
Γk00 = 0,

CM
Γ0

0j = 0,
CM

Γ0
00 = 0.

(6.61)

There are similar relations for the Christoffel symbols on CN . The map φ̂ has the

properties

φ0 = x0

∂0φ
γ = 0.

Recall that the tension field τ(φ) for a map φ : M → N is the section of φ∗(TN)

obtained by taking the trace of the second fundamental form:

τγ(φ) = gij
(
∂2ijφ

γ − M
Γkij∂kφ

γ + NΓγαβ∂iφ
α∂jφ

β
)
. (6.62)

The map φ is harmonic if and only if τ(φ) = 0. Similarly we have a torsion field τ(φ̂).

We calculate

τγ(φ̂) =
1

r2
τγ(φ) (6.63)

τ 0(φ̂) =
1

r
gij

(
gij − hαβ∂iφ

α∂jφ
β
)
. (6.64)

The result follows.

Let Rp,q denote Rn with a signature (p, q) inner product. We say that a submani-

fold X of Rp,q is a cone if X is diffeomorphic to Σ× (0,∞) such that i(x, r) = ri(x, 1)

where i is the inclusion i : X → R
p,q and the induced metric on X is of the form

dr2 + r2gΣ where gΣ is independent of r.

Restricting to r = 1 we have an inclusion i : Σ → Q ⊂ Rp,q where Q = {v ∈
Rp,q| 〈v, v〉 = 1} = O(p, q)/O(p− 1, q). Conversely such a map defines a cone in Rp,q.

We thus have

Corollary 6.3.1.1. There is a bijection between minimal cones with definite induced

metric in Rp,q and minimal submanifolds of O(p, q)/O(p− 1, q) with definite induced

metric.

In our situation we have a minimal surface u : Σ → O(3, 3)/O(2, 3).

129



6.3.2 Minimal surfaces of signature (3, 3)

Let us apply the results of Section 2.4.1 to the case of a minimal surface φ into

Q = {x ∈ R3,3 | 〈x, x〉 = 1}. In this case the maximum possible isotropy order is 2.

In this case we have µ1 = 1, µ2 = −1, µ3 = 1, q is a holomorphic cubic differential

and the equations become

2(w1)zz = −e2w2−2w1 − e2w1 , (6.65)

2(w2)zz = qqe−2w2 + e2w2−2w1 . (6.66)

Let a1 = H1 = e2w1 and a2 = H2/H1 = e2w2−2w1 . Then a1 and a2 are positive

(1, 1)-forms and can be thought of as metrics on Σ. But from the above equations

we see that a1 has strictly positive curvature while a2 has strictly negative curvature.

Therefore there are no compact solutions without singularities. The equation for an

elliptic affine sphere in R3 [67] appears as a special case of equations (6.65),(6.66).

Indeed the elliptic affine sphere equation is

2(w1)zz = −qqe−4w1 − e2w1. (6.67)

If we set H2 = qq/H1 then equation (6.67) yields a solution to (6.65) and (6.66)

(strictly speaking it is a solution away from the zeros of q, however one can show the

corresponding minimal immersion extends over the zeros of q) . In fact we can explain

this reduction more directly in terms of G2 geometry. Equation (6.67) corresponds

to the equation for a cylindrical semi-flat G2-manifold with scaling symmetry as in

Section 6.3.1.

There are other cases of minimal surfaces in Q ⊂ R3,3 that we can find similar

equations for, namely real forms of the affine Toda equations for the affine Dynkin

diagrams A
(1)
1 and B

(1)
2 . These are minimal surfaces for which the image lies in a

proper subspace of R3,3. The equations follow from the results of Section 2.4.1.

6.4 Extension to split G2-manifolds

With a little work we can extend the semi-flat construction to produce split G2-

manifolds. Consider the split octonions Õ = R⊕ Im Õ. We say that a 3-dimensional

subspace V of Im Õ is associative if the split octonion metric is non-degenerate on V

and R⊕ V is closed under multiplication. The algebra R⊕ V is isomorphic to either

the quaternions H when V is positive definite, or the split quaternions H̃ when V

has signature (1, 2). We call such associative subspaces definite associative and split
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associative respectively. This partitions the associative subspaces into two orbits of

split G2.

Similarly we call a 4-dimensional subspace of Im Õ coassociative if it is the orthog-

onal complement in Im Õ of an associative subspace. If V is a definite associative

subspace then the corresponding coassociative subspace V ⊥ has signature (0, 4) and

will be called definite coassociative. If V is split associative then V ⊥ has signature

(2, 2) and will be called split coassociative. Coassociative subspaces are characterised

by the fact that they are non-degenerate 4-dimensional subspaces W such that the

split octonion cross product of any two vectors in W is orthogonal to W .

In what follows we restrict attention to Im Õ equipped with the split octonion

cross product. The 3-form φ is given by

φ(a, b, c) = 〈a× b, c〉. (6.68)

The signature (3, 4) metric by

g(A,B)dvol =
1

6
ιAφ ∧ ιBφ ∧ φ (6.69)

provided that we use the orientation opposite to the standard orientation on Im Õ.

Finally the 4-form ψ is defined by ψ = ∗φ. Given a decomposition Im Õ = A⊕C into

an associative and corresponding coassociative subspace, we can describe φ as follows.

Let a1, a2, a3 be an orthogonal basis for V with 〈ai, ai〉 = ǫi where (ǫ1, ǫ2, ǫ3) = (1, 1, 1)

in the definite associative case or (1,−1,−1) in the split associative case. Let ai

be the corresponding coframe. There is a corresponding basis of self-dual 2-forms

ω1, ω2, ω3 ∈ ∧2C∗ such that ωi ∧ωj = 2δijǫivolC where volC is the volume form for C.

Then the 3-form is

φ = a123 − ai ∧ ωi. (6.70)

The volume form is a123 ∧ volC .

Consider a 7-manifold X with split G2-structure. This structure is completely

determined by a 3-form φ ∈ Ω3(X). We also have a corresponding 4-form ψ = ∗φ.
We say X is a split G2-manifold if φ and ψ are closed.

We may define associative and coassociative submanifolds but in this case there

are two types of each. Since we wish to construct coassociative fibrations we have

a choice as to which type of coassociative submanifolds to consider. Let M be an

oriented 3-manifold and consider a map u :M → R3,3 ≃ ∧2R4. We also fix a constant
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volume form dvolC on R4. We require that u sends each tangent space of M to a

non-degenerate subspace of R3,3 with respect to the signature (3, 3) metric, hence this

induces a metric on M . In the definite coassociative case this metric has signature

(3, 0) and in the split coassociative case the signature is (1, 2). The metric h is given

by

2h(A,B)dvolC = u∗(A) ∧ u∗(B). (6.71)

Now consider u as a 2-form on X = M × T 4 where T 4 = (R/Z)4. Then on X we

define a 3-form φ by

φ = dvolM − du (6.72)

where dvolM is the volume form induced by the orientation on M and the metric

h. It follows that φ is closed and gives X a split G2-structure. Therefore φ defines

a signature (3, 4) metric g on X and we find that g restricted to TM agrees with

h. Now we may determine when the 4-form ψ = ∗φ is closed. The derivation is

essentially the same as in the compact case. We find that ψ is closed if and only if u

is a minimal immersion. We therefore have that locally semi-flat coassociative fibred

split G2 manifolds correspond to minimal immersions in R3,3 of signature (3, 0) in the

definite coassociative case and signature (1, 2) in the split coassociative case.

If we consider the case where M is a cone over a surface such that the radial

direction is negative definite we find this corresponds to minimal surfaces in the

quadric Q−1 = {x ∈ R
3,3|〈x, x〉 = −1}. This is the other quadric than in the compact

G2 case. We have seen that such minimal surfaces can be constructed from Higgs

bundles in the Hitchin component for SO(3, 3) or SO(2, 3) = PSp(4,R). This gives a

further interpretation of the Hitchin component for PSp(4,R).
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Chapter 7

Further questions

We discuss some unresolved questions raised from our work.

In relation to Higgs bundles, the Toda equations and the Hitchin component:

1. Although we were able to link the affine Toda equations to cyclic Higgs bundles

this only holds under specific reality conditions. It would be useful to have

some existence results which cover all reality conditions, in particular for the

case arising in relation to coassociative fibrations.

2. In an attempt to prove the energy functionals of Section 3.1.2 have non-degenerate

minima their Hessians were investigated. The difficulty here is that the Hessian

involves terms related to gauge invariance. In order to show positive definiteness

one would need to make sharp estimates of these terms.

3. Our method for investigating the Hitchin components is only adequate for the

rank 2 case. In higher rank cases there are more differentials and the entire

component can not be exhausted by cyclic Higgs bundles alone. Therefore it

seems that a different approach would be required. However we can still gain

partial information by considering the special case of cyclic Higgs bundles.

4. In the case of PSp(4,R) we showed that the convex-foliated projective struc-

tures of Guichard and Wienhard were equivalent to a class of projective struc-

tures on the unit tangent bundle where the fibres were lines. However the

convex-foliated projective structures correspond to the Hitchin component for

PSL(4,R). Therefore a natural question to ask is whether a similar statement

holds for all convex-foliated structures. That is given any convex-foliated projec-

tive structure is it homeomorphic to a projective structure on the unit tangent
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bundle where the fibres are lines and if so does this projective structure have

any other distinguishing features?

In relation to parabolic geometries and G2 conformal holonomy:

1. Although we have given examples of conformal structure with G2 holonomy,

the complexity of the formulas has prohibited further progress. In particular it

is not at all clear under what conditions the holonomy is the whole of G2, nor

have we investigated what subgroups of G2 can occur as conformal holonomy

groups. In the case of definite signature conformal Einstein structures the pos-

sible local holonomy groups have been classified [3] but the case of indefinite

and non-Einstein conformal structures remains incomplete. For some results in

the indefinite case see [64].

2. Aside from the two examples given there are other situations in which a generic

2-plane distribution occurs in 5 dimensions. In particular consider a 4-manifold

M with (2, 2)-conformal structure. The bundle of maximal isotropics is a 5-

manifold. In the case where the M is orientable the maximal isotropics can

put into two classes, the so-called α-planes and β-planes. Thus there are two 5-

dimensional S1-bundles overM , each with a naturally defined plane distribution

[2]. This geometry is a real version of the twistor space in Riemannian signature.

3. Consider the parabolic geometry corresponding to the other maximal parabolic

of split realG2. This is in fact a 5-dimensional contact geometry. However, what

is interesting is that there is a duality between the two homogeneous spaces.

The homogeneous space corresponding to the other maximal parabolic can be

described as the collection of lines tangent to the 2-plane distribution in the

homogeneous space corresponding to the first. The point line duality also works

in reverse, that is a certain class of lines in one homogeneous space correspond

to points in the other. It is interesting to note that this point line duality has an

analogue in the corresponding parabolic geometries. If M is a 5-manifold with

generic 2-distribution, one can consider a special class of curves in M known

as abnormal extremals. In fact one can show that these curves are precisely

the null geodesics everywhere tangent to the 2-distribution. These form a 5-

dimensional contact manifold [10]. The problem to investigate is whether this

space can be given the structure of a parabolic geometry corresponding to the

other maximal parabolic of G2, and if so investigate the consequences of this

duality.

134



In relation to coassociative fibrations:

1. Since we have shown that a compact coassociative fibration (with G2 holonomy)

must degenerate the obvious question is what kind of singularities can occur?

More specifically are there reasonable conditions under which the discriminant

locus can be shown to have codimension 2 or to be smooth? Also there is the

question of what type of smooth fibres can occur. The two obvious candidates

are a 4-torus and a K3 surface but are there any others?

2. Seperate from this thesis we considered G2 manifolds fibred by coassociative

ALE manifolds. We found that under the further assumption that the fibration

is a Riemannian submersion X → B, the map u : B → H2(F,R) is still

harmonic where F is the fibre. Beyond this it seems very difficult to say much

about ALE fibrations in full generality. With additional simplifying assumptions

one may be able to reduce to a more tractable problem.

3. Since we found that semi-flat coassociative fibrations correspond to minimal

3-submanifolds in R3,3 it would be good to have a better understanding of such

submanifolds and in particular some non-trivial explicit examples. It would

also be good to examine the possible singularities that can occur in semi-flat

fibrations.
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