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Introduction

Higgs bundles have become an important subject since their introduction by
Hitchin and Simpson in the contexts of Yang-Mills gauge theory and Hodge theory
in the late 1980’s. They form, for example, the starting point of Simpson’s theory
of non-Abelian cohomology and non-Abelian Hodge theory.

However, even on compact Riemann surfaces the construction of explicit solu-
tions to the Higgs bundle equations is an essentially intractable problem. In theory,
we know that they correspond to representations of the fundamental group of the
surface, but this correspondence is non-linear and in practice very hard to work
with.

Following the example set by the Nahm transform, which allows one to re-
place the Bogomolnyi equations governing magnetic monopoles with the more
amenable Nahm equations, we develop in this thesis a transformation of Fourier-
Mukai-Nahm type for Higgs bundles using mostly algebro-geometric methods. We
are partially successful in transforming the Higgs bundle equations into something
more manageable: we replace the curved Riemann surface as the base manifold by
a flat one, the cotangent bundle of the Jacobian; however, the price we pay is that
we increase the dimensions of both the bundles and the base manifold considerably.

1. Background

We shall begin by recalling some basic facts about Higgs bundles. We then
briefly consider the problem of explicitly constructing Higgs bundles on Riemann
surfaces, and review the concept of Nahm-type transforms in other contexts.

1.1. Higgs bundles.Higgs bundles on a complex manifofdare pairg &, 0)
consisting of a holomorphic vector bundieand a holomorphic one-for with
values in En@¢’) on X that satisfies the "integrability conditio®'A 6 = 0. They
originated essentially simultaneously in Nigel Hitchin’s stu@9] [of dimension-
ally reduced self-duality equations of Yang-Mills gauge theory, and in Carlos Simp-
son’s work B9] on Hodge theory.

The Yang-Mills picture. To explain Hitchin’s viewpoint, one may consider
the solutions of thesU(2) self-duality equatiorfson R* that are invariant under
translations in one or more directionsRf. Let us considesu(2)-connections
in a HermiteanC2-bundleE on R*. Fixing a trivialisation ofE, a connection is
described as asu(2)-valued 1-form

A= Ardxg + Axdxe 4 Agdxs + Agd Xy,

and its curvature is given by
Fa=dA+ A2,

10ne could have the compact form of any reductive complex Lie group in pla8&(@).
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1. BACKGROUND 5

Recall thatA is calledself-dualif Fa = xFa, wherex is the Hodge star. The
curvature-2-form can be written

FA:'ZF”'dXi AdX;

i<]

for su(2)-valued functionds;; then the self-duality equation becomes the system

Fio =Fz
Fiz =k
Fia =P

If the solution is invariant under translations in the last coordinate direction, the
su(2)-valued functions are independentaf and thus give us functions dr®.
Then we can define 8U(2)-connection

A = Ardxg + Axdx + Azdxs

in the bundleE’ induced oveR3. We can viewA; as a sectio of the sub-bundle
of skew-adjoint endomorphisms in Efifl). The self-duality equations can then
be written as
FA/ = *DA/(I).

This is theBogomolnyi equationits solutions satisfying the asymptotic condition
that||¢|| 2 = 1+m/r+--- asr — o are known asnagnetic monopoles

Similarly, if the solution of the self-duality equations is invariant under trans-
lations in the two last coordinate directions, #yeare independent o andx, and
thus givesu(2)-valued functions oiR?. One may now define a connection

A = Ardxs + Axdx
in the bundle oveR? 2~ C = R@iR, and introduce theu(2)-valued(1,0)-form

0= %(A3 — iA4)dZ

on C. Then one can check that the self-duality equations become

FA’ - _[979*]7
dX/Q — 07

wherex denotes adjoint with respect to the Hermitean metricdffis the (0, 1)-
component of the connection. Notice that the fa#rhas values in the bundle of
(skew-adjoint) endomorphisms B&f

The (0,1)-partd;, of the connection gives the bundle @a holomorphic
structure (the local holomorphic sections are the ones which get killetj, bgee
Donaldson-Kronheimerlg]), and then the second equation says precisely that the
1-form 6 is holomorphic. Thus a solution of the dimensionally reduced Yang-Mills
equations gives us a Higgs bundle @Gn(notice that the integrability condition
6 A6 =0 is vacuous on a 1l-dimensional base). Now the equations are in fact
conformally invariant, and thus can be transported to a Riemann surface.

A Higgs bundle(£, 0) is calledstableif the usual slope condition

deg# < degé
rk. # rk&

is satisfied for all holomorphic sub-bundlgs which are preserved bg. In [35
Hitchin showed that a (unitary, rank-2) Higgs bundle on a Riemann surface is stable
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if and only if it corresponds to a solution of the dimensionally reduced Yang-Mills
self-duality equations (dfiggs bundle equations

The Hodge theory picture.Consider a proper smooth holomorphic family
f: X — Sof polarised (e.g., K&hler) complex manifolds. Then for arthe rel-
ative de Rham cohomology sheav&d = R”f*Q;(/S =~ R'f,C®c Os are locally
free and equipped with the fl@auss-Manin connection whose horizontal sec-
tions form the local systeiR"f,C. Moreover,.#" has theHodge decomposition

F'= P Fro
p-+g=n

(one can think of cohomology classes represented by (relative) harmonic forms of
type(p,q)). LetF" andF P9 be the corresponding smooth complex vector bundles.
Then[ satisfies thé&riffiths transversalitycondition

0: FPA — o/ (FPTLAY) g 7 1O(FPY) @ o7 O (FPY) @ oy LO(FP-LAHY),

Finally, cup product with the polarisation classXfyives the Lefschetz operator
L: .#" — .Z"2 the sections of the kernel of its adjoifit .#" — .#"~2 form the
sub-bundle oprimitive cohomologys™ in .#". Let E" be the underlying smooth
vector bundle; it has a decompositiBA = @ EP% induced by that oF", and this

is compatible with Griffiths transversality. Restricting attentiofcty the Hodge-
Riemann bilinear paring becomeslagparallel Hermitean fornid, with respect to
which the decomposition &" is orthogonal, and which is positive (resp. negative)
definite onEPY for p even (resp. odd). For details, see for example Griffigg [
or Demailly [16].

Abstracting from above, one defines an (abstre&t)ation of Hodge structure
to be a smooth vector bundieon S, together with a decomposition, a flat connec-
tion and a bilinear form satisfying the preceding conditions, whether it comes from
a family of complex manifolds or not.

Let E be a variation of Hodge structure. Following Deligne’s ideas, Simp-
son decomposed the flat connectionas- 6 + d + d + 6 according to the Grif-
fiths transversality condition. Then one can deduce fitha= 0 thatd? = 0, that
2(6) =00 +06 =0, and tha®9? = 0. But these equations express, respectively,
thatd is a holomorphic structure for the smooth bunBlethat 6 is holomorphic
for d, and the Higgs bundle integrability condition fér Thus(E, d, ) is a Higgs
bundle onS. These Higgs bundles coming from variations of Hodge structures are
of special kind: asystem of Hodge bundlesa Higgs bundlé&’, 6) equipped with
a decompositio’ = ©&P9 such thatd: £P9 — &£P-1at1 g QL. In [59) Simp-
son showed that this correspondence between isomorphism classes of variations of
Hodge structure and systems of Hodge bundles is bijective.

Harmonic metricsThe construction of Higgs bundles above in fact generalises
to all (irreducible) flat bundles. Léf be a variation of Hodge structure. By chang-
ing the sign of the bilinear forml on alternatd=P9 we can turn it into a Hermitean
metrich on E. The decomposition above &f, which produce® and®, can be
clearly defined in terms of this metric, and this procedure can then be applied to
anymetric inanyvector bundleE equipped with a flat connectidn. It turns out
that the ensuing operato#sand6 makekE into a Higgs bundle precisely when the
metric isharmonicwith respect td] in a sense we will explain in Chapter 4.
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Conversely, given a Hermitean metric on a Higgs burilled, 0), there is a
natural way to construct a connectiongrusing not onlyd and the metric but also
6. This connection is flat precisely when the metricv@monic(or Hermitean
Yang-Mill§ with respect to the Higgs field, in a sense that will again be made
explicit in Chapter 4.

In [59] Simpson showed that a Higgs bundle has a harmonic metric precisely
when it is poly-stable (with respect to a polarisation of the base manifold given
by the Kahler form) and has vanishing Chern classes. This result directly gener-
alises the theorem of Hitchin linking stability of a Higgs bundle to the existence of
solutions to the Higgs bundle equations. In fact, the harmonic metric equation is
"essentially the same" as the Higgs bundle equation. On the other hand, by Cor-
lette [14], a flat vector bundle has a harmonic metric if and only if its monodromy
is irreducible. Using these results Simpson prove®Bj fhat the categories of flat
bundles and semistable Higgs bundles with vanishing Chern classes are equivalent.
This generalises a similar result for Riemann surfaces by Hitchin and Donaldson
[17]. Via this correspondence, the action®@f on Higgs bundles by scalar multi-
plication of 6 gives a non-trivial action o€* on the moduli space of flat bundles.
Simpson'’s results show that a flat bundle underlies a complex variation of Hodge
structure if and only if it is a fixed point of this action.

Moduli spacesin [35] Hitchin constructed a (coarse) moduli spacesf(2)-
Higgs bundles on compact Riemann surfaces. N. Nitsbiég groduced an al-
gebraic construction of the moduli spaces for Higgs bundles of arbitrary rank on
curves. Finally, Simpsor6fl] generalised the construction of moduli spaces to
arbitrary Higgs bundles on any projective algebraic manifold. Simpson’s very
general construction is based on geometric invariant theory, and it yields also a
construction of the moduli space of flat bundles. Now the correspondence between
stable Higgs bundles with vanishing Chern classes and irreducible flat bundles pro-
duces in fact a homeomorphism between the corresponding moduli spaces, thus
generalising a result of HitchirBp|.

This homeomorphism is real-analytic when it is restricted to the smooth loci of
the moduli spaces. However, the corresponding complex structures fantibri
the algebraic structures) are distinct: the smooth loci share an undehlypey-
Ké&hler manifold and these complex structures are members of the corresponding
family of complex structures on it (Hitchiop. cit. and Fujiki [20]).

We also want to remark that Simpson wants to consider the moduli spaces
(or preferably the modubtacks of Higgs bundles as realisations afdh-Abelian
first conomology of the base. The hyper-Kéhler picture can then be interpreted
as providing this cohomology with a Hodge structure. For a nice overview of this
point of view, see Simpso®B]. More recent developments by Simpson and others
have led to a generalisation of this theory to higher cohomology ussigcks (see
Katzarkov-Pantev-Simpso#d?2]).

1.2. Constructing Higgs bundles.In principle, the bijection between iso-
morphism classes of stable Higgs bundles and irreducible flat bundles allows us
to construct explicit examples of Higgs bundles starting from any representation of
the fundamental group of the base. This ignores however that this correspondence
makes essential use of solutions to the harmonic metric / Higgs bundle equations;
these equations are unfortunately highly intractable non-linear partial differential
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equations for the components of the metric, and not much can be said about the
solutions apart from that they exist provided the stability or irreducibility condition
is met.

The hard analytic results of Hitchin, Simpson and Corlette rely on use of gauge
theory machinery (notably Uhlenbeck’s theorem on weak convergence in Sobolev
spaces). It seems very hard indeed to say much explicitly about the solutions even
in the case of Higgs bundles on Riemann surfaces.

Indeed, on a Riemann surfage of genusg > 2, choose a line bundl&”
satisfying.#%2 = Q}. ThenZom(.Z,£") = Qy. Hence the constant section
1 e T (X, 0x) gives canonically a sectiom of Hom(.Z, ") ® Q%. Consider the
Higgs bundle.¥ & £V, 6), wheref is the Higgs field

(@ o)

This Higgs bundle is clearly stable. Now, as explained in HitcBHj,[a solution

of the Higgs bundle equations givi¥sa metric of constant negative sectional cur-
vature. It follows that solving the equations explicitly fo¥ &£, 6) would give

an explicit uniformisation of the Riemann surfaXeThe hope of being eventually
able to do this is indeed one of the underlying motivations for this work.

1.3. Nahm-type transforms. One possible way to approach the difficulties in
solving the harmonic metric equations is to attempt to transform the equations into
another form more amenable to analysis, possibly by geometric means. Conceptu-
ally this is rather similar to the use of the ordinary Fourier transform in the study
of differential equations (oR",C" or on another commutative Lie group).

Dirac operators.An important class of transformations used to simplify equa-
tions this way in Yang-Mills theory, including the ADHM construction and the
Fourier transform for instantons (Donaldson-Kronheind&)[and the Nahm trans-
form for monopoles (see Nahrb4] and Atiyah-Hitchin B]), is based on using the
kernels of the Dirac operator coupled to the connection twisted by line bundles.

As an example, let us consider the instanton Fourier transforniE|ét) be a
vector bundle on the flat 4-torids = T*, equipped with an anti-self-dual connec-
tion?. The dual torusT is the moduli space of flat line bundles @n for £ € T
the twisted bundlek @ L have connectiong induced byll. OnT we have the
positive and negative spin bundi®s andS™ and the Dirac operat®—: S~ — St
(see for example Lawson-MichelsoB]). This can then be coupled to the con-
nectionsl to obtain a family

D.:M(TE®L;®S) =T (T.E®L:®S")
of elliptic operators parametrised ldyc T. Now (under certain conditions, see
(3.2.2) in Donaldson-Kronheimefd§]) the kernelsﬁg of D, are all of the same

dimension and form a vector bundieon T. Notice thatE is a sub-bundle of the
trivial Banach-space bundlex I (T,E®S") and inherits a Hermitean metric from
theL2-inner product of (T,E®S") . In the trivial bundle we have the flat product
connectior]. Leti andp be respectively the inclusion & into the trivial bundle

2|.e., the curvature satisfie§y = —Fp.
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and the orthogonal projection of the latter oftoThen

~

0= poﬁoi

is an anti-self-dual connection . The pair(ﬁ,ﬁ) is the Fourier transformof
(E,0). The operatiorfE, ) — (E, ﬁ) is invertible, and its inverse is defined sym-
metrically using the fact thak parametrises the flat line bundles ®n

Another example is provided by the recent the8& pf M. Jardim (see also
Jardim B9] and Biquard-Jardimd]). His starting point was to understand doubly
periodic instantons, i.e., finite2-norm solutions of the self-duality equations on
T2 x R%. Using a Nahm-type approach, he constructed a transformation taking
doubly periodic instantons to Higgs bundleshwith Higgs fields having polés
He was furthermore able to construct an inverse transformation and to show that
this establishes a bijective correspondence between doubly periodic instantons and
singular Higgs bundles on the torus with the singularities of the Higgs field satisfy-
ing certain conditions. Jardim’s work has served as one of the principal motivations
for the research undertaken in this thesis.

The cohomological viewpoiniThe (0, 1)-type componenfl” of an anti-self-
dual connectiorl] in a Hermitean complex vector bundiesatisfies]’? = 0 and
thus givesE the structure of a holomorphic bundfe One may hence ask in both
of the two examples above for descriptions of the transformations on the holomor-
phic level. As is well-known, these descriptions are provided-byrier-Mukai
transformations

More precisely, the Dirac operator kernels used to define the Nahm-type trans-
forms above are in fact particular representatives of certain sheaf cohomology
spaces, and consequently the holomorphic bundles associated to the transforms
are higher direct image sheaves of families of twisted coefficients. For example,
let us consider the instanton Fourier transform. £ebe the holomorphic bundle
onT associated t¢E, 1), and foré e T let “Z¢ be the invertible sheaf associated
to the flat line bundlé... Then one can check that

ker(D;) = HY(T,& ®or L)

OnT x T there is the (normalised) Poincaré bundi& the universal invertible
sheaf (or flat line bundle). One now sees that the holomorphic bundle associated to
Eis

& =Rlpre, (prr& @ 2).
On the other hand, let be a complex torus (or an Abelian variety) andts dual,
and letD(X) andD(X) denote thelerived categoriesf the categories of coherent
sheaves oiX andX respectively. Using the Poincaré sheafon X x X, Mukai in
[51] defined a functoM : D(X) — D(X) by

M(e) = Rprg. (prx(¢) © &),

and showed that it is a category equivalence. But now one seef fsahe first
(and only non-zero) cohomology objectMf(&).
Mukai’s construction can be generalised to any variefiendY together with
a sheaf#? on X x Y. The properties of these generalisations have been studied by
A. Maciocia [6], T. Bridgeland [LO, 1] and others, and have been applied to the

3There are no non-trivial stable Higgs bundles on elliptic curves with regular Higgs fields.
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study of elliptic surfaces and mirror symmetry. We shall explain this machinery
more fully in Chapter 2 of this thesis.

2. Atransformation for Higgs bundles

Our plan in this work is to proceed in the direction opposite to that of Jardim’s
work: we would like to transform the Higgs bundle equations on projective curves
(Riemann surfaces) of gengs> 2 into something more manageable. Instead
of using differential-geometric and analytic machinery involving Dirac operators,
we have chosen to work within the framework of algebraic (and at one crucial
point complex-analytic) geometry. The purely algebraic / analytic side is handled
through generalised Fourier-Mukai transformations, while the construction of a
connection in the transform of a Higgs bundle relies on an interpretation of twistor
methods by Deligne and Simpson.

2.1. The underlying holomorphic bundle. In Jardim’s construction of the
inverse transform from Higgs bundles on an elliptic cuXéo instantons, the
baseR? x T2 of the doubly periodic instantons is identified wikhx HO(X, Ox) =
X x HO(X,Q}). Generalising this example to curves of gegus 2, we construct
a transform that associates to a stable Higgs bubdiédegree 0 on the curve a
vector bundleE on JX) x HO(X,Q%), where JX) is the Jacobian oX.

We interpret the endomorphism valued one-fd@mas a bundle map, making
a Higgs bundleE = (&, 6) into the sheaf comple¥ — & ® Q%. Hence a Higgs
bundle gives us an object of the derived cateddf}(), and we can use the general
machinery of Fourier-Mukai transforms as developed.ifj.[We choose to use the
universal line bundle# on X x J(X) to define a Fourier transformatidmX) —
D(J(X)); then we apply a relative version of this transformation to a family of
Higgs bundles obtained by "twisting by the global 1-forms. This produces an
objectE of D(J(X) x HO(X, Q%)) that we call theFourier transformof the Higgs
bundleE.

The first result we obtain is that if we apply our transformation to a stable Higgs
bundle of degree 0 and rank 2, the result is an honest locally free sheaf, i.e., a
(holomorphic) vector bundle. We are then able to compute the characteristic classes
(all Chern classes vanish) of the transform using the Grothendieck-Riemann-Roch
theorem (as we would do using the index theorems had we used an approach based
on Dirac operators). However, our consistent use of derived category formalism
allows us to derive a simple formula for computing the actual cohomology groups
of the transform as well.

Our transform has a natural extension to a (holomorphic) vector bundle on the
"naive" compactification(X) x P(H%(X,Q}) @ C) of the base. This generalises a
similar result of Jardim; however, our construction of the compactification is dif-
ferent. Instead of aBx postonstruction starting from the transfoffpwe instead
extend to the compactification before applying the relative Fourier transformation,
and then the general machinery produces the compactification we are after. We
are again able to compute the Chern classes and cohomology of the compactified
transform.

The transform of therivial Higgs bundle (&x,0) fails to be a locally free
sheaf: the dimension of its fibres jumps(8t0) € J(X) x HO(X,Q%). This sheaf
is however an interesting canonical object associated to the éyraad we will
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analyse it in detail for genus-2 curves in section 3 of chapter 3, describing it in
terms of the intrinsic geometry of the Jacobian.

2.2. The connection.To complete the Nahm-type transformation for Higgs
bundles we want to construct a connection in the transform described above. In-
stead of the projection method used by both Jardim and the instanton Fourier trans-
form, we choose to take advantage of twistor theory. In the longer term, we hope
that this might provide ideas for another way to construct the transform, similar to
the spectral curve method in the case of the Nahm transformation of monopoles.

The base manifold d can be identified with the cotangent bundle of Jor
indeed with the moduli space of rank-1 and degree-0 Higgs bundles. This space
is a hyper-Kahler manifold, i.e., has a methnigvhich is K&hlerian with respect to
complex structurek, J andK that satisfyi? = J2 = K? = IJK = —1. Such a man-
ifold M has then in fact a family of complex structures parametrise8tsy Pé
This family can be made into a complex manifdi (M), fibred holomorphically
overP% and known as thawistor spaceof M.

SinceSU(2) is a subgroup of the multiplicative grod™ of non-zero quater-
nions, it acts on the differential forms of a hyper-Kahler manifolds and thus also
acts on curvature forms of connections. The natural generalisation &Uf®-
self-duality condition to bundles on a hyper-Kahler manifMds to ask for the
curvature to beSU(2)-invariant. Suchauto-dualconnections correspond bijec-
tively to those holomorphic bundles on the twistor space that are trivial along the
horizontal twistor lines{x} x Pé (see Kaledin and Verbitskylf)], [64]; this is the
hyper-Kahler version of a result of Capria-Salama#]).

Using this result, we reduce the construction of the self-dual connettion
to the construction of a suitable holomorphic vector bundle on the twistor space
of the base. Now ideas of Delign&f] (see Simpsong3]) give a description of
the twistor space in terms of moduli spacesie€onnections, objects that inter-
polate between Higgs bundles and flat bundles. The analytic results of Corlette
[14] and Simpson %9 associate to a Higgs bundle a family of bundles with
connections, and we obtain the sought-after holomorphic bundle over the twistor
space by gluing together two copies of a higher direct image of an appropriate
family of A-connections.

This approach hides the analytic input in the (more or less explicit) use of
Simpson’s correspondence between flat and Higgs bundles, itself proved using the
hard existence theorems of harmonic metrics. It has the advantage of producing
the two "halves" of the bundle on the twistor space directly and without a need
to prove separately that they are holomorphic. It is furthermore possible to apply
twistor theory to show that the transfornof a stable Higgs bundIE has a Her-
mitean metric which is compatible with the connection The Hermitean theory
is however not included in this work.

The transform of the trivial Higgs bund(@,0) is a vector bundle outside of
one point; our construction of the connection still gives a auto-dual connection in
this bundle. We expect that its properties should turn out to be crucial in a future
description of the asymptotics of the curvature of the connedidar a general
Higgs bundle.

2.3. Invertibility. To use the transformation we have constructed effectively
we need to be able to invert it. The compactification result above turns out be
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crucial: a Higgs bundI& can be recovered from the compactificatiorﬁwf/ithout
using the connectiofl. More precisely, lefTFT be the functor which takes a
stable Higgs bundl& to the bundle on(X) x ¢ extendingE. Then we have the
following:

Inversion Theoren3.2.1). —LetE andF be two Higgs bundles on a curve X
of genus g> 2. If TFT (E) = TFT (F), thenE = F as Higgs bundles

We in fact prove this theorem by exhibiting a procedure for recovering a Higgs
field from its transform. Furthermore, it follows easily from the theorem that the
transform functor is in fact fully faithful.

The obvious open problem is to characterise the essential imagfelafOne
hopes that it will be possible to do this in terms of the auto-dual conneCtiiter
fixing a suitable asymptotic condition on its curvature.

3. The structure of the work

While the motivation for the work comes as described eatrlier in this introduc-
tion from differential geometry and gauge theory, we have chosen to place our-
selves in the algebraic (and in some cases the complex analytic) category. We in-
voke the GAGA principle in its various guises to go freely back and forth between
projective algebraic and complex analytic categories.

In the first chapter we review and complement the derived category machin-
ery we will use to develop the holomorphic/algebraic side of the transformation.
In particular, we prove a strong form of derived-category base change theorems
as a corollary of a general Kinneth formula; the latter is essentially contained in
Grothendieck’s discussion of global hyper-Tor functors in EGA llI, written just be-
fore the introduction of derived categories, but has apparently not appeared in its
natural form in the literature before.

The second chapter is devoted to generalities on generalised Fourier-Mukai
transformations. In particular, we introduce absolute and relative versions of a
Fourier transform on a curve with values in the derived category of its Jacobian,
and relate this to Mukai’s original transformation.

In Chapter 3 we develop the algebraic transformation for Higgs bundles and
prove the compactification and invertibility results not involving the auto-dual con-
nection in the transform. In chapter 3 we also compute the characteristic classes
and cohomology of the transform. The last section of the chapter is devoted to
an analysis of the transform of the trivial Higgs bundle on a genus-2 curve. The
results in Chapters 2 and 3 have appeare@]in [

We notice that up to this point no assumption has been made on the alge-
braically closed ground field; in particular, all results so far apply in positive char-
actericé.

Chapter 4 is devoted to developing the technology we use to construct the
connection in the transform defined in Chapter 3. More precisely, we develop
the general machinery needed to deal with higher direct imag&scohnections:
we generalise the usual derived-category formalism (de Rham functors, derived
tensor products) a#-modules to modules over Simpsogjdlit almost-polynomial

4Higgs bundles in chap > 0 have been considered by Yves Laszlo and Christian P48}y [
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rings of operators We also recall Deligne’s construction of the twistor space and
complement Simpson'’s treatment of the moduli space6ih [

Finally, in Chapter 5 we apply this machinery to construct the auto-dual con-
nection in the transform.

Notation and conventions

Unless otherwise specified, all rings and algebras are commutative and uni-
tal. We fix an algebraically closed field which from Chapter 4 onwards will be
assumed to b€. All schemes are assumed to be of finite type dueAll mor-
phisms ar&k-morphisms and all products are products over 8peanless stated
otherwise; if we want to be explicit about the field, we sometimes abuse notation
by writing X x Y for fibre product over Spgk). A curve always means a smooth
irreducible complete (i.e., projective) curve ovler If .Z is an Ox-module,.Z7"
denotes its dua¥”omg, (.#, Ox). Notice that for a smooth complete curethe
sheaf of 1-differential€y, is the canonical or dualising sheaf. We occasionally use
the notation7 Ks¢ for the external tensor productp# @, , Pr¥ of sheaves
Z and¥ on Sschemes andY, respectively.

We use script letters lik¢’ and.# for (usually coherentyx-modules (alge-
braic or analytic depending on context; translations are provided by GAGP [

In the analytic context the underlying smooth complex vector bundles of locally
free sheaves are denoted by italic letters EkandF. In addition, we use sans-
serif characters lik& andF to denote Higgs bundle& = (£, 0).

The category ox-modules is denoted biod (X), andQCoh(X) is the thick
subcategory of quasi-coherent sheavdsis the category of Abelian groups.

A commutative square

z Y. X

o K

is calledCartesianif the mapping(v,g)s: Z — X xsY is an isomorphism. We

denotecanonicalisomorphisms often by=".



CHAPTER 1

Homological machinery

The theory of Fourier-Mukai transformations uses the language of derived cat-
egories. In this chapter we review the basic theory, which we will make use of in
the subsequent chapters.

The standard (if somewhat unsatisfactory) reference to derived categories in
algebraic geometry is still Hartshorne’s seminat][on Grothendieck’s duality
theory. Other excellent sources include Gelfand’s and Manin's textbdgk [
Kashiwara-Shapirad[l] and Weibel p6]. For a good informal introduction, see
lllusie [37] or the introduction of Verdier’s thesi$§|.

The first three sections of this chapter provides a brief review of the elements of
the theory, mostly without proofs, while the last section gives a proof of a general
Kinneth formula for coherent sheaves.

1. Derived categories

Grothendieck was led in the late 1950's to conjecture the existence of a theory
of derived categories in order to have a suitable framework for his general duality
theory of coherent sheavesThe "dualising sheaf" of a scheme is not necessarily
a sheaf but instead a complex of sheaves, whence a need to be able to carry out the
operations of homological algebra on the level of complexes without the need to
resort to spectral sequences at every stage of an argument.

The idea of using complexes as coefficients for conomology (iy@ercoho-
mology) is already present in Cartan-Eilenbefd]. One starting point of derived
categories is the observation that hyper-derived functors take quasi-isomorphisms
(chain maps inducing isomorphisms in cohomology) to isomorphisms. The natural
idea is then to factor cohomological operations through the category of complexes
with all quasi-isomorphisms formally inverted. However, describing the structure
of these derived categories posed some difficulties, which Verdier’s introduction of
the triangulated structure in his doctoral thesis largely resolved.

It turns out that when inverting the quasi-isomorphisms between complexes,
one should first invert the chain homotopy equivalences. This produces simply
the category of complexes with homotopy classes of chain maps as morphisms.
The actual derived category results from inverting the homotopy classes of the
remaining quasi-isomorphisms. The reason for proceeding in two stages is that —
unlike the category of complexes — the homotopy categadrnjasgulated and it is
the triangulated structure that the derived category inherits. In fact, one can show
that the derived category of an Abelian categérys Abelian if and only ifA is
semi-simplei.e., when all short exact sequencegisplit.

Iror an account of the development of theory, see Grothendi&tlo[ 197.

14
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Notation(1.1.1). —Let A be an Abelian category. We denote Gfa(A) the
category of complexes iA, i.e., the category whose objects are (cochain-) com-
plexes of objects of\, and whose morphisms are (cochain-) maps of complexes.
Let K(A) be the category of complexes & modulo homotopy, i.e., the cate-
gory having the same objects@h(A), but whose morphisms are chain homotopy
classes of maps of complexes. We @' (A), Ch~(A) andCh®(A) denote the
full subcategories consisting of complexes which are respectively bounded below,
bounded above and bounded. We use a similar notatiol f&r. We consideA
as the full subcategory of botbh(A) andK (A) consisting of complexes concen-
trated in degree 0. We denote Kyi] the complexXK translated places to the left
and with the differentials multiplied by—1)'. Finally, for anyp € N, HP denotes
the functor taking thgth cohomology of a complex. ClearlP(A) = HO(A[p]).
Notice also that these functors descendki@ ), and thatH® gives an inverse to
the embedding oA. A chain mapf: K — L is called aquasi-isomorphisnif
HP(f): HP(K) — HP(L) is an isomorphism for alp € Z.

Definition(1.1.2). —Let Sbe a collection of morphisms in a categ@yThen
a categoryC[S!] together with a functog: C — C[S™!] is called alocalisation
of C with respect t&if:

(1) Each morphisng(s) with s € Sis an isomorphism €[S}, and
(2) Each functofF: C — D such thaf=(s) is an isomorphism for eache S
factors uniquely through.

Notice that ifC[S™1] exists it is unique up to a natural equivalence of categories.
Theoren(1.1.3). —Let Q and Qdenote the collections of quasi-isomorphisms
in Ch(A) andK (A), respectively. Then:

(1) The localisation<h(A)[Q ] andK (A)[Q 1] exist and are equivalent;
(2) K(A)[Q@1] is an additive category and the localisation functor

g: K(A) — K(A)[Q™]

is additive;
(3) Each morphism w it (A)[Q'~1] can be written as formal "fractions"

1

w=fult=vlg

with f,g morphisms ik (A) and uv quasi-isomorphisms.

PROOF. The statements abokit{A)[Q 1] follow from the existence of a "cal-
culus of fractions" (modeled on the localisation procedure for commutative rings)
for quasi-isomorphisms iK (A); see any of the references given in the beginning
of the chapter. It is then easy to see tHd®\) is the localisation ofCh(A) with
respect to the cladd of homotopy equivalences. SinekC Q, one has

Ch(A)[Q"] = Ch(A)[HY[Q ] = K(A)[Q.
O

Definition (1.1.4). —The derived categoryD(A) is the localised category
Ch(A)[Q 1] =2 K(A)[Q Y. We denote byg or by ga the localisation functor
Ch(A) — D(A). Clearlyqfactors through (A ), and we abuse notation by writing
g also for the localisation functdt (A) — D(A).
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(1.1.5) In a similar way, we define the derived categoif¥sA), D~ (A) and
DP(A) respectively as the categoriéh™ (A), Ch~(A) andChP(A) with all quasi-
isomorphisms formally inverted. They are full subcategorie® @).

Remark(1.1.6). —The existence of the localisations is a set-theoretic ques-
tion: one needs to show that the HOAB) in the localisation are sets. If one were
willing to use Grothendieck’s universes (see SGA28][appendix to Exposé 1),
then one could ignore some of these issues.

Definition(1.1.7). —Let T be an auto-equivalence of a categ@ryA triangle
in C (relative toT) is a triple of morphisms

(uuA—B, v:B—C, w:C—T(A).

A morphism of trianglegu,v,w) — (U, V,w) is a triple(f,g,h) of morphisms of
C that makes the diagram

A B C T(A)

lf Jg lh lT(f)

A B c T(AN)
u v w

commute.
A triangle is typically to be pictured as follows:

(1.1.8) Letu: K — L be a morphism irfCh(A). Recall that thenapping cone
of uis the complex Cor@) whose degree-part isk"1 @ L" and whose differen-
tial is

d(k,1) = (~dk (K),u(k) +d_(1)).
We have natural chain maps: L — Condu) andd: Cong€u) — K[1] by setting
iL(l) = (0,1) andd(k,1) = —k. One checks that the sequence

0—L - Condu) > K[1] 0
is exact and that the corresponding connecting morphisms
HP(K) = HP(K[1]) — HPT(L)

are precisely the maps$P+1(u) induced byu. It follows from this thatu is a quasi-
isomorphism precisely when Copg is exact.
Letu: K — L be a morphism irf€h(A); then we have the triangle Tu)

Condu) |
/N

u

K L.

relative to the auto-equivalende K — K|[1].

Definition (1.1.9). —An exact trianglein K(A) (resp. inD(A)) is a triangle
isomorphic inK (A) (resp.D(A)) to a triangle Tr{u) for a morphismu of Ch(A).
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Exact triangles should be thought of as substitutes for short exact sequences;
this is made more precise by the following proposition and the paragraphs that
follow.

Proposition(1.1.10). —Any exact sequen€e— A —— B — C — 0in Ch(A)
can be completed (uniquely) into an exact triangle

inD(A).
This follows since Cong) is quasi-isomorphic t€. Notice that this does not

work in K(A). Notice also that not all exact trianglesD{A) come from short
exact sequences {Bh(A).

Remarkg1.1.11). —(i) Let T denote the translation functér— A[1]. It can
be shown that the exact triangleskr{A) andD(A) satisfy the following proper-
ties:

(T1) For each objecA the triangleA a0 % T(A) is exact; each
morphismu: A — B can be embedded into an exact trianglev,w);
triangles isomorphic to exact triangles are exact;

(T2) For any exact triangle

the "rotated" triangles
T(A) and
B————C (

are exact;

(T3) Given two exact triangleé —*> B - C - T(A) andA’ - B -
c v, T(A') and morphismg : A— A’ andg: B — B’ such thagu=
u'f, there is a morphisrh: C — C' making(f,g,h) into a morphism of
triangles;

(T4) LetA, B,C, A, B'andC’ be objects, and I€u, j,d), (v,x,i) and(vu,y, §)
be exact triangles ofA,B,C'), (B,C,A’) and(A,C,B') respectively. Then
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. . T(j)i .
there is an exact triang® —— B ~% A’ LW 7(C/) so that in the octa-

hedron

c-

the triangular face@’,A,C’) and(B',A’,C) commuteyv= f j, andud =

ig.
An additive categoryC equipped with an auto-equivalendeand a clasg\ of
"exact" trianglesA — B — C — T (A) having the propertie€T'1) to (T4) is called
atriangulated category

(i) Another canonical example of a triangulated category isstiable homo-

topy categonpf topologists. Its construction parallels that of derived categories: it
is the localisation of the category of spectra with respect to weak homotopy equiv-
alences. The triangles are given by the Puppe sequences

X LY - c(f) = 2(X),

whereC(f) is the topological mapping cone défand%(X) is the (reduced) sus-
pension ofX. For a brief overview, see Weibed .

(iii) A reader meeting triangulated categories for the first time is strongly urged
not to spend too much time contemplating the axioms (especially the octagonal
axiom(T4)). In practice derived categories are much friendlier creatures than the
forbidding definitions of a triangulated structure lead one to believe. Indeed, the
triangulated structure is not much used explicitly in the following chapters.

In fact, the triangulated structure is generally perceived to be inadequate and
unsatisfactory (it has been since the mid-1960’s, 26B.[As an example, the cone
of a morphism is unique only up toren-canonicaisomorphism. Grothendieck
[26] has proposed to address this and other issues in homological and homotopical
algebra with a much more general theory détivators.

(1.1.12) A triangleA — B - C -5 T(A) spins out a long sequence

T-1(w)

1.112.1) - —Tic) WA e Y.c M 1A Y

—>T(B) —

A functor F: T — A from a triangulated categorly to an Abelian categor is
calledcohomologicalf the sequence obtained by applyiRgo (1.1.12.1) is exact
for all exact triangles.

Exampleg1.1.13). —(i) The zeroth-cohomology functét® defined inK (A)
is cohomological. It descends to a cohomological funétr D(A) — A. Let

0— A—- B -5 C — 0 be a short exact sequencedh(A). Then the long exact
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sequence associated to the triangle

/N

u

A

B.

is just the ordinary long exact cohomology sequence
.- — HP(A) - HP(B) — HP(C) — Hp+l(A) ...

as follows from (1.1.8).
(i) The functor Hom (A,e): T — Ab is cohomological for all triangulated
categories.

Proposition(1.1.14). —The functor H gives an equivalence of categories
from the full subcategory @(A) consisting of objects A with {A) =0for p#£0
to A itself.

We often identifyA with this subcategory dD(A) consisting of objects with
cohomology concentrated in degree O.

We can give a more concrete description of the bounded-below derived cate-
gory D" (A) of an Abelian categorp with enough injectives:

(1.1.15) Let A* € Ch(A). A right Cartan-Eilenberg resolutionf A* consists
of an upper-half-plane double complig® of injective objects irA and a (co-)chain
mapi: A* — |1*0, satisfying the following:

(1) If A =0, then the columa'* is zero.

(2) The columrl ** is an injective resolution o

(3) The horizontal cohomology &f* gives injective resolutions of the coho-
mology objectdH!(A®).

It is a basic fact that:

Proposition(1.1.16). —Let A have enough injectives. Then all complexes
have right Cartan-Eilenberg resolutions.

(1.1.17) We shall be concerned with right Cartan-Eilenberg resolutions of only
complexes bounded below (or even of only bounded complexes). In this case,
Cartan-Eilenberg resolutions are first-quadrant double complexes, and hence we
can form the associatedtal complexes

Tot'(1**) = €P 179,
p+g=i
where the differentials are just the sums of the vertical and horizontal differen-
tials of I** corrected by the familiar sign trick (the vertical differentials of it
column are multiplied by—1)P).

Proposition(1.1.18). —Leti: A®* — |1°** be a Cartan-Eilenberg resolution of a
bounded-below complexX AThen i induces a quasi-isomorphisrh-A Tot®(1°®).

Proposition(1.1.19). —Let A’ and B be bounded-below complexesAn
andleti: A* — I** and j: B®* — J** be Cartan-Eilenberg resolutions of Aand B
respectively. If f A* — B® is a chain map, then there is a map of double complexes

f: 1** — J** commuting with the injectionsiand j.
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Furthermore, ifg A* — B* is another chain map homotopicto f, agd!*® —
J** is a corresponding map of double complexes, tﬂTetT(f) is homotopic to
Tot*(g).

In particular, the total complexes of any two Cartan-Eilenberg resolutions of a
complex A are homotopy equivalent.

We may rephrase the preceding by saying that the operation associating to a
bounded-below compleR® the total complex of its Cartan-Eilenberg resolution
is a functorl from the category of co-chain complexes to the catedof) of
co-chain complexes and morphisms modulo chain homotopy. As direct sums (or
products) of finitely many injective objects are injective, we notice that the functor
| above maps bounded-below complexes.ito the categorK * (1 4) of bounded-
below complexes of injective objects and morphisms modulo homotopy.

Proposition (1.1.20). —There exists a category equivalence R"(A) =
K*(l1a) making the diagram

K*(A) —>K*(Ia)

o, A&
D*(A)

commutative.

Remark(1.1.21). —There is the dual concept of left Cartan-Eilenberg resolu-
tions by projective objects. K has enough projectives, th@&1 (A) is equivalent
to the homotopy categomy ~ (Pa) of bounded-above complexes of projectives.

2. Derived functors

Derived functors in the derived-category sense generalise the ordinary derived
and hyper-derived functors of Cartan-Eilenbet§][and Téhoku 4]. The value
of the derived functoRF of a left exact functoF on a compleA is obtained by
replacingA with a suitable quasi-isomorphic complex (such as its Cartan-Eilenberg
resolution) and then applying to this new complex. The cohomology objects
HP(RF(A)) are then the valueRPF(A) of the classical hyper-derived functors.
In a senseRF(A) can be thought of as a compact package consisting of these
cohomology objects.

However,RF (A) carries more information than just the cohomology objects
RPF(A). An example is provided by the de Rham complex of a manifgld/hich
is one quasi-isomorphic representative of the "total sheaf conomoRPyX, R)
in D(Vectr) and which calculates the (real) cohomology>af As was shown
by Sullivan (see, e.g., Félix-Halperin-Thomds)), this quasi-isomorphism class
(together with the multiplicative structure) is enough to specify the real homotopy
type of X.

Derived functors typically simplify results that would otherwise involve spec-
tral sequences. For exampleFif A — B andG: B — C are two left-exact func-
tors, then the same assumptions that guarantee the existence of the Grothendieck
spectral sequendg}® = RPG(RIF (A)) = RP+9(Go F)(A) are sufficient to estab-
lish thatRGo RF = R(Go F); the existence of the spectral sequence can be of
course derived from this stronger result. We shall see many examples of this in the
next section.
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(1.2.1) Let F: A — B be an additive functor of Abelian categories. THen
extends in an obvious way to functo@h(A) — Ch(B) and (since it preserves
chain homotopiesK (A) — K(B). If F is exact, it takes quasi-isomorphisms to
quasi-isomorphisms, and hence extends to a furkctdd(A) — D(B) making the
square

Ch(A) —F— ch(B)

QAl lQB

D(A) — D(B)

commutative. MoreoverF is additive, commutes with the translatidn and
preserves exact triangles. We call such functors between triangulated categories
exact functors The obvious question arises of the existence of exact functors
D(A) — D(B) extending an arbitrary additive functbr. A — B.

Definition (1.2.2). —LetF: A — B be an additive functor between Abelian
categories, and lgk denote its extension to a funct(A) — K(B). Then an
exact functoRF : D(A) — D(B) together with a natural transformation

§:qoFR —RFoq
is called aright derived functomof F if it satisfies the following universality condi-
tion:
(RDF) If G: D(A) — D(B) is another exact functor equipped with a natural

transformation{ : qo Fx — Goq, then there is a unique natural trans-
formationa : RF — G so that

Cn = Oga) © En
for each objecAin K(A).

If RF exists, it unique up to a canonical isomorphism. There is the dual concept
of aleft derived functolF: the only difference is that the direction of the natural
transformationt is reversed td.F oq — qo F. (It obviously needs to satisfy the
dual universal property.) Far= +, —, b we define similarly the bounded derived
functors
R*F,L*F: D*(A) — D(B).
Clearly the restriction of a full derived functor to any of the bounded categories is
a bounded derived functor in this sense.
The composites
RPF =HPoRF: D(A) —B
are called théyper-derived functoref F.
In practice the derived functors are often computed using the following:

Proposition(1.2.3). —Let F: A — B be a left-exact additive functor of Abelian
categories. Suppoge has enough injectives. Th&'F: D*(A) — D*(B) is the
composite functor

DHA) B KT (1a) 5K (B) L D (B).

where R Ch™(A) — K*(I,) is the category equivalence of (1.1.20) induced by
Cartan-Eilenberg resolutions.
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(1.2.4) It follows from (1.2.3) that in order to compuBRPF (A) for a complex
A, we pick a Cartan-Eilenberg resolutiéft of A, apply F to it, take the total
complex of the resulting double complex, and finally take pie cohomology.
In other words, we have recovered the classical hyper-derived functors as defined
already in Cartan-Eilenberd §]. In particular, for objects of\, identified with
objects ofD(A) having non-trivial cohomology only in degree 0, the definition of
hyper-derived functors reduces to that of usual derived fun&eiFs

(1.2.5) Since derived functors take exact triangles to exact triangles, it follows
from (1.1.13) that if 0—- A — B — C — 0 is an exact sequence of complexes, we
have a long exact sequence

... RPF(B) — RPF(C) & RP*IF(A) — RPF(B) — .- |

where the connecting homomorphistsatisfy the familiar compatibility proper-
ties. In other words, we have recovered the classical fact that hyper-derived func-
tors ared-functors onCh(A).

Example(1.2.6). —Let A be a complex inA bounded above. Then for
any bounded-below comple& we can form the associated total complex of the
double complex Hom(A,B). Denote this by Horm(A,B). Then it is clear that
(A,B) — Hom*(A,B) is a bifunctorCh~(A)°P x Ch™(A) — Ch™(A), and pro-
duces a bifunctoK ~ (A)P x KT (A) — KT (A) .

Let Abe a complex irA bounded above, and suppose thdtas enough injec-
tives. Then we have the derived functor

RTHom"(A,e): DT (A) — D (A).

If f: A— A is a quasi-isomorphism of bounded-above complexes, then for any
complexB bounded below the corresponding morphism

RTHom(f,1g): R"Hom(A',B) — R*Hom(A, B)

is an isomorphism. HencB*Hom is in fact a bifunctoD~(A)°P x D*(A) —
DT (A).
There is a natural isomorphism
HP(R"Hom(A, B)) = Hompa) (A, B[p]).

forAec D~ (A) andB € D*(A). For anyAandB in D(A) we define this to be their
Ext-product

EXtP(A, B) = Hompa) (A, Bp]).
For objectsA andB of A this definition agrees with the usual Ext-functors.

(1.2.7) 1t follows from (1.2.4) and the properties of Cartan-Eilenberg resolu-
tions (1.1.15) that there are two converging spectral sequences converging to the
hyper-derived functors:

'EDI— HP(RIF (A)) = RPTI(A),
'EPY— RPF(HY(A)) = RPHI(A).

Indeed, these are just the standard double-complex spectral sequences of the double
complexF(1**), wherel ** is the Cartan-Eilenberg resolution Af
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Remark(1.2.8). —There are entirely analogous dual results for left-derived
functorsL F of right-exact functor$ . In the presence of enough projective objects
in A, we can defind."F: D~ (A) — D (B) analogously using projective (left)
Cartan-Eilenberg resolutions.

The approach using projective resolutions does not however work for us, since
in general there are not enough projective objects in the categories of sheaves on
schemes. In order to derive functors like we need to consider more general
resolutions than projective.

Lemma(1.2.9). —Let A be an Abelian category. Suppose that there is a full
subcategory (resp.P) of A, closed under formation of finite direct sums, and such
that any object oA admits a monomorphism in{eesp. an epimorphism fronan
object ofl (resp. P). ThenD*(A) (resp. D~ (A)) is equivalent toK " (l) (resp.

K~ (P)) with quasi-isomorphisms inverted

PROOF One replicates the construction of Cartan-Eilenberg resolutions and
the proof of (1.1.18) to show that any object@m™ (A) (resp.Ch~(A)) is quasi-
isomorphic to a complex of objects In(resp. P). Now after inversion of quasi-
isomorphisms we have equivalent categories.

(1.2.10) Suppose we have a subcategbrgf A satisfying the conditions of
the preceding lemma. Suppose furthermore thath — B is a left-exact addi-
tive functor which takes exact complexes of objects tf exact complexes. Then
it follows (using mapping cones) th&t takes quasi-isomorphisms between com-
plexes inl to quasi-isomorphisms iB. Hence ifK *(1)[Q~1] is K*(I) with quasi-
isomorphisms invertedjo F extends to a functdf : K*(1)[Q~1] — D*(B) as in
(1.2.1). LetR: D*(A) — K*(1)[Q 1] be the category equivalence given by (1.2.9).
Then the composition

D (A) 2 K*(H[Q Y & D*(B)

is in fact naturally equivalent t&*F. This is essentially the classical fact that

(hyper-) derived functors df can be computed usirfgracyclic resolutions.
Suppose now thd satisfies the conditions of the lemma, and BatA — B

is a right-exact functor of Abelian categories which takes exact compleXxgsoin

exact complexes iB. Then it extends similarly to a funct@: K= (P)[Q}] —

D—(B). LettingS: D~(A) — K~ (P)[Q~!] be the category equivalence whose ex-

istence is guaranteed by (1.2.9), we may consider the composite functor

(2.2.10.1) D (A)=>K (P)Q
Proposition(1.2.11). —Let G: A — B be a right-exact functor of Abelian
categories. Suppose that there is a full subcategbsgtisfying:

(1) Pis closed under formation of finite direct sums
(2) Every object iPA admits an epimorphism from an objectfn
(3) F takes exact complexeskto exact complexes.

Then the left-derived functdr—G is the composite functor (1.2.10.1).
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3. Derived categories of sheaves

Next we introduce the derived categories and functors of coherent sheaves on
schemes that will be central for the treatment of the Fourier-Mukai transforma-
tions in the following two chapters. We review a few elementary properties of the
functors we use, referring the proofs to Hartshoi38.[

The results quoted in this section should help the reader to appreciate the sim-
plification brought by the use of the derived-category set-up. As is evidenced by,
e.g., (1.3.10), (2.3.11) and (1.3.12), formulas that one guesses "should hold" indeed
do once one derives the functors involved.

Notation(1.3.1). —Let X be a scheme. We denote lilpd (X) the category of
Ox-modules. The derived categopy(Mod (X)) will be denoted simply byp(X)
and will be occasionally called by abuse of language the derived categiryldie
full subcategory oD(X) consisting of objecté all cohomology objectsiP(A) of
which are coherent sheaves is denotedigyn(X). Finally, for x = 4+, —,b, we
let D*(X) and D;,,(X) denote the categorie3*(Mod (X)) and D*(Mod (X)) N
Dcon(X), respectively.

(1.3.2) The categoryMod (X) has enough injectives (Hartshorrg] 111.2.2).
By (1.2.3), this enables us to construct the derived functors

RIr(X,e): D ( ) — D" (Ab)
Rf.: X) — D*(Y)
RHom(ﬁ,o) (X) — D(Ab)

RsZ0om(.% e): DT (X) — D*(X)

for.# € D~ (X) andf: X —Y amorphism of schemes. We shall use the following
notation for the hyper-derived functors:

HP(X,e) =HPoRI(X,e)
RPf, =HPoRf,
ExtP’(.Z,e) = HP o RHOM(.Z ) e)
EXtP(F 0) =HPoRZ0mM(.7 ,e)
Proposition(1.3.3). —(i) Let f: X — Y be a proper morphism. Thdrf,
mapsDcoh(X) into D/, (Y).
(i) Let F# € D, (X) and¥ € D/ (X). ThenR#om(.#,%¥) is an object of
Dgoh(x)

PrROOF. Hartshorne31] Propositions 11.2.2 and 11.3.3.

Lemma(1.3.4). —(i) If .# and¥ are exact bounded-above complexes of
sheaves on a scherfe and¥ consists of flat sheaves, th&at®*(.# @ ¥) is exact.

(i) Let f: X —Y be a morphism of schemes. Therf is an exact complex
of flat sheaves oN, f*.# is also exact.

(iii) Let X be a scheme. Then everk-module is a quotient of a flafx -
module.

PrRoOF Hartshorne 31] Proposition 11.1.2 and Lemma I1.4.1. Part (ii) is im-
mediate.
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(1.3.5) Let .# and¥ be bounded-above complexeshtod(X). By (1.3.4),
letting P be the full subcategory of flat sheaves, we may use (1.2.11) to produce
thetotal derived tensor product

L
FRY=L (Tot*(F ®e))(Y).
The derived tensor product is in fact a bifuncidr (X) x D~ (X) — D~ (X).

It follows from the definition thatdfég is computed simply by replacirng
by a quasi-isomorphic complex of flat sheaves and then taking the total complex of
the tensor product double complex.

We use the following notation for the hyper-derived functors (calleddbeal

L
hyper-Torfunctors):.7or,(.#,%4) =H P(# ®%). Notice that for sheave& and
¢ we recover the normal local Tor-sheav&®ry(.#,9).

(1.3.6) Let f: X — Y be a morphism of schemes. Again using (1.3.4), we can
form the derived functor

L~ f*: D (Y) =D (X).
Proposition(1.3.7). —(i) Suppose that¥ and¥ belong toD_,(X). Then

L
Z @4 also belongs t®_,,(X).

(i) Let f: X — Y be a morphism of schemes. Then the fundtorf* takes
Deon(Y) t0 Dggpn(X).

PrRoOF Hartshorne31] Propositions 11.4.3 and 11.4.4.

Proposition(1.3.8). —Let f: X —Y and g Y — Z be morphisms of schemes.
Then there are natural isomorphisms

R(g.o f,) = Rg. o Rf,
of functorsD*(X) — D*(Z), and
L(ffog*)=Lf*oLg"
of functorsD~ (Z) — D~ (X).
PrRoOF Hartshorne31] Propositions 11.5.1 and 11.5.4.

Proposition(1.3.9). —Let f: X —Y be a morphism of schemes. Then there
is a natural isomorphism

L - L
LI*'ZeLf"Y - Lf"(F29)
forany.7,4 ¢ D~ (Y).
PrROOF Hartshorne31] Proposition 11.5.9.

Proposition (1.3.10) (Leray formula). —Let f: X — Y be a morphism of
finite-dimensional schemes. Then there is a natural equivalence

RIM(X,e) =RI(Y,Rf,(e))
of functorsD(X) — D(Ab).

PrROOF Hartshorne31] Proposition 11.5.2.
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Proposition(1.3.11). —Let f: X — Y be a morphism of finite-dimensional
Noetherian schemes. Then there are natural isomorphisms

RHomy (L f*.#,%) = RHomy (#,Rf.¥)
for all .7 € DY) and¥ € D*(X).

PROOF Taking into account Hartshorn81] Proposition 11.5.3 and (1.3.10)
above, this follows fronibid. Proposition 11.5.10 by applyin®l (Y, e).

Proposition (1.3.12) (Projection formula). —et X and Y be Noetherian
schemes of finite dimension, and letf — Y be a quasi-compact morphism. Then
there is a natural equivalence

L L
for # € DP(X) and¥ € D_,(Y).

PrRoOOF. Hartshorne 31] Proposition 11.5.6.

4. A base change result

In later chapters we shall need a derived category version of cohomology base
change theorems. Here we derive a strong base-change theorem as a corollary of
a general Kiinneth-type formula, for which we include a proof for the lack of a
suitable reference.

This Kinneth theorem must have been known to Grothendieck by the late
1950’s; however, since the foundations of derived categories were not ready when
EGA Il [ 27] was published, these questions concerning "hyper-Tor" functors were
treated using spectral sequences. A quick glance at the thick formulas in 86 of
EGA Il provides a vivid illustration of the simplification provided by derived cat-
egories. Itis also another example of the principle that (modulo certain technical
conditions) formulas which "should hold" indeed do in the derived-category con-
text.

(1.4.1) Consider the following diagram of schemes (here not necessarily of
finite type over a field):

X1 XsX2
2T
X1 f Xo
Yl ><5Y2

/\
\/
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with f = f1 x5 fo. Recall the external tensor product o&of an Ox,-module.#;
and anOx,-module.%>:

F1WsF2 = (p1"F1) Ry, o, (P2" F2).

Using flat resolutions as in (1.3.5) we get the corresponding left-derived bifunctor

(o) és (0): D™ (X1) x D™ (X2) — D™ (X1 xsX2).

Theorem(1.4.2)(Kunneth formula). —For i = 1,2 let .%; be an object of the
categoryD,.(Xi). Assume that the schemes are Noetherian and of finite dimen-
sion, and that the; fare separated. Then

L L
(Rfy,.71) Bs(Rf2. %) = Rf, (ﬂl &%)

if either %1 or %, is quasi-isomorphic to a complex of S-flat sheaves. This is true
in particular if either X or X; is flat over S.

PrROOFE The Noetherian and dimensional hypotheses guarantee that the de-
rived direct images are defined for complexes not bounded below. By (1.3.11)
there are natural "adjunction” maps-1Rf.L f* giving

L L
(Rf1.71) Ks(Rfp %) — REL " ((Rfl*ffl) &s(RfZ*ﬂz)) .
Notice that

L L
Lf* <(Rf1*ff1) &S(sz*ﬁz)> = (LT'LGR 1. 71) ® (L F LR 2. 72)

L

Now the adjunction& f;*R f;, — 1 give a natural map
L L
(LpiL ffRfL.71) @ (LpsL f3R 2. 72) — (Lp171) @ (L p2F2)

L
= 71 Xg.%,.

Composing gives us a hatural transformation
L L
(R fl*ﬂl) ®S (R fz*ﬁz) — Rf* <ﬁ1 ®592> .

Whether this is an isomorphism is a local question; hence we may assume that
S= Spe¢A) andY; = Spe¢B;) fori =1,2.
Suppose%; is quasi-isomorphic to a complex &flat sheaves; replacé;

with this flat resolution. The7; %534‘2 = F1 Xg.%.

Fori=1,2 letili = (Ui ) be a finite affine open cover &f. Let il denote
the open affine covety ¢ xsUz g)qp Of X1 xsXo. Notice that in all these covers
arbitrary intersections of the covering sets are affine. @%tl;,.%;) denote the
simple complex associated to tBech double complex of%; with respect ta.l;.
Similarly, letC* (81,.%1 Xs.%,) be theCech complex with respect
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Now R (X, %) is quasi-isomorphic t€° (L4,.%;), and henc f;,.%; is quasi-
isomorphic toC*(4l;,.%;)~. But the sheaves of these complexes&fkat by con-
struction, whence

L . “ ~
(Rf1.71) Ks(Rf2.F2) = (C*(h1,.71) @aC® (U2, F2)) .
Similarly
L . ~
Rf, <ﬁ’1 &%) = (C*'(U, 71 Rs.T)) .

Hence we are reduced to showing that the compittly, . 71) @aC* (Uz, F2) is
quasi-isomorphic t€* (4,.71 Ks.%>). But this is shown in the proof of (6.7.6) of
EGA Il [27). 0

Remark(1.4.3). —If one wants to avoid the Noetherian hypothesis in the
theorem, one could work with object®; of D~ (QCoh(X;)) and require thef;
to be quasi-compact. This is essentially the viewpoint of EGA Ill. Another option
would be to restrict attention twoundedcomplexes; it follows from a general result
of J. Bernstein that the categori@8(QCoh(X;)) andDj,(X) are equivalent (see
Theorem 2.10 in Chapter VI of BoreT]).

Corollary (1.4.4). —Let f: X — Sand g T — S be two morphisms of finite-
dimensional Noetherian schemes. LetX xsT — T and d: X xsT — X be the
projections, and let belong toD,(X).

(1) If # is quasi-isomorphic to a complex of S-flat sheaves (in particular, if
f is flat), then
Lg'Rf,.# =Rf/Lg".Z.
(2) If gis flat, then
g'Rf,.7 =Rf/g".Z.

PROOE Apply the Kiinneth formulawitik; =X, Y1 =S f1 =1, Xo =Y =T,
f2=lT,g‘\1=§and352:ﬁT. Il

Remarkg1.4.5). —(i) This base change result strengthens a few similar re-
sults in the literature (see Bondal-Orlod][ Bridgeland [LO]) by eliminating the
smoothness or projection-from-a-product hypotheses.

(i) The projection formula (1.3.12) is also a special case of (1.4.2); indeed, set
Xg=XandY1 =Y, =S=X>=Y, and letf; = f, f, = 1y.



CHAPTER 2

Fourier-Mukai transforms

As explained in the introduction, we interpret the algebraic (or holomorphic)
transformation underlying the eventual Nahm-type transformation of Higgs bun-
dles as a (relative) generalised Fourier-Mukai transformation.

This chapter gives first a concise treatment of the elements of the theory of gen-
eralised Fourier-Mukai transformations. For a more comprehensive treatment, see
Mukai [51], [52], Maciocia 6], and Bridgeland 11]. We also recall conditions
for the transform to be an honest sheaf (tmeléx theorerhconditions). Then we
introduce a transformation for curves, with values in the derived category of the
Jacobian, and relate it to the original transformation of Mukai. The cohomology of
a transform is then computed.

1. Integral transformations

The "ordinary" Fourier transformation &f-functions on a vector spasecan
be described as pull-back fromh to V x V*, followed by multiplication by the
"character function" ex)(x,&)) and finally integration along the fibres towards
V*. Mukai noticed that the same idea can be applied to sheaves on an Abelian

-~

variety A to produce a transformatidd(A) — D(A):
F: .7 — Rprg (paF @ £),

whereZ is a Poincaré sheaf on the prodéct Aof Aand its dual Abelian variety
A. Itis remarkable that this transformation enjoys many of the formal properties of
the usual transformation: it is an equivalence and (up to sign) its own inverse trans-
formation, a Plancherel formulé Homp(.%,%) = Homp (F(.#),F (%)) holds,
and so on. For details, see Mukail].

This transformation can be generalised to situations where one has a%heaf
on the product of any schemgsandy.

Definition (2.1.1). —Let Sbe a separatek-scheme and leX andY be flat

S-schemes. I is an object 0DB (X xsY), therelative integral transformation

defined by is the functordy” . : D*(X) — D*(Y) given by

p L
q’)e{;Y/s(') = Rpry, (pri(e) ® ),

where pg and pp are the canonical projections BfxsY. WhenS= Speck) we
call the transform thabsolute integral transformatioand denote it bybs, ..

Proposition(2.1.2). —Leti: X xsY — X xxY be the morphisnipry,pr,)k.
ThenRi, =i, and

Oy js(0) = D7 (o).

29
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PrRoOOF We have the commutative diagram

X XsY
pry prz

X xY.
Notice that because both,peindp are flat morphisms, we have
pri=Lpri=L(i"op")=Li"oLp*=Li"op".
Using this and the projection formula, we have

@ L
Py v s(®) = Rpry, (pri(e) © &)
— Rq.Ri.(Li*(p'(+)) & 2

L
= Rg.(p*(e) ®Ri. 2).
Buti fits in a Cartesian square

X XY —— X x Y

| |

S —— SxS
AT
As S/k is separatedfg is a closed immersion, and consequently sé. idn
particular,i, is an exact functor and therefore equaRiq. Hence

7 % L . '*ta
Oy /s(0) =Ra.(p(0) @1, 2) = D7 (o)
as claimed. O

Remark(2.1.3). —We cannot avoid using the derived tensor product in the
above result, even i#Z is a locally free sheaf, becaugse? is not flat in general.

However, as is proper,i.# belongs always t@*goh(x xY).

(2.1.4) For flat SschemesX andY and forx € X, let Yy denote the fibre
pr;1(x), where pg: X xsY — X is the canonical projection. We have then a com-
mutative diagram

Y, — . Xxgy P2,y

L= |

K(X) —— X —— S
in which all squares are Cartesian. lLefenote the composition of the top arrows.
For an objectZ of D2, (X xsY) (resp.D2,(Y)), we denote by the "restriction”
Lj*% (resp. Li*.#) to Yy. For complexes of locally free sheaves these are just
ordinary restrictions tdy. If & is a locally free sheaf oX xgY, then for each
xeX

q);lv/s(k(x)) =i,
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wherek(x) is the skyscraper she&fatx. Indeed, consider the commutative dia-
gram above: the claim follows from flat base change around the left-hand square
and the projection formula applied jo Notice that, is exact.

Example(2.1.5). —Let X be an Abelian varietyX its dual, and leS be a
separated scheme. Recall th&®aincaré sheabn X x X is a locally free sheat’
such that for eacl € X the restriction?’|x, (¢, is isomorphic to the line bundle
on X corresponding td. Let & be the unique Poincaré sheaf normalised so that
both Z|x {0y andZ(q, . % are the trivial line bundles. Denote B¥s the pull-back
of this Poincaré sheaf 26 x X x S= (X x S) xs(X x S). Therelative Mukai trans-
formation functoMs: D2 (X x S) — DP_ (X x S) is the relative integral transfor-

coh coh
mation functord)isxs)ﬁ(xxs)/s. If S= Spec¢k), we denote the transformation by
M.

The following theorem of Mukai plays a crucial role in the proof of our invert-
ibility result (3.2.1).

Theorem(2.1.6). —If S is a smooth projective variety, then the relative Mukai
transformationM s is an equivalence of categories frdb (X x S) to DZ,(X x
S).

PROOF See Mukai $2]. The proof is a generalisation of Mukai's original
proof of this result for the absolute transfoivhin [51]. a

Proposition(2.1.7). —Let X and Y be flat S-schemes attlan object of the
categoryDth(X xsY). Letu: T — S be a morphism of schemes. Let Ky —
X, v:Yq —Y,and | (XxsY)r) = X1) X7 Y1) = X x5Y be the canonical
projections. Then

ok P Lj*& ok
Ligo®y” v /s =Py v, roLix:

Moreover, if u is a flat morphism, then all derived pull-backs above can be replaced
with normal pull-backs.

PrROOF Consider the commutative diagram

p
Xery X1 Y(m) X)

Qo

=]

N
<
n<—mo

It is immediate that all squares are Cartesiaru i flat, then so aré, iy and j;
this proves the claim about replacing derived pull-backs. Since in anyXcéSe
is flat, py, is also flat. So by (1.4.4) we can do a base change around the leftmost
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square. We get
Liy0 (o) = LisRpn. (pri(e) 5.7
—RgL (prﬁ(-) &P
—Rq, (Lj*(pr{(o)) éLj*@)

. L - i* g %
=Raq. <p*L|x(o)®L] @) :¢|§<(JT>i\qT)/T<L'X(’))'
O

Proposition(2.1.8). —Let X and Y be flat S-schemes and4étbe an object
of D2 (X xsY). Then

coh
P L
RI(Y, 9y /s(€)) =RT (X,& @ Rpry, 2).

PROOF We simply use the composition property of derived functors and the
projection formula:

RF(Y, 0 s(€)) = RF (Y, Rpr,, (1 & 22)) (by definition)
=RI(X xsY,prié& <§L§ ) (composition)
=Rl (X,Rpry, (pr; & é Z)) (composition)
=RIr(X,& <I§@ Rpr,,. &) (by projection formula)

O

2. WIT complexes

We shall now discuss conditions that force the integral transform to be an hon-
est sheaf (or in fact even a vector bundle).

Notation(2.2.1). —Let X andY be proper flaSschemes. We fix a locally free
sheaf2? on X xsY, and denote b¥s the relative integral transformation functor

CD)(Z]HY/S: D8on(X) — Deon(Y).

We leave it to the reader to generalise the results of this section to a more general
setting.

Definition (2.2.2). —We say that an objecf of D2 ,(X) is a WITz(n)-
complek if HP(Fs(&)) = 0 for all p# n. If & is clear from the context, we
shall omit the explicit reference to it. An object DE,,(X) is a WITcomplexif it
is aWIT(n)-complex for somen.

If &isaWIT(n)-complex onX, the (coherent) she&f"(Fs(&)) onY is called

theintegral transform of$’, and is denoted by?.

lFoIIowing Mukai, "WIT" stands for "weak index theorem".
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Definition(2.2.3). —We say that an objeet of D?_, (X) is anl T (n)-complexX

coh
if for each (closed) poing € Y and eachp # n we have

where we are using the notation of (2.1.4) & &y andX.

Lemma?2.2.4). —Let f: X —Y be a proper morphism of (Noetherian) schemes
and let& be an object oD?_ (X) which has a Y -flat resolution. LetsyY . Then:

coh
(1) if the natural mapeP(y): RPf.(&) ® k(y) — HP(Xy, &) is surjective,
then it is an isomorphism.
(2) If @P(y) is an isomorphism, thepP~1 is also an isomorphism if and only
if RPf.(&)is free in a open neighbourhood of y.

PrROOF This follows from EGA IIl [27] 87. However, that part of EGA can
be somewhat hard to read; one could also follow the simpler proof of Hartshorne
[32] Theorem 111.12.11, making the fairly minor and obvious adjustments for hy-
percohomology. O

Proposition(2.2.5). —Let & be an IT(n) complex. Therf is a WIT(n)-
complex, and’ is locally free on'Y .

PrRoOFE Our schemes are Jacobson, and so it suffices to restrict our attention
to closed points. Since pis flat, pr; &’ is quasi-isomorphic to a complex of sheaves
flat overY. Moreover,X is proper ovelS, and so pyis a proper morphism. We are
then in position to use (2.2.4). Lgk Y be a closed point. Now

(P8 @ P)y = &0 Py
on (X xsY)y = X;. Hence by hypothesis the natural map
OP(y): RPpr,, (pr& © 2) @ k(y) — HP(Xy, (P& © 2)y)

is trivially surjective — and hence an isomorphism by the base change theorem —
for all p# n. As the hyper direct images of a complex of coherent sheaves are
coherent for a proper map, we have

RPpr,, (pr;&® £2) =0

for p # n by Nakayama’s lemma. This proves the first part of the proposition.
Now in particularR™1pr,_ (pri& @ #2) = 0. Thus, by the second part of the
base change theorem”(y) is an isomorphism. But ag"~(y) is also surjective
and thus isomorphi®"pr,, (pr; & ® &) is free in a neighbourhood gf again by
the second part of (2.2.4). a

Proposition(2.2.6). —Let X, Y and S be as in (2.2.1), and letTi— S be
a morphism of schemes. Suppose #ias an IT(n)-complex on X. Then, in the
notation of (2.1.7)Li% & is a WIT(n)-complex with respect to the pull-back%

of # to (X xsY)r). Furthermore, iflj;kx\éa denotes the corresponding Fourier
transform, then

v (£) =Cige.

247" stands for "Index theorem".
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PROOF By the assumptions and (2-2-59’5?;\(/5(5) is a locally free sheaf
shiftedn places to the right. Hence (2.1.7) gives

ly (‘Dx_w/s(éa)) = q’xm_,y(T)/T(L'xéa)

But this shows tha@i&fﬂY(T)/T(Li;‘(@m) is also a locally free sheaf shiftedplaces
to the right. Both statements of the proposition are now immediate. O

3. A Fourier transformation for curves

We introduce a Fourier transform for curves with values in the derived category
of the Jacobian.

To fix terminology and notation, we first recall some basic facts about Jaco-
bians of curves; for details, see Miln&q, 50.

Notation(2.3.1). —Let X be a smooth projective curve of germisNe denote
by JX) aJacobianof X, i.e., a scheme representing the fundior Pic’ (X/T).

Let .7 be the correspondingniversal sheabn X x J(X). Recall that (X) is an
Abelian variety of dimensiog; let J(X) denote its dual Abelian variety, and let

—

be thePoincaré sheabn JX) x J(X), normalised as in (2.1.5).

(2.3.2) Choosing a base poifte X gives the Abel-Jacobi map: X — J(X),
taking the base point to 0. Notice thatis a closed immersion. Furthermore, this
choice gives (X) a principal polarisation and hence an isomorphigm J(X) —
@, which we use henceforth to identifyXJ)) with its dual. Under this identifi-
cation, the pull-backip x 1yx))* < is just the universal shea# onX x J(X).

(2.3.3) Let Sbe a separateklschemeXs = X x S, and let JX)g = J(X) xS
be the relative Jacobian of the trivial famig. We have a Cartesian square

X x J(X) xS —225 J(X)g

| !

Xs — S
Let .#s be the pull-back of# to X x J(X) x S. The relative integral transform
functord)i’ij(x)s/sz Db, (Xs) — D2, (J(X)g) is given by

coh

DY S s(®) = RPE, (Pr(e) ©.475),
where we can use the ordinary tensor product siségs locally free.

Definition(2.3.4). —The relative integral transformati@b&fi 1X)s/S is called
the relative Fourier transformatioron X x Sand is denoted b¥s. If & isWIT
with respect td-s, the integral transforrd’ is called theourier transformof &.

Proposition(2.3.5). —LetMs: D2 (J(X) x S) — D2 (J(X) x S) denote the

] g - coh coh
relative Mukai transformation. Then

Fsz Mso (Ip X 13)*.
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PROOF Consider the diagram

Xsxsd(X)g —— IX)gxsdX)g —2— I(X)s

9 .| !

Xs - J(X)S — S
ipx1ls

where the right-hand square is the fibre-product diagranj andp x 1s) xs1yx),.
It is clear that the left-hand square is also commutative, and that the composition
of the two top arrows is just the canonical projectiop. @ut this means that the
big rectangle is Cartesian, and hence so is the left-hand square too.
By definition,
Ms(e) = Rpz. (p1(e) ® Ps),
where s is the pull-back of the Poincaré sheaf ontXjk xsJ(X)s. Clearly
Ms= |*Ps. Now by the projection formula
Rj.(e® . #s) =Rj.(e) ® Ps.

Becausep; is flat as a base extension of a flat morphism, we can do a base
change (1.4.4) around the left-hand square to get
pak_o R(ip X ls)* = Rj* ¢} pq
Butip x 1sis a closed immersion and th&ip x 1s). = (ip x 1g).. Putting these
observations together, we get
Ms((ip x 1s)«(e)) = Rp2, (P1 ((ip X 1s).()) ® Ps)

=Rp2, (Rj: (pri(e)) ® Ps)

=Rpz, (Rj. (pri(e) ® #s))

= Rpr,, (pry(e) ® .#s) = Fs(e).

O
Proposition(2.3.6). —Let X be a curve of genus g and choose a base point
P € X asin (2.3.2); we suppose made the identifications diwencit. Let S be a

k-scheme, and denote by j the embedding (& x S)p — X x S of the fibre over
P. Let& be a bounded complex of locally free sheaves onX Then

g . —
HP(J(X) x SFs(&)) = PHP (S, j*€) (1),
i=1
PROOF By (2.1.8) we have natural isomorphisms
HP(J(X) x SFs(&)) = HP(X x S & @ Rpry,.#s)
for all p.

Lemma&(2.3.6.1). —With the notation of the propositioRpr;,.#sis the zero-
differential complexz* where %" is the direct sum of%"1) copies of j&s for
1<i <g, zero otherwise.
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Consider the Cartesian square

X x Sx JX) —F— X % JX)

pflJ{ lq

Xx$S ——p——> X.

By flat base change around the square we get
(2.3.6.1.1) Rpry, . #s=Rpr,p".# = p'Ra.. .
In order to comput&q,..# on X, we consider the Cartesian square

X x JX) 2L, 3(X) x I(X)

o [

X —  JX).

Ip
Now by the general base-change (1.4.4) we have

RqQ..# =Rq.(ip x 1)* &
= LIERTL’]_*@

But Rm..#2 = k(0)[—g], the skyscraper sheaf at O shifigglaces to the right (see
the proof of the theorem of 813 in Mumfor&3]). Notice thatip is a regular
embedding; thus in an affine neighbourhadd= Sped¢A) of 0 € J(X) the ideall
of X is generated by a regular sequence (xg,...,Xg-1). Lets: A9t — Abe
the A-module homomorphism mapping the elements of the canonical basis to the
sequence, and recall that the Koszul complex
k+1 .k 1 .

K(X) = — /\Agfld_)/\AgflL PR SR
where )

d(@onain--ra) =Y (—1)'s(@)ao A A& A Na

1=0
and "™ denotes omission, is a flat resolution®fl = (ip.Ox)|y. Now using the
projection formula we get

i, Link(0) = ip. O & k(0) = K(x) @ k(0).
But the elements of belong to the ideal of 0 € J(X), and hence vanish when
tensored withk(0) = A/m. Thusip,Li3k(0) is just the exterior algebra ¢&f0)9-1
with zero differential, placed in degrees freng+ 1 to 0. Butip is a closed immer-
sion, and hence the same holds fagk(0). Now the lemma follows immediately
from this and (2.3.6.1.1), taking into account the shift-hy.

Using the projection formula we have
HP(X xS & ® j.0s) =HP(S,|"8).

The proposition now follows from the lemma because hypercohomology com-
mutes with direct sums. O



CHAPTER 3

Transforms of Higgs bundles

We shall now apply the Fourier-transform machinery developed in the previous
chapter to stable Higgs bundles on curves. The algebraic (or holomorphic) trans-
formation underlying the eventual Nahm-type transformation for Higgs bundles is
constructed as a relative Fourier-transformation. We then show that the Higgs bun-
dle can be recovered from a canonical extension of its transform to a compactified
base. In the last section of this chapter we analyse the transform of the trivial Higgs
bundle on a curve of genus 2.

1. Definitions and basic properties

We construct Fourier transforms of Higgs bundles as relative integral trans-
forms of derived-category objects associated to Higgs bundles twisted by global
1-forms. The transform of a stable Higgs bundle will be a locally free sheaf on
the cotangent bundle of the Jacobian of the curve. To produce the compactifica-
tion mentioned in the introduction, we first build a natural compactification of the
derived-category object, and then apply the same machinery to it.

Definition (3.1.1). —A Higgs bundleon a smooth projective curve is a pair
E=(&,0), wheres is alocally free sheaf oK, andé is a morphismé — & @ Q.

The morphismé is often called theHiggs field The Higgs bundlerx 9 Qlis
calledtrivial .
The rank and degree (i.e., the first Chern class) of a Higgs buwdle)

mean the rank and degree of the underlying skaff E = (& S, & ® Q%) and

F=(# 3, F ® Q%) are Higgs bundles, by morphismE — F we understand a
morphism of sheaveg: & — . making the square

& 2 E®Qx

| [

7 Fo0k
n

commutative.

(3.1.2) LetE=(& S, & ®Q}) be a Higgs bundle oX. Then we can consider
it as a complex of sheaves concentrated in degrees 0 and 1, and hence as an object
in D2, (X). When we writeE ® .# or H*(X, E) etc., we consider the Higgs bundle
as a sheaf complex this way. Notice that the imagé ah D2 (X) does not
uniquely determine the isomorphism class of Higgs bundle(& %6 Q).
In fact, multiplying 6 by a non-zero constant gives a quasi-isomorphic complex;

however, the resulting Higgs bundle is not in general isomorphic.

37
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Definition(3.1.3). —A Higgs bundle(& LN & ® Q%) is calledstableif for any
locally free subshea of & satisfyingd(.#) c .# @ Q%, we have
deg# < degs
rk.7 rk& -

Theorem(3.1.4). —LetE = (& LN & ® Q%) be a non-trivial stable Higgs
bundle on X witldeg E) = 0. Then

HP(X,E) =0
for p# 1.
PROOF Hausel B3] Corollary (5.1.4.). Notice thaHP(X,E) = 0 automati-
cally for p > 2 because difX) = 1 and the length of the compléis 2. O

Lemma(3.1.5). —If a Higgs bundleE is stable, then so iE ® .2, where.Z is
an element oPic’ (X).

PROOF. Let.Z C & ®.% be asubbundle stable unde® 1. ThenZ @ .21
is a subbundle of’ stable undef. But tensoring with? affects neither the ranks
nor the degrees of and.#, and hence the lemma follows from the stability of the
Higgs bundleE. O

(3.1.6) LetE = (& % £ ®QL) be a Higgs bundle and € HO(X, QL) a global
1-form. Then ¥ ® « is canonically identified with a morphis#i — & ® Q. We
denote the Higgs bundigs m & ® Q%) by E(at). TheE(a) for varying o
fit together to an algebraic family parametrised by = HO(X,Q}).

Lemma(3.1.7). —LetE be a stable Higgs bundle. Théjx) is also stable
for anyo € HO(X, Q).

PROOF Let.# C & be a subbundle stable undéf = 0 +1® a. Lett ¢
FU,.7). Thenf,(t) =0(t) +t@a clNU,Z2Q%). Butte a e T (U,.F Q%)
too, and hencé(t) € I'(U,.Z ® Q}). Thus.Z is stable unde#, and the lemma
follows from the stability ofE. a

Proposition(3.1.8). —LetE be a stable Higgs bundle of degr@eand rank
> 2on acurve X of genusg 2. Then the complek on X xV = X x HO(X, Q)
is WIT(1) with respect to the relative Fourier transformatiéty of (2.3.4). In

particular, HL(Fy (E)) is a locally free sheaf od(X) x V.

PROOF By (2.2.5) we are reduced to showing tiais IT (1) with respect to
My Let(§,a) € J(X) xU. Then (using the notation of (2.1.4))

E ~F
( )m) (&) ® M,
and we need to show that

HP(X,E(a) ®///§) =0

for p # 1. But this follows from (3.1.5), (3.1.7) and (3.1.4). Notice that for a
rank-1 Higgs bundI& one of the bundleE(a) would be trivial, and the vanishing
theorem (3.1.4) would fail. O
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Definition (3.1.9). —Let E be a stable Higgs bundle of degree 0 and rank
> 2 on a curveX of genusg > 2. The locally free sheafi'(Fy(E)) on JX) x
HO(X,Q}) is called theFourier transformof E and denoted b.

Proposition(3.1.10). —LetE and X be as in (3.1.9), and let € HO(X, Q).
Then R o

Ejax)<{ay = E(a),

where the right-hand side denotes the absolute Fourier transform.

PROOF. By the proof of (3.1.8E is1T (1). Now the proposition follows from

the base change result (2.2.6) applied to the closed immefraipn- HO(X, Q%) —
PI. O

Proposition(3.1.11). —LetE = (& %ew Q}) be a non-trivial stable Higgs
bundle ofAdegreé) on a curve X of genus & 2. Then the rank of the Fourier
transformk is (2g— 2) rk(&).

PROOF It follows from (3.1.8) and (3.1.10) that (rﬁ) =dimH(X,E). Con-
sider the first hypercohomology spectral sequence

'EYY=HP(HI(X,E)) = HPT(X,E).
The E;-terms of the sequence are:

H(6
P = Y ke T mx . seal)

HO(6
HO(X, &) "% HO(X, & 2 Q1)

p

The sequence clearly degenerateBaai.e.,'ERPY = 'Efq, and hence
'EX® >~ HO(X,E) and
'Ey" = H2(X,E).

But these hypercohomologies vanish by (3.1.4), and Hfl¥X, 6) is injective and
H(X,8) is surjective. On the other hand,

HY(X,E) = 'EST ¢ 'EL? = kerHY(X, 0) @ cokeH?(X, 0),
and hence
dimHY(X,E) = dimH(X,&) —dimHY(X,& @ Q%)
+dimH%(X, & ® Q%) — dimH%(X, &)
=2(£®0Q%) — x(6).

But as de¢#’) = 0, the Riemann-Roch theorem gives

2(6) = (1-g)rk(6) and
x(6©Q%) = (g- k&),
whence the result follows immediately. O
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Theorenm(3.1.12). —LetE be a stable Higgs bundIerf degréand rank> 2

on a curve X of genus g 2. Then the Fourier transforr extends naturally to a
locally free sheaf 0d(X) x P(HO(X,Q%) @ C) = J(X) x 9.

PrROOF We proceed by extendinE to the compactification before the ap-
plication of the relative Fourier transform. Leat: X — Speck) be the struc-
tural morphism. Then thk-rational points of the vector bundle (or affine space)
V((m.Q%)") are canonically identified with the elementstef(X,Q%); we use
the notationH®(X,Q%) also for this scheme if no confusion seems likely. Let
2 =" (. Q%)) = (x*7.Q%)"; we have the canonical adjunction morphism

0: 9" = ' n.Qy — QF.
Let$: 2V — Qf @ &nd(&) be the morphism
t— (p(t) ®1le.

Onthe other hand, lag: 0x — Q} ® &nd(&£) be the map that takes 1 €o Putting
these together we get a morphism

y=0+v: 2"®0x — QrEnd(&).
BecauseZ @ 0x = n*((m.Q%)" @ k), we have a canonical isomorphism
Py (2 @ Ox) = X x B((m.Q%)" @ k) = X x P(HY(X, Q%) @ k) = X x P.

Let p: P =Py (2 @ Ox) — X be the projection. There is the canonical surjection
p*(2 @ Ox) — Op(1), and so by dualising a canonic@p(—1) — p*(2" @ Ox).
Composing this morphism witp*y we get a morphism

Op(~1) — P'(Qx @ End(€)),

or in other words a global section pf(Q} ® &nd(&)) ® Op(1). We interpret this
section as a morphism

O: p'é — P ER P QL ® Op(1),

and denote this complex of sheaves (in degrees 0 and RYoy1¥'(E).

In more pedestrian terms, lét;); be a basis 0H°(X,Q%), and let(a*); be
the dual basis oH?(X,Q%)". Lett: k — k be the canonical coordinate dn
then(t, o, ..., &) forms a basis of the global sections@s (1), andH%(X, Q%)
corresponds to the open affine subschen@afith t £ 0. Now

g
O=03t+ Zl@oq@ai*.
i=

Notice that the restriction of'(E) to X x HO(X, Q%) is clearly isomorphic td.
We claim that the relative Fourier transform

F =H'(Fp(¢(E)))

is a locally free sheaf extendiriy We show that#’(E) is T (1); we already know
this for the pointg&,z) € J(X) x HO(X,Q%). Let then(&, z) belong to the comple-
ment JX) x (P9 —HO9(X,Q%)). We consider the second hypercohomology spectral
sequence:

"EST= HP(X HI(4(E)) g  ©-45)) = HPIX, ((E)) g ©45).
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But
1o

(C(E)) (e = (6 = E2QK)
for a 1-forma # 0, determined up to multiplication by a non-zero scalar. Now
1® «a is clearly an injective map of sheaves; It be its cokernel. Thus thi,-
terms of the spectral sequence are

q

gD HO(X,. ® ) HY(X,. ® )

p

But .7 is a direct sum of skyscraper sheaves supported on the divisor of zeroes of
the one-form, and since skyscraper sheaves are flasque, we HaQeV®%5) =
0. Hence

HO(X,(€(E)) (g @ Me) = H*(X,(€(E)) (g @ M) =0

and so%(E) isIT(1). Thus.# is locally free. The fact that it extendsfollows
immediately from the base change result (2.2.6). O

The natural extension df constructed above is denoted BT (E) and is
sometimes called thital Fourier transformof E

Remarkg3.1.13). —i) This result parallels a similar one in Jardi38g] for
Higgs bundles with singularities on elliptic curves. Jardim’s proof was however
different, using analytic techniques to analyse the asymptotics of the transform
over the uncompactified base. The proof of (3.1.12) was indeed one of the first
indications that our proposed transform is the right one for Higgs bundles on curves
of genusg > 2.

(i) The construction of botlE andTFT (E) expresses them as extensions of
sheaves. Indeed, it follows from the first hyper-cohomology spectral sequence for
Rpr, that TFT (E) is an extension of a subsheaf Ef’l =Rlpr, (6X.#) by a
quotient ofEy® = pr, (€ ® Q%) K Op(1)K.#). Unless the termg;® andE;™*
of the spectral sequence vanish, the description of the extension is difficult.

(iii) We have already remarked that (3.1.8) breaks down for rank-1 Higgs bun-
dles — thel T -condition breaks down at the poif@,0) € J(X) x HO(X,Q%). Nev-
ertheless, the sheaf

TFT(0) := HY(Fp(%(0)))
on JX) x P9 for the trivial Higgs bundle€ = (&, 0) is a canonical object associ-
ated to the curve, locally free in the complemen{@f0). We shall study it more
closely in the case of a genus-2 curve in section 3.

Proposition(3.1.14). —Let E be a stable Higgs bundle of rank> 2 and
degreeQ on a curve X of genusg 2. Then

dimHP(JI(X) x P9, TFT (E)) =rg <g: D

whenl < p < g, and zero otherwise.
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PROOF LetP € X be a base point giving an embeddinpg X — J(X), and

denote byj the embedding® — X x P of the fibre pg}(P). Then by (2.3.6)
HP(J(X) x P8, TFT (E)) = HP*1(J(X) x P3,Fp(¢(E)))
9
(3.1.14.1) _ EBHF’““(PQ, j*%(E))@(?:ll).
i=1
We apply the first hypercohomology spectral sequence
'ESY = HP(HY(P, j*€'(E))) = HPYI(FY, [*¢ (E)).

TheE;-terms are given by

SO H(PS, 6y) — H(P9, G (1))

HO(P3, 6) —% > HO(PY, Opa(1)").

p

The standard results on the cohomology of a projective space (Hartsi8#ne |
[11.5.1) show that theEf’1 = Ell’l = 0. Furthermore, it is clear from the definition
of €(E) in the proof of (3.1.12) thad = H(P?, j*©) is an injection. Thus we see
that
dimHP(FS, j*¢ (E)) = {’9 It p=1,
’ 0 otherwise

Thus in the direct sum of (3.1.14.1) we have non-zero cohomology only when
i = p, and the result follows immediately. O

(3.1.15) We shall compute the Chern classes of the total Fourier transform of
a Higgs bundle using the general Grothendieck-Riemann-Roch theorem. We now
recall the statement of an appropriate version of it — for details, see S@8]6 [
or Fulton R1]. The definition ofK-rings generalises to complexes of sheaves and
more generally to derived categories (see SGA 6: ExposéH#te the reader may
assume for simplicity that k is embeddableCimnd that Chern classes have value
in cohomology with rational coefficientsee however Remark (3.1.16).

Let X be a smooth projective scheme okerand letK(X) be theK-ring of
Dcon(X). For an object’ of D¢on(X) let [£] denote its class iK(X). If & — .7 —
¢ — &[1] is a distinguished triangle iBD(X), then[.Z#] = [&] + [¢], and hence in
particular[.#| = [£] + [¢] for any short exact sequence9& — .7 — ¢ — 0 of
sheaf complexes oX. For translationd ' (A) = Ali] we have[T'(A)] = (—1)'[A].

As in the classical situation, there is tB&ern charactering homomorphism
ch: K(X) — H*(X,Q). Let.Z# be a coherent sheaf o, the total Chern class of
which factorises formally as

o(F) = [1(A+n).

Recall that theChern charactech(.#) is defined by
ch(.7) = Zexp(y.).
|
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This expression defines a formal power series which is clearly symmetric i the
and hence is a power series in the elementary symmetric polynomiplsadfich
are none others than the Chern classeg ofrhus chi.%) is a well-defined element
of H*(X, Q). Its lowest degree terms are given by

(3.1.15.1) chF) = 1K(F) +c1(F) +% <Cl(g)2*202(ﬁ)) +oo

This map extends to give the ring homomorphism EliX) — H*(X,Q).
Similarly, we define thdodd clasgd(.#) by the formal power series

td(7) =[] 1_(9)2’;)(_%)

Itis similarly a well-defined element of the cohomology riHg(X, Q), with lowest
degree terms

1 1
(3.1.15.2) 0F) = 1+ 50(F) + (c(FP 4 (7)) +--

For smooth projective morphismk: X — Y to another smooth projective
schemeY we have a covariant mafp: K(X) — K(Y) defined byf(A) = [Rf.(A)].
Similarly, there is a covariant mafp: H*(X,Q) — H*(Y,Q), defined via Poincaré
duality by the covariant map in homology.

Remark(3.1.16). —In arbitrary characteristics the cohomology ridg(X, Q)
needs to be replaced by the ratio@ilow ring A (X) ®z Q, the ¢-adic étale co-
homologyHg,(X,Q,) or another suitable theory. In fact, the original context for
Grothendieck’s theorem was the Chow ring, see Borel-S&reHor Chow rings
the covariant map has a particularly nice geometric description (see Hartshorne
[32], Appendix 1).

Theorem(3.1.17) (Grothendieck-Riemann-Roch). Fhe following diagram
commutes:

K(x) ST e e

fgl lf*

KY) —— H*(Y,C),

ch

where 7t = J% v is the relative tangent sheaf of the Y -scheme X.

Proposition(3.1.18). —LetE = (& LN & ® Q%) be a stable non-trivial Higgs
bundle on a smooth projective curve X of genus 8, with r = rk(E) > 2 and
degE) =0. Then

Ch(TFT (E)) = 1k(E) (g— 1+ (9 — 1)prach(Gpa(1)) +L.(1— prach(Gpa(1))) )
where t is the Poincaré dual of ti@-divisor onJ(X).
PROOF We first introduce some notation. Let H*(X,C) be the Poincaré

dual of a point anch = ch(0m(1)) € H*(P9,C). We denote by, t andh the
pull-backs of these classes to various products,af( X) andP9.
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By the Grothendieck-Riemann-Roch formula and the definition of the Fourier

transform, we have

ch(TFT (E)) = —ch(pry (pri'é'(E) @ #p)))

(3.1.18.1) — —pr,, (Prich(€(E)).ch(.#p)) 1d(Fp)) -

We begin with cli¢’(E)). There is an exact sequence
0— prx& @ pryx ® prp@p(1)[=1] — € (E) — pry&’ — 0,
whence

[€(E)] = prx[¢] — prx[¢].prx [@x]-prp[Op(1)].

Hence

ch(%(E)) = prxch(&).(1— prich(ax).h)
=r.(1—(1+ (29— 2)x).h).
Next we compute ch#(p)). We use a fact from Arbarello-Cornalba-Griffiths-
Harris [1], Chapter VIII: cH.#) = 1+ c—t.x, wherec = ¢1(.#). Hence
ch(.#p)) = 1+C—1x,
wherec s the pull-back ot. Moreover, we have the following identities:

1__
? = —oxi and Xc=0.

Finally, the relative tangent sheaf ¥fx J(X) x P2 over JX) x P9 is just the
pull-back of % = wy, and hence by (3.1.15.2)(t6,,) = 1— (g—1)x.
Substituting these in (3.1.18.1) we obtain

Ch(TFT (E)) = —pra, (r(1 (29— 2)%h)(1+C—X0)(1- (9— 1)X))

—h-
= —r.pr, ((1—h—(2g—2)xh)(1— (g— )X+ C— X))
= —rpro. (1—h— (g~ 1)%h— (g~ L)%+~ ch— X +5h).

~—

Now the proposition follows, as only the terms withsurvive through py,,
and

prZ* ()Z) = la
prZ*(—h) = h7
prp,(X) =t, and
pry, (Xth) =th.

Corollary (3.1.19). —Let& € Pic® (X). Then

Ch(TFT (E)|(gyxps) = IK(E) (9— 14 (g— 1) ch(Gm(1))) .
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2. Invertibility

We now prove one of this main theorems of this work: a Higgs bundle can
be recovered from its total Fourier transform. The proof relies in an essential way
on a (quite simple) use of the derived-category formalism: in our case once we
know the complex associated to a Higgs bundle up to quasi-isomorphism, we in
fact know it up to isomorphism.

Theorem(3.2.1). —LetE andF be two Higgs bundles on a curve X of genus
g>2. If TFT(E) = TFT (F), thenE = F as Higgs bundles

PROOF We show this by actually exhibiting a process of recovering a Higgs
bundleE from its total Fourier transformFT (E).

Stepl. Choose a base poiftc X as in (2.3.2), and lap: X — J(X) be the
corresponding embedding. Denote jothe immersiorip x 1yx). Then by (2.3.5)
Fre =Mmo j,.. By (2.1.6)Mps is a category equivalence; Iétbe its inverse. Now
by definitionTFT (E) = Fpe(¢'(E))[1], and hence

G(TFT(E))[-1] = J.(Z(E)).
Lemma(3.2.1.1). —The differential® of the comples’(E) is injective.

LetU C X x P9 be an open subset asd I' (U, pr&’) a non-zero section. There
is a pointz= (x,p) € U for which s(z) # 0. Because’ is locally free, it follows
(using Nakayama’s lemma) that there is an open neighboutood) of z such
thats(Z) # 0 for Z e V. If ©(2)(s(z)) = 0, it follows from the definition of®
that there is a poing € V with O(y)(s(y)) # 0, and in particula®y (s) # 0. But
this shows tha® is injective as a morphism of presheaves and hence as a sheaf
morphism too. Thus the lemma is proved.

By the lemma there is 0K x P? an exact sequence

(3.2.1.2) 0— pr;& 2 pri(€ ® QL) @ pryOes(1) — Z — 0,
and consequentl¥’ (&) is quasi-isomorphic taZ[—1]. It follows from this that
G(TFT(E)) = j.Z in D2_ (X x P?). Sincej,Z is an honest sheaB(TFT (E)) =

coh

j«Z% also inMod (X x P9). This means that we can recover the cokegdalf ¢ (E)
onX x P asj*(G(TFT(E))).

Step2. Tensor (3.2.1.2) with g (—1) and obtain the exact sequence

(3.2.1.3) 0= prié @ pryOm(—1) 225 pri(€ @ QL) — Z @ pryGes(—1) — 0.

We shall use the long exaR{pr,,-sequence associated to (3.2.1.3). By the projec-
tion formula

Rpry, (prié& @ pra0m(—1)) = & @ Rpry, pr;0p(—-1), and
Rpry, (pri (€ ® Q>l<)) =&R® Q>l< ® Rpry, Oxxp.

Now it follows from base change and the standard formulas for the cohomology of
projective spaces that

prL.pry0p(—1) = R'pry,prydp(~1) =0, and
pl’l*ﬁxxp = ﬁx.
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It follows then from the long exact sequence that (% @ prsOp(—1)) = & @ QF,
and that we may consequently recover the underlying sieaff E from & by
twisting by &p(—1), projecting down toX, and twisting by(Q})" = .

Step3. It remains to recover the Higgs fiell This will be done after dis-
carding much of the information contained #. We choose a non-zera €
HO(X,Q%), and we let) = Spec¢A) be an open affine subschemeXobver which
a does not vanish; thea gives a trivialisation of2% onU. Clearly it is enough to
recoverf overu.

LetV be the subvectorspace B (X, Q%) generated byx. We can consider
V as a closed subscheme of the open subschete, QL) of P(HO(X, Q%) @ k).
Furthermore, we considér x V as a subscheme bf x P(HO(X, Q%) ©k), and let
. be the restriction afZ toU x V; itis just the cokernel 0® restricted tdJ x V.
Notice thatU xV = SpecA[T]).

OnU the underlying sheaf’ of E corresponds to aA-moduleM and 6 cor-
responds to an endomorphisnof M. Furthermore, the pull-back &f toU xV
corresponds tM[T] = M ®a A[T]. By the definition of® in the proof of (3.1.12),
O|u xv corresponds to tha&[T]-linear map

v =1y ®T+U®1Am.
But y fits into the exact sequence

M[T] L M[T] = My — 0,

whereM, is the A[T]-module withT acting onM asu (cf. Bourbaki B], Ch. lII
88 no. 10). Hence” = (My)~. But theA[T]-module structure dfl, determines
and hencd|y. O

Remark(3.2.2). —Lemma 6.8 in Simpsorep] gives a description of Higgs
bundles orX as coherent sheaves on the total space of the cotangent bundle of
The schemé& x V in Step 3 of the proof is the total space of the cotangent bundle
of U, and the coherent sheaf onU x V is the one that correspondsEgq, under
Simpson’s correspondence.

Corollary (3.2.3). —The functorTFT from the category of stable non-trivial
Higgs bundles on X with vanishing Chern classe®ltml (J(X) x P9) is fully faith-
ful.

PROOF. Let E andE’ be Higgs bundles oX and let# and %’ be the coker-
nels of ¢(E) and¢’(E’) respectively. Because the relative Mukai transform is an
equivalence of categories, we have

Hom(TFT (E), TFT (E')) = Hom(%,%").

Thus faithfulness is clear. On the other handgletZ — #’; using the notation of

the proof of the theorem, the previous remark shows¢hafy gives a morphism

of Higgs bundles€|y, — E'|y. But as the genus of is at least 2, the canonical
linear system)Qy | has no base points. Hence we can covdry open sets likéJ;

it is clear that the morphisms thus obtained glue to give a morpkismE’. [

3. Example: The trivial Higgs bundle on a genus2 curve

We shall analyse the relative Fourier transform of the trivial Higgs bundle when
Xis a curve of genus 2.



3. EXAMPLE: THE TRIVIAL HIGGS BUNDLE ON A GENUS-2 CURVE 47

(3.3.1) Let chafk) = 0, letX be a smooth complete curve oderlnd let# =
Fp(O) be the relative Fourier transform of the trivial Higgs bun@le= (&, 0).
Then the base manifold¥) x P? of .# has dimension 4. Since the rank ©f
is 1, Hausel's vanishing result does not hold, and we cannot expetd have
non-trivial cohomology only in degree 1. By (3.1.18),

ch(Z) = 1+ ch(6(1)) +t —t.ch(6(1))

1 1
=1+(14+H +§H2)+t—t(1+H +§H2)

1 1
=2+H +(§Q—Ht)—§Qt,

whereH is the Poincaré dual of a line a@l= H? the Poincaré dual of a point in
P?. We may solve for the Chern classes to obtain

ci(F#)=H Co(F) =Ht

c3(#)=0 c(F) = (RQ),

where (P,Q) is the dual of a point (notice t@? is the Poincaré dual of a point in
J(X)).-

(3.3.2) To analyse further, let us first simplify the notation and wdite J(X),
P=P?, and let 0c J be the zero-element. Denote pyndq the projections grand
prp. For® onJ (resp. ond x P), let¥(n) denote? X Op(n) (resp.4 @ q* Op(N)).
Furthermore, let us assume that the base pBiatX (used to fix the Abel-
Jacobi map and thus to normalise our Fourier transform) has been chosen to be a
double zero of a one-form, or in other words one of the six branch points of the
hyperelliptic covering maX — P! given by the canonical linear system.
We consider the spectral sequence

'EPY = HP(Rpr, (¢(0) ® 2)) = HP*9(Fp(%€(0)).
TheE;-terms are

q "
EPY = PRIy ) M —— Ry (A @ Q%)(1)

P Pryx )l —— prJ(X)*(//®Q>1<)(1)~

Lemma(3.3.2.1). —The direct image sheaf;,.# is zero, and
Rpry, # = £ & S,

where.Z = Z(0) is the invertible sheaf of the theta-divisor on J, as is the
ideal sheaf of the poir € J.

PROOF. Since pjx,..# is reflexive (EGA Ill (7.7.6)), and since digh= 2, it
must be zero since it clearly vanishes {iXJ\ {0}. On the other hand, one can
compute the cohomological Chern character

(3.3.2.1.1) ckRpry, #)=—-1—-t
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(see Arbarello-Cornalba-Griffiths-Harrig][p. 336). Thus

ch(RYpry,.#) = 1+t = ch(.Z(0)) — ch(k(0)),
whereO is the theta-divisor. Let = (Rlpr;,.#)"" be the reflexive hull, which is
a line bundle since dith= 2. Becaus&®'pr,,.# is the first non-zero higher direct

image, it is torsion-free and thus the canonical rR&pr,,.# — & is an injection.
But this means then that there is an exact sequence

0— R'pry,.# — £ — k() — 0,
whenceRpry, .7 = £ ® H.

The cohomological Chern class specift&sonly up to a translation (i.e., up to
tensoring with a line bundl&’; for & € J). However, sincd is locally factorial, the
Chow-ring-valued first Chern class meg Pic(J) — Al(J) is bijective. Therefore,
in order to establish tha¥’ =~ £ (0©), it suffices to show that (3.3.2.1.1) holds also
for the Chow-ring-valued Chern character.

Leti =ip be the Abel-Jacobi map correspondingtolhen pg = pryo (i x 1),
and hence by the projection formula

Rpry, . # =Rpry, ((i x 1) 2)
= Rprz*(R(i X 13)*(i X 13)*9)
Now, using the original formulation of Grothendieck-Riemann-Roch with values
in A*(J) ®Q, we get
(3.3.2.1.2) clRpr;,.#) = pr,, (ch((i x 13).Oxx3)ch(2)).
On the one hand, we may again use Grothendieck-Riemann-Roch to compute
ch((i x 13)+Oxxy): with our choice ofP € X, we have

ch(i. Ox) = ch(i..ox)td(73) = i.(ch(Ox)td(Fx))
=i td(%%) =i.(1+ %(31(%()) =i.(1- %cl(Qi))
—i,(1-P)=©-0,

in A*(X), where® = i(X) is the theta divisor and is the class of(P) = 0 € J. So
Ch((l X 13)*ﬁx><3) = pr’i(@ — O)
On the other hand, by Milné[] (6.11), we have
c(Z) = pnO+pr0—mo,
wherem: Jx J— Jis the group law (notice that our identification morphidm J
producing the formuldi x 1)*&” = .4 is thenegative—¢ @) of the canonical
polarisation of Milne).
Finally, to compute the the self-intersection cl®% we use the exact se-
quence
O—><%(—><7J’)(—>,/K</J—>O
for the normal sheaf. t shows thai(m(/J) = —c1(%) = cl(Q)1<) = 2P. But
then©®? = 2i,(P) = 2-0 € A*(J). Now the claim follows from (3.3.2.1.2) by a
straightforward (if tedious) calculation. O

Lemma(3.3.2.2). —The direct image shedir;, (.# ® Q%) is isomorphic to
£V, and Rpr,, (.# ® Qk) = k(0), the skyscraper sheaf at the origin.
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PROOF As in the proof of (3.3.2.1), we show that
ch(Rpry,.# @ Q%) =1-0.

Again pry, (.7 @ Q%) is reflexive, hence locally free. From the Chern character we
see as above that it i¥’(©)". The remaining part of the Chern character comes
from Ripry . (.7 ® Q%) = k(0). O

It follows from the lemmas that thg; terms of the spectral sequence are

q
EPY = P (L ® ) —L= Oroyxp(1)

2V(1).

p

We see immediately th&t®(.%) = 0. An application of (2.2.4) shows that

H2(.7) = coker(d) = k(0,0),
the skyscraper sheaf on the point corresponding to no twist by either a line bundle
or a one-form. Let# = ker(d). Then.# = H(.%) is an extension of# by

£V (1). We see immediately that outside ¥} x P the sheaf”? is p* (¥ ® %).
Restricting to{0} x P we get the sequence

0— A |{0yup — Op @ Op — Op(1) — k(0) — 0.

From this it is clear thadl is given by two sectionsandt which vanish along lines
intersecting at & H°(X,Q%) c P, and the sequence above is just the correspond-
ing Koszul resolution ok(0) twisted by dp(1). But this means that|(q).p =
Op(—1).

Proposition(3.3.3). —The dimension dExt}(.7",.#" (1)) is 1, and H(.%) is
the (up to scaling) unique non-trivial extensionisf by £V (1).

PROOF We first show that the extension in non-trivial. Restricted to{0}
it is the absolute Fourier transform 6f= 0k & Q% [—1], and hence the extension
splits. However, restricting# to any otherd x {«}, the second cohomology van-
ishes by Hausel’s theorem, and th#sis a (shifted) coherent sheaf, an extension
of F(0x) by F(Q%)[—1]. If this extension were split, then it would follow from

the involutivity of the Mukai transform thafy —— Q% = Ox & Q% [—1], which is
absurd. Thus the global extension is non-trivial.
To compute the dimension of the Ext-space, we first splice the exact sequence

0— X — p(ZL®Ih)— Oryxp(1l) — Kk(0,0) — 0.
into short exact sequences
(3.3.3.1) 0—H —p(ZL®I) —4—0
and
(3.3.3.2) 0~ 9 — Oy0).p(1) — Kk(0,0) — 0.
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By, for instance, Serre duality, we see that¥k(0,0),.#" (1)) = k and that
the other Ext-spaces foe£ 4 vanish. Next,

Ext (G(0xp(1),-2" (1)) = Ext (O(0)p, L")
= Eth(ﬁ{O}xP(g)g(_g)ijxP)
=H*(IxP, 00 p(—3)®.2)"

by Serre duality. But using Leray spectral sequence and the projection formula for
g: J x P— J, we see that these cohomologies vanish #r2, and that

dimH?(J x P, G0y xp(—3) ®.%) = 1.
So it follows from the long exact Ext-sequence for (3.3.3.2) that
dimEx?(¥,.2V(1) = 1.
Now we get from (3.3.3.1) the exact sequence
= Ext(p (2 ® %), 2V (1) — Ext (o, 2V (1) - ExB(¥,.2V (1) =k

But since there is a non-trivial extension, the dimension of €%t, £V (1)) is at
least 1. Now the proposition follows from the next lemma.

Lemma(3.3.3.1). —We haveExt!(p* (£ ® .%),.£" (1)) = 0.
We get by Serre duality that
Ext'(p"(Z © 0),Z (1)) = Ext'(p"(£?© S0)(—4), @5p)
= H3(JIx P, p*(Z?® %) (—4))".

Since.#? is ample,H'(J,.£?) = 0 fori > 0 by Kodaira’s vanishing theorem
(this is where we use the assumption that ¢tklae 0). From the long exact se-
guence associated to

0— S — O;—k(0) —0
tensored with#? we see thaH'(J, .22 ® %) = 0 fori > 2, and we get the exact
sequence

0— H(J,22@ 75) — HO(J,.22) - HO(3,k(0)) — HY(J, 22 ® ) — 0.
Now the restriction??|x has degree 4 and thus its full linear system does not have
a base point (Hartshorn87] 1V.3.2). Hence the linear systep#’?| onJ does not
have a base point either, and & a surjection. So alsd(J, #?® %) vanishes.
Finally, we apply the Leray spectral sequencedord x P — P to compute
H3(J x P, p* (L% ® %) (—4)). By the projection formula and the preceeding com-
putations,

Ra.(p"(£?® ) (—4)) = Ra.p" (L2 @ So) ® Op(—4)
vanishes foi # 0. Sinceq.p*(£?® ) is a free shea’} for someN,
G.p* (L% ® S)(—4)) = Op(—4)*N.

But H3(P, 0p(—4)) = 0 and so allEx-terms of the spectral sequence with total
degree 3 vanish, which establishes the lemma.

So in particular there is (up to scaling) only one isomorphism class of non-
trivial extensions of# by .2V (1). O



CHAPTER 4

A-connections and twistor spaces

We now set up the general machinery that will be used in the next chapter
to construct a self-dual connection in the Fourier transform of a Higgs bundle.
The construction rests on standard twistor techniques and Deligne’s description of
the twistor space of the base manifold of the transform in terms of moduli spaces
of A-connectionsThe first section develops a generalisation of cerfagimodule
techniques to a setting encompassingonnections. In the subsequent sections we
review the theory oft-connections, the hyper-Kahler structure of the base space
of our Fourier transform, and the facts we need about twistor transforms.

In this chapter all schemes will be assumed to be 8me¢C). The complex
analytic space X" associated to a scheme X will be often denoted simply by X.

1. GeneralisedZx-modules

We recall and complement Simpson’s theory of generaliggemodules, or
modules ovesplit almost-polynomial sheaves of operatoftie purpose here is to
extend a some of the standard homological machinegggefmodules to this more
general setting, which encompasses Higgs bundles. More precisely, this machinery
will be applied to Deligne’sl-connections, but it is developed here in some more
generality than strictly necessary.

In this section we le6S be a scheme ovel and we fix a smootts-scheme
f: X—S

Definition(4.1.1). —An Ox-algebras/ equipped with an exhaustive increas-
ing filtration «7(© ¢ &7 ... is asplit aimost-polynomial sheaf of operators on
X over Sif it satisfies the following conditions:

(SO1) The Gx-modules/? is equal todx,
(SO2) The pull-backf 105 is contained in the centre of,
(SO3) The associated graded-algebragr® </ is isomorphic to Syth7 for a
locally free &x-module.7, and
(SO4) The projectionezV — grl.e7 has anfx-linear sectioro : gries — o7V
for theleft &x-module structure of7.
An </-moduleshall mean a@’x-coherenteft .o7-module.

(4.1.2) The structure of an7-module is fixed already by the action of M
since by(SO3) and (SO4) < is generated as a ring by’ (Y. It follows that to
give a coherent’x-module.# an </-module structure it is sufficient to give the
action ofc(grie?) on.# . This action has to satisfy certain commutation relations
depending on, see Simpsordl] Lemma 2.13.

Exampleg4.1.3). —(i) The sheaf?y s of relative linear differential opera-
tors onX is the canonical example of a split almost-polynomial sheaf of opera-

tors: .@;k/)s is the subsheaf of operators of ordek, and the associated graded is

51
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Synt % s, the symmetric algebra of the relative tangent sheaf.dhncoherent
9x,s-module is precisely a locally free sheaf equipped with a flat connection rel-
ative toS, and the action o6 (% s) is simply the covariant derivative. See Bjork
[4], Borel [7] or Mebkhout @8] for details aboutzZ-modules.

(i) The Ox-algebraeZ = Synt F% ;s = gr*Zx s is a split almost-polynomial
sheaf of operators. An/-module structure on a coherent shgafs andx-linear
morphismé: # — Z @4, Q% which satisfiegd, 6] = 0. In other words, a left
<7-module is the same thing astiggs shegfsee Simpsordl] p. 86 for details.

(iif) Let D C X be a divisor with relative normal crossings. Then there is
a split almost-polynomial sheaf of operatar s(logD), with gr1@x/s(log D)
eqgual to the dual of the she@‘}(/s(logD) of logarithmic differentials, such that
a Yx,s(logD)-module is the same thing as a shéafvith a relative logarithmic
connection

: & — Qx/s(log D) ®ﬁx &
relative toS.

Remark(4.1.4). —If < is a split almost-polynomial sheaf of operators on
X, then 0k has a canonica/-module structure with a sectidnof .7 = grl;z%
acting asit, ] on.«7(% = ¢x. For«/ = 9x s this gives the canonical relative flat
connectiondy /s: Ox — Q>1</51 and fore/ = Synf".7% s, one has thérivial Higgs
bundledy with 6 = 0.

(4.1.5) Let o/ be a split almost-polynomial sheaf of operators o8erWe
denote byDP(.«7) the bounded derived category of left-modules, not necessarily
Ox-coherent. The subcategory of objects with-quasi-coherent cohomology is
denoted b)Dgcoh(M). The standard arguments guarantee the existence of enough
injectives and hence of right-derived functors.

(4.1.6) Let .# and.#" be «7-modules. We give the tensor produ# © 4, -4
a structure of any'-module by letting the action of a sectibof .7 be

t(m®n) =tmen+matn.

There are enough’-flat modules, as can be seen by essentially the same argument
that applies to ordinargZ-modules (see Borel], VI1.2.4). It follows from (SO3)
that.« is Ox-flat, and thus any7-flat resolution is als@x-flat. Hence we have

the left derived bifunctor

L . A b b
(o) ®gy (o): D°() x D°(&7) — D°()
L
of tensor product ovefx. The underlyingZx-modules oH P(.#Z @ .#) are the
ordinary Tor-sheave§70r2X (A ,./) of the underlying@x-modules. It follows

L
that @, MapsDE () X Dfeon(4) 10 Dheoy(4/). Furthermore, it # or .4 is

locally free overd, all the higher Tors vanish.

(4.1.7) Let o7 be a split almost-polynomial sheaf of operators, vgthes =
7 of rankn, and consider the augmented complexs6imodules

(4171) 0_>%®ﬁx Anyi%®ﬁxAn_ly—>"'—>diﬁx,
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wheres: o @, N7 — o @6, N1 .7 is given by

(4.1.7.2) 6(a® (t1A...Aty)) = —_i(—l)ian @A AGAL AL

+ (—D'"a@ ([t 4] A A A AGAL AL,
1<i<)<k
with f denoting omission. Notice that it follows froas03) that the commutator
[ti,tj] = o(t)o(tj)) — o(tj)o(t) belongs toerV) and gives thus an element 6.
The augmentation is simply the action of# on 0.

Lemma(4.1.8). —The augmented complex (4.1.7.1) gives a locally free left
resolution of thesr-moduled.

PROOF For.o = 9 this is a special case of Spencer resolutions. Si#ds
locally free overdx, so are the terms of the resolution over For the exactness,
one may check that the proof in Mebkhod#] of a (stronger) similar statement
(Proposition (2.1.18)) foZx-modules does not make use of assumptionsZgn
beyond(SO1) to (SO4).

In the case where/ = SynT % (essentially the only case besides= Zx we
will use), one checks that the resolution reduces to a Koszul-complex, the exactness
of which can be checked directly. O

Definition (4.1.9). —The functorDR = DRys: Df( /) — D°(f16%)
given by
DR(.#)=Rxomy, (Ox, . #)
is called the (generalisede Rham functor
Proposition(4.1.10). —Let.# be an<-module.
(1) If & = Dx/s, the compleOR(.#) is the usual de Rham complex

0l = M@y s> MDD )5

with O(m® a) = OmA a — (-1)®*¥me da
(2) If o7 = Synt I s, the compleOR((£,0)) is

0-6%600kste00} e
wheref (e® o) = 0(e) A a. In particular, this complex igx-linear.

PROOF. We use the resolution (4.1.8) ofx to compute the de Rham object
DR(A#) = Romy (Ox,.#). Part(1) is well-known, see any of the references
on 9x-modules. For(2), we notice that in (4.1.7.2) the terms involving com-
mutators[t;,t;] vanish for</ = Synf % s. Thus the corresponding second term

—(—1)%%*m® da of the formula in casél) vanishes. O

Remark(4.1.11). —Let.# be aZx-module. It follows from (4.1.10) that the
hypercohomologyH*® (X,DR(.#)) is precisely the cohomology of with coef-
ficients the local systen¥’(.#') of horizontal sections of the flat connection, de-
noted byH3(X,.#') in Simpson 60]. Similarly, for a Higgs bundl& = (&£, 0), the
hypercohomologyd*® (X,DR(E)) is Simpson’'®olbeault cohomology B, (X, E).
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Proposition(4.1.12). —If f: X — Sis proper, theRf.DR(.#)) is coherent
for an Ox-coherente/-module 7. 1

ProoF This follows from the first hypercohomology spectral sequence
(4.1.12.1) EPY=RIf.DR(.#)P = RPTIf,DR(.Z).

Indeed, using the resolution of (4.1.8), we see that each teBR¢Gf# ) is a coher-
entOx-module, and hence each higher direct imB&EDR(.# )P is O's-coherent.
On the other hand, sind@R(.#) is f~10slinear, the differentials in (4.1.12.1)
are Oslinear, whence the proposition. a

2. A-connections

We resume and complement the treatment @onnections in Simpsor6g].
The theory was first outlined by Delign&f] and it was developed by Simpson in
[63].

Henceforth we assume thitis projective and thus comes equipped with a
very ample line bundl@x (1). The first Chern class; (0x (1)) is thepolarisation
[w] of X. If X is given the K&hler metric induced by the projective embedding,
then the polarisation class is represented by the Kéhler fgym

Definition(4.2.1). —Let A: S— A be a morphism of schemes, anddebe
a locally free0x «s-module. AA-connectioron & is a morphism of sheaves

0: 6= E86gss

on X x Ssatisfying the following conditions:

(1) O(ae) = lex da+all(e) “Leibnitz rule"

(2) 0°=000=0,
wherea ande are local sections of’x s and& respectively, and wherg is ex-
tended to amap’ ® Q} o5 — & ®QF, o5 by the rule

Oexoa)=0fAa+A -exda.

If A is the constant map with valuee C, then we call al-connection also a
(family of) c-connection(s). It is clear that a 1-connection is just a (relative) flat
connection. Similarly, folk = 0, the first condition says thal is &xxs-linear
and the second condition is simply, O] = 0; in other words, a bundle with a
0-connection is precisely ldiggs bundle Notice that the conditiofi], 0] = 0 is
vacuous ifX is a curve.

(4.2.2) Define a sheaf of algebrason X x Al to be the subsheaf of pfx
generated by sections of the form

Ztkuk,

where theuy are sections O@Q‘) andt is the linear coordinate oi®. ThenA|x,
is isomorphic toZx for anyt # 0, andA|x oy is isomorphic togr® Zx (see the
discussion in Section 5 of Simpsof3). So A gives a deformation ofZx to

Iwnile adequate for our present applications, this formulation is clearly unsatisfactory. It would
be preferable to have a theorem applicable to all objects of a suitable derived category. Bernstein’s
and Deligne’s theorems about derived categories of Ind-categories should provide the right tools.
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Synt Z. Furthermore/\ is a split aimost-polynomial sheaf of operatorsor A*
overAl, with griA = pri Z (Simpson §1] p. 81).

(4.2.3) Let us consider the situation of (4.2.1). For S— Al the pull-back
N, = (1x x A)*A onX x Sis also a split almost polynomial sheaf of operators over
S with griA; = pri . Itis easy to see that to give a locally fré® .s-module a
A-connection is precisely the same thing as to give it a structufg ahodule.

(4.2.4) Recall that theslopeu (&) of a locally free&x-module& on mani-
fold X with polarisation given by a Kéhler formy is u (&) = degé’/rk &, where
degs = [y c1(&) A wd™ -1, Thus if dimX > 2, the degree and hence stability of
& depends on the polarisatidey .

Definition (4.2.5). —Leta c A'. Then a sheaf on X with ana-connection
O is stable(resp.semi-stablgif for each locally free subshea C & stable under
0 (i.e., such thafl(.#) c Q>1<X5/S® Z) we haveu(Z) < u(&) (resp. u(F) <
u(&)).

Let 2: S— Al be a morphism. Then a shegifon X x Swith a A-connection
O is stable(resp. semi-stableif & is flat overS and (&s,0s) is a stable (resp.
semi-stable) sheaf with(s)-connection for als € S

Remark(4.2.6). —For a # 0 each bundles with an a-connection is semi-
stable; indeed, the slope of a subsheaf preserved by a flat connection is necessarily
the same as the slope éf i.e., zero.

Theorem(4.2.7). —Consider the functor MSch/,: — Setwhich to each
Al-schemel: S— Al associates the set of isomorphism classes of (f&its]),
whereé is a locally free sheaf of rank n onXS having vanishing (rational) Chern
classes along the fibres &f and O is a A-connection making&’, ) semi-stable.
Then:

(1) There is a quasi-projective moduli spael,4(X,n) for M, i.e., a quasi-
projective scheme that universally co-represents M.

(2) M,,4(X,n) has a natural projectiom to A%, and the geometric points of
the fibrex—! {a} correspond bijectively to Jordan equivalence classes of
semi-stable bundles with a-connections on X.

Recall that a schem®! is said to co-represent a functbt: Sch— Set if
there is a natural transformati@m: M — hy = Hom(e,M) that is universal in the
following sense: iZ is another scheme afédl: M — hz is a natural transformation,
there is a unique morphism: M — Z giving a factorisatiort! = hs o ®. Notice
that this is really the definition of aoarse moduli spacbut without specifying
what precise equivalence classes the closed poirits @present.

All semistableA-connections can be shown to have a unique filtration (the
Jordan-Hoélder filtration) such that the associated graded pieces are direct sums
of stableA-connections. Twaol-connections are said to be Jordan-equivalent if
their associated graded objects are isomorphic; for flat bundles, this means that the
semi-simplifications of their monodromy representations are the same.

PROOF. Apply Theorem 4.7. of Simpsoi®]] to the sheaf of ring#\ of (4.2.2)
on X x AL, This gives disjoint moduli spaces fér!-flat A-modules with fixed
normalised Hilbert polynomials. Lé% be the Hilbert polynomial oD, and let
M"? be the moduli space correspondingii®. Consider the subfunct(M('J1Fb of
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M"P which classifies the relativ&-connections orX x S with vanishing Chern
classes along the fibré6x {s}. Since the Chern classesof a flat family (&s)ses
of coherent sheaves on a sche¥iemooth and projective ove3 (considered as
sections of the relative de Rham cohomold@?pr&Q;(/S) are horizontal with
respect to the Gauss-Manin connection, the vanishing(ét) depends only on
the connected component 8fcontainings. It follows that the functonVI('?0 is
universally co-represented by a union of connected componeMs$f this open
subset igM , 4(X,n). O

Notice that the fibres d1,,,4(X,n) over 0 and 1 are respectively the moduli
spacedM (X, n) of semi-stable Higgs bundles aMl;z(X, n) of flat bundles.

Remark(4.2.8). —Let X be a curve; choosing a principal polarisation of the
Jacobian (X) lets us identify the Jacobian with its dual. Given this identification,
the moduli spac®l 4xz(X,1) is identified with Grothendieck'aniversal vector ex-

tensionJ(X)* of J(X), see Mazur-Messingiff] or Laumon #4]. In particular, for
a schems the (algebraic group) extensions ¢KJ x Shy a vector bundl& (&)
on Scorrespond bijectively to the morphisthi (X, Q%) ® 0s — &.

We obtain the following description of the moduli spade, 4(X,1): there is
an exact sequence

0— V(HO(X, Q%)) x AT = Mpq(X,1) 5 IX) x Al =0

of group schemes ovek!, wherer takes aA-connection to its underlying line
bundle. This extension is now just the "push-out" of the universal extension by the
multiplication-by-A € A* morphism

[A]: HO(X, QL) ® Opr — HO(X, QL) @ O

3. Harmonic metrics and the hyper-Kahler structure of M (X, n)

We continue to assume th#tis a smooth projective variety, and herecéor-
tiori a compact Kahler manifold. Led be the corresponding Kéhler form.

(4.3.1) Let & be alocally freex-module with a flat connectionl, and letE
be the underlying smooth complex vector bundl&gofWe continue to denote the
corresponding flat connection ihby [J; it has the decompositidd = [0’ 4+ 00" into
operators of typé€1,0) and(0,1) respectively. Assume th& is equipped with a
Hermitean metrid. Then we define operatods andé” to be the unique operators
of types(1,0) and(0, 1) such thatl’ + 6" andé’ + 0" are connections preserving
the metrich. We set

oh= (0 +8)/2 6h = (00— §')/2
oh=(0"+8")/2 o= (0" —§8")/2.
Notice that
(4.3.1.1) O =oh+6n and 0" =dn+6n

SinceO is flat, 0? = 0?2 = 0’0" + 0"’ = 0. This implies for the operators
induced byh that§’? = 6”2 = §'6" 4- 8" 4+ §' = 0. Hencedy, is a complex structure
operator irE if and only if

(4.3.1.2) a_hz — 08" +8'0" = 0.
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If this is the case, thef, is holomorphic with respect taq precisely when

(4.3.1.3) on(6n) =0'8"+6"0—0"8 — §'0" = 0.
Finally, for 6, to be a Higgs field it needs to satisfy
(4.3.1.4) 62 =-06 -0 =0.

The sumGh = 92 + on(6n) + 62 of the operators above is an Eiig-valued dif-

ferential 2-form, which we call thpseudo-curvaturef the metrich (with respect
to ). Hence(E, dy, 6y) is a Higgs bundle precisely whey, = 0. In this case we
call the metrich harmonic

Theorem(4.3.2)(Simpson). —Let (&,0) be a flat vector bundle on X and let
E be the underlying smooth complex bundle.

(1) There is in E an (essentially unique) Hermitean metric h with vanish-
ing pseudo-curvature gif and only if the monodromy representation
po: m(X,xX) — GL(Ex) is semi-simple.

(2) The construction of (4.3.1) establishes an equivalence between the cate-
gory of flat bundles on X with semisimple monodromy and the category of
direct sums of stable Higgs bundles on X with vanishing Chern classes.

PrROOF We sketch a proof of the statements:

(1) Let A denote the adjoint of wedging witla. The equivalence of the exis-
tence of a metrit such that\G;, = 0 and the semi-simplicity of the monodromy
representation is a deep analytic theorem of Corldig [That AG,, = 0 implies
Gnh=0is Lemma 1.1. of Simpsor6{].

(2) There is a construction of a connectiorBrstarting from a Higgs bundle
structure and a metrig, similar to the one in (4.3.1) (see Simps@Q][p. 13). The
existence of a metribh making the connection flat if the Higgs bundleislystable
(a direct sum of stable Higgs bundles) with vanishing Chern classes is a hard theo-
rem of non-linear analysis in SimpsoB9. That this construction and the one of
(4.3.1) are inverses to each other is Corollary 1.3. of Simp86j [ g

Remark(4.3.3). —We keep the assumptions of (4.3.1). Xebe the complex
conjugate manifold oK. Conjugation switches the roles (f, 0) forms and(0, 1)
forms and the roles o andd. It follows that in the construction (4.3.1), and
oh get exchanged, as dip and6,. _

We may then ask ifl, is a holomorphic structure operator 6and whethesy,
is a Higgs field. It is immediate that the corresponding pseudo-curvature operator
is —Gp. It follows that(E, dn, 6) is a Higgs bundle precisely whémis harmonic,
or in other words wherE, dy, 6,) is a Higgs bundle. Clearly the Higgs bundle
(E, dh, 6n) onX is stable precisely whe(E, oy, 6y) is stable orX.

Theorem(4.3.4). —The equivalence of categories of (4.3.2) induces a homeo-
morphism betweell ;(X,n) andM (X, n), which restricted to the smooth loci
is a real-analytic isomorphism betwedty (X, n)>MandM g, (X, n)S™.

PrROOF For the homeomorphism see Theorem 7.18. of Simp&8&n [For the
real-analyticity see FuijikiZ0]. O

Example(4.3.5). —Let X be a smooth complete curve of gergusNVe notice
first that the abelianisation ofy(X) is Z29, and hence the monodromy of a flat
connection in a line bundle is specified bg Bon-zero complex numbers. Thus
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by the Riemann-Hilbert corresponderndgg(X,1) is GH = (C*)%9.2 On the other
hand, it is clear thatl 5., (X,1) = J(X) x HO(X,Q%).

The underlying smooth complex vector bundle of all flat line bundles clas-
sified by M 4x(X,1) is the trivial line bundleL = X x C. The canonical Her-
mitean product metric ok is seen to be harmonic for all flat line bundles. But
then one sees from the construction of (4.3.1) that Higgs bundles with zero Higgs
field 6 correspond precisely to unitary connections. Thus the homeomorphism
M poi (X, 1) — M yr(X, 1) of (4.3.4) takes (X) bijectively toU(1)%9 C (C*)%.

Let O be the flat connection corresponding to a holomorphic line bugtle
(L,d). Then the connection corresponding(t&’,0) is 0+ 6 + 6. The mon-
odromy ofJ+ 6 + 6 around a generatar of w1 (X) is given by

(4.35.1) Moq(D+6+9_) :Mon,,l(D)exp<—/ 9+9_>.
%

Hence the homeomorphisM ,(X,1) — M x(X,1) of (4.3.4) is a homomor-
phism JX) x HO(X, Q%) — U(1)% x (R%.)%, and gives us a natural non-holomor-
phic polar coordinate system & (X, 1).

(4.3.6) Let M be the differentiable manifold underlying the smooth loci of
bothM yx(X,n) andM (X, n). ThenM has two complex structurésandJ given
by M 4r(X,n) andMy,, (X, n) respectively. In addition, the tangent space’af
M 4r(X,n) (resp. E of M, (X,n)) is isomorphic toH(X,DR(&)) = Hix(X,&)
(resp. HY(DR(E)) = H},,(X,E)). Both cohomology spaces can be described as
spaces of suitable harmonic forms and hence come equippedLtithetrics.
These giveM two Riemannian metricggr and gpol, Which in fact agree up to
multiplication by a constant.

Theorem(4.3.7). —M equipped with the metricyg (or gpor) and the complex
structures I, J and K= 1J is ahyper-Kahlemanifold.

In other words, the complex structuded andK satisfy the quaternionic iden-
tities
12=02=K?=1JK = —1,
andggr (andgpo) is Kéhler with respect tb, J andK.

PROOFE For the case wher¥ is a curve, see Hitchirp]; the general case is
Theorem (8.3.1) in FujikiZ0]. O

4. Twistor space of My, (X, n)

We recall the definition of the twistor space of a hyper-Kahler manifold and ex-
plain P. Deligne’s description of the twistor spaces of the moduli spgdggsX, n)
andMp, (X, n).

(4.4.1) Let (M,h) be a hyper-Kahler manifold with complex structutles)
andK satisfying the relatiohJK = 12 = J? = K2 = —1 and with respect to which
the metrich is Kahler. We identify the unit spher® c R® with PL. For any
z= (a,b,c) € & we get an almost complex structuge= al +bJ+cK on M. Itis
straightforward to check that is integrable and thdtis Kahler with respect tb,.

2The isomorphism (given by the Riemann-Hilbert correspondence) betggfX,n) and the
moduli space oh-dimensional representations of the fundamental group is holomorphic but not
algebraic.
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The tangent spac&m (M x Pt) splits asTyM & TPL. Give it the almost

complex structure
l, 0
<0 'Pl)’

whereln is the standard complex structure®¥ We have the following theorem
of Atiyah, Hitchin and Singer (see Salam&¥v] and Hitchin [34)):

Theorem(4.4.2). —The almost complex structure above is integrable. The
projectionprp: M X Pé — P(1: is holomorphic, whereas the projectiqm,,: M x
P~ — M is only real analytic.

Definition (4.4.3). —The complex manifoldiw (M) = M x Pt is called the
twistor spaceof M. The holomorphic sections of the form: Pt — {m} x P* for
m < M are callechorizontal twistor lines

For the moduli spacel! 4z(X,n) andM(X,n) there is a complex-analytic
description of the twistor space, due to P. Deligh§ pnd worked out in Simpson

[63]:

(4.4.4) The multiplicative group schen@, acts orA* by multiplication. This
action lifts to an action 06y, on M, 4(X,n) overAl: if me Gm(S) and(&£,0) is
a A-connection orX x S, then(&,mJ) is amA-connection, and this action gives
an isomorphisnM , ,4(X,n) — M, 4(X, n) coveringim: A' — AL In particular,
this action identifies the fibres o, 4(X,n) over anyA,A’ # 0 — they are all
isomorphic toM 4z(X,n). Thus we have the isomorphism

(4.4.4.2) M og(X,N) X a1 Gm = Myr(X,n) X G,
On the other hand, by the "Riemann-Hilbert correspondence" associating to a
flat connection its monodromy representatibh,o(X,n) is canonically complex-

analytically (but not algebraically, see Simpsd@®]) isomorphic to the moduli
spaceMg(X,n) of representations

p: m(X)— GL(n,C).

Let p denote the contragredient conjugate representation
_toat

P ="p(r) ",

the complex conjugate of the transposed inverse. Thenp induces a complex
anti-holomorphic involutiorr of Mg(X, n), hence an anti-holomorphic involution
7' of Myr(X,n). Leto: Pt — P denote the antipodal map, which is also an anti-
holomorphic involution (the real structure Bf without real points). Restricted to
Gm(C) = C*, itis given byz— —z 1.

Putting these together, we get an anti-linear involutiérof M 4x(X,n) x G
by
(4.4.4.2) o’(u,m) = (7'(u),o(m)).

But with the identifications above, this gives an isomorphism

0’1 Myjog(X,n) X a1 Gm — My, q(X,n) X a1 Gm
between the complex conjugate schemes.TLbe the scheme obtained by gluing
M 0q(X,0) to M, 4(X,n) over Gy usingo’. SinceP' is glued fromA® andAl
usingo, the projectiorM ,4(X,n) — Al gives a projectiomr: T — P,
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Theorem(4.4.5). —The smooth locus*" of T2"is complex-analytically iso-
morphic to the twistor spacew (M p, (X, n)*™) of the smooth locus &l 5, (X, n).

PROOF. Theorem 4.2 of Simpso16§. O

Proposition(4.4.6). —LetE = (&£, 6) be a stable Higgs bundle, and jet 71 (X) —
GL (n,C) be the monodromy of the associated flat bundle. Then the Higgs bundle
on X corresponding to the flat connection with monodrartyy) = p is (&, —0).

PrROOF This proof is due to Simpson. We choose a harmonic métiticthe
underlying smooth bundIE. Let E be the complex conjugate bundle. Lebe
the holomorphic structure of. In (4.3.3) we madé& into a Higgs bundle oX
with same associated flat bundle usiigas the holomorphic structure operator
and 6, as the Higgs field. By conjugating again, we can makato a Higgs
bundleE on X. Indeed, sections d& are of the formeTor e € ['(X,E), and we

takee— dn(e) to be holomorphic structure operator, ane> 6,(e) to be the Higgs
field. Moreover, we equif with the induced metri¢e[f) = (g f ); this metric is
clearly harmonic. The flat connection associate is seen to bél(e) = O(e),
wherel is the flat connection associatedio The monodromy representation of
(E, D) is the complex conjugate of the monodromy representatigi df)).

The metric gives a bundle mayp: EQE — X x ChbyM(e® f) = (€| f)n. Let
F = (E,d,—0), and consider the Higgs bundfez E. We have

M(9(€), f) +M(e,n(T)) = (9(&)] F)n+ (elon())n = (el F)n)

sinced + o is compatible withh. But this means tha¥l is a morphism of holo-
morphic bundles. Similarly,

M(0pg(e® f)) = —(6(€)|F)n+ (el6n(f))n =0

since® and 6y are adjoint with respect th. But this means tha¥l is a morphism
of Higgs bundles

M: F®E — (0x,0).
M comes from the metric and hence it is a perfect pairing, which showsthat
is the dual Higgs bundle . Since the correspondence between Higgs bundles
and flat bundles preserves duality, the monodromy representation associhted to
is the contragredient of the representation associated Buit this is precisely the

representationy — 'p(y) . O

(4.4.7) The horizontal twistor lines are described in this framework by har-
monic metrics on the underlying bundles of the&onnections: Letne M jz(X,n)
correspond to a semi-simple flat bundle, [0), and consider the decomposition
(4.3.1.1) of0 issuing from the harmonic metric. Fdrc A%(C) define inE an
almost complex structure

d),=0d+A6
and an operator
0, =10 +6.

Thengl is integrable andl; is aA-connection in(E,a_,l). This family is clearly
holomorphic inA, and so we have a relativieconnection orA® x X /Al and thus
a sectiono of the canonical mag : M 4g(X,n) — AL
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We produce similarly a conjugate linelt,, (X, 1), and we have to check that
these glue together undet to give the horizontal twistor line. The verification of
this is straightforward, see pp.233-234 in Simpsas].[

Proposition(4.4.8). —If X is a smooth projective curve, théh, 4(X,1) isa
fine moduli space, i.e., a universal famiy exists globally oM, (X, 1).

PROOF We shall give an explicit construction since it will be useful for us
in what follows; it would also be possible to modify the proof of the analogous
statement for vector bundles with co-prime rank and degree in Newsi&htb|[
apply to the GIT construction of the moduli spade, 4(X, 1) in Simpson §1].

By (4.3.5) and (4.4.5), we have a real-analytic isomorphism

Mioa(X,1) 2 Al x J(X) x H(X, Q).

On My, (X,1) there is obviously a universal family of Higgs bundles with
underlying sheaf gr,,&”; we wish to expand this to a family ovéd, ,(X,1)
using the "halves" of the twistor lines in (4.4.7).

Atapoint(&,8) € J(X) x HO(X,Q%), denote the complex structure operator of
L by dg. At (4,&,0) € At x J(X) x H(X, Q%) choose as in (4.4.7) the complex
structure operatad: + 26 and al-connectiom dg + 6. This gives a real-analytic
family % of rank-14-connections oM, 4(X,1) x X, which clearly restricts to
the universal family oM, (X, 1).

The holomorphicity of the family in the A-direction is clear sincé is linear
in the defining equations. Due to the trivialisation

in (4.4.4), itis enough to check the holomorphicity in the fibre direction for the fibre
over 1€ Al, i.e., forMx(X,1). But it follows from (4.3.5) that the monodromy
of Z at

(C1,...,Cg) € Mgr(X,1) = (C*)P = (U(1) x R% )&

is (Cy,...,C2g), and thus the restriction & to M z(X,1) x X is indeed the uni-
versal family of flat line bundles. d

5. Autodual connections and twistor transform

We will be making use of the twistorial theory of auto-dual connections in
Kaledin-Verbitsky B0, 64. What follows is a concise summary of the construc-
tions involved.

(4.5.1) Let M be a hyper-Kahler manifold. The complex structuresandK
give an action of the quaternions on the tangent bufidieand hence an action
of the groupSU(2) = Sp(1) of unit quaternions. This action extends to tensor and
exterior powers, and so in particular to the bundles of differential forms.

Definition (4.5.2). —A connectionl in a vector bundlde on M is auto-dual
if its curvature 2-formi is invariant under the action &U(2).

This generalises the self-duality condition from 4-manifolds to (not necessar-
ily Hermitean) connections on hyper-Kahler manifolds. There is also a slightly
stronger notion ohyperholomorphiconnection, which is additionally required to
be compatible with a Hermitean metric in the underlying bundle.
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(4.5.3) Let E be a complex vector bundle ovi, equipped with a connection
0. The pull-back pi E on Tw(M) has the natural pull-back connectiorj,fat. By
Lemma 5.1 of 40] the curvature of gy is of type (1,1) precisely wheri] is
auto-dual. In particular, for autodu@lthe pull-back pf; 0 defines a holomorphic
structure on g E; the resulting holomorphic bundle dw (M) is called thewistor
transformof the autodual bundlée, ).

Definition (4.5.4). —A holomorphic bundle on Tw(M) is calledtwistorial
if the restrictionsn*.# are trivial for all horizontal twistor linegn™ Pt — Tw(M).

Proposition(4.5.5). —The twistor transform of an auto-dual connection is
twistorial.

PrROOF This follows directly from the construction. a

(4.5.6) Let.7 be a twistorial holomorphic bundle drw (M) with underlying
smooth complex vector bundle and holomorphic structure operatér The a
real-analytic isomorphisiiw (M) = M x P! induces a splitting

21 Tw(M)) = pry/ > (M) @ prin.e7 °*(P)
of the type(0, 1) forms. This gives the decomposition
9 = oy + O
of 9: F — F ® %! into operators
§M F—F ®pr>,(,|42/,\§,)’1,
O F—>F® pf;,l.fzf'fl’l.

We call smooth sections &f in the kernel'(Tw(M),F) of 8_P1 twistor holo-
morphic sectionsand define awistorial direct image shegiry,, (.#) onM by

(U, Py (%)) = Faw(pry*(U), F).
Then pf, -7 is a sheaf of sections of a smooth complex vector bundlé/lon
Moreover, sinceZ is twistorial, p§,pry_-# = .%, and the operatagy gives by
adjunction an operator

(4.5.6.1) O: iy, Z — Phy. (9’@@%@71) = pry F ® M),

where the isomorphism results from a version of the projection formula fpr.pr
It follows from Lemmas 5.8. and 5.9. ofi}] that O is an autodual connection
in pry..#, the complex vector bundle gr .7 with the autodual connectidf is
called theinverse twistor transfornof .%.

Theorem(4.5.7). —The twistor transformation and the inverse twistor trans-
formation are quasi-equivalences to each other and establish an equivalence be-
tween the categories of bundles with autodual connections on M and twistorial
holomorphic bundles ofiw (M).

PROOF Theorem 5.12 of Kaledin-Verbitsky{]. O



CHAPTER 5

An auto-dual connection in the transform

We shall now proceed to construct a natural autodual connection in the Fourier
transform of a stable Higgs bundle on a curve. Using the twistor theory of the
previous chapter, we are reduced to constructing a suitable holomorphic vector
bundle on the twistor space of the base manifki)J HO(X, Q). But the twistor
space has been identified with a space glued from two copies of moduli spaces of
A-connections. The construction is now based on derived direct images of natural
families of A-connections.

We continue to assume that all schemes are @ver

1. Construction

We shall construct a twistorial bundle on the twistor space of the base manifold
M (X, 1) and show that it is the twistor transform of a connection livingin

Notation(5.1.1). —Let X be a smooth projective curve of gengis> 2. We
denote byM the moduli spacév,(X,1) of rank-1 Higgs bundles oX. It is
naturally isomorphic to the cotangent bundle of the Jacobfn df X, i.e., to
Jx H = J(X) x HO(X,Q%).

(5.1.2) We may translate the definition (3.1.9) into the framework of the pre-
vious chapter. In fact, the base manifold Bfis just the moduli spacé! =
M (X, 1) of rank-1 Higgs bundles. The compleXpg,E® pry, ;.# as an object

of D2 (X x M) is clearly the "de Rham complex"

L
DRxxmM/m (prﬁ}E@ff) :

where7 is the universal rank-1 Higgs bundle ¥nx M and the tensor product is
taken in the derived category of Sy v ,v)-modules (see section 1 of Chapter
4). Thus

~ L
E=Rpr,, <DRXXM/M <pr;<E®jf>> .

We shall show that this locally free sheaf admits an autodual connection by
using the twistorial description of the previous section.

Notation(5.1.3). —Let X be a smooth complete curve. We continue to denote
by M the hyper-Kahler moduli spadd(X,1). LetT = Tw(M) be the twistor
space. By (4.4.5) it is glued together frdvh, ,4(X,1) andM, 4(X,1) by means
of the anti-holomorphic involutiors’ of (4.4.4.2); we denote these "halves" of
the twistor space by ™ and T~ respectively. LetZ be the universal rank-1-
connection oriT* x X, and denote byt: T+ — Al the natural fibration. Then
62/‘1—1(0) - %

63
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(5.1.4) Let E be a stable degree-0 Higgs bundle of rank 2 on X. The
construction in (4.4.7) of the (half of the) horizontal twistor line through the point
in My, (X,n) corresponding td& gives us a bundle with &-connectionE’ on
Al x X, which restricts tcE on {0} x X. Let

L
Ef=AxIx)'FoZ.
We consider the object
FT = RlpI’T+* (DRXXT+/T+ (E+))

of D2, (T*). By construction the restriction o * to M C T is the Fourier

transformek.

Lemma(5.1.5). —The sheaf# " constructed above is a locally fre@r-
module.

PROOF SinceX is complete, it follows from (4.1.12) tha# * is a coherent
O1+-module. Hence it suffices to show that the dimension of the fifeégm) is
constant fome T =M, 4(X,1). Forme Mp,(X,1) this follows from (3.1.8).
But by Corollary 2.3. of Simpsore[]

F(m) = .77 (),

wherem’ € Mx(X, 1) corresponds ton € M, (X,1) under the homeomorphism
of (4.3.4). Finally, form¢ M = M, (X, 1) this follows from the trivialisation of
Mp0d(X, 1)\ Mpy (X, 1) in (4.4.4) and the fact that multiplication of the differen-
tial of a de Rham complex by a constant does not affect its hypercohomolagy.

Remark5.1.6). —LetX be a curve of genus 2, and consider the st&af, 1,
associated to theivial Higgs bundle(&x,0); it is the first higher direct image of
the universal flat line bundle, and it fails to be locally fre¢@0). For an explicit
description of it, we refer the reader to Gunni3g]f

(5.1.7) Consider the universal rank-1 Higgs bun¢ex C, d¢, 6) on the base
J(X) x HO(X, Q%) x X =Mp,, (X, 1) x X. Using the harmonic (i.e., product) metric
onL =X x C, we get by (4.3.1) the operatosandd:. By (4.3.3),(L, g, —6¢)
is a (in fact universal) family of Higgs line bundles &h, (X,1) x X. As in the
proof of (4.4.8), for eacih € C, dz — A6 is a complex structure operator for
onX, andAds — 6 is aA-connection inL,dg —A6¢). Itis clear that the family is
holomorphic with respect td —. We denote this family of rank-1-connections
onT- xXbyZ~.

Lemma(5.1.8). —The anti-holomorphic involution of the moduli space of
representations oft;(X) used in the gluing of T from Tand T~ exchanges the
monodromies of the restrictions @f and% ~ to moduli spaces of flat connections.

PROOF First, by (4.3.3), the conjugate family ¥ with complex structure
operatordg + A6 andA-connectiom d; + 6 restricted taVl (X, 1) has the same
monodromy a%/ .

It follows from (4.3.5.1) that the ma@ — —6 corresponds to

((pl,...,qozg,rl,...,rzg)»—> ((pl,...,(ng,l/l’l,...,l/l’zg>



1. CONSTRUCTION 65

in polar coordinates ofC*)?9. But this is just the map

(Cla s 7C29) = (Cilila e 7C72971)7
i.e., the involution of the moduli space. O
(5.1.9) LetE ando denote the underlying smooth complex vector bundle and
the holomorphic structure operator of the Higgs burtdl&/sing a harmonic metric
hon(E,d,6) we get by (4.3.1) and (4.3.2) operat@sandd, such that
O=0oh+0+6+6n

is the flat connection corresponding£dy (4.3.2). Now by (4.3.3) the operatéy
defines inE a structure of a holomorphic bundle on the complex conjugate curve
X, and the operator 6, makes(E, d) into a stable Higgs bundle we denote by

(5.1.10) As in (5.1.4), the Higgs bundié gives us a holomorphic family
E = (E,Ad — 6n+0h—10)
of A-connections ofX parametrised bAl. This is just the family giving a half
of the twistor line corresponding tB in the twistor spacd ~ = My, (X,1) =
Mpo (X,1). Let
L
E=Axl)Eez .
Consider the object
F~ =R'prr—, (DRyy1-/7-E7).
It is a locally free#r--module by the same argument that was used#or in
(5.1.5).

Proposition(5.1.11). —Leto’: T* x1Gm — T~ x ;7 Gm be the morphism
used to glue together the twistor space T in (4.4.4). Then the pulled-back vector
bundlec’ (.7 ~) is isomorphic to the restriction a# * on T* x a1 Gn.

PROOF Consider the morphism
f=(0"%x1x): T" Xpa1Gmx X =T~ xz7Gmx X.
Notice thatf is a morphism of schemes, but not a morphisnCeschemes. Since
F~ =Rpr;_,(E7) is locally free, it follows that
¢"(F7) =Riprr.(f*(E)).

DenoteN = M 4x(X, 1). LetE] be the restriction oE ™ toN x X, and let#," =
Rlpry,E; be the restriction o7 toN C T*. Now onT* x a1 Gm =N x G we
have the familylL ~1E* of flat connections by (4.4.4). But since multiplication of
the differentials in a complex does not affect its hypercohomology, it follows that
the restriction of# ™ to N x G, is the pull-back pg.#,". Similarly, letE; denote
the restriction ofE~ to M (X, 1) x X; then we see that the restriction &~ to
T~ X437 XGm =N x Gy is the pull-back of#; = Rlprg,E; .

Hence it is enough to find an isomorphism

Rpry. (Ef) = R'pry. (f*Ey)
But now the proposition follows from the following lemma.

Lemma(5.1.11.1). —There is an isomorphism*fE~) — —E* on Tt X a1
{1} =Mgr(X,1).
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Let.#* be the family of local systems (i.e., locally constant sheave$) X
for whichE] = £t ®c Onxx, and letZ~ be the family of local systems dwix X
for whichE] = .4~ ®c Oy,x- Thenf*E] = f1.¢~ ®c Onyxx. But it follows
from (4.3.3) and (4.4.6) that 1.~ =~ £+, whence the lemma. g

(5.1.12) The proposition allows us to glue the sheav®$ on T+ and.Z ~
on T~ together into a sheaf oh. Let us denote this sheaf k. Notice that the
gluing map is essentially constant in t8g,-direction, being pulled back from the
gluing map forM 4x(X,1) C T.

Lemma(5.1.13). —The glued-together sheaf constructed in (5.1.12) is a
twistorial locally free&r-module.

PrROOFE That.# is locally free is clear since it is glued from two locally free
sheaves. We need to show that it is twistorial. tetP* — T be a horizontal
twistor line. Then formality Lemma 2.2 in Simpso@({ gives trivialisations of
m*.Z overAl andAl. Since the gluing in (5.1.12) is propagated from the isomor-
phismni*.% (1) — m".%(—1), the transition function will be constant. Hence the
locally free sheam™% is in fact globally free. O

Proposition(5.1.14). —The the underlying vector bundle of the inverse trans-
form of # isE.

PROOF This is evident from the definitions and (4.5.7). a

Theorem(5.1.15). —The Fourier transfornE of a stable Higgs bundl& on
X has a natural autodual connection.

PrROOF This follows from (5.1.13), (4.5.7) and (5.1.14). g

Remark(5.1.16). —The use we make of Simpson’s formality lemma in the
proof of (5.1.13) hides a crucial analytic input to the result. The formality lemma
is proved representing both the Dolbeault cohomology of a Higgs bundle and the
de Rham cohomology of the associated flat bundle usingdhgespace of har-
monic differentials. The construction of the corresponding Laplacian depends on
the Harmonic metrics.

2. Further properties and open issues

We discuss briefly some further properties of the transform and outline a few
conjectures and questions for further research.

(5.2.1) As mentioned in Introduction, the Fourier transform can also be de-
fined as the bundle of kernels of suitable coupled Dirac-type operators. Indeed, in
[36] Hitchin discusses a Dirac operator

D*: #*°(E)® &% (E) —» &M (E) & @ E),

wherekE is the underlying smooth vector bundle of$l{(2)-) Higgs bundleE, and
shows that the kernel @* is isomorphic to our hypercohomology spat& X, E).

Now it would be a straightforward task to give a differential-geometric definition
of our transformation using coupled Dirac operators corresponding to our twists by
line bundles and one-forms.
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(5.2.2) Using the Hodge star and a metricinthe differential-geometric con-
struction allows us to define a Hermitean inner product in the transform by the
point-wise formula

[ vl va)+ (vl < ve)

on the kernels of the twisted operat@s.

On the other hand, the Poincaré duality for Higgs bundles (see Simf6pn [
Lemma 2.5) can be used to give a twistorial description of a Hermitean metric in
the transform. We conjecture that these two metrics will turn out to be (essentially)
the same.

(5.2.3) The Hermitean metric in the Dirac operator kernels allows one to con-
struct a connection in the transform using the projection-of-the-trivial-connection
approach applied in Donaldson-Kronheim#8g][to the Fourier transform for in-
stantons. The connection obtained this way should turn out to be the same that we
construct using twistor methods. Moreover, the connection thus obtained should
be compatible with the Hermitean metric.

(5.2.4) An open issue we propose to work on in the future is the asymptotic
behaviour of (the curvature of) the autodual connection. We expect that suitable
asymptotic conditions on the connection should allow one to identify the essential
image of the transformation and thus strengthen the invertibility theorem (3.2.1).
The properties of the Hermitean metric are likely to be crucial to the understanding
of the asymptotics.
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