
A Fourier transform for Higgs bundles

Juhani Bonsdorff





Contents

Introduction 4
1. Background 4
2. A transformation for Higgs bundles 10
3. The structure of the work 12
Notation and conventions 13

Chapter 1. Homological machinery 14
1. Derived categories 14
2. Derived functors 20
3. Derived categories of sheaves 24
4. A base change result 26

Chapter 2. Fourier-Mukai transforms 29
1. Integral transformations 29
2. WIT complexes 32
3. A Fourier transformation for curves 34

Chapter 3. Transforms of Higgs bundles 37
1. Definitions and basic properties 37
2. Invertibility 45
3. Example: The trivial Higgs bundle on a genus-2 curve 46

Chapter 4. λ -connections and twistor spaces 51
1. GeneralisedDX-modules 51
2. λ -connections 54
3. Harmonic metrics and the hyper-Kähler structure ofMdR(X,n) 56
4. Twistor space ofMDol(X,n) 58
5. Autodual connections and twistor transform 61

Chapter 5. An auto-dual connection in the transform 63
1. Construction 63
2. Further properties and open issues 66

Bibliography 68

3



Introduction

Higgs bundles have become an important subject since their introduction by
Hitchin and Simpson in the contexts of Yang-Mills gauge theory and Hodge theory
in the late 1980’s. They form, for example, the starting point of Simpson’s theory
of non-Abelian cohomology and non-Abelian Hodge theory.

However, even on compact Riemann surfaces the construction of explicit solu-
tions to the Higgs bundle equations is an essentially intractable problem. In theory,
we know that they correspond to representations of the fundamental group of the
surface, but this correspondence is non-linear and in practice very hard to work
with.

Following the example set by the Nahm transform, which allows one to re-
place the Bogomolnyi equations governing magnetic monopoles with the more
amenable Nahm equations, we develop in this thesis a transformation of Fourier-
Mukai-Nahm type for Higgs bundles using mostly algebro-geometric methods. We
are partially successful in transforming the Higgs bundle equations into something
more manageable: we replace the curved Riemann surface as the base manifold by
a flat one, the cotangent bundle of the Jacobian; however, the price we pay is that
we increase the dimensions of both the bundles and the base manifold considerably.

1. Background

We shall begin by recalling some basic facts about Higgs bundles. We then
briefly consider the problem of explicitly constructing Higgs bundles on Riemann
surfaces, and review the concept of Nahm-type transforms in other contexts.

1.1. Higgs bundles.Higgs bundles on a complex manifoldX are pairs(E ,θ)
consisting of a holomorphic vector bundleE and a holomorphic one-formθ with
values in End(E ) on X that satisfies the "integrability condition"θ ∧θ = 0. They
originated essentially simultaneously in Nigel Hitchin’s study [35] of dimension-
ally reduced self-duality equations of Yang-Mills gauge theory, and in Carlos Simp-
son’s work [59] on Hodge theory.

The Yang-Mills picture.To explain Hitchin’s viewpoint, one may consider
the solutions of theSU(2) self-duality equations1 on R4 that are invariant under
translations in one or more directions inR4. Let us considersu(2)-connections
in a HermiteanC2-bundleE on R4. Fixing a trivialisation ofE, a connection is
described as ansu(2)-valued 1-form

A = A1dx1 +A2dx2 +A3dx3 +A4dx4,

and its curvature is given by
FA = dA+A2.

1One could have the compact form of any reductive complex Lie group in place ofSU(2).
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1. BACKGROUND 5

Recall thatA is calledself-dual if FA = ∗FA, where∗ is the Hodge star. The
curvature-2-form can be written

FA = ∑
i< j

Fi j dxi ∧dxj

for su(2)-valued functionsFi j ; then the self-duality equation becomes the system
F12 = F34

F13 = F24

F14 = F23.

If the solution is invariant under translations in the last coordinate direction, the
su(2)-valued functions are independent ofx4 and thus give us functions onR3.
Then we can define aSU(2)-connection

A′ = A1dx1 +A2dx2 +A3dx3

in the bundleE′ induced overR3. We can viewA4 as a sectionφ of the sub-bundle
of skew-adjoint endomorphisms in End(E′). The self-duality equations can then
be written as

FA′ = ∗∇A′φ .

This is theBogomolnyi equation. Its solutions satisfying the asymptotic condition
that‖φ‖L2 = 1+m/r + · · · asr → ∞ are known asmagnetic monopoles.

Similarly, if the solution of the self-duality equations is invariant under trans-
lations in the two last coordinate directions, theAi are independent ofx3 andx4 and
thus givesu(2)-valued functions onR2. One may now define a connection

A′ = A1dx1 +A2dx2

in the bundle overR2 ∼= C = R⊕ iR, and introduce thesu(2)-valued(1,0)-form

θ =
1
2
(A3− iA4)dz

onC. Then one can check that the self-duality equations become{
FA′ =−[θ ,θ ∗],
d′′A′θ = 0,

where∗ denotes adjoint with respect to the Hermitean metric andd′′A′ is the(0,1)-
component of the connection. Notice that the formθ has values in the bundle of
(skew-adjoint) endomorphisms ofE.

The (0,1)-part d′′A′ of the connection gives the bundle onC a holomorphic
structure (the local holomorphic sections are the ones which get killed byd′′A′ , see
Donaldson-Kronheimer [18]), and then the second equation says precisely that the
1-formθ is holomorphic. Thus a solution of the dimensionally reduced Yang-Mills
equations gives us a Higgs bundle onC (notice that the integrability condition
θ ∧ θ = 0 is vacuous on a 1-dimensional base). Now the equations are in fact
conformally invariant, and thus can be transported to a Riemann surface.

A Higgs bundle(E ,θ) is calledstableif the usual slope condition

degF
rkF

<
degE
rkE

is satisfied for all holomorphic sub-bundlesF which are preserved byθ . In [35]
Hitchin showed that a (unitary, rank-2) Higgs bundle on a Riemann surface is stable
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if and only if it corresponds to a solution of the dimensionally reduced Yang-Mills
self-duality equations (orHiggs bundle equations).

The Hodge theory picture.Consider a proper smooth holomorphic family
f : X → S of polarised (e.g., Kähler) complex manifolds. Then for anyn the rel-
ative de Rham cohomology sheavesF n = Rn f∗Ω•

X/S
∼= Rn f∗C⊗C OS are locally

free and equipped with the flatGauss-Manin connection∇ whose horizontal sec-
tions form the local systemRn f∗C. Moreover,F n has theHodge decomposition

F n =
⊕

p+q=n

F p,q

(one can think of cohomology classes represented by (relative) harmonic forms of
type(p,q)). LetFn andF p,q be the corresponding smooth complex vector bundles.
Then∇ satisfies theGriffiths transversalitycondition

∇ : F p,q →A 0,1(F p+1,q−1)⊕A 1,0(F p,q)⊕A 0,1(F p,q)⊕A 1,0(F p−1,q+1).

Finally, cup product with the polarisation class ofX gives the Lefschetz operator
L : F n →F n+2; the sections of the kernel of its adjointΛ : F n →F n−2 form the
sub-bundle ofprimitive cohomologyE n in F n. Let En be the underlying smooth
vector bundle; it has a decompositionEn =

⊕
Ep,q induced by that ofFn, and this

is compatible with Griffiths transversality. Restricting attention toEn, the Hodge-
Riemann bilinear paring becomes a∇-parallel Hermitean formH, with respect to
which the decomposition ofEn is orthogonal, and which is positive (resp. negative)
definite onEp,q for p even (resp. odd). For details, see for example Griffiths [23]
or Demailly [16].

Abstracting from above, one defines an (abstract)variation of Hodge structure
to be a smooth vector bundleE onS, together with a decomposition, a flat connec-
tion and a bilinear form satisfying the preceding conditions, whether it comes from
a family of complex manifolds or not.

Let E be a variation of Hodge structure. Following Deligne’s ideas, Simp-
son decomposed the flat connection as∇ = θ̄ + ∂ + ∂̄ + θ according to the Grif-
fiths transversality condition. Then one can deduce from∇2 = 0 that∂̄ 2 = 0, that
∂̄ (θ) = θ∂̄ + ∂̄ θ = 0, and thatθ 2 = 0. But these equations express, respectively,
that ∂̄ is a holomorphic structure for the smooth bundleE, thatθ is holomorphic
for ∂̄ , and the Higgs bundle integrability condition forθ . Thus(E, ∂̄ ,θ) is a Higgs
bundle onS. These Higgs bundles coming from variations of Hodge structures are
of special kind: asystem of Hodge bundlesis a Higgs bundle(E ,θ) equipped with
a decompositionE = ⊕E p,q such thatθ : E p,q → E p−1,q+1⊗Ω1

X. In [59] Simp-
son showed that this correspondence between isomorphism classes of variations of
Hodge structure and systems of Hodge bundles is bijective.

Harmonic metrics.The construction of Higgs bundles above in fact generalises
to all (irreducible) flat bundles. LetE be a variation of Hodge structure. By chang-
ing the sign of the bilinear formH on alternateEp,q we can turn it into a Hermitean
metric h on E. The decomposition above of∇, which produces̄∂ andθ , can be
clearly defined in terms of this metric, and this procedure can then be applied to
anymetric inanyvector bundleE equipped with a flat connection∇. It turns out
that the ensuing operators̄∂ andθ makeE into a Higgs bundle precisely when the
metric isharmonicwith respect to∇ in a sense we will explain in Chapter 4.
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Conversely, given a Hermitean metric on a Higgs bundle(E, ∂̄ ,θ), there is a
natural way to construct a connection inE using not only∂̄ and the metric but also
θ . This connection is flat precisely when the metric isharmonic(or Hermitean
Yang-Mills) with respect to the Higgs fieldθ , in a sense that will again be made
explicit in Chapter 4.

In [59] Simpson showed that a Higgs bundle has a harmonic metric precisely
when it is poly-stable (with respect to a polarisation of the base manifold given
by the Kähler form) and has vanishing Chern classes. This result directly gener-
alises the theorem of Hitchin linking stability of a Higgs bundle to the existence of
solutions to the Higgs bundle equations. In fact, the harmonic metric equation is
"essentially the same" as the Higgs bundle equation. On the other hand, by Cor-
lette [14], a flat vector bundle has a harmonic metric if and only if its monodromy
is irreducible. Using these results Simpson proved in [60] that the categories of flat
bundles and semistable Higgs bundles with vanishing Chern classes are equivalent.
This generalises a similar result for Riemann surfaces by Hitchin and Donaldson
[17]. Via this correspondence, the action ofC∗ on Higgs bundles by scalar multi-
plication ofθ gives a non-trivial action ofC∗ on the moduli space of flat bundles.
Simpson’s results show that a flat bundle underlies a complex variation of Hodge
structure if and only if it is a fixed point of this action.

Moduli spaces.In [35] Hitchin constructed a (coarse) moduli space ofSU(2)-
Higgs bundles on compact Riemann surfaces. N. Nitsure [56] produced an al-
gebraic construction of the moduli spaces for Higgs bundles of arbitrary rank on
curves. Finally, Simpson [61] generalised the construction of moduli spaces to
arbitrary Higgs bundles on any projective algebraic manifold. Simpson’s very
general construction is based on geometric invariant theory, and it yields also a
construction of the moduli space of flat bundles. Now the correspondence between
stable Higgs bundles with vanishing Chern classes and irreducible flat bundles pro-
duces in fact a homeomorphism between the corresponding moduli spaces, thus
generalising a result of Hitchin [35].

This homeomorphism is real-analytic when it is restricted to the smooth loci of
the moduli spaces. However, the corresponding complex structures (anda fortiori
the algebraic structures) are distinct: the smooth loci share an underlyinghyper-
Kähler manifold, and these complex structures are members of the corresponding
family of complex structures on it (Hitchinop. cit. and Fujiki [20]).

We also want to remark that Simpson wants to consider the moduli spaces
(or preferably the modulistacks) of Higgs bundles as realisations of "non-Abelian
first cohomology" of the base. The hyper-Kähler picture can then be interpreted
as providing this cohomology with a Hodge structure. For a nice overview of this
point of view, see Simpson [63]. More recent developments by Simpson and others
have led to a generalisation of this theory to higher cohomology usingn-stacks (see
Katzarkov-Pantev-Simpson [42]).

1.2. Constructing Higgs bundles.In principle, the bijection between iso-
morphism classes of stable Higgs bundles and irreducible flat bundles allows us
to construct explicit examples of Higgs bundles starting from any representation of
the fundamental group of the base. This ignores however that this correspondence
makes essential use of solutions to the harmonic metric / Higgs bundle equations;
these equations are unfortunately highly intractable non-linear partial differential
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equations for the components of the metric, and not much can be said about the
solutions apart from that they exist provided the stability or irreducibility condition
is met.

The hard analytic results of Hitchin, Simpson and Corlette rely on use of gauge
theory machinery (notably Uhlenbeck’s theorem on weak convergence in Sobolev
spaces). It seems very hard indeed to say much explicitly about the solutions even
in the case of Higgs bundles on Riemann surfaces.

Indeed, on a Riemann surfaceX of genusg ≥ 2, choose a line bundleL
satisfyingL ⊗2 ∼= Ω1

X. ThenH om(L ,L ∨) ∼= Ω∨
X. Hence the constant section

1∈ Γ(X,OX) gives canonically a sectionα of Hom(L ,L ∨)⊗Ω1
X. Consider the

Higgs bundle(L ⊕L ∨,θ), whereθ is the Higgs field(
0 0
α 0

)
.

This Higgs bundle is clearly stable. Now, as explained in Hitchin [35], a solution
of the Higgs bundle equations givesX a metric of constant negative sectional cur-
vature. It follows that solving the equations explicitly for(L ⊕L ∨,θ) would give
an explicit uniformisation of the Riemann surfaceX. The hope of being eventually
able to do this is indeed one of the underlying motivations for this work.

1.3. Nahm-type transforms. One possible way to approach the difficulties in
solving the harmonic metric equations is to attempt to transform the equations into
another form more amenable to analysis, possibly by geometric means. Conceptu-
ally this is rather similar to the use of the ordinary Fourier transform in the study
of differential equations (onRn,Cn or on another commutative Lie group).

Dirac operators.An important class of transformations used to simplify equa-
tions this way in Yang-Mills theory, including the ADHM construction and the
Fourier transform for instantons (Donaldson-Kronheimer [18]) and the Nahm trans-
form for monopoles (see Nahm [54] and Atiyah-Hitchin [2]), is based on using the
kernels of the Dirac operator coupled to the connection twisted by line bundles.

As an example, let us consider the instanton Fourier transform: let(E,∇) be a
vector bundle on the flat 4-torusT = T4, equipped with an anti-self-dual connec-
tion2. The dual toruŝT is the moduli space of flat line bundles onT; for ξ ∈ T̂
the twisted bundlesE⊗Lξ have connections∇ξ induced by∇. OnT we have the
positive and negative spin bundlesS+ andS− and the Dirac operatorD− : S−→S+

(see for example Lawson-Michelsohn [45]). This can then be coupled to the con-
nections∇ξ to obtain a family

D−
ξ

: Γ(T,E⊗Lξ ⊗S−)→ Γ(T,E⊗Lξ ⊗S+)

of elliptic operators parametrised byξ ∈ T̂. Now (under certain conditions, see
(3.2.2) in Donaldson-Kronheimer [18]) the kernelsÊξ of D−

ξ
are all of the same

dimension and form a vector bundlêE on T̂. Notice thatÊ is a sub-bundle of the
trivial Banach-space bundlêT×Γ(T,E⊗S−) and inherits a Hermitean metric from
theL2-inner product ofΓ(T,E⊗S−) . In the trivial bundle we have the flat product
connection∇. Let i andp be respectively the inclusion of̂E into the trivial bundle

2I.e., the curvature satisfies∗F∇ =−F∇.
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and the orthogonal projection of the latter ontoÊ. Then

∇̂ = p◦∇◦ i

is an anti-self-dual connection in̂E. The pair(Ê, ∇̂) is theFourier transformof
(E,∇). The operation(E,∇) 7→ (Ê, ∇̂) is invertible, and its inverse is defined sym-
metrically using the fact thatT parametrises the flat line bundles onT̂.

Another example is provided by the recent thesis [38] of M. Jardim (see also
Jardim [39] and Biquard-Jardim [3]). His starting point was to understand doubly
periodic instantons, i.e., finite-L2-norm solutions of the self-duality equations on
T2×R2. Using a Nahm-type approach, he constructed a transformation taking
doubly periodic instantons to Higgs bundles onT2 with Higgs fields having poles3.
He was furthermore able to construct an inverse transformation and to show that
this establishes a bijective correspondence between doubly periodic instantons and
singular Higgs bundles on the torus with the singularities of the Higgs field satisfy-
ing certain conditions. Jardim’s work has served as one of the principal motivations
for the research undertaken in this thesis.

The cohomological viewpoint.The (0,1)-type component∇′′ of an anti-self-
dual connection∇ in a Hermitean complex vector bundleE satisfies∇′′2 = 0 and
thus givesE the structure of a holomorphic bundleE . One may hence ask in both
of the two examples above for descriptions of the transformations on the holomor-
phic level. As is well-known, these descriptions are provided byFourier-Mukai
transformations.

More precisely, the Dirac operator kernels used to define the Nahm-type trans-
forms above are in fact particular representatives of certain sheaf cohomology
spaces, and consequently the holomorphic bundles associated to the transforms
are higher direct image sheaves of families of twisted coefficients. For example,
let us consider the instanton Fourier transform. LetE be the holomorphic bundle
on T associated to(E,∇), and forξ ∈ T̂ let Lξ be the invertible sheaf associated
to the flat line bundleLξ . Then one can check that

ker(D−
ξ
)∼= H1(T,E ⊗OT Lξ ).

On T × T̂ there is the (normalised) Poincaré bundleP, the universal invertible
sheaf (or flat line bundle). One now sees that the holomorphic bundle associated to
Ê is

Ê = R1prT̂∗(pr∗TE ⊗P).

On the other hand, letX be a complex torus (or an Abelian variety) andX̂ its dual,
and letD(X) andD(X̂) denote thederived categoriesof the categories of coherent
sheaves onX andX̂ respectively. Using the Poincaré sheafP onX× X̂, Mukai in
[51] defined a functorM : D(X)→ D(X̂) by

M(•) = RprX̂∗(pr∗X(•)⊗P),

and showed that it is a category equivalence. But now one sees thatÊ is the first
(and only non-zero) cohomology object ofM(E ).

Mukai’s construction can be generalised to any varietiesX andY together with
a sheafP on X×Y. The properties of these generalisations have been studied by
A. Maciocia [46], T. Bridgeland [10, 11] and others, and have been applied to the

3There are no non-trivial stable Higgs bundles on elliptic curves with regular Higgs fields.
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study of elliptic surfaces and mirror symmetry. We shall explain this machinery
more fully in Chapter 2 of this thesis.

2. A transformation for Higgs bundles

Our plan in this work is to proceed in the direction opposite to that of Jardim’s
work: we would like to transform the Higgs bundle equations on projective curves
(Riemann surfaces) of genusg ≥ 2 into something more manageable. Instead
of using differential-geometric and analytic machinery involving Dirac operators,
we have chosen to work within the framework of algebraic (and at one crucial
point complex-analytic) geometry. The purely algebraic / analytic side is handled
through generalised Fourier-Mukai transformations, while the construction of a
connection in the transform of a Higgs bundle relies on an interpretation of twistor
methods by Deligne and Simpson.

2.1. The underlying holomorphic bundle. In Jardim’s construction of the
inverse transform from Higgs bundles on an elliptic curveX to instantons, the
baseR2×T2 of the doubly periodic instantons is identified withX×H0(X,OX) =
X̂×H0(X,Ω1

X). Generalising this example to curves of genusg≥ 2, we construct
a transform that associates to a stable Higgs bundleE of degree 0 on the curve a
vector bundlêE on J(X)×H0(X,Ω1

X), where J(X) is the Jacobian ofX.
We interpret the endomorphism valued one-formθ as a bundle map, making

a Higgs bundleE = (E ,θ) into the sheaf complexE → E ⊗Ω1
X. Hence a Higgs

bundle gives us an object of the derived categoryD(X), and we can use the general
machinery of Fourier-Mukai transforms as developed in [11]. We choose to use the
universal line bundleM on X× J(X) to define a Fourier transformationD(X) →
D(J(X)); then we apply a relative version of this transformation to a family of
Higgs bundles obtained by "twisting"E by the global 1-forms. This produces an
objectÊ of D(J(X)×H0(X,Ω1

X)) that we call theFourier transformof the Higgs
bundleE.

The first result we obtain is that if we apply our transformation to a stable Higgs
bundle of degree 0 and rank≥ 2, the result is an honest locally free sheaf, i.e., a
(holomorphic) vector bundle. We are then able to compute the characteristic classes
(all Chern classes vanish) of the transform using the Grothendieck-Riemann-Roch
theorem (as we would do using the index theorems had we used an approach based
on Dirac operators). However, our consistent use of derived category formalism
allows us to derive a simple formula for computing the actual cohomology groups
of the transform as well.

Our transform has a natural extension to a (holomorphic) vector bundle on the
"naive" compactification J(X)×P(H0(X,Ω1

X)⊕C) of the base. This generalises a
similar result of Jardim; however, our construction of the compactification is dif-
ferent. Instead of anex postconstruction starting from the transform̂E, we instead
extend to the compactification before applying the relative Fourier transformation,
and then the general machinery produces the compactification we are after. We
are again able to compute the Chern classes and cohomology of the compactified
transform.

The transform of thetrivial Higgs bundle(OX,0) fails to be a locally free
sheaf: the dimension of its fibres jumps at(0,0) ∈ J(X)×H0(X,Ω1

X). This sheaf
is however an interesting canonical object associated to the curveX, and we will
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analyse it in detail for genus-2 curves in section 3 of chapter 3, describing it in
terms of the intrinsic geometry of the Jacobian.

2.2. The connection.To complete the Nahm-type transformation for Higgs
bundles we want to construct a connection in the transform described above. In-
stead of the projection method used by both Jardim and the instanton Fourier trans-
form, we choose to take advantage of twistor theory. In the longer term, we hope
that this might provide ideas for another way to construct the transform, similar to
the spectral curve method in the case of the Nahm transformation of monopoles.

The base manifold of̂E can be identified with the cotangent bundle of J(X) or
indeed with the moduli space of rank-1 and degree-0 Higgs bundles. This space
is a hyper-Kähler manifold, i.e., has a metrich which is Kählerian with respect to
complex structuresI , J andK that satisfyI2 = J2 = K2 = IJK =−1. Such a man-
ifold M has then in fact a family of complex structures parametrised byS2 ∼= P1

C.
This family can be made into a complex manifoldTw(M), fibred holomorphically
overP1

C and known as thetwistor spaceof M.
SinceSU(2) is a subgroup of the multiplicative groupH× of non-zero quater-

nions, it acts on the differential forms of a hyper-Kähler manifolds and thus also
acts on curvature forms of connections. The natural generalisation of theSU(2)-
self-duality condition to bundles on a hyper-Kähler manifoldM is to ask for the
curvature to beSU(2)-invariant. Suchauto-dualconnections correspond bijec-
tively to those holomorphic bundles on the twistor space that are trivial along the
horizontal twistor lines{x}×P1

C (see Kaledin and Verbitsky [40], [64]; this is the
hyper-Kähler version of a result of Capria-Salamon [12]).

Using this result, we reduce the construction of the self-dual connection∇̂
to the construction of a suitable holomorphic vector bundle on the twistor space
of the base. Now ideas of Deligne [15] (see Simpson [63]) give a description of
the twistor space in terms of moduli spaces ofλ -connections, objects that inter-
polate between Higgs bundles and flat bundles. The analytic results of Corlette
[14] and Simpson [59] associate to a Higgs bundle a family of bundles withλ -
connections, and we obtain the sought-after holomorphic bundle over the twistor
space by gluing together two copies of a higher direct image of an appropriate
family of λ -connections.

This approach hides the analytic input in the (more or less explicit) use of
Simpson’s correspondence between flat and Higgs bundles, itself proved using the
hard existence theorems of harmonic metrics. It has the advantage of producing
the two "halves" of the bundle on the twistor space directly and without a need
to prove separately that they are holomorphic. It is furthermore possible to apply
twistor theory to show that the transform̂E of a stable Higgs bundleE has a Her-
mitean metric which is compatible with the connection∇̂. The Hermitean theory
is however not included in this work.

The transform of the trivial Higgs bundle(OX,0) is a vector bundle outside of
one point; our construction of the connection still gives a auto-dual connection in
this bundle. We expect that its properties should turn out to be crucial in a future
description of the asymptotics of the curvature of the connection∇̂ for a general
Higgs bundle.

2.3. Invertibility. To use the transformation we have constructed effectively
we need to be able to invert it. The compactification result above turns out be
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crucial: a Higgs bundleE can be recovered from the compactification ofÊ without
using the connection̂∇. More precisely, letTFT be the functor which takes a
stable Higgs bundleE to the bundle on J(X)×Pg extendingÊ. Then we have the
following:

Inversion Theorem(3.2.1). —LetE andF be two Higgs bundles on a curve X
of genus g≥ 2. If TFT(E)∼= TFT(F), thenE∼= F as Higgs bundles.

We in fact prove this theorem by exhibiting a procedure for recovering a Higgs
field from its transform. Furthermore, it follows easily from the theorem that the
transform functor is in fact fully faithful.

The obvious open problem is to characterise the essential image ofTFT . One
hopes that it will be possible to do this in terms of the auto-dual connection∇̂ after
fixing a suitable asymptotic condition on its curvature.

3. The structure of the work

While the motivation for the work comes as described earlier in this introduc-
tion from differential geometry and gauge theory, we have chosen to place our-
selves in the algebraic (and in some cases the complex analytic) category. We in-
voke the GAGA principle in its various guises to go freely back and forth between
projective algebraic and complex analytic categories.

In the first chapter we review and complement the derived category machin-
ery we will use to develop the holomorphic/algebraic side of the transformation.
In particular, we prove a strong form of derived-category base change theorems
as a corollary of a general Künneth formula; the latter is essentially contained in
Grothendieck’s discussion of global hyper-Tor functors in EGA III, written just be-
fore the introduction of derived categories, but has apparently not appeared in its
natural form in the literature before.

The second chapter is devoted to generalities on generalised Fourier-Mukai
transformations. In particular, we introduce absolute and relative versions of a
Fourier transform on a curve with values in the derived category of its Jacobian,
and relate this to Mukai’s original transformation.

In Chapter 3 we develop the algebraic transformation for Higgs bundles and
prove the compactification and invertibility results not involving the auto-dual con-
nection in the transform. In chapter 3 we also compute the characteristic classes
and cohomology of the transform. The last section of the chapter is devoted to
an analysis of the transform of the trivial Higgs bundle on a genus-2 curve. The
results in Chapters 2 and 3 have appeared in [6].

We notice that up to this point no assumption has been made on the alge-
braically closed ground field; in particular, all results so far apply in positive char-
acterics4.

Chapter 4 is devoted to developing the technology we use to construct the
connection in the transform defined in Chapter 3. More precisely, we develop
the general machinery needed to deal with higher direct images ofλ -connections:
we generalise the usual derived-category formalism (de Rham functors, derived
tensor products) ofD-modules to modules over Simpson’ssplit almost-polynomial

4Higgs bundles in charp > 0 have been considered by Yves Laszlo and Christian Pauly [43].
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rings of operators. We also recall Deligne’s construction of the twistor space and
complement Simpson’s treatment of the moduli spaces in [61].

Finally, in Chapter 5 we apply this machinery to construct the auto-dual con-
nection in the transform.

Notation and conventions

Unless otherwise specified, all rings and algebras are commutative and uni-
tal. We fix an algebraically closed fieldk, which from Chapter 4 onwards will be
assumed to beC. All schemes are assumed to be of finite type overk. All mor-
phisms arek-morphisms and all products are products over Spec(k) unless stated
otherwise; if we want to be explicit about the field, we sometimes abuse notation
by writing X×kY for fibre product over Spec(k). A curve always means a smooth
irreducible complete (i.e., projective) curve overk. If F is anOX-module,F∨

denotes its dualH omOX(F ,OX). Notice that for a smooth complete curveX the
sheaf of 1-differentialsΩ1

X is the canonical or dualising sheaf. We occasionally use
the notationF �SG for the external tensor product pr∗

XF ⊗OX×SY pr∗YG of sheaves
F andG onS-schemesX andY, respectively.

We use script letters likeE andF for (usually coherent)OX-modules (alge-
braic or analytic depending on context; translations are provided by GAGA [58]).
In the analytic context the underlying smooth complex vector bundles of locally
free sheaves are denoted by italic letters likeE andF . In addition, we use sans-
serif characters likeE andF to denote Higgs bundles:E = (E ,θ).

The category ofOX-modules is denoted byMod(X), andQCoh(X) is the thick
subcategory of quasi-coherent sheaves.Ab is the category of Abelian groups.

A commutative square
Z

v−−−−→ X

g
y y f

Y −−−−→
u

S

is calledCartesianif the mapping(v,g)S: Z → X×SY is an isomorphism. We
denotecanonicalisomorphisms often by "=".



CHAPTER 1

Homological machinery

The theory of Fourier-Mukai transformations uses the language of derived cat-
egories. In this chapter we review the basic theory, which we will make use of in
the subsequent chapters.

The standard (if somewhat unsatisfactory) reference to derived categories in
algebraic geometry is still Hartshorne’s seminar [31] on Grothendieck’s duality
theory. Other excellent sources include Gelfand’s and Manin’s textbook [22],
Kashiwara-Shapira [41] and Weibel [66]. For a good informal introduction, see
Illusie [37] or the introduction of Verdier’s thesis [65].

The first three sections of this chapter provides a brief review of the elements of
the theory, mostly without proofs, while the last section gives a proof of a general
Künneth formula for coherent sheaves.

1. Derived categories

Grothendieck was led in the late 1950’s to conjecture the existence of a theory
of derived categories in order to have a suitable framework for his general duality
theory of coherent sheaves1. The "dualising sheaf" of a scheme is not necessarily
a sheaf but instead a complex of sheaves, whence a need to be able to carry out the
operations of homological algebra on the level of complexes without the need to
resort to spectral sequences at every stage of an argument.

The idea of using complexes as coefficients for cohomology (i.e.,hypercoho-
mology) is already present in Cartan-Eilenberg [13]. One starting point of derived
categories is the observation that hyper-derived functors take quasi-isomorphisms
(chain maps inducing isomorphisms in cohomology) to isomorphisms. The natural
idea is then to factor cohomological operations through the category of complexes
with all quasi-isomorphisms formally inverted. However, describing the structure
of these derived categories posed some difficulties, which Verdier’s introduction of
the triangulated structure in his doctoral thesis largely resolved.

It turns out that when inverting the quasi-isomorphisms between complexes,
one should first invert the chain homotopy equivalences. This produces simply
the category of complexes with homotopy classes of chain maps as morphisms.
The actual derived category results from inverting the homotopy classes of the
remaining quasi-isomorphisms. The reason for proceeding in two stages is that –
unlike the category of complexes – the homotopy category istriangulated, and it is
the triangulated structure that the derived category inherits. In fact, one can show
that the derived category of an Abelian categoryA is Abelian if and only ifA is
semi-simple, i.e., when all short exact sequences inA split.

1For an account of the development of theory, see Grothendieck [25] p. 197.
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Notation(1.1.1). —Let A be an Abelian category. We denote byCh(A) the
category of complexes inA, i.e., the category whose objects are (cochain-) com-
plexes of objects ofA, and whose morphisms are (cochain-) maps of complexes.
Let K(A) be the category of complexes inA modulo homotopy, i.e., the cate-
gory having the same objects asCh(A), but whose morphisms are chain homotopy
classes of maps of complexes. We letCh+(A), Ch−(A) andChb(A) denote the
full subcategories consisting of complexes which are respectively bounded below,
bounded above and bounded. We use a similar notation forK(A). We considerA
as the full subcategory of bothCh(A) andK(A) consisting of complexes concen-
trated in degree 0. We denote byK[i] the complexK translatedi places to the left
and with the differentials multiplied by(−1)i . Finally, for anyp∈ N, H p denotes
the functor taking thepth cohomology of a complex. ClearlyH p(A) = H0(A[p]).
Notice also that these functors descend toK(A), and thatH0 gives an inverse to
the embedding ofA. A chain map f : K → L is called aquasi-isomorphismif
H p( f ) : H p(K)→ H p(L) is an isomorphism for allp∈ Z.

Definition(1.1.2). —Let Sbe a collection of morphisms in a categoryC. Then
a categoryC[S−1] together with a functorq: C → C[S−1] is called alocalisation
of C with respect toS if:

(1) Each morphismq(s) with s∈ S is an isomorphism inC[S−1], and
(2) Each functorF : C → D such thatF(s) is an isomorphism for eachs∈ S

factors uniquely throughq.

Notice that ifC[S−1] exists it is unique up to a natural equivalence of categories.

Theorem(1.1.3). —Let Q and Q′ denote the collections of quasi-isomorphisms
in Ch(A) andK(A), respectively. Then:

(1) The localisationsCh(A)[Q−1] andK(A)[Q′−1] exist and are equivalent;
(2) K(A)[Q′−1] is an additive category and the localisation functor

q: K(A)→ K(A)[Q′−1]

is additive;
(3) Each morphism w inK(A)[Q′−1] can be written as formal "fractions"

w = f u−1 = v−1g

with f,g morphisms inK(A) and u,v quasi-isomorphisms.

PROOF. The statements aboutK(A)[Q′−1] follow from the existence of a "cal-
culus of fractions" (modeled on the localisation procedure for commutative rings)
for quasi-isomorphisms inK(A); see any of the references given in the beginning
of the chapter. It is then easy to see thatK(A) is the localisation ofCh(A) with
respect to the classH of homotopy equivalences. SinceH ⊂Q, one has

Ch(A)[Q−1]∼= Ch(A)[H−1][Q′−1]∼= K(A)[Q′−1].

�

Definition (1.1.4). —The derived categoryD(A) is the localised category
Ch(A)[Q−1] ∼= K(A)[Q′−1]. We denote byq or by qA the localisation functor
Ch(A)→D(A). Clearlyq factors throughK(A), and we abuse notation by writing
q also for the localisation functorK(A)→ D(A).
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(1.1.5) In a similar way, we define the derived categoriesD+(A), D−(A) and
Db(A) respectively as the categoriesCh+(A), Ch−(A) andChb(A) with all quasi-
isomorphisms formally inverted. They are full subcategories ofD(A).

Remark(1.1.6). —The existence of the localisations is a set-theoretic ques-
tion: one needs to show that the Hom(A,B) in the localisation are sets. If one were
willing to use Grothendieck’s universes (see SGA 4 [28] appendix to Exposé 1),
then one could ignore some of these issues.

Definition(1.1.7). —Let T be an auto-equivalence of a categoryC. A triangle
in C (relative toT) is a triple of morphisms

(u: A→ B, v: B→C, w: C→ T(A)).

A morphism of triangles(u,v,w)→ (u′,v′,w′) is a triple( f ,g,h) of morphisms of
C that makes the diagram

A
u−−−−→ B

v−−−−→ C
w−−−−→ T(A)y f

yg
yh

yT( f )

A′ −−−−→
u′

B′ −−−−→
v′

C′ −−−−→
w′

T(A′)

commute.

A triangle is typically to be pictured as follows:

C
w

����
��

��
��

A u
// B.

v
__????????

(1.1.8) Let u: K → L be a morphism inCh(A). Recall that themapping cone
of u is the complex Cone(u) whose degree-n part isKn+1⊕Ln and whose differen-
tial is

d(k, l) = (−dK(k),u(k)+dL(l)).
We have natural chain mapsiL : L → Cone(u) andδ : Cone(u) → K[1] by setting
iL(l) = (0, l) andδ (k, l) =−k. One checks that the sequence

0→ L
iL−→ Cone(u) δ−→ K[1]→ 0

is exact and that the corresponding connecting morphisms

H p+1(K) = H p(K[1])→ H p+1(L)

are precisely the mapsH p+1(u) induced byu. It follows from this thatu is a quasi-
isomorphism precisely when Cone(u) is exact.

Let u: K → L be a morphism inCh(A); then we have the triangle Tri(u)

Cone(u)
δ

����
��

��
�

K u
// L.

iL
__???????

relative to the auto-equivalenceT : K 7→ K[1].

Definition (1.1.9). —An exact trianglein K(A) (resp. inD(A)) is a triangle
isomorphic inK(A) (resp.D(A)) to a triangle Tri(u) for a morphismu of Ch(A).
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Exact triangles should be thought of as substitutes for short exact sequences;
this is made more precise by the following proposition and the paragraphs that
follow.

Proposition(1.1.10). —Any exact sequence0→A
u−→B

v−→C→ 0 in Ch(A)
can be completed (uniquely) into an exact triangle

C

����
��

��
��

A u
// B.

v
__????????

in D(A).

This follows since Cone(u) is quasi-isomorphic toC. Notice that this does not
work in K(A). Notice also that not all exact triangles inD(A) come from short
exact sequences inCh(A).

Remarks(1.1.11). —(i) Let T denote the translation functorA 7→ A[1]. It can
be shown that the exact triangles inK(A) andD(A) satisfy the following proper-
ties:

(T1) For each objectA the triangleA
1A−→ A

0−→ 0
0−→ T(A) is exact; each

morphismu: A → B can be embedded into an exact triangle(u,v,w);
triangles isomorphic to exact triangles are exact;

(T2) For any exact triangle

C
w

����
��

��
��

A u
// B.

v
__????????

the "rotated" triangles

T(A)
−T(u)

����
��

��
�

and B
v

����
��

��
�

B v
// C

w
__???????

T−1(C)
−T−1(w)

// A

u
__????????

are exact;

(T3) Given two exact trianglesA
u−→ B

v−→ C
w−→ T(A) andA′

u′−→ B′
v′−→

C′ w′
−→ T(A′) and morphismsf : A→ A′ andg: B→ B′ such thatgu=

u′ f , there is a morphismh: C→C′ making( f ,g,h) into a morphism of
triangles;

(T4) Let A, B, C, A′, B′ andC′ be objects, and let(u, j,∂ ), (v,x, i) and(vu,y,δ )
be exact triangles on(A,B,C′), (B,C,A′) and(A,C,B′) respectively. Then



1. DERIVED CATEGORIES 18

there is an exact triangleC′ f−→ B′
g−→ A′

T( j)i−→ T(C′) so that in the octa-
hedron

C

x����
��

�� y

**TTTTTTTTTTTTTTTTTTT

A′

i
ttjjjjjjjjjjjjjjjjjjj

T( j)i

��

B′
goo

δ

ttB

v

77oooooooooooooooooooooooooooo

j
**TTTTTTTTTTTTTTTTTTT Au

oo

vu

OO

C′

∂
?? f

77ooooooooooooooooooooooooooo

the triangular faces(B′,A,C′) and(B′,A′,C) commute,yv= f j, anduδ =
ig.

An additive categoryC equipped with an auto-equivalenceT and a class∆ of
"exact" trianglesA→ B→C→ T(A) having the properties(T1) to (T4) is called
a triangulated category.

(ii) Another canonical example of a triangulated category is thestable homo-
topy categoryof topologists. Its construction parallels that of derived categories: it
is the localisation of the category of spectra with respect to weak homotopy equiv-
alences. The triangles are given by the Puppe sequences

X
f−→Y →C( f )→ Σ(X),

whereC( f ) is the topological mapping cone off andΣ(X) is the (reduced) sus-
pension ofX. For a brief overview, see Weibel [66].

(iii) A reader meeting triangulated categories for the first time is strongly urged
not to spend too much time contemplating the axioms (especially the octagonal
axiom (T4)). In practice derived categories are much friendlier creatures than the
forbidding definitions of a triangulated structure lead one to believe. Indeed, the
triangulated structure is not much used explicitly in the following chapters.

In fact, the triangulated structure is generally perceived to be inadequate and
unsatisfactory (it has been since the mid-1960’s, see [25]). As an example, the cone
of a morphism is unique only up to anon-canonicalisomorphism. Grothendieck
[26] has proposed to address this and other issues in homological and homotopical
algebra with a much more general theory of "derivators".

(1.1.12) A triangleA
u−→ B

v−→C
w−→ T(A) spins out a long sequence

(1.1.12.1) · · · → T−1(C)
T−1(w)−→ A

u−→ B
v−→C

w−→ T(A)
T(u)−→ T(B)→ ···

A functor F : T → A from a triangulated categoryT to an Abelian categoryA is
calledcohomologicalif the sequence obtained by applyingF to (1.1.12.1) is exact
for all exact triangles.

Examples(1.1.13). —(i) The zeroth-cohomology functorH0 defined inK(A)
is cohomological. It descends to a cohomological functorH0 : D(A) → A. Let
0→ A

u−→ B
v−→C→ 0 be a short exact sequence inCh(A). Then the long exact
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sequence associated to the triangle

C

����
��

��
��

A u
// B.

v
__????????

is just the ordinary long exact cohomology sequence

· · · → H p(A)→ H p(B)→ H p(C)→ H p+1(A)→ ···

as follows from (1.1.8).
(ii) The functor HomT(A,•) : T → Ab is cohomological for all triangulated

categories.

Proposition(1.1.14). —The functor H0 gives an equivalence of categories
from the full subcategory ofD(A) consisting of objects A with Hp(A) = 0 for p 6= 0
to A itself.

We often identifyA with this subcategory ofD(A) consisting of objects with
cohomology concentrated in degree 0.

We can give a more concrete description of the bounded-below derived cate-
goryD+(A) of an Abelian categoryA with enough injectives:

(1.1.15) Let A• ∈ Ch(A). A right Cartan-Eilenberg resolutionof A• consists
of an upper-half-plane double complexI•• of injective objects inA and a (co-)chain
mapi : A• → I•,0, satisfying the following:

(1) If Ai = 0, then the columnAi,• is zero.
(2) The columnI i,• is an injective resolution ofAi .
(3) The horizontal cohomology ofI•• gives injective resolutions of the coho-

mology objectsH i(A•).

It is a basic fact that:

Proposition(1.1.16). —Let A have enough injectives. Then all complexes
have right Cartan-Eilenberg resolutions.

(1.1.17) We shall be concerned with right Cartan-Eilenberg resolutions of only
complexes bounded below (or even of only bounded complexes). In this case,
Cartan-Eilenberg resolutions are first-quadrant double complexes, and hence we
can form the associatedtotal complexes

Tot i(I••) =
⊕

p+q=i

I p,q,

where the differentials are just the sums of the vertical and horizontal differen-
tials of I•• corrected by the familiar sign trick (the vertical differentials of thepth
column are multiplied by(−1)p).

Proposition(1.1.18). —Let i: A•→ I•• be a Cartan-Eilenberg resolution of a
bounded-below complex A•. Then i induces a quasi-isomorphism A• → Tot•(I••).

Proposition(1.1.19). —Let A• and B• be bounded-below complexes inA,
and let i: A•→ I•• and j: B•→ J•• be Cartan-Eilenberg resolutions of A• and B•

respectively. If f: A•→B• is a chain map, then there is a map of double complexes
f̃ : I•• → J•• commuting with the injections i and j.
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Furthermore, if g: A•→B• is another chain map homotopic to f , andg̃: I••→
J•• is a corresponding map of double complexes, thenTot•( f̃ ) is homotopic to
Tot•(g̃).

In particular, the total complexes of any two Cartan-Eilenberg resolutions of a
complex A• are homotopy equivalent.

We may rephrase the preceding by saying that the operation associating to a
bounded-below complexA• the total complex of its Cartan-Eilenberg resolution
is a functorI from the category of co-chain complexes to the categoryK(A) of
co-chain complexes and morphisms modulo chain homotopy. As direct sums (or
products) of finitely many injective objects are injective, we notice that the functor
I above maps bounded-below complexes inA to the categoryK+(IA) of bounded-
below complexes of injective objects and morphisms modulo homotopy.

Proposition (1.1.20). —There exists a category equivalence R: D+(A) ∼−→
K+(IA) making the diagram

K+(A)

Q
��

I // K+(IA)

D+(A)

∼
R

::ttttttttt

commutative.

Remark(1.1.21). —There is the dual concept of left Cartan-Eilenberg resolu-
tions by projective objects. IfA has enough projectives, thenD−(A) is equivalent
to the homotopy categoryK−(PA) of bounded-above complexes of projectives.

2. Derived functors

Derived functors in the derived-category sense generalise the ordinary derived
and hyper-derived functors of Cartan-Eilenberg [13] and Tôhoku [24]. The value
of the derived functorRF of a left exact functorF on a complexA is obtained by
replacingA with a suitable quasi-isomorphic complex (such as its Cartan-Eilenberg
resolution) and then applyingF to this new complex. The cohomology objects
H p(RF(A)) are then the valuesRpF(A) of the classical hyper-derived functors.
In a senseRF(A) can be thought of as a compact package consisting of these
cohomology objects.

However,RF(A) carries more information than just the cohomology objects
RpF(A). An example is provided by the de Rham complex of a manifoldX, which
is one quasi-isomorphic representative of the "total sheaf cohomology"RΓ(X,R)
in D(VectR) and which calculates the (real) cohomology ofX. As was shown
by Sullivan (see, e.g., Félix-Halperin-Thomas [19]), this quasi-isomorphism class
(together with the multiplicative structure) is enough to specify the real homotopy
type ofX.

Derived functors typically simplify results that would otherwise involve spec-
tral sequences. For example, ifF : A → B andG: B → C are two left-exact func-
tors, then the same assumptions that guarantee the existence of the Grothendieck
spectral sequenceEpq

2 = RpG(RqF(A)) ⇒ Rp+q(G◦F)(A) are sufficient to estab-
lish thatRG◦RF = R(G◦F); the existence of the spectral sequence can be of
course derived from this stronger result. We shall see many examples of this in the
next section.
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(1.2.1) Let F : A → B be an additive functor of Abelian categories. ThenF
extends in an obvious way to functorsCh(A) → Ch(B) and (since it preserves
chain homotopies)K(A) → K(B). If F is exact, it takes quasi-isomorphisms to
quasi-isomorphisms, and hence extends to a functorF̄ : D(A)→D(B) making the
square

Ch(A) F−−−−→ Ch(B)

qA

y yqB

D(A) −−−−→
F̄

D(B)

commutative. Moreover,̄F is additive, commutes with the translationT, and
preserves exact triangles. We call such functors between triangulated categories
exact functors. The obvious question arises of the existence of exact functors
D(A)→ D(B) extending an arbitrary additive functorF : A → B.

Definition (1.2.2). —Let F : A → B be an additive functor between Abelian
categories, and letFK denote its extension to a functorK(A) → K(B). Then an
exact functorRF : D(A)→ D(B) together with a natural transformation

ξ : q◦FK → RF ◦q

is called aright derived functorof F if it satisfies the following universality condi-
tion:

(RDF) If G: D(A) → D(B) is another exact functor equipped with a natural
transformationζ : q◦FK → G◦ q, then there is a unique natural trans-
formationα : RF →G so that

ζA = αq(A) ◦ξA

for each objectA in K(A).
If RF exists, it unique up to a canonical isomorphism. There is the dual concept
of a left derived functorLF : the only difference is that the direction of the natural
transformationξ is reversed toLF ◦q→ q◦F . (It obviously needs to satisfy the
dual universal property.) For∗ = +,−,b we define similarly the bounded derived
functors

R∗F, L ∗F : D∗(A)→ D(B).
Clearly the restriction of a full derived functor to any of the bounded categories is
a bounded derived functor in this sense.

The composites
RpF = H p◦RF : D(A)→ B

are called thehyper-derived functorsof F .

In practice the derived functors are often computed using the following:

Proposition(1.2.3). —Let F: A→B be a left-exact additive functor of Abelian
categories. SupposeA has enough injectives. ThenR+F : D+(A)→ D+(B) is the
composite functor

D+(A) R−→ K+(IA) F−→ K+(B)
q−→ D+(B).

where R: Ch+(A) → K+(IA) is the category equivalence of (1.1.20) induced by
Cartan-Eilenberg resolutions.
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(1.2.4) It follows from (1.2.3) that in order to computeRpF(A) for a complex
A, we pick a Cartan-Eilenberg resolutionI•• of A, apply F to it, take the total
complex of the resulting double complex, and finally take thepth cohomology.
In other words, we have recovered the classical hyper-derived functors as defined
already in Cartan-Eilenberg [13]. In particular, for objects ofA, identified with
objects ofD(A) having non-trivial cohomology only in degree 0, the definition of
hyper-derived functors reduces to that of usual derived functorsRpF .

(1.2.5) Since derived functors take exact triangles to exact triangles, it follows
from (1.1.13) that if 0→ A→ B→C→ 0 is an exact sequence of complexes, we
have a long exact sequence

· · · → RpF(B)→ RpF(C) δ−→ Rp+1F(A)→ Rp+1(B)→ ··· ,

where the connecting homomorphismsδ satisfy the familiar compatibility proper-
ties. In other words, we have recovered the classical fact that hyper-derived func-
tors areδ -functors onCh(A).

Example(1.2.6). —Let A be a complex inA bounded above. Then for
any bounded-below complexB we can form the associated total complex of the
double complex HomA(A,B). Denote this by Hom•(A,B). Then it is clear that
(A,B) 7→ Hom•(A,B) is a bifunctorCh−(A)op×Ch+(A) → Ch+(A), and pro-
duces a bifunctorK−(A)op×K+(A)→ K+(A) .

Let A be a complex inA bounded above, and suppose thatA has enough injec-
tives. Then we have the derived functor

R+Hom•(A,•) : D+(A)→ D+(A).

If f : A→ A′ is a quasi-isomorphism of bounded-above complexes, then for any
complexB bounded below the corresponding morphism

R+Hom( f ,1B) : R+Hom(A′,B)→ R+Hom(A,B)

is an isomorphism. HenceR+Hom is in fact a bifunctorD−(A)op×D+(A) →
D+(A).

There is a natural isomorphism

H p(R+Hom(A,B)) = HomD(A)(A,B[p]).

for A∈D−(A) andB∈D+(A). For anyA andB in D(A) we define this to be their
Ext-product:

Extp(A,B) = HomD(A)(A,B[p]).

For objectsA andB of A this definition agrees with the usual Ext-functors.

(1.2.7) It follows from (1.2.4) and the properties of Cartan-Eilenberg resolu-
tions (1.1.15) that there are two converging spectral sequences converging to the
hyper-derived functors:

IEpq
2 = H p(RqF(A))⇒ Rp+q(A),

IIEpq
2 = RpF(Hq(A))⇒ Rp+q(A).

Indeed, these are just the standard double-complex spectral sequences of the double
complexF(I••), whereI•• is the Cartan-Eilenberg resolution ofA.
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Remark(1.2.8). —There are entirely analogous dual results for left-derived
functorsLF of right-exact functorsF . In the presence of enough projective objects
in A, we can defineL−F : D−(A) → D−(B) analogously using projective (left)
Cartan-Eilenberg resolutions.

The approach using projective resolutions does not however work for us, since
in general there are not enough projective objects in the categories of sheaves on
schemes. In order to derive functors like⊗, we need to consider more general
resolutions than projective.

Lemma(1.2.9). —Let A be an Abelian category. Suppose that there is a full
subcategoryI (resp.P) of A, closed under formation of finite direct sums, and such
that any object ofA admits a monomorphism into(resp. an epimorphism from) an
object ofI (resp. P). ThenD+(A) (resp. D−(A)) is equivalent toK+(I) (resp.
K−(P)) with quasi-isomorphisms inverted.

PROOF. One replicates the construction of Cartan-Eilenberg resolutions and
the proof of (1.1.18) to show that any object inCh+(A) (resp.Ch−(A)) is quasi-
isomorphic to a complex of objects inI (resp. P). Now after inversion of quasi-
isomorphisms we have equivalent categories.

(1.2.10) Suppose we have a subcategoryI of A satisfying the conditions of
the preceding lemma. Suppose furthermore thatF : A → B is a left-exact addi-
tive functor which takes exact complexes of objects ofI to exact complexes. Then
it follows (using mapping cones) thatF takes quasi-isomorphisms between com-
plexes inI to quasi-isomorphisms inB. Hence ifK+(I)[Q−1] is K+(I) with quasi-
isomorphisms inverted,q◦F extends to a functorF : K+(I)[Q−1] → D+(B) as in
(1.2.1). LetR: D+(A)→K+(I)[Q−1] be the category equivalence given by (1.2.9).
Then the composition

D+(A) R−→ K+(I)[Q−1] F−→ D+(B)

is in fact naturally equivalent toR+F . This is essentially the classical fact that
(hyper-) derived functors ofF can be computed usingF-acyclic resolutions.

Suppose now thatP satisfies the conditions of the lemma, and thatG: A → B
is a right-exact functor of Abelian categories which takes exact complexes inP to
exact complexes inB. Then it extends similarly to a functorG: K−(P)[Q−1] →
D−(B). LettingS: D−(A)→ K−(P)[Q−1] be the category equivalence whose ex-
istence is guaranteed by (1.2.9), we may consider the composite functor

(1.2.10.1) D−(A) S−→ K−(P)[Q−1] G−→ D−(B).

Proposition(1.2.11). —Let G: A → B be a right-exact functor of Abelian
categories. Suppose that there is a full subcategoryP satisfying:

(1) P is closed under formation of finite direct sums
(2) Every object inA admits an epimorphism from an object inP
(3) F takes exact complexes inP to exact complexes.

Then the left-derived functorL−G is the composite functor (1.2.10.1).
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3. Derived categories of sheaves

Next we introduce the derived categories and functors of coherent sheaves on
schemes that will be central for the treatment of the Fourier-Mukai transforma-
tions in the following two chapters. We review a few elementary properties of the
functors we use, referring the proofs to Hartshorne [31].

The results quoted in this section should help the reader to appreciate the sim-
plification brought by the use of the derived-category set-up. As is evidenced by,
e.g., (1.3.10), (1.3.11) and (1.3.12), formulas that one guesses "should hold" indeed
do once one derives the functors involved.

Notation(1.3.1). —Let X be a scheme. We denote byMod(X) the category of
OX-modules. The derived categoryD(Mod(X)) will be denoted simply byD(X)
and will be occasionally called by abuse of language the derived category ofX. The
full subcategory ofD(X) consisting of objectsA all cohomology objectsH p(A) of
which are coherent sheaves is denoted byDcoh(X). Finally, for ∗ = +,−,b, we
let D∗(X) and D∗

coh(X) denote the categoriesD∗(Mod(X)) and D∗(Mod(X))∩
Dcoh(X), respectively.

(1.3.2) The categoryMod(X) has enough injectives (Hartshorne [32] III.2.2).
By (1.2.3), this enables us to construct the derived functors

RΓ(X,•) : D+(X)→ D+(Ab)

R f∗ : D+(X)→ D+(Y)

RHom(F ,•) : D+(X)→ D(Ab)

RH om(F ,•) : D+(X)→ D+(X)

for F ∈D−(X) and f : X →Y a morphism of schemes. We shall use the following
notation for the hyper-derived functors:

Hp(X,•) = H p◦RΓ(X,•)
Rp f∗ = H p◦R f∗

Extp(F ,•) = H p◦RHom(F ,•)
E xtp(F ,•) = H p◦RH om(F ,•).

Proposition(1.3.3). —(i) Let f : X → Y be a proper morphism. ThenR f∗
mapsD+

coh(X) into D+
coh(Y).

(ii) Let F ∈ D−
coh(X) andG ∈ D+

coh(X). ThenRH om(F ,G ) is an object of
D+

coh(X).

PROOF. Hartshorne [31] Propositions II.2.2 and II.3.3.

Lemma(1.3.4). —(i) If F and G are exact bounded-above complexes of
sheaves on a schemeX, andG consists of flat sheaves, thenTot•(F ⊗G ) is exact.

(ii) Let f : X →Y be a morphism of schemes. Then ifF is an exact complex
of flat sheaves onY, f ∗F is also exact.

(iii) Let X be a scheme. Then everyOX-module is a quotient of a flatOX-
module.

PROOF. Hartshorne [31] Proposition II.1.2 and Lemma II.4.1. Part (ii) is im-
mediate.
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(1.3.5) Let F andG be bounded-above complexes inMod(X). By (1.3.4),
letting P be the full subcategory of flat sheaves, we may use (1.2.11) to produce
thetotal derived tensor product

F
L
⊗G = L− (Tot•(F ⊗•))(G ).

The derived tensor product is in fact a bifunctorD−(X)×D−(X)→ D−(X).

It follows from the definition thatF
L
⊗G is computed simply by replacingG

by a quasi-isomorphic complex of flat sheaves and then taking the total complex of
the tensor product double complex.

We use the following notation for the hyper-derived functors (called thelocal

hyper-Torfunctors):T orp(F ,G ) = H−p(F
L
⊗G ). Notice that for sheavesF and

G we recover the normal local Tor-sheavesT orp(F ,G ).

(1.3.6) Let f : X →Y be a morphism of schemes. Again using (1.3.4), we can
form the derived functor

L− f ∗ : D−(Y)→ D−(X).

Proposition(1.3.7). —(i) Suppose thatF andG belong toD−
coh(X). Then

F
L
⊗G also belongs toD−

coh(X).
(ii) Let f : X → Y be a morphism of schemes. Then the functorL− f ∗ takes

D−
coh(Y) to D−

coh(X).

PROOF. Hartshorne [31] Propositions II.4.3 and II.4.4.

Proposition(1.3.8). —Let f : X →Y and g: Y→ Z be morphisms of schemes.
Then there are natural isomorphisms

R(g∗ ◦ f∗) = Rg∗ ◦R f∗

of functorsD+(X)→ D+(Z), and

L( f ∗ ◦g∗) = L f ∗ ◦Lg∗

of functorsD−(Z)→ D−(X).

PROOF. Hartshorne [31] Propositions II.5.1 and II.5.4.

Proposition(1.3.9). —Let f : X →Y be a morphism of schemes. Then there
is a natural isomorphism

L f ∗F
L
⊗L f ∗G

∼−→ L f ∗(F
L
⊗G )

for anyF ,G ∈ D−(Y).

PROOF. Hartshorne [31] Proposition II.5.9.

Proposition (1.3.10) (Leray formula). —Let f : X → Y be a morphism of
finite-dimensional schemes. Then there is a natural equivalence

RΓ(X,•) = RΓ(Y,R f∗(•))

of functorsD(X)→ D(Ab).

PROOF. Hartshorne [31] Proposition II.5.2.
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Proposition(1.3.11). —Let f : X → Y be a morphism of finite-dimensional
Noetherian schemes. Then there are natural isomorphisms

RHomX(L f ∗F ,G ) ∼−→ RHomY(F ,R f∗G )

for all F ∈ D−
coh(Y) andG ∈ D+(X).

PROOF. Taking into account Hartshorne [31] Proposition II.5.3 and (1.3.10)
above, this follows fromibid. Proposition II.5.10 by applyingRΓ(Y,•).

Proposition (1.3.12) (Projection formula). —Let X and Y be Noetherian
schemes of finite dimension, and let f: X→Y be a quasi-compact morphism. Then
there is a natural equivalence

R f∗(F )
L
⊗G = R f∗(F

L
⊗L f ∗G )

for F ∈ Db(X) andG ∈ D−
coh(Y).

PROOF. Hartshorne [31] Proposition II.5.6.

4. A base change result

In later chapters we shall need a derived category version of cohomology base
change theorems. Here we derive a strong base-change theorem as a corollary of
a general Künneth-type formula, for which we include a proof for the lack of a
suitable reference.

This Künneth theorem must have been known to Grothendieck by the late
1950’s; however, since the foundations of derived categories were not ready when
EGA III [ 27] was published, these questions concerning "hyper-Tor" functors were
treated using spectral sequences. A quick glance at the thick formulas in §6 of
EGA III provides a vivid illustration of the simplification provided by derived cat-
egories. It is also another example of the principle that (modulo certain technical
conditions) formulas which "should hold" indeed do in the derived-category con-
text.

(1.4.1) Consider the following diagram of schemes (here not necessarily of
finite type over a field):

X1×SX2
p1

zzvvvvvvvvv

f

��

p2

$$HHHHHHHHH

X1

f1

��

X2

f2

��

Y1×SY2
q1

zzvvvvvvvvv q2

$$HHHHHHHHH

Y1

$$IIIIIIIIII Y2

zzvvv
vvv

vvv
vv

S
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with f = f1×S f2. Recall the external tensor product overSof anOX1-moduleF1

and anOX2-moduleF2:

F1 �SF2 = (p1
∗F1)⊗OX1×SX2

(p2
∗F2) .

Using flat resolutions as in (1.3.5) we get the corresponding left-derived bifunctor

(•)
L
�S(•) : D−(X1)×D−(X2)→ D−(X1×SX2).

Theorem(1.4.2)(Künneth formula). —For i = 1,2 let Fi be an object of the
categoryD−

qcoh(Xi). Assume that the schemes are Noetherian and of finite dimen-
sion, and that the fi are separated. Then

(R f1∗F1)
L
�S(R f2∗F2) = R f∗

(
F1

L
�SF2

)
if eitherF1 or F2 is quasi-isomorphic to a complex of S-flat sheaves. This is true
in particular if either X1 or X2 is flat over S.

PROOF. The Noetherian and dimensional hypotheses guarantee that the de-
rived direct images are defined for complexes not bounded below. By (1.3.11)
there are natural "adjunction" maps 1→ R f∗L f ∗ giving

(R f1∗F1)
L
�S(R f2∗F2)→ R f∗L f ∗

(
(R f1∗F1)

L
�S(R f2∗F2)

)
.

Notice that

L f ∗
(

(R f1∗F1)
L
�S(R f2∗F2)

)
= (L f ∗Lq∗1R f1∗F1)

L
⊗ (L f ∗Lq∗2R f2∗F2)

= (L p∗1L f ∗1 R f1∗F1)
L
⊗ (L p∗2L f ∗2 R f2∗F2).

Now the adjunctionsL f ∗i R fi∗ → 1 give a natural map

(L p∗1L f ∗1 R f1∗F1)
L
⊗ (L p∗2L f ∗2 R f2∗F2)→ (L p∗1F1)

L
⊗ (L p∗2F2)

= F1

L
�SF2.

Composing gives us a natural transformation

(R f1∗F1)
L
�S(R f2∗F2)→ R f∗

(
F1

L
�SF2

)
.

Whether this is an isomorphism is a local question; hence we may assume that
S= Spec(A) andYi = Spec(Bi) for i = 1,2.

SupposeF1 is quasi-isomorphic to a complex ofS-flat sheaves; replaceF1

with this flat resolution. ThenF1

L
�SF2 = F1 �SF2.

For i = 1,2 let Ui = (Ui,α)α be a finite affine open cover ofXi . Let U denote
the open affine cover(U1,α ×SU2,β )α,β of X1×SX2. Notice that in all these covers
arbitrary intersections of the covering sets are affine. LetČ•(Ui ,Fi) denote the
simple complex associated to theČech double complex ofFi with respect toUi .
Similarly, letČ•(U,F1 �SF2) be theČech complex with respect toU.
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Now RΓ(Xi ,Fi) is quasi-isomorphic tǒC•(Ui ,Fi), and henceR fi∗Fi is quasi-
isomorphic toČ•(Ui ,Fi)∼. But the sheaves of these complexes areS-flat by con-
struction, whence

(R f1∗F1)
L
�S(R f2∗F2) =

(
Č•(U1,F1)⊗AČ•(U2,F2)

)∼
.

Similarly

R f∗

(
F1

L
�SF2

)
=

(
Č•(U,F1 �SF2)

)∼
.

Hence we are reduced to showing that the complexČ•(U1,F1)⊗A Č•(U2,F2) is
quasi-isomorphic tǒC•(U,F1 �SF2). But this is shown in the proof of (6.7.6) of
EGA III [ 27]. �

Remark(1.4.3). —If one wants to avoid the Noetherian hypothesis in the
theorem, one could work with objectsFi of D−(QCoh(Xi)) and require thefi
to be quasi-compact. This is essentially the viewpoint of EGA III. Another option
would be to restrict attention toboundedcomplexes; it follows from a general result
of J. Bernstein that the categoriesDb(QCoh(Xi)) andDb

qcoh(Xi) are equivalent (see
Theorem 2.10 in Chapter VI of Borel [7]).

Corollary (1.4.4). —Let f : X → S and g: T → S be two morphisms of finite-
dimensional Noetherian schemes. Let f′ : X×ST → T and g′ : X×ST → X be the
projections, and letF belong toD−

qcoh(X).
(1) If F is quasi-isomorphic to a complex of S-flat sheaves (in particular, if

f is flat), then
Lg∗R f∗F = R f ′∗Lg′∗F .

(2) If g is flat, then
g∗R f∗F = R f ′∗g

′∗F .

PROOF. Apply the Künneth formula withX1 = X, Y1 = S, f1 = f , X2 =Y2 = T,
f2 = 1T , F1 = F andF2 = OT . �

Remarks(1.4.5). —(i) This base change result strengthens a few similar re-
sults in the literature (see Bondal-Orlov [5], Bridgeland [10]) by eliminating the
smoothness or projection-from-a-product hypotheses.

(ii) The projection formula (1.3.12) is also a special case of (1.4.2); indeed, set
X1 = X andY1 = Y2 = S= X2 = Y, and let f1 = f , f2 = 1Y.



CHAPTER 2

Fourier-Mukai transforms

As explained in the introduction, we interpret the algebraic (or holomorphic)
transformation underlying the eventual Nahm-type transformation of Higgs bun-
dles as a (relative) generalised Fourier-Mukai transformation.

This chapter gives first a concise treatment of the elements of the theory of gen-
eralised Fourier-Mukai transformations. For a more comprehensive treatment, see
Mukai [51], [52], Maciocia [46], and Bridgeland [11]. We also recall conditions
for the transform to be an honest sheaf (the "index theorem" conditions). Then we
introduce a transformation for curves, with values in the derived category of the
Jacobian, and relate it to the original transformation of Mukai. The cohomology of
a transform is then computed.

1. Integral transformations

The "ordinary" Fourier transformation ofL2-functions on a vector spaceV can
be described as pull-back fromV to V ×V∗, followed by multiplication by the
"character function" exp(i〈x,ξ 〉) and finally integration along the fibres towards
V∗. Mukai noticed that the same idea can be applied to sheaves on an Abelian
varietyA to produce a transformationD(A)→ D(Â):

F : F 7→ RprÂ∗(pr∗AF ⊗P),

whereP is a Poincaré sheaf on the productA× Â of A and its dual Abelian variety
Â. It is remarkable that this transformation enjoys many of the formal properties of
the usual transformation: it is an equivalence and (up to sign) its own inverse trans-
formation, a "Plancherel formula" HomD(F ,G ) = HomD(F(F ),F(G )) holds,
and so on. For details, see Mukai [51].

This transformation can be generalised to situations where one has a sheafP
on the product of any schemesX andY.

Definition (2.1.1). —Let S be a separatedk-scheme and letX andY be flat
S-schemes. IfP is an object ofDb

coh(X×SY), therelative integral transformation
defined byP is the functorΦP

X→Y/S: D+(X)→ D+(Y) given by

ΦP
X→Y/S(•) = Rpr2∗(pr∗1(•)

L
⊗P),

where pr1 and pr2 are the canonical projections ofX×SY. WhenS= Spec(k) we
call the transform theabsolute integral transformationand denote it byΦP

X→Y.

Proposition(2.1.2). —Let i: X×SY → X×k Y be the morphism(pr1,pr2)k.
ThenRi∗ = i∗ and

ΦP
X→Y/S(•) = Φi∗P

X→Y(•).

29
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PROOF. We have the commutative diagram

X×SY
pr1

{{xx
xx

xx
xx

x pr2

##FF
FF

FF
FF

F

i

��

X Y

X×Y.

p

ccGGGGGGGGG q

;;xxxxxxxxx

Notice that because both pr1 andp are flat morphisms, we have

pr∗1 = Lpr∗1 = L(i∗ ◦ p∗) = L i∗ ◦L p∗ = L i∗ ◦ p∗.

Using this and the projection formula, we have

ΦP
X→Y/S(•) = Rpr2∗(pr∗1(•)

L
⊗P)

= Rq∗Ri∗(L i∗(p∗(•))
L
⊗P)

= Rq∗(p∗(•)
L
⊗Ri∗P).

But i fits in a Cartesian square

X×SY
i−−−−→ X×kYy y

S −−−−→
∆S/k

S×k S.

As S/k is separated,∆S/k is a closed immersion, and consequently so isi. In
particular,i∗ is an exact functor and therefore equal toRi∗. Hence

ΦP
X→Y/S(•) = Rq∗(p∗(•)

L
⊗ i∗P) = Φi∗P

X→Y(•)

as claimed. �

Remark(2.1.3). —We cannot avoid using the derived tensor product in the
above result, even ifP is a locally free sheaf, becausei∗P is not flat in general.
However, asi is proper,i∗P belongs always toDb

coh(X×Y).

(2.1.4) For flat S-schemesX andY and for x ∈ X, let Yx denote the fibre
pr−1

1 (x), where pr1 : X×SY → X is the canonical projection. We have then a com-
mutative diagram

Yx
j−−−−→ X×SY

pr2−−−−→ Yy pr1

y y
κ(x) −−−−→ X −−−−→ S,

in which all squares are Cartesian. Leti denote the composition of the top arrows.
For an objectF of Db

coh(X×SY) (resp.Db
coh(Y)), we denote byFx the "restriction"

L j∗F (resp. L i∗F ) to Yx. For complexes of locally free sheaves these are just
ordinary restrictions toYx. If P is a locally free sheaf onX×SY, then for each
x∈ X

ΦP
X→Y/S(k(x)) = i∗Px,
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wherek(x) is the skyscraper sheafk at x. Indeed, consider the commutative dia-
gram above: the claim follows from flat base change around the left-hand square
and the projection formula applied toj. Notice thati∗ is exact.

Example(2.1.5). —Let X be an Abelian variety,̂X its dual, and letS be a
separated scheme. Recall that aPoincaré sheafon X× X̂ is a locally free sheafL
such that for eachξ ∈ X̂ the restrictionL |X×{ξ} is isomorphic to the line bundle
on X corresponding toξ . Let P be the unique Poincaré sheaf normalised so that
bothP|X×{0} andP{0}×X̂ are the trivial line bundles. Denote byPS the pull-back

of this Poincaré sheaf toX× X̂×S= (X×S)×S(X̂×S). Therelative Mukai trans-
formation functorMS: Db

coh(X×S)→Db
coh(X̂×S) is the relative integral transfor-

mation functorΦPS

(X×S)→(X̂×S)/S
. If S= Spec(k), we denote the transformation by

M .

The following theorem of Mukai plays a crucial role in the proof of our invert-
ibility result (3.2.1).

Theorem(2.1.6). —If S is a smooth projective variety, then the relative Mukai
transformationMS is an equivalence of categories fromDb

coh(X×S) to Db
coh(X̂×

S).

PROOF. See Mukai [52]. The proof is a generalisation of Mukai’s original
proof of this result for the absolute transformM in [51]. �

Proposition(2.1.7). —Let X and Y be flat S-schemes andP an object of the
categoryDb

coh(X×SY). Let u: T → S be a morphism of schemes. Let iX : X(T) →
X, iY : Y(T) → Y, and j: (X×SY)(T) = X(T) ×T Y(T) → X×SY be the canonical
projections. Then

L i∗Y ◦ΦP
X→Y/S = ΦL j∗P

X(T)→Y(T)/T ◦L i∗X.

Moreover, if u is a flat morphism, then all derived pull-backs above can be replaced
with normal pull-backs.

PROOF. Consider the commutative diagram

X(T)×T Y(T)

q

��

p //

j !!DD
DD

DD
DD

X(T)

iX}}zz
zz

zz
zz

z

��

X×SY

pr2
��

pr1 // X

��
Y // S

Y(T)

iY

<<zzzzzzzzz
// T

u

bbDDDDDDDDDD

It is immediate that all squares are Cartesian. Ifu is flat, then so areiX, iY and j;
this proves the claim about replacing derived pull-backs. Since in any caseX/S
is flat, pr2 is also flat. So by (1.4.4) we can do a base change around the leftmost
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square. We get

L i∗YΦP
X→Y/S(•) = L i∗YRpr2∗

(
pr∗1(•)

L
⊗P

)
= Rq∗L j∗

(
pr∗1(•)

L
⊗P

)
= Rq∗

(
L j∗(pr∗1(•))

L
⊗L j∗P

)
= Rq∗

(
p∗L i∗X(•)

L
⊗L j∗P

)
= ΦL j∗P

X(T)→Y(T)/T(L i∗X(•)).

�

Proposition(2.1.8). —Let X and Y be flat S-schemes and letP be an object
of Db

coh(X×SY). Then

RΓ(Y,ΦP
X→Y/S(E )) = RΓ(X,E

L
⊗Rpr1∗P).

PROOF. We simply use the composition property of derived functors and the
projection formula:

RΓ(Y,ΦP
X→Y/S(E )) = RΓ(Y,Rpr2∗(pr∗1E

L
⊗P)) (by definition)

= RΓ(X×SY,pr∗1E
L
⊗P) (composition)

= RΓ(X,Rpr1∗(pr∗1E
L
⊗P)) (composition)

= RΓ(X,E
L
⊗Rpr1∗P) (by projection formula).

�

2. WIT complexes

We shall now discuss conditions that force the integral transform to be an hon-
est sheaf (or in fact even a vector bundle).

Notation(2.2.1). —Let X andY be proper flatSschemes. We fix a locally free
sheafP onX×SY, and denote byFS the relative integral transformation functor

ΦP
X→Y/S: Db

coh(X)→ Db
coh(Y).

We leave it to the reader to generalise the results of this section to a more general
setting.

Definition (2.2.2). —We say that an objectE of Db
coh(X) is a WITP(n)-

complex1 if H p(FS(E )) = 0 for all p 6= n. If P is clear from the context, we
shall omit the explicit reference to it. An object ofDb

coh(X) is a WIT-complexif it
is aWIT(n)-complex for somen.

If E is aWIT(n)-complex onX, the (coherent) sheafHn(FS(E )) onY is called
the integral transform ofE , and is denoted bŷE .

1Following Mukai, "WIT" stands for "weak index theorem".
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Definition(2.2.3). —We say that an objectE of Db
coh(X) is anITP(n)-complex2

if for each (closed) pointy∈Y and eachp 6= n we have

Hp(Xy,Ey⊗Py) = 0,

where we are using the notation of (2.1.4) forEy, Py andXy.

Lemma(2.2.4). —Let f : X→Y be a proper morphism of (Noetherian) schemes
and letE be an object ofDb

coh(X) which has a Y-flat resolution. Let y∈Y. Then:

(1) if the natural mapϕ p(y) : Rp f∗(E )⊗ κ(y) → Hp(Xy,Ey) is surjective,
then it is an isomorphism.

(2) If ϕ p(y) is an isomorphism, thenϕ p−1 is also an isomorphism if and only
if Rp f∗(E )is free in a open neighbourhood of y.

PROOF. This follows from EGA III [27] §7. However, that part of EGA can
be somewhat hard to read; one could also follow the simpler proof of Hartshorne
[32] Theorem III.12.11, making the fairly minor and obvious adjustments for hy-
percohomology. �

Proposition(2.2.5). —Let E be an IT(n) complex. ThenE is a WIT(n)-
complex, and̂E is locally free on Y.

PROOF. Our schemes are Jacobson, and so it suffices to restrict our attention
to closed points. Since pr2 is flat, pr∗1E is quasi-isomorphic to a complex of sheaves
flat overY. Moreover,X is proper overS, and so pr2 is a proper morphism. We are
then in position to use (2.2.4). Lety∈Y be a closed point. Now

(pr∗1E ⊗P)y
∼= Ey⊗Py

on (X×SY)y = Xy. Hence by hypothesis the natural map

ϕ
p(y) : Rppr2∗(pr∗1E ⊗P)⊗κ(y)→ Hp(Xy,(pr∗1E ⊗P)y)

is trivially surjective — and hence an isomorphism by the base change theorem —
for all p 6= n. As the hyper direct images of a complex of coherent sheaves are
coherent for a proper map, we have

Rppr2∗(pr∗1E ⊗P) = 0

for p 6= n by Nakayama’s lemma. This proves the first part of the proposition.
Now in particularRn+1pr2∗(pr∗1E ⊗P) = 0. Thus, by the second part of the

base change theorem,ϕn(y) is an isomorphism. But asϕn−1(y) is also surjective
and thus isomorphic,Rnpr2∗(pr∗1E ⊗P) is free in a neighbourhood ofy, again by
the second part of (2.2.4). �

Proposition(2.2.6). —Let X, Y and S be as in (2.2.1), and let u: T → S be
a morphism of schemes. Suppose thatE is an IT(n)-complex on X. Then, in the
notation of (2.1.7),L i∗XE is a WIT(n)-complex with respect to the pull-back j∗P

of P to (X×SY)(T). Furthermore, ifL̂ i∗XE denotes the corresponding Fourier
transform, then

i∗Y
(
Ê

)
= L̂ i∗XE .

2"IT" stands for "Index theorem".
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PROOF. By the assumptions and (2.2.5),ΦP
X→Y/S(E ) is a locally free sheaf

shiftedn places to the right. Hence (2.1.7) gives

i∗Y
(

ΦP
X→Y/S(E )

)
= Φ j∗P

X(T)→Y(T)/T(L i∗XE ).

But this shows thatΦ j∗P
X(T)→Y(T)/T(L i∗XE ) is also a locally free sheaf shiftedn places

to the right. Both statements of the proposition are now immediate. �

3. A Fourier transformation for curves

We introduce a Fourier transform for curves with values in the derived category
of the Jacobian.

To fix terminology and notation, we first recall some basic facts about Jaco-
bians of curves; for details, see Milne [49, 50].

Notation(2.3.1). —Let X be a smooth projective curve of genusg. We denote
by J(X) a Jacobianof X, i.e., a scheme representing the functorT 7→ Pic◦ (X/T).
Let M be the correspondinguniversal sheafon X× J(X). Recall that J(X) is an

Abelian variety of dimensiong; let Ĵ(X) denote its dual Abelian variety, and letP

be thePoincaré sheafon J(X)× Ĵ(X), normalised as in (2.1.5).

(2.3.2) Choosing a base pointP∈X gives the Abel-Jacobi mapiP : X → J(X),
taking the base point to 0. Notice thatiP is a closed immersion. Furthermore, this
choice gives J(X) a principal polarisation and hence an isomorphismϕP : J(X) ∼−→
Ĵ(X), which we use henceforth to identify J(X) with its dual. Under this identifi-
cation, the pull-back(iP×1J(X))∗P is just the universal sheafM onX×J(X).

(2.3.3) Let Sbe a separatedk-scheme,XS = X×S, and let J(X)S = J(X)×S
be the relative Jacobian of the trivial familyXS. We have a Cartesian square

X×J(X)×S
pr2−−−−→ J(X)S

pr1

y y
XS −−−−→ S.

Let MS be the pull-back ofM to X× J(X)×S. The relative integral transform
functorΦMS

XS→J(X)S/S: Db
coh(XS)→ Db

coh(J(X)S) is given by

ΦMS
XS→J(X)S/S(•) = Rpr2∗(pr∗1(•)⊗MS),

where we can use the ordinary tensor product sinceMS is locally free.

Definition(2.3.4). —The relative integral transformationΦMS
XS→J(X)S/S is called

the relative Fourier transformationon X×S and is denoted byFS. If E is WIT
with respect toFS, the integral transform̂E is called theFourier transformof E .

Proposition(2.3.5). —Let MS: Db
coh(J(X)×S) → Db

coh(J(X)×S) denote the
relative Mukai transformation. Then

FS = MS◦ (iP×1S)∗.
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PROOF. Consider the diagram

XS×SJ(X)S
j−−−−→ J(X)S×SJ(X)S

p2−−−−→ J(X)S

pr1

y p1

y y
XS −−−−→

iP×1S

J(X)S −−−−→ S,

where the right-hand square is the fibre-product diagram andj = (iP×1S)×S1J(X)S
.

It is clear that the left-hand square is also commutative, and that the composition
of the two top arrows is just the canonical projection pr2. But this means that the
big rectangle is Cartesian, and hence so is the left-hand square too.

By definition,

MS(•) = Rp2∗ (p∗1(•)⊗PS) ,

wherePS is the pull-back of the Poincaré sheaf onto J(X)S×SJ(X)S. Clearly
MS = j∗PS. Now by the projection formula

R j∗(•⊗MS) = R j∗(•)⊗PS.

Becausep1 is flat as a base extension of a flat morphism, we can do a base
change (1.4.4) around the left-hand square to get

p∗1◦R(iP×1S)∗ = R j∗ ◦pr∗1.

But iP×1S is a closed immersion and thusR(iP×1S)∗ = (iP×1S)∗. Putting these
observations together, we get

MS((iP×1S)∗(•)) = Rp2∗ (p∗1((iP×1S)∗(•))⊗PS)

= Rp2∗ (R j∗ (pr∗1(•))⊗PS)

= Rp2∗ (R j∗ (pr∗1(•)⊗MS))

= Rpr2∗ (pr∗1(•)⊗MS) = FS(•).

�

Proposition(2.3.6). —Let X be a curve of genus g and choose a base point
P∈ X as in (2.3.2); we suppose made the identifications givenloc. cit. Let S be a
k-scheme, and denote by j the embedding S∼= (X×S)P → X×S of the fibre over
P. LetE be a bounded complex of locally free sheaves on X×S. Then

Hp(J(X)×S,FS(E )) =
g⊕

i=1

Hp−i(SP, j∗E )⊕(g−1
i−1).

PROOF. By (2.1.8) we have natural isomorphisms

Hp(J(X)×S,FS(E )) = Hp(X×S,E ⊗Rpr1∗MS)

for all p.

Lemma(2.3.6.1). —With the notation of the proposition,Rpr1∗MS is the zero-
differential complexC • whereC i is the direct sum of

(g−1
i−1

)
copies of j∗OS for

1≤ i ≤ g, zero otherwise.
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Consider the Cartesian square

X×S×J(X)
p′−−−−→ X×J(X)

pr1

y yq

X×S −−−−→
p

X.

By flat base change around the square we get

Rpr1∗MS = Rpr1∗p′∗M = p∗Rq∗M .(2.3.6.1.1)

In order to computeRq∗M onX, we consider the Cartesian square

X×J(X) iP×1−−−−→ J(X)×J(X)

q
y yπ1

X −−−−→
iP

J(X).

Now by the general base-change (1.4.4) we have

Rq∗M = Rq∗(iP×1)∗P

= L i∗PRπ1∗P.

But Rπ1∗P = k(0)[−g], the skyscraper sheaf at 0 shiftedg places to the right (see
the proof of the theorem of §13 in Mumford [53]). Notice that iP is a regular
embedding; thus in an affine neighbourhoodU = Spec(A) of 0∈ J(X) the idealI
of X is generated by a regular sequencex = (x1, . . . ,xg−1). Let s: Ag−1 → A be
theA-module homomorphism mapping the elements of the canonical basis to the
sequencex, and recall that the Koszul complex

K(x) = · · · →
k+1∧

Ag−1 dk

−→
k∧

Ag−1 dk−1

−→ ·· · d1

−→ Ag−1 s−→ A,

where

dk(a0∧a1∧·· ·∧ak) =
k

∑
i=o

(−1)rs(ai)a0∧·· ·∧ âi ∧·· ·∧ak

and "̂ " denotes omission, is a flat resolution ofA/I = (iP∗OX)|U . Now using the
projection formula we get

iP∗L i∗Pk(0) = iP∗OX
L
⊗k(0) = K(x)⊗k(0).

But the elements ofx belong to the idealm of 0 ∈ J(X), and hence vanish when
tensored withk(0) = A/m. ThusiP∗L i∗Pk(0) is just the exterior algebra ofk(0)g−1

with zero differential, placed in degrees from−g+1 to 0. ButiP is a closed immer-
sion, and hence the same holds forL i∗Pk(0). Now the lemma follows immediately
from this and (2.3.6.1.1), taking into account the shift by−g.

Using the projection formula we have

Hp(X×S,E ⊗ j∗OSP) = Hp(SP, j∗E ).

The proposition now follows from the lemma because hypercohomology com-
mutes with direct sums. �



CHAPTER 3

Transforms of Higgs bundles

We shall now apply the Fourier-transform machinery developed in the previous
chapter to stable Higgs bundles on curves. The algebraic (or holomorphic) trans-
formation underlying the eventual Nahm-type transformation for Higgs bundles is
constructed as a relative Fourier-transformation. We then show that the Higgs bun-
dle can be recovered from a canonical extension of its transform to a compactified
base. In the last section of this chapter we analyse the transform of the trivial Higgs
bundle on a curve of genus 2.

1. Definitions and basic properties

We construct Fourier transforms of Higgs bundles as relative integral trans-
forms of derived-category objects associated to Higgs bundles twisted by global
1-forms. The transform of a stable Higgs bundle will be a locally free sheaf on
the cotangent bundle of the Jacobian of the curve. To produce the compactifica-
tion mentioned in the introduction, we first build a natural compactification of the
derived-category object, and then apply the same machinery to it.

Definition (3.1.1). —A Higgs bundleon a smooth projective curve is a pair
E = (E ,θ), whereE is a locally free sheaf onX, andθ is a morphismE → E ⊗Ω1

X.

The morphismθ is often called theHiggs field. The Higgs bundleOX
0−→ Ω1

X is
calledtrivial .

The rank and degree (i.e., the first Chern class) of a Higgs bundle(E ,θ)
mean the rank and degree of the underlying sheafE . If E = (E θ−→ E ⊗Ω1

X) and

F = (F
η−→ F ⊗Ω1

X) are Higgs bundles, by amorphismE → F we understand a
morphism of sheavesϕ : E →F making the square

E
θ−−−−→ E ⊗Ω1

X

ϕ

y yϕ⊗1

F −−−−→
η

F ⊗Ω1
X

commutative.

(3.1.2) Let E = (E θ−→ E ⊗Ω1
X) be a Higgs bundle onX. Then we can consider

it as a complex of sheaves concentrated in degrees 0 and 1, and hence as an object
in Db

coh(X). When we writeE⊗F or H•(X,E) etc., we consider the Higgs bundle
as a sheaf complex this way. Notice that the image ofE in Db

coh(X) does not

uniquely determine the isomorphism class of theHiggs bundle(E θ−→ E ⊗Ω1
X).

In fact, multiplyingθ by a non-zero constant gives a quasi-isomorphic complex;
however, the resulting Higgs bundle is not in general isomorphic.

37
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Definition(3.1.3). —A Higgs bundle(E θ−→ E ⊗Ω1
X) is calledstableif for any

locally free subsheafF of E satisfyingθ(F )⊂F ⊗Ω1
X, we have

degF
rkF

<
degE
rkE

.

Theorem(3.1.4). —Let E = (E θ−→ E ⊗Ω1
X) be a non-trivial stable Higgs

bundle on X withdeg(E) = 0. Then

Hp(X,E) = 0

for p 6= 1.

PROOF. Hausel [33] Corollary (5.1.4.). Notice thatHp(X,E) = 0 automati-
cally for p > 2 because dim(X) = 1 and the length of the complexE is 2. �

Lemma(3.1.5). —If a Higgs bundleE is stable, then so isE⊗L , whereL is
an element ofPic◦ (X).

PROOF. LetF ⊂ E ⊗L be a subbundle stable underθ⊗1L . ThenF ⊗L −1

is a subbundle ofE stable underθ . But tensoring withL affects neither the ranks
nor the degrees ofE andF , and hence the lemma follows from the stability of the
Higgs bundleE. �

(3.1.6) Let E = (E θ−→ E ⊗Ω1
X) be a Higgs bundle andα ∈H0(X,Ω1

X) a global
1-form. Then 1E ⊗α is canonically identified with a morphismE → E ⊗Ω1

X. We

denote the Higgs bundle(E θ+1E⊗α−−−−−→ E ⊗Ω1
X) by E(α). TheE(α) for varyingα

fit together to an algebraic familỹE parametrised byV = H0(X,Ω1
X).

Lemma(3.1.7). —Let E be a stable Higgs bundle. ThenE(α) is also stable
for anyα ∈ H0(X,Ω1

X).

PROOF. Let F ⊂ E be a subbundle stable underθα = θ + 1⊗α. Let t ∈
Γ(U,F ). Thenθα(t) = θ(t)+ t⊗α ∈ Γ(U,F ⊗Ω1

X). But t⊗α ∈ Γ(U,F ⊗Ω1
X)

too, and henceθ(t) ∈ Γ(U,F ⊗Ω1
X). ThusF is stable underθ , and the lemma

follows from the stability ofE. �

Proposition(3.1.8). —Let E be a stable Higgs bundle of degree0 and rank
≥ 2 on a curve X of genus g≥ 2. Then the complex̃E on X×V = X×H0(X,Ω1

X)
is WIT(1) with respect to the relative Fourier transformationFV of (2.3.4). In
particular, H1(FV(Ẽ)) is a locally free sheaf onJ(X)×V.

PROOF. By (2.2.5) we are reduced to showing thatẼ is IT (1) with respect to
M(V). Let (ξ ,α) ∈ J(X)×U . Then (using the notation of (2.1.4))(

Ẽ
)

(ξ ,α)
∼= E(α)⊗Mξ ,

and we need to show that

Hp(X,E(α)⊗Mξ ) = 0

for p 6= 1. But this follows from (3.1.5), (3.1.7) and (3.1.4). Notice that for a
rank-1 Higgs bundleE one of the bundlesE(α) would be trivial, and the vanishing
theorem (3.1.4) would fail. �
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Definition (3.1.9). —Let E be a stable Higgs bundle of degree 0 and rank
≥ 2 on a curveX of genusg≥ 2. The locally free sheafH1(FV(Ẽ)) on J(X)×
H0(X,Ω1

X) is called theFourier transformof E and denoted bŷE.

Proposition(3.1.10). —Let E and X be as in (3.1.9), and letα ∈ H0(X,Ω1
X).

Then
Ê|J(X)×{α} ∼= Ê(α),

where the right-hand side denotes the absolute Fourier transform.

PROOF. By the proof of (3.1.8)̃E is IT (1). Now the proposition follows from
the base change result (2.2.6) applied to the closed immersion{α}→H0(X,Ω1

X)→
Pg. �

Proposition(3.1.11). —LetE = (E θ−→ E ⊗Ω1
X) be a non-trivial stable Higgs

bundle of degree0 on a curve X of genus g≥ 2. Then the rank of the Fourier
transformÊ is (2g−2) rk(E ).

PROOF. It follows from (3.1.8) and (3.1.10) that rk(Ê) = dimH1(X,E). Con-
sider the first hypercohomology spectral sequence

IEpq
2 = H p(Hq(X,E))⇒ Hp+q(X,E).

TheE1-terms of the sequence are:

IEpq
1 =

q

p

H1(X,E )
H1(θ) // H1(X,E ⊗Ω1

X)

H0(X,E )
H0(θ) // H0(X,E ⊗Ω1

X)

The sequence clearly degenerates atE2, i.e., IEpq
∞ = IEpq

2 , and hence

IE0,0
2

∼= H0(X,E) and
IE1,1

2
∼= H2(X,E).

But these hypercohomologies vanish by (3.1.4), and thusH0(X,θ) is injective and
H1(X,θ) is surjective. On the other hand,

H1(X,E)∼= IE0,1
∞ ⊕ IE1,0

∞ = kerH1(X,θ)⊕cokerH0(X,θ),

and hence

dimH1(X,E) = dimH1(X,E )−dimH1(X,E ⊗Ω1
X)

+dimH0(X,E ⊗Ω1
X)−dimH0(X,E )

= χ(E ⊗Ω1
X)−χ(E ).

But as deg(E ) = 0, the Riemann-Roch theorem gives

χ(E ) = (1−g) rk(E ) and

χ(E ⊗Ω1
X) = (g−1) rk(E ),

whence the result follows immediately. �
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Theorem(3.1.12). —LetE be a stable Higgs bundle of degree0 and rank≥ 2
on a curve X of genus g≥ 2. Then the Fourier transform̂E extends naturally to a
locally free sheaf onJ(X)×P(H0(X,Ω1

X)⊕C) = J(X)×Pg.

PROOF. We proceed by extending̃E to the compactification before the ap-
plication of the relative Fourier transform. Letπ : X → Spec(k) be the struc-
tural morphism. Then thek-rational points of the vector bundle (or affine space)
V((π∗Ω1

X)∨) are canonically identified with the elements ofH0(X,Ω1
X); we use

the notationH0(X,Ω1
X) also for this scheme if no confusion seems likely. Let

D = π∗((π∗Ω1
X)∨) = (π∗π∗Ω1

X)∨; we have the canonical adjunction morphism

ϕ : D∨ = π
∗
π∗Ω1

X → Ω1
X.

Let ϕ̃ : D∨ → Ω1
X ⊗E nd(E ) be the morphism

t 7→ ϕ(t)⊗1E .

On the other hand, letψ : OX →Ω1
X⊗E nd(E ) be the map that takes 1 toθ . Putting

these together we get a morphism

γ = ϕ̃ +ψ : D∨⊕OX → Ω1
X ⊗E nd(E ).

BecauseD⊕OX = π∗((π∗Ω1
X)∨⊕k), we have a canonical isomorphism

PX(D⊕OX) = X×Pk((π∗Ω
1
X)∨⊕k) = X×P(H0(X,Ω1

X)⊕k)∼= X×Pg
k.

Let p: P = PX(D ⊕OX)→ X be the projection. There is the canonical surjection
p∗(D ⊕OX)→ OP(1), and so by dualising a canonicalOP(−1)→ p∗(D∨⊕OX).
Composing this morphism withp∗γ we get a morphism

OP(−1)→ p∗(Ω1
X ⊗E nd(E )),

or in other words a global section ofp∗(Ω1
X ⊗E nd(E ))⊗OP(1). We interpret this

section as a morphism

Θ : p∗E → p∗E ⊗ p∗Ω1
X ⊗OP(1),

and denote this complex of sheaves (in degrees 0 and 1) onP by C (E).
In more pedestrian terms, let(αi)i be a basis ofH0(X,Ω1

X), and let(α∗
i )i be

the dual basis ofH0(X,Ω1
X)∨. Let t : k → k be the canonical coordinate onk;

then(t,α∗
1 , . . . ,α∗

g) forms a basis of the global sections ofOPg(1), andH0(X,Ω1
X)

corresponds to the open affine subscheme ofPg with t 6= 0. Now

Θ = θ ⊗ t +
g

∑
i=1

1⊗αi ⊗α
∗
i .

Notice that the restriction ofC (E) to X×H0(X,Ω1
X) is clearly isomorphic tõE.

We claim that the relative Fourier transform

F = H1(FP(C (E)))

is a locally free sheaf extendinĝE. We show thatC (E) is IT (1); we already know
this for the points(ξ ,z) ∈ J(X)×H0(X,Ω1

X). Let then(ξ ,z) belong to the comple-
ment J(X)×(Pg−H0(X,Ω1

X)). We consider the second hypercohomology spectral
sequence:

IIEpq
2 = H p(X,Hq((C (E))(ξ ,z)⊗Mξ ))⇒ Hp+q(X,(C (E))(ξ ,z)⊗Mξ ).
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But

(C (E))(ξ ,z)
∼= (E 1⊗α−−→ E ⊗Ω1

X)

for a 1-formα 6= 0, determined up to multiplication by a non-zero scalar. Now
1⊗α is clearly an injective map of sheaves; letS be its cokernel. Thus theE2-
terms of the spectral sequence are

IIEpq
2 =

q

p

H0(X,S ⊗Mξ ) H1(X,S ⊗Mξ )

0 0

But S is a direct sum of skyscraper sheaves supported on the divisor of zeroes of
the one-form, and since skyscraper sheaves are flasque, we haveH1(X,S ⊗Mξ )=
0. Hence

H0(X,(C (E))(ξ ,z)⊗Mξ ) = H2(X,(C (E))(ξ ,z)⊗Mξ ) = 0

and soC (E) is IT (1). ThusF is locally free. The fact that it extendŝE follows
immediately from the base change result (2.2.6). �

The natural extension of̂E constructed above is denoted byTFT(E) and is
sometimes called thetotal Fourier transformof E

Remarks(3.1.13). —(i) This result parallels a similar one in Jardim [38] for
Higgs bundles with singularities on elliptic curves. Jardim’s proof was however
different, using analytic techniques to analyse the asymptotics of the transform
over the uncompactified base. The proof of (3.1.12) was indeed one of the first
indications that our proposed transform is the right one for Higgs bundles on curves
of genusg≥ 2.

(ii) The construction of botĥE andTFT(E) expresses them as extensions of
sheaves. Indeed, it follows from the first hyper-cohomology spectral sequence for
Rpr∗ that TFT(E) is an extension of a subsheaf ofE0,1

1 = R1pr∗ (E �M ) by a
quotient ofE1,0

1 = pr∗
(
(E ⊗Ω1

X)�OP(1)�M
)
. Unless the termsE0,0

1 andE1,1
1

of the spectral sequence vanish, the description of the extension is difficult.
(iii) We have already remarked that (3.1.8) breaks down for rank-1 Higgs bun-

dles – theIT -condition breaks down at the point(0,0) ∈ J(X)×H0(X,Ω1
X). Nev-

ertheless, the sheaf
TFT(O) := H1(FPg(C (O)))

on J(X)×Pg for the trivial Higgs bundleO = (OX,0) is a canonical object associ-
ated to the curve, locally free in the complement of(0,0). We shall study it more
closely in the case of a genus-2 curve in section 3.

Proposition(3.1.14). —Let E be a stable Higgs bundle of rank r≥ 2 and
degree0 on a curve X of genus g≥ 2. Then

dimk H p(J(X)×Pg,TFT(E)) = rg

(
g−1
p−1

)
,

when1≤ p≤ g, and zero otherwise.
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PROOF. Let P ∈ X be a base point giving an embeddingiP : X → J(X), and
denote byj the embeddingPg → X×Pg of the fibre pr−1

X (P). Then by (2.3.6)

H p(J(X)×Pg,TFT(E)) = Hp+1(J(X)×Pg,FP(C (E)))

=
g⊕

i=1

Hp+1−i(Pg, j∗C (E))⊕(g−1
i−1).

(3.1.14.1)

We apply the first hypercohomology spectral sequence
IEpq

2 = H p(Hq(Pg, j∗C (E)))⇒ Hp+q(Pg, j∗C (E)).

TheE1-terms are given by

IEpq
1 =

q

p

H1(Pg,O r
Pg) // H1(Pg,OPg(1)r)

H0(Pg,O r
Pg) d // H0(Pg,OPg(1)r).

The standard results on the cohomology of a projective space (Hartshorne [32]
III.5.1) show that theE0,1

1 = E1,1
1 = 0. Furthermore, it is clear from the definition

of C (E) in the proof of (3.1.12) thatd = H0(Pg, j∗Θ) is an injection. Thus we see
that

dimHp(Pg, j∗C (E)) =

{
rg if p=1,

0 otherwise.

Thus in the direct sum of (3.1.14.1) we have non-zero cohomology only when
i = p, and the result follows immediately. �

(3.1.15) We shall compute the Chern classes of the total Fourier transform of
a Higgs bundle using the general Grothendieck-Riemann-Roch theorem. We now
recall the statement of an appropriate version of it – for details, see SGA 6 [29]
or Fulton [21]. The definition ofK-rings generalises to complexes of sheaves and
more generally to derived categories (see SGA 6: Exposé IV).Here the reader may
assume for simplicity that k is embeddable inC and that Chern classes have value
in cohomology with rational coefficients; see however Remark (3.1.16).

Let X be a smooth projective scheme overk, and letK(X) be theK-ring of
Dcoh(X). For an objectE of Dcoh(X) let [E ] denote its class inK(X). If E →F →
G → E [1] is a distinguished triangle inD(X), then[F ] = [E ]+ [G ], and hence in
particular[F ] = [E ]+ [G ] for any short exact sequence 0→ E →F → G → 0 of
sheaf complexes onX. For translationsT i(A) = A[i] we have[T i(A)] = (−1)i [A].

As in the classical situation, there is theChern characterring homomorphism
ch: K(X) → H•(X,Q). Let F be a coherent sheaf onX, the total Chern class of
which factorises formally as

c(F ) = ∏
i

(1+ γi).

Recall that theChern characterch(F ) is defined by

ch(F ) = ∑
i

exp(γi).
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This expression defines a formal power series which is clearly symmetric in theγi ,
and hence is a power series in the elementary symmetric polynomials ofγi , which
are none others than the Chern classes ofF . Thus ch(F ) is a well-defined element
of H•(X,Q). Its lowest degree terms are given by

(3.1.15.1) ch(F ) = rk(F )+c1(F )+
1
2

(
c1(F )2−2c2(F )

)
+ · · ·

This map extends to give the ring homomorphism ch:K(X)→ H•(X,Q).
Similarly, we define theTodd classtd(F ) by the formal power series

td(F ) = ∏
i

γi

1−exp(−γi)
.

It is similarly a well-defined element of the cohomology ringH•(X,Q), with lowest
degree terms

(3.1.15.2) td(F ) = 1+
1
2

c1(F )+
1
12

(
c1(F )2 +c2(F )

)
+ · · ·

For smooth projective morphismsf : X → Y to another smooth projective
schemeY we have a covariant mapf! : K(X)→K(Y) defined byf!(A) = [R f∗(A)].
Similarly, there is a covariant mapf∗ : H•(X,Q)→H•(Y,Q), defined via Poincaré
duality by the covariant map in homology.

Remark(3.1.16). —In arbitrary characteristics the cohomology ringH•(X,Q)
needs to be replaced by the rationalChow ring A•(X)⊗Z Q, the `-adic étale co-
homologyH•

ét(X,Q`) or another suitable theory. In fact, the original context for
Grothendieck’s theorem was the Chow ring, see Borel-Serre [8]. For Chow rings
the covariant map has a particularly nice geometric description (see Hartshorne
[32], Appendix 1).

Theorem(3.1.17)(Grothendieck-Riemann-Roch). —The following diagram
commutes:

K(X)
ch(·).td(T f )−−−−−−→ H•(X,C)

f!

y y f∗

K(Y) −−−−→
ch

H•(Y,C),

whereT f = TX/Y is the relative tangent sheaf of the Y-scheme X.

Proposition(3.1.18). —LetE = (E θ−→ E ⊗Ω1
X) be a stable non-trivial Higgs

bundle on a smooth projective curve X of genus g≥ 2, with r = rk(E) ≥ 2 and
deg(E) = 0. Then

ch(TFT(E)) = rk(E)
(

g−1+(g−1)pr∗Pch(OPg(1))+ t.(1−pr∗Pch(OPg(1)))
)

,

where t is the Poincaré dual of theΘ-divisor onJ(X).

PROOF. We first introduce some notation. Letx ∈ H•(X,C) be the Poincaré
dual of a point andh = ch(OPg(1)) ∈ H•(Pg,C). We denote by ¯x, t̄ and h̄ the
pull-backs of these classes to various products ofX, J(X) andPg.
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By the Grothendieck-Riemann-Roch formula and the definition of the Fourier
transform, we have

ch(TFT(E)) =−ch(pr2!(pr∗1C (E)⊗M(P)))

=−pr2∗
(
pr∗1ch(C (E)).ch(M(P)).td(Tpr)

)
.

(3.1.18.1)

We begin with ch(C (E)). There is an exact sequence

0→ pr∗XE ⊗pr∗XωX ⊗pr∗POP(1)[−1]→ C (E)→ pr∗XE → 0,

whence

[C (E)] = pr∗X[E ]−pr∗X[E ].pr∗X[ωX].pr∗P[OP(1)].

Hence

ch(C (E)) = pr∗Xch(E ).(1−pr∗Xch(ωX).h̄)

= r.(1− (1+(2g−2)x̄).h̄).

Next we compute ch(M(P)). We use a fact from Arbarello-Cornalba-Griffiths-
Harris [1], Chapter VIII: ch(M ) = 1+c− t̄.x̄, wherec = c1(M ). Hence

ch(M(P)) = 1+ c̄− t̄ x̄,

wherec̄ is the pull-back ofc. Moreover, we have the following identities:

c2 =−1
2

x̄.t̄ and x̄.c = 0.

Finally, the relative tangent sheaf ofX× J(X)×Pg over J(X)×Pg is just the
pull-back ofTX = ω∨

X , and hence by (3.1.15.2) td(Tpr2) = 1− (g−1)x̄.
Substituting these in (3.1.18.1) we obtain

ch(TFT(E)) =−pr2∗
(
r(1− h̄− (2g−2)x̄h̄)(1+ c̄− x̄t̄)(1− (g−1)x̄)

)
=−r.pr2∗

(
(1− h̄− (2g−2)x̄h̄)(1− (g−1)x̄+ c̄− x̄t̄)

)
=−r.pr2∗

(
1− h̄− (g−1)x̄h̄− (g−1)x̄+ c̄− c̄h̄− x̄t̄ + x̄t̄h̄

)
.

Now the proposition follows, as only the terms with ¯x survive through pr2∗,
and

pr2∗(x̄) = 1,

pr2∗(x̄h̄) = h̄,

pr2∗(x̄t̄) = t̄, and

pr2∗(x̄t̄h̄) = t̄.h̄.

�

Corollary (3.1.19). —Let ξ ∈ Pic◦ (X). Then

ch
(
TFT(E)|{ξ}×Pg

)
= rk(E)

(
g−1+(g−1)ch

(
OPg(1)

))
.
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2. Invertibility

We now prove one of this main theorems of this work: a Higgs bundle can
be recovered from its total Fourier transform. The proof relies in an essential way
on a (quite simple) use of the derived-category formalism: in our case once we
know the complex associated to a Higgs bundle up to quasi-isomorphism, we in
fact know it up to isomorphism.

Theorem(3.2.1). —Let E andF be two Higgs bundles on a curve X of genus
g≥ 2. If TFT(E)∼= TFT(F), thenE∼= F as Higgs bundles.

PROOF. We show this by actually exhibiting a process of recovering a Higgs
bundleE from its total Fourier transformTFT(E).

Step1. Choose a base pointP∈ X as in (2.3.2), and letiP : X → J(X) be the
corresponding embedding. Denote byj the immersioniP×1J(X). Then by (2.3.5)
FPg = MPg ◦ j∗. By (2.1.6)MPg is a category equivalence; letG be its inverse. Now
by definitionTFT(E) = FPg(C (E))[1], and hence

G(TFT(E))[−1] = j∗(C (E)).

Lemma(3.2.1.1). —The differentialΘ of the complexC (E) is injective.

LetU ⊂X×Pg be an open subset ands∈Γ(U,pr∗E ) a non-zero section. There
is a pointz= (x, p) ∈U for which s(z) 6= 0. BecauseE is locally free, it follows
(using Nakayama’s lemma) that there is an open neighbourhoodV ⊂U of z such
that s(z′) 6= 0 for z′ ∈ V. If Θ(z)(s(z)) = 0, it follows from the definition ofΘ
that there is a pointy∈V with Θ(y)(s(y)) 6= 0, and in particularΘU(s) 6= 0. But
this shows thatΘ is injective as a morphism of presheaves and hence as a sheaf
morphism too. Thus the lemma is proved.

By the lemma there is onX×Pg an exact sequence

(3.2.1.2) 0→ pr∗1E
Θ−→ pr∗1(E ⊗Ω1

X)⊗pr∗2OPg(1)→R → 0,

and consequentlyC (E ) is quasi-isomorphic toR[−1]. It follows from this that
G(TFT(E)) = j∗R in Db

coh(X×Pg). Since j∗R is an honest sheaf,G(TFT(E)) =
j∗R also inMod(X×Pg). This means that we can recover the cokernelR of C (E)
onX×Pg as j∗(G(TFT(E))).

Step2. Tensor (3.2.1.2) with pr∗2OPg(−1) and obtain the exact sequence

(3.2.1.3) 0→ pr∗1E ⊗pr∗2OPg(−1) Θ⊗1−−→ pr∗1(E ⊗Ω1
X)→R⊗pr∗2OPg(−1)→ 0.

We shall use the long exactRpr1∗-sequence associated to (3.2.1.3). By the projec-
tion formula

Rpr1∗(pr∗1E ⊗pr∗2OPg(−1)) = E ⊗Rpr1∗pr∗2OP(−1), and

Rpr1∗(pr∗1(E ⊗Ω1
X)) = E ⊗Ω1

X ⊗Rpr1∗OX×P.

Now it follows from base change and the standard formulas for the cohomology of
projective spaces that

pr1∗pr∗2OP(−1) = R1pr1∗pr∗2OP(−1) = 0, and

pr1∗OX×P = OX.
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It follows then from the long exact sequence that pr1∗(R⊗pr∗2OP(−1))∼= E ⊗Ω1
X,

and that we may consequently recover the underlying sheafE of E from R by
twisting byOP(−1), projecting down toX, and twisting by(Ω1

X)∨ = TX.

Step3. It remains to recover the Higgs fieldθ . This will be done after dis-
carding much of the information contained inR. We choose a non-zeroα ∈
H0(X,Ω1

X), and we letU = Spec(A) be an open affine subscheme ofX over which
α does not vanish; thenα gives a trivialisation ofΩ1

X onU . Clearly it is enough to
recoverθ overU .

Let V be the subvectorspace ofH0(X,Ω1
X) generated byα. We can consider

V as a closed subscheme of the open subschemeH0(X,Ω1
X) of P(H0(X,Ω1

X)⊕k).
Furthermore, we considerU×V as a subscheme ofU×P(H0(X,Ω1

X)⊕k), and let
S be the restriction ofR toU ×V; it is just the cokernel ofΘ restricted toU ×V.
Notice thatU ×V ∼= Spec(A[T]).

OnU the underlying sheafE of E corresponds to anA-moduleM andθ cor-
responds to an endomorphismu of M. Furthermore, the pull-back ofE to U ×V
corresponds toM[T] = M⊗A A[T]. By the definition ofΘ in the proof of (3.1.12),
Θ|U×V corresponds to theA[T]-linear map

ψ = 1M ⊗T +u⊗1A[T].

But ψ fits into the exact sequence

M[T]
ψ−→M[T]→Mu → 0,

whereMu is theA[T]-module withT acting onM asu (cf. Bourbaki [9], Ch. III
§8 no. 10). HenceS = (Mu)∼. But theA[T]-module structure ofMu determinesu
and henceθ |U . �

Remark(3.2.2). —Lemma 6.8 in Simpson [62] gives a description of Higgs
bundles onX as coherent sheaves on the total space of the cotangent bundle ofX.
The schemeU ×V in Step 3 of the proof is the total space of the cotangent bundle
of U , and the coherent sheafS onU ×V is the one that corresponds toE|U under
Simpson’s correspondence.

Corollary (3.2.3). —The functorTFT from the category of stable non-trivial
Higgs bundles on X with vanishing Chern classes toMod(J(X)×Pg) is fully faith-
ful.

PROOF. Let E andE′ be Higgs bundles onX and letR andR ′ be the coker-
nels ofC (E) andC (E′) respectively. Because the relative Mukai transform is an
equivalence of categories, we have

Hom(TFT(E),TFT(E′)) = Hom(R,R ′).

Thus faithfulness is clear. On the other hand, letϕ : R →R ′; using the notation of
the proof of the theorem, the previous remark shows thatϕ|U×V gives a morphism
of Higgs bundlesE|U → E′|U . But as the genus ofX is at least 2, the canonical
linear system

∣∣Ω1
X

∣∣ has no base points. Hence we can coverX by open sets likeU ;
it is clear that the morphisms thus obtained glue to give a morphismE→ E′. �

3. Example: The trivial Higgs bundle on a genus-2 curve

We shall analyse the relative Fourier transform of the trivial Higgs bundle when
X is a curve of genus 2.
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(3.3.1) Let char(k) = 0, letX be a smooth complete curve overk, and letF =
FP(O) be the relative Fourier transform of the trivial Higgs bundleO = (OX,0).
Then the base manifold J(X)×P2 of F has dimension 4. Since the rank ofO
is 1, Hausel’s vanishing result does not hold, and we cannot expectF to have
non-trivial cohomology only in degree 1. By (3.1.18),

ch(F ) = 1+ch(O(1))+ t− t.ch(O(1))

= 1+(1+H +
1
2

H2)+ t− t(1+H +
1
2

H2)

= 2+H +(
1
2

Q−Ht)− 1
2

Qt,

whereH is the Poincaré dual of a line andQ = H2 the Poincaré dual of a point in
P2. We may solve for the Chern classes to obtain

c1(F ) = H c2(F ) = Ht

c3(F ) = 0 c4(F ) = (P,Q),

where (P,Q) is the dual of a point (notice that1
2t2 is the Poincaré dual of a point in

J(X)).

(3.3.2) To analyse further, let us first simplify the notation and writeJ = J(X),
P= P2, and let 0∈ J be the zero-element. Denote byp andq the projections prJ and
prP. ForG onJ (resp. onJ×P), let G (n) denoteG �OP(n) (resp.G ⊗q∗OP(n)).

Furthermore, let us assume that the base pointP ∈ X (used to fix the Abel-
Jacobi map and thus to normalise our Fourier transform) has been chosen to be a
double zero of a one-form, or in other words one of the six branch points of the
hyperelliptic covering mapX → P1 given by the canonical linear system.

We consider the spectral sequence
IEpq

2 = H p(Rqpr∗(C (O)⊗P))⇒ H p+q(FP(C (O)).

TheE1-terms are

IEpq
1 =

q

p

p∗R1prJ(X)∗M // R1prJ(X)∗(M ⊗Ω1
X)(1)

p∗prJ(X)∗M // prJ(X)∗(M ⊗Ω1
X)(1).

Lemma(3.3.2.1). —The direct image sheafprJ∗M is zero, and

R1prJ∗M = L ⊗I0,

whereL = L (Θ) is the invertible sheaf of the theta-divisor on J, andI0 is the
ideal sheaf of the point0∈ J.

PROOF. Since prJ(X)∗M is reflexive (EGA III (7.7.6)), and since dimJ = 2, it
must be zero since it clearly vanishes in J(X) \ {0}. On the other hand, one can
compute the cohomological Chern character

(3.3.2.1.1) ch(RprJ∗M ) =−1− t
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(see Arbarello-Cornalba-Griffiths-Harris [1] p. 336). Thus

ch(R1prJ∗M ) = 1+ t = ch(L (Θ))−ch(k(0)),

whereΘ is the theta-divisor. LetL = (R1prJ∗M )∨∨ be the reflexive hull, which is
a line bundle since dimJ = 2. BecauseR1prJ∗M is the first non-zero higher direct
image, it is torsion-free and thus the canonical mapR1prJ∗M →L is an injection.
But this means then that there is an exact sequence

0→ R1prJ∗M →L → k(0)→ 0,

whenceR1prJ∗M ∼= L ⊗I0.
The cohomological Chern class specifiesL only up to a translation (i.e., up to

tensoring with a line bundleLξ for ξ ∈ Ĵ). However, sinceJ is locally factorial, the
Chow-ring-valued first Chern class mapc1 : Pic(J)→A1(J) is bijective. Therefore,
in order to establish thatL ∼= L (Θ), it suffices to show that (3.3.2.1.1) holds also
for the Chow-ring-valued Chern character.

Let i = iP be the Abel-Jacobi map corresponding toP. Then prJ = pr2◦(i×1J),
and hence by the projection formula

RprJ∗M = RprJ∗((i×1J)∗P)

= Rpr2∗(R(i×1J)∗(i×1J)∗P)

= Rpr2∗((i×1J)∗OX×J⊗P).

Now, using the original formulation of Grothendieck-Riemann-Roch with values
in A•(J)⊗Q, we get

(3.3.2.1.2) ch(RprJ∗M ) = pr2∗(ch((i×1J)∗OX×J)ch(P)).

On the one hand, we may again use Grothendieck-Riemann-Roch to compute
ch((i×1J)∗OX×J): with our choice ofP∈ X, we have

ch(i∗OX) = ch(i∗OX)td(TJ) = i∗(ch(OX)td(TX))

= i∗td(TX) = i∗(1+
1
2

c1(TX)) = i∗(1−
1
2

c1(Ω1
X))

= i∗(1−P) = Θ− 0̄,

in A•(X), whereΘ = i(X) is the theta divisor and̄0 is the class ofi(P) = 0∈ J. So
ch((i×1J)∗OX×J) = pr∗1(θ − 0̄).

On the other hand, by Milne [50] (6.11), we have

c1(P) = pr∗1Θ+pr∗2Θ−m∗Θ,

wherem: J×J→ J is the group law (notice that our identification morphismJ→ Ĵ
producing the formula(i×1)∗P = M is thenegative−ϕL (Θ) of the canonical
polarisation of Milne).

Finally, to compute the the self-intersection classΘ2, we use the exact se-
quence

0→TX →TJ|X →NX/J → 0

for the normal sheaf. It shows thatc1(NX/J) = −c1(TX) = c1(Ω1
X) = 2P. But

thenΘ2 = 2i∗(P) = 2 · 0̄ ∈ A•(J). Now the claim follows from (3.3.2.1.2) by a
straightforward (if tedious) calculation. �

Lemma(3.3.2.2). —The direct image sheafprJ∗(M ⊗Ω1
X) is isomorphic to

L ∨, and R1prJ∗(M ⊗Ω1
X) = k(0), the skyscraper sheaf at the origin.
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PROOF. As in the proof of (3.3.2.1), we show that

ch(RprJ∗M ⊗Ω1
X) = 1−Θ.

Again prJ∗(M ⊗Ω1
X) is reflexive, hence locally free. From the Chern character we

see as above that it isL (Θ)∨. The remaining part of the Chern character comes
from R1prJ(X)∗(M ⊗Ω1

X) = k(0). �

It follows from the lemmas that theE1 terms of the spectral sequence are

IEpq
1 =

q

p

p∗(L ⊗I0)
d // O{0}×P(1)

0 // L ∨(1).

We see immediately thatH0(F ) = 0. An application of (2.2.4) shows that

H2(F ) = coker(d) = k(0,0),

the skyscraper sheaf on the point corresponding to no twist by either a line bundle
or a one-form. LetK = ker(d). ThenF = H1(F ) is an extension ofK by
L ∨(1). We see immediately that outside of{0}×P the sheafK is p∗(L ⊗I0).
Restricting to{0}×P we get the sequence

0→K |{0}×P → OP⊕OP
d−→ OP(1)→ k(0)→ 0.

From this it is clear thatd is given by two sectionssandt which vanish along lines
intersecting at 0∈ H0(X,Ω1

X)⊂ P, and the sequence above is just the correspond-
ing Koszul resolution ofk(0) twisted byOP(1). But this means thatK |{0}×P

∼=
OP(−1).

Proposition(3.3.3). —The dimension ofExt1(K ,L ∨(1)) is 1, and H1(F ) is
the (up to scaling) unique non-trivial extension ofK byL ∨(1).

PROOF. We first show that the extension in non-trivial. Restricted toJ×{0}
it is the absolute Fourier transform ofO = OX ⊕Ω1

X[−1], and hence the extension
splits. However, restrictingF to any otherJ×{α}, the second cohomology van-
ishes by Hausel’s theorem, and thusF is a (shifted) coherent sheaf, an extension
of F(OX) by F(Ω1

X)[−1]. If this extension were split, then it would follow from
the involutivity of the Mukai transform thatOX

α−→ Ω1
X = OX ⊕Ω1

X[−1], which is
absurd. Thus the global extension is non-trivial.

To compute the dimension of the Ext-space, we first splice the exact sequence

0→K → p∗(L ⊗I0)→ O{0}×P(1)→ k(0,0)→ 0.

into short exact sequences

(3.3.3.1) 0→K → p∗(L ⊗I0)→ G → 0

and

(3.3.3.2) 0→ G → O{0}×P(1)→ k(0,0)→ 0.
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By, for instance, Serre duality, we see that Ext4(k(0,0),L ∨(1)) = k and that
the other Ext-spaces fori 6= 4 vanish. Next,

Exti(O{0}×P(1),L ∨(1)) = Exti(O{0}×P,L ∨)

= Exti(O{0}×P⊗L (−3),ω◦
J×P)

= H4−i(J×P,O{0}×P(−3)⊗L )∨

by Serre duality. But using Leray spectral sequence and the projection formula for
q: J×P→ J, we see that these cohomologies vanish fori 6= 2, and that

dimH2(J×P,O{0}×P(−3)⊗L ) = 1.

So it follows from the long exact Ext-sequence for (3.3.3.2) that

dimExt2(G ,L ∨(1)) = 1.

Now we get from (3.3.3.1) the exact sequence

· · · → Ext1(p∗(L ⊗I0),L ∨(1))→ Ext1(K ,L ∨(1))→ Ext2(G ,L ∨(1)) = k.

But since there is a non-trivial extension, the dimension of Ext1(K ,L ∨(1)) is at
least 1. Now the proposition follows from the next lemma.

Lemma(3.3.3.1). —We haveExt1(p∗(L ⊗I0),L ∨(1)) = 0.

We get by Serre duality that

Ext1(p∗(L ⊗I0),L −1(1)) = Ext1(p∗(L 2⊗I0)(−4),ω◦
J×P)

= H3(J×P, p∗(L 2⊗I0)(−4))∨.

SinceL 2 is ample,H i(J,L 2) = 0 for i > 0 by Kodaira’s vanishing theorem
(this is where we use the assumption that char(k) = 0). From the long exact se-
quence associated to

0→I0 → OJ → k(0)→ 0

tensored withL 2 we see thatH i(J,L 2⊗I0) = 0 for i ≥ 2, and we get the exact
sequence

0→ H0(J,L 2⊗I0)→ H0(J,L 2)
f−→ H0(J,k(0))→ H1(J,L 2⊗I0)→ 0.

Now the restrictionL 2|X has degree 4 and thus its full linear system does not have
a base point (Hartshorne [32] IV.3.2). Hence the linear system|L 2| on J does not
have a base point either, and sof is a surjection. So alsoH1(J,L 2⊗I0) vanishes.

Finally, we apply the Leray spectral sequence forq: J×P→ P to compute
H3(J×P, p∗(L 2⊗I0)(−4)). By the projection formula and the preceeding com-
putations,

Riq∗(p∗(L 2⊗I0)(−4)) = Riq∗p∗(L 2⊗I0)⊗OP(−4)

vanishes fori 6= 0. Sinceq∗p∗(L 2⊗I0) is a free sheafON
P for someN,

q∗p∗(L 2⊗I0)(−4))∼= OP(−4)⊕N.

But H3(P,OP(−4)) = 0 and so allE2-terms of the spectral sequence with total
degree 3 vanish, which establishes the lemma.

So in particular there is (up to scaling) only one isomorphism class of non-
trivial extensions ofK by L ∨(1). �



CHAPTER 4

λ -connections and twistor spaces

We now set up the general machinery that will be used in the next chapter
to construct a self-dual connection in the Fourier transform of a Higgs bundle.
The construction rests on standard twistor techniques and Deligne’s description of
the twistor space of the base manifold of the transform in terms of moduli spaces
of λ -connections. The first section develops a generalisation of certainD-module
techniques to a setting encompassingλ -connections. In the subsequent sections we
review the theory ofλ -connections, the hyper-Kähler structure of the base space
of our Fourier transform, and the facts we need about twistor transforms.

In this chapter all schemes will be assumed to be overSpec(C). The complex
analytic space Xan associated to a scheme X will be often denoted simply by X.

1. GeneralisedDX-modules

We recall and complement Simpson’s theory of generalisedDX-modules, or
modules oversplit almost-polynomial sheaves of operators. The purpose here is to
extend a some of the standard homological machinery ofDX-modules to this more
general setting, which encompasses Higgs bundles. More precisely, this machinery
will be applied to Deligne’sλ -connections, but it is developed here in some more
generality than strictly necessary.

In this section we letS be a scheme overC and we fix a smoothS-scheme
f : X → S.

Definition(4.1.1). —An OX-algebraA equipped with an exhaustive increas-
ing filtrationA (0) ⊂A (1) ⊂ . . . is asplit almost-polynomial sheaf of operators on
X over Sif it satisfies the following conditions:

(SO1) TheOX-moduleA (0) is equal toOX,
(SO2) The pull-backf−1OS is contained in the centre ofA ,
(SO3) The associated gradedOX-algebragr•A is isomorphic to Sym•T for a

locally freeOX-moduleT , and
(SO4) The projectionA (1) → gr1A has anOX-linear sectionσ : gr1A →A (1)

for the left OX-module structure ofA .
An A -moduleshall mean anOX-coherentleft A -module.

(4.1.2) The structure of anA -module is fixed already by the action ofA (1)

since by(SO3) and(SO4) A is generated as a ring byA (1). It follows that to
give a coherentOX-moduleM anA -module structure it is sufficient to give the
action ofσ(gr1A ) onM . This action has to satisfy certain commutation relations
depending onA , see Simpson [61] Lemma 2.13.

Examples(4.1.3). —(i) The sheafDX/S of relative linear differential opera-
tors onX is the canonical example of a split almost-polynomial sheaf of opera-
tors: D

(k)
X/S is the subsheaf of operators of order≤ k, and the associated graded is

51
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Sym•TX/S, the symmetric algebra of the relative tangent sheaf. AnOX-coherent
DX/S-module is precisely a locally free sheaf equipped with a flat connection rel-
ative toS, and the action ofσ(TX/S) is simply the covariant derivative. See Björk
[4], Borel [7] or Mebkhout [48] for details aboutD-modules.

(ii) The OX-algebraA = Sym•TX/S = gr•DX/S is a split almost-polynomial
sheaf of operators. AnA -module structure on a coherent sheafF is anOX-linear
morphismθ : F → F ⊗OX Ω1

X which satisfies[θ ,θ ] = 0. In other words, a left
A -module is the same thing as aHiggs sheaf; see Simpson [61] p. 86 for details.

(iii) Let D ⊂ X be a divisor with relative normal crossings. Then there is
a split almost-polynomial sheaf of operatorsDX/S(logD), with gr1DX/S(logD)
equal to the dual of the sheafΩ1

X/S(logD) of logarithmic differentials, such that
a DX/S(logD)-module is the same thing as a sheafE with a relative logarithmic
connection

∇ : E → ΩX/S(logD)⊗OX E

relative toS.

Remark(4.1.4). —If A is a split almost-polynomial sheaf of operators on
X, thenOX has a canonicalA -module structure with a sectiont of T = gr1A
acting as[t,•] on A (0) = OX. ForA = DX/S this gives the canonical relative flat
connectiondX/S: OX → Ω1

X/S, and forA = Sym•TX/S, one has thetrivial Higgs
bundleOX with θ = 0.

(4.1.5) Let A be a split almost-polynomial sheaf of operators overS. We
denote byDb(A ) the bounded derived category of leftA -modules, not necessarily
OX-coherent. The subcategory of objects withOX-quasi-coherent cohomology is
denoted byDb

qcoh(A ). The standard arguments guarantee the existence of enough
injectives and hence of right-derived functors.

(4.1.6) Let M andN beA -modules. We give the tensor productM ⊗OX N
a structure of anA -module by letting the action of a sectiont of T be

t(m⊗n) = tm⊗n+m⊗ tn.

There are enoughA -flat modules, as can be seen by essentially the same argument
that applies to ordinaryD-modules (see Borel [7], VI.2.4). It follows from (SO3)
thatA is OX-flat, and thus anyA -flat resolution is alsoOX-flat. Hence we have
the left derived bifunctor

(•)
L
⊗OX (•) : Db(A )×Db(A )→ Db(A )

of tensor product overOX. The underlyingOX-modules ofH−p(M
L
⊗N ) are the

ordinary Tor-sheavesT orp
OX

(M ,N ) of the underlyingOX-modules. It follows

that
L
⊗OX mapsDb

qcoh(A )×Db
qcoh(A ) to Db

qcoh(A ). Furthermore, ifM or N is
locally free overOX, all the higher Tors vanish.

(4.1.7) Let A be a split almost-polynomial sheaf of operators, withgr1A =
T of rankn, and consider the augmented complex ofA -modules

(4.1.7.1) 0→A ⊗OX

∧nT
δ→A ⊗OX

∧n−1T → ··· →A
ε→ OX,
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whereδ : A ⊗OX

∧kT →A ⊗OX

∧k−1T is given by

(4.1.7.2) δ (a⊗ (t1∧ . . .∧ tk)) =−
k

∑
i=1

(−1)iati ⊗ (t1∧ . . .∧ t̂i ∧ . . .∧ tk)

+ ∑
1≤i< j≤k

(−1)i+ ja⊗ ([ti , t j ]∧ . . .∧ t̂i ∧ . . .∧ t̂ j ∧ . . .∧ tk),

with t̂i denoting omission. Notice that it follows from(SO3) that the commutator
[ti , t j ] = σ(ti)σ(t j)−σ(t j)σ(ti) belongs toA (1) and gives thus an element ofT .
The augmentationε is simply the action ofA onOX.

Lemma(4.1.8). —The augmented complex (4.1.7.1) gives a locally free left
resolution of theA -moduleOX.

PROOF. ForA = DX this is a special case of Spencer resolutions. SinceT is
locally free overOX, so are the terms of the resolution overA . For the exactness,
one may check that the proof in Mebkhout [48] of a (stronger) similar statement
(Proposition (2.1.18)) forDX-modules does not make use of assumptions onDX

beyond(SO1) to (SO4).
In the case whereA = Sym•TX (essentially the only case besidesA = DX we

will use), one checks that the resolution reduces to a Koszul-complex, the exactness
of which can be checked directly. �

Definition (4.1.9). —The functorDR = DRX/S: Db
qcoh(A ) → Db( f−1OS)

given by
DR(M ) = RH omA (OX,M )

is called the (generalised)de Rham functor.

Proposition(4.1.10). —LetM be anA -module.

(1) If A = DX/S, the complexDR(M ) is the usual de Rham complex

0→M
∇→M ⊗Ω1

X/S
∇→M ⊗Ω2

X/S
∇→ ···

with ∇(m⊗α) = ∇m∧α − (−1)degαm⊗dα

(2) If A = Sym•TX/S, the complexDR((E ,θ)) is

0→ E
θ→ E ⊗Ω1

X/S
θ→ E ⊗Ω2

X/S
θ→ ··· ,

whereθ(e⊗α) = θ(e)∧α. In particular, this complex isOX-linear.

PROOF. We use the resolution (4.1.8) ofOX to compute the de Rham object
DR(M ) = RH omA (OX,M ). Part(1) is well-known, see any of the references
on DX-modules. For(2), we notice that in (4.1.7.2) the terms involving com-
mutators[ti , t j ] vanish forA = Sym•TX/S. Thus the corresponding second term
−(−1)degαm⊗dα of the formula in case(1) vanishes. �

Remark(4.1.11). —Let M be aDX-module. It follows from (4.1.10) that the
hypercohomologyH• (X,DR(M )) is precisely the cohomology ofX with coef-
ficients the local systemL (M ) of horizontal sections of the flat connection, de-
noted byH•

dR(X,M ) in Simpson [60]. Similarly, for a Higgs bundleE = (E ,θ), the
hypercohomologyH• (X,DR(E)) is Simpson’sDolbeault cohomology H•Dol(X,E).
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Proposition(4.1.12). —If f : X → S is proper, thenR f∗DR(M )) is coherent
for anOX-coherentA -moduleM . 1

PROOF. This follows from the first hypercohomology spectral sequence

(4.1.12.1) Epq
1 = Rq f∗DR(M )p ⇒ Rp+q f∗DR(M ).

Indeed, using the resolution of (4.1.8), we see that each term ofDR(M ) is a coher-
entOX-module, and hence each higher direct imageRq f∗DR(M )p is OS-coherent.
On the other hand, sinceDR(M ) is f−1OS-linear, the differentials in (4.1.12.1)
areOS-linear, whence the proposition. �

2. λ -connections

We resume and complement the treatment ofλ -connections in Simpson [63].
The theory was first outlined by Deligne [15] and it was developed by Simpson in
[63].

Henceforth we assume thatX is projective and thus comes equipped with a
very ample line bundleOX(1). The first Chern classc1(OX(1)) is thepolarisation
[ω] of X. If X is given the Kähler metric induced by the projective embedding,
then the polarisation class is represented by the Kähler formωX.

Definition(4.2.1). —Let λ : S→ A1 be a morphism of schemes, and letE be
a locally freeOX×S-module. Aλ -connectiononE is a morphism of sheaves

∇ : E → E ⊗O Ω1
X×S/S,

onX×Ssatisfying the following conditions:

(1) ∇(ae) = λe⊗da+a∇(e) "Leibnitz rule"
(2) ∇2 = ∇◦∇ = 0,

wherea ande are local sections ofOX×S andE respectively, and where∇ is ex-
tended to a mapE ⊗Ω1

X×S/S→ E ⊗Ω2
X×S/S by the rule

∇(e⊗α) = ∇(e)∧α +λ ·e⊗dα.

If λ is the constant map with valuec∈ C, then we call aλ -connection also a
(family of) c-connection(s). It is clear that a 1-connection is just a (relative) flat
connection. Similarly, forλ = 0, the first condition says that∇ is OX×S-linear
and the second condition is simply[∇,∇] = 0; in other words, a bundle with a
0-connection is precisely aHiggs bundle. Notice that the condition[∇,∇] = 0 is
vacuous ifX is a curve.

(4.2.2) Define a sheaf of algebrasΛ on X×A1 to be the subsheaf of pr∗
XDX

generated by sections of the form

∑
k

tkuk,

where theuk are sections ofD (k)
X andt is the linear coordinate onA1. ThenΛ|X×{t}

is isomorphic toDX for any t 6= 0, andΛ|X×{0} is isomorphic togr•DX (see the
discussion in Section 5 of Simpson [63]). So Λ gives a deformation ofDX to

1While adequate for our present applications, this formulation is clearly unsatisfactory. It would
be preferable to have a theorem applicable to all objects of a suitable derived category. Bernstein’s
and Deligne’s theorems about derived categories of Ind-categories should provide the right tools.
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Sym•TX. Furthermore,Λ is a split almost-polynomial sheaf of operators onX×A1

overA1, with gr1Λ = pr∗XTX (Simpson [61] p. 81).

(4.2.3) Let us consider the situation of (4.2.1). Forλ : S→ A1, the pull-back
Λλ = (1X×λ )∗Λ onX×Sis also a split almost polynomial sheaf of operators over
S, with gr1Λλ = pr∗XTX. It is easy to see that to give a locally freeOX×S-module a
λ -connection is precisely the same thing as to give it a structure ofΛλ -module.

(4.2.4) Recall that theslopeµ(E ) of a locally freeOX-moduleE on mani-
fold X with polarisation given by a Kähler formωX is µ(E ) = degE / rkE , where
degE =

∫
X c1(E )∧ω

dimX−1
X . Thus if dimX ≥ 2, the degree and hence stability of

E depends on the polarisation[ωX].

Definition (4.2.5). —Let a∈ A1. Then a sheafE on X with ana-connection
∇ is stable(resp.semi-stable) if for each locally free subsheafF ⊂ E stable under
∇ (i.e., such that∇(F ) ⊂ Ω1

X×S/S⊗F ) we haveµ(F ) < µ(E ) (resp. µ(F ) ≤
µ(E )).

Let λ : S→ A1 be a morphism. Then a sheafE on X×Swith a λ -connection
∇ is stable(resp. semi-stable) if E is flat overS and (Es,∇s) is a stable (resp.
semi-stable) sheaf withλ (s)-connection for alls∈ S.

Remark(4.2.6). —For a 6= 0 each bundleE with an a-connection is semi-
stable; indeed, the slope of a subsheaf preserved by a flat connection is necessarily
the same as the slope ofE , i.e., zero.

Theorem(4.2.7). —Consider the functor M: Sch/A1 → Set which to each
A1-schemeλ : S→ A1 associates the set of isomorphism classes of pairs(E ,∇),
whereE is a locally free sheaf of rank n on X×S having vanishing (rational) Chern
classes along the fibres ofλ , and∇ is a λ -connection making(E ,∇) semi-stable.
Then:

(1) There is a quasi-projective moduli spaceMHod(X,n) for M, i.e., a quasi-
projective scheme that universally co-represents M.

(2) MHod(X,n) has a natural projectionπ to A1, and the geometric points of
the fibreπ−1{a} correspond bijectively to Jordan equivalence classes of
semi-stable bundles with a-connections on X.

Recall that a schemeM is said to co-represent a functorM : Sch→ Set if
there is a natural transformationΦ : M → hM = Hom(•,M) that is universal in the
following sense: ifZ is another scheme andΨ : M→ hZ is a natural transformation,
there is a unique morphismf : M → Z giving a factorisationΨ = hf ◦Φ. Notice
that this is really the definition of acoarse moduli spacebut without specifying
what precise equivalence classes the closed points ofM represent.

All semistableλ -connections can be shown to have a unique filtration (the
Jordan-Hölder filtration) such that the associated graded pieces are direct sums
of stableλ -connections. Twoλ -connections are said to be Jordan-equivalent if
their associated graded objects are isomorphic; for flat bundles, this means that the
semi-simplifications of their monodromy representations are the same.

PROOF. Apply Theorem 4.7. of Simpson [61] to the sheaf of ringsΛ of (4.2.2)
on X×A1. This gives disjoint moduli spaces forA1-flat Λ-modules with fixed
normalised Hilbert polynomials. LetP0 be the Hilbert polynomial ofOX, and let
MnP0 be the moduli space corresponding tonP0. Consider the subfunctorMnP0

0 of
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MnP0 which classifies the relativeλ -connections onX×S with vanishing Chern
classes along the fibresX×{s}. Since the Chern classesci of a flat family(Es)s∈S

of coherent sheaves on a schemeX smooth and projective overS (considered as
sections of the relative de Rham cohomologyR2iprS∗Ω•

X/S) are horizontal with
respect to the Gauss-Manin connection, the vanishing ofci(Es) depends only on
the connected component ofS containings. It follows that the functorMP0

0 is
universally co-represented by a union of connected components ofMnP0; this open
subset isMHod(X,n). �

Notice that the fibres ofMHod(X,n) over 0 and 1 are respectively the moduli
spacesMDol(X,n) of semi-stable Higgs bundles andMdR(X,n) of flat bundles.

Remark(4.2.8). —Let X be a curve; choosing a principal polarisation of the
Jacobian J(X) lets us identify the Jacobian with its dual. Given this identification,
the moduli spaceMdR(X,1) is identified with Grothendieck’suniversal vector ex-
tensionJ(X)\ of J(X), see Mazur-Messing [47] or Laumon [44]. In particular, for
a schemeS, the (algebraic group) extensions of J(X)×Sby a vector bundleV(E ∨)
onScorrespond bijectively to the morphismsH0(X,Ω1

X)⊗OS→ E .
We obtain the following description of the moduli spaceMHod(X,1): there is

an exact sequence

0→ V(H0(X,Ω1
X)∨)×A1 →MHod(X,1) π→ J(X)×A1 → 0

of group schemes overA1, whereπ takes aλ -connection to its underlying line
bundle. This extension is now just the "push-out" of the universal extension by the
multiplication-by-λ ∈ A1 morphism

[λ ] : H0(X,Ω1
X)⊗OA1 → H0(X,Ω1

X)⊗OA1.

3. Harmonic metrics and the hyper-Kähler structure of MdR(X,n)

We continue to assume thatX is a smooth projective variety, and hencea for-
tiori a compact Kähler manifold. Letω be the corresponding Kähler form.

(4.3.1) Let E be a locally freeOX-module with a flat connection∇, and letE
be the underlying smooth complex vector bundle ofE . We continue to denote the
corresponding flat connection inE by ∇; it has the decomposition∇ = ∇′+∇′′ into
operators of type(1,0) and(0,1) respectively. Assume thatE is equipped with a
Hermitean metrich. Then we define operatorsδ ′ andδ ′′ to be the unique operators
of types(1,0) and(0,1) such that∇′+δ ′′ andδ ′+∇′′ are connections preserving
the metrich. We set

∂h = (∇′+δ
′)/2 θh = (∇′−δ

′)/2

∂̄h = (∇′′+δ
′′)/2 θ̄h = (∇′′−δ

′′)/2.

Notice that

(4.3.1.1) ∇′ = ∂h +θh and ∇′′ = ∂̄h + θ̄h.

Since∇ is flat, ∇′2 = ∇′′2 = ∇′∇′′ + ∇′′∇′ = 0. This implies for the operators
induced byh thatδ ′2 = δ ′′2 = δ ′δ ′′+δ ′′+δ ′ = 0. Hence∂̄h is a complex structure
operator inE if and only if

(4.3.1.2) ∂̄
2
h = ∇′′

δ
′′+δ

′′∇′′ = 0.
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If this is the case, thenθh is holomorphic with respect tō∂h precisely when

(4.3.1.3) ∂̄h(θh) = ∇′
δ
′′+δ

′′∇′−∇′′
δ
′−δ

′∇′′ = 0.

Finally, for θh to be a Higgs field it needs to satisfy

(4.3.1.4) θ
2
h =−∇′

δ
′−δ

′∇′ = 0.

The sumGh = ∂̄ 2
h + ∂̄h(θh)+ θ 2

h of the operators above is an End(E)-valued dif-
ferential 2-form, which we call thepseudo-curvatureof the metrich (with respect
to ∇). Hence(E, ∂̄h,θh) is a Higgs bundle precisely whenGh = 0. In this case we
call the metrich harmonic.

Theorem(4.3.2)(Simpson). —Let (E ,∇) be a flat vector bundle on X and let
E be the underlying smooth complex bundle.

(1) There is in E an (essentially unique) Hermitean metric h with vanish-
ing pseudo-curvature Gh if and only if the monodromy representation
ρ∇ : π1(X,x)→GL(Ex) is semi-simple.

(2) The construction of (4.3.1) establishes an equivalence between the cate-
gory of flat bundles on X with semisimple monodromy and the category of
direct sums of stable Higgs bundles on X with vanishing Chern classes.

PROOF. We sketch a proof of the statements:
(1) Let Λ denote the adjoint of wedging withω. The equivalence of the exis-

tence of a metrich such thatΛGh = 0 and the semi-simplicity of the monodromy
representation is a deep analytic theorem of Corlette [14]. That ΛGh = 0 implies
Gh = 0 is Lemma 1.1. of Simpson [60].

(2) There is a construction of a connection inE starting from a Higgs bundle
structure and a metrich, similar to the one in (4.3.1) (see Simpson [60] p. 13). The
existence of a metrich making the connection flat if the Higgs bundle ispolystable
(a direct sum of stable Higgs bundles) with vanishing Chern classes is a hard theo-
rem of non-linear analysis in Simpson [59]. That this construction and the one of
(4.3.1) are inverses to each other is Corollary 1.3. of Simpson [60]. �

Remark(4.3.3). —We keep the assumptions of (4.3.1). LetX be the complex
conjugate manifold ofX. Conjugation switches the roles of(1,0) forms and(0,1)
forms and the roles of∂ and∂̄ . It follows that in the construction (4.3.1),∂h and
∂̄h get exchanged, as doθh andθ̄h.

We may then ask if∂h is a holomorphic structure operator forE and whether̄θh

is a Higgs field. It is immediate that the corresponding pseudo-curvature operator
is−Gh. It follows that(E,∂h, θ̄h) is a Higgs bundle precisely whenh is harmonic,
or in other words when(E, ∂̄h,θh) is a Higgs bundle. Clearly the Higgs bundle
(E,∂h, θ̄h) onX is stable precisely when(E, ∂̄h,θh) is stable onX.

Theorem(4.3.4). —The equivalence of categories of (4.3.2) induces a homeo-
morphism betweenMdR(X,n) andMDol(X,n), which restricted to the smooth loci
is a real-analytic isomorphism betweenMdR(X,n)sm andMDol(X,n)sm.

PROOF. For the homeomorphism see Theorem 7.18. of Simpson [62]. For the
real-analyticity see Fujiki [20]. �

Example(4.3.5). —Let X be a smooth complete curve of genusg. We notice
first that the abelianisation ofπ1(X) is Z2g, and hence the monodromy of a flat
connection in a line bundle is specified by 2g non-zero complex numbers. Thus
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by the Riemann-Hilbert correspondenceMdR(X,1) is G2g
m = (C∗)2g.2 On the other

hand, it is clear thatMDol(X,1) = J(X)×H0(X,Ω1
X).

The underlying smooth complex vector bundle of all flat line bundles clas-
sified by MdR(X,1) is the trivial line bundleL = X ×C. The canonical Her-
mitean product metric onL is seen to be harmonic for all flat line bundles. But
then one sees from the construction of (4.3.1) that Higgs bundles with zero Higgs
field θ correspond precisely to unitary connections. Thus the homeomorphism
MDol(X,1)→MdR(X,1) of (4.3.4) takes J(X) bijectively toU(1)2g ⊂ (C∗)2g.

Let ∇ be the flat connection corresponding to a holomorphic line bundleL =
(L, ∂̄ ). Then the connection corresponding to(L ,θ) is ∇ + θ + θ̄ . The mon-
odromy of∇+θ + θ̄ around a generatorγi of π1(X) is given by

(4.3.5.1) Monγi (∇+θ + θ̄) = Monγi (∇)exp

(
−

∫
γi

θ + θ̄

)
.

Hence the homeomorphismMDol(X,1) → MdR(X,1) of (4.3.4) is a homomor-
phism J(X)×H0(X,Ω1

X)→U(1)2g× (R∗
+)2g, and gives us a natural non-holomor-

phic polar coordinate system onMdR(X,1).

(4.3.6) Let M be the differentiable manifold underlying the smooth loci of
bothMdR(X,n) andMDol(X,n). ThenM has two complex structuresI andJ given
by MdR(X,n) andMDol(X,n) respectively. In addition, the tangent space atE of
MdR(X,n) (resp. E of MDol(X,n)) is isomorphic toH1(X,DR(E )) = H1

dR(X,E )
(resp. H1(DR(E)) = H1

Dol(X,E)). Both cohomology spaces can be described as
spaces of suitable harmonic forms and hence come equipped withL2-metrics.
These giveM two Riemannian metricsgdR and gDol, which in fact agree up to
multiplication by a constant.

Theorem(4.3.7). —M equipped with the metric gdR (or gDol) and the complex
structures I, J and K= IJ is ahyper-Kählermanifold.

In other words, the complex structuresI , J andK satisfy the quaternionic iden-
tities

I2 = J2 = K2 = IJK =−1,

andgdR (andgDol) is Kähler with respect toI , J andK.

PROOF. For the case whereX is a curve, see Hitchin [35]; the general case is
Theorem (8.3.1) in Fujiki [20]. �

4. Twistor space of MDol(X,n)

We recall the definition of the twistor space of a hyper-Kähler manifold and ex-
plain P. Deligne’s description of the twistor spaces of the moduli spacesMdR(X,n)
andMDol(X,n).

(4.4.1) Let (M,h) be a hyper-Kähler manifold with complex structuresI , J
andK satisfying the relationIJK = I2 = J2 = K2 =−1 and with respect to which
the metrich is Kähler. We identify the unit sphereS2 ⊂ R3 with P1

C. For any
z= (a,b,c) ∈ S2 we get an almost complex structureIz = aI +bJ+cK on M. It is
straightforward to check thatIz is integrable and thath is Kähler with respect toIz.

2The isomorphism (given by the Riemann-Hilbert correspondence) betweenMdR(X,n) and the
moduli space ofn-dimensional representations of the fundamental group is holomorphic but not
algebraic.
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The tangent spaceT(m,z)
(
M×P1

C

)
splits asTmM⊕TzP1

C. Give it the almost
complex structure (

Iz 0
0 IP1

)
,

whereIP1 is the standard complex structure ofP1. We have the following theorem
of Atiyah, Hitchin and Singer (see Salamon [57] and Hitchin [34]):

Theorem(4.4.2). —The almost complex structure above is integrable. The
projectionprP : M×P1

C → P1
C is holomorphic, whereas the projectionprM : M×

P1
C →M is only real analytic.

Definition (4.4.3). —The complex manifoldTw(M) = M×P1
C is called the

twistor spaceof M. The holomorphic sections of the form ˜m: P1 → {m}×P1 for
m∈M are calledhorizontal twistor lines.

For the moduli spacesMdR(X,n) andMDol(X,n) there is a complex-analytic
description of the twistor space, due to P. Deligne [15] and worked out in Simpson
[63]:

(4.4.4) The multiplicative group schemeGm acts onA1 by multiplication. This
action lifts to an action ofGm on MHod(X,n) overA1: if m∈Gm(S) and(E ,∇) is
a λ -connection onX×S, then(E ,m∇) is amλ -connection, and this action gives
an isomorphismMHod(X,n)→MHod(X,n) covering[m] : A1 → A1. In particular,
this action identifies the fibres ofMHod(X,n) over anyλ ,λ ′ 6= 0 – they are all
isomorphic toMdR(X,n). Thus we have the isomorphism

(4.4.4.1) MHod(X,n)×A1 Gm
∼= MdR(X,n)×Gm.

On the other hand, by the "Riemann-Hilbert correspondence" associating to a
flat connection its monodromy representation,MdR(X,n) is canonically complex-
analytically (but not algebraically, see Simpson [62]) isomorphic to the moduli
spaceMB(X,n) of representations

ρ : π1(X)→GL(n,C).

Let ˇ̄ρ denote the contragredient conjugate representation

ˇ̄ρ(γ) = t
ρ(γ)

−1
,

the complex conjugate of the transposed inverse. Thenρ 7→ ˇ̄ρ induces a complex
anti-holomorphic involutionτ of MB(X,n), hence an anti-holomorphic involution
τ ′ of MdR(X,n). Let σ : P1 → P1 denote the antipodal map, which is also an anti-
holomorphic involution (the real structure ofP1 without real points). Restricted to
Gm(C) = C∗, it is given byz 7→ −z̄−1.

Putting these together, we get an anti-linear involutionσ ′ of MdR(X,n)×Gm

by

(4.4.4.2) σ
′(u,m) = (τ ′(u),σ(m)).

But with the identifications above, this gives an isomorphism

σ
′ : MHod(X,n)×A1 Gm→MHod(X,n)×A1 Gm

between the complex conjugate schemes. LetT be the scheme obtained by gluing
MHod(X,n) to MHod(X,n) over Gm usingσ ′. SinceP1 is glued fromA1 andA1

usingσ , the projectionMHod(X,n)→ A1 gives a projectionπ : T → P1.
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Theorem(4.4.5). —The smooth locus Tsm of Tan is complex-analytically iso-
morphic to the twistor spaceTw(MDol(X,n)sm) of the smooth locus ofMDol(X,n).

PROOF. Theorem 4.2 of Simpson [63]. �

Proposition(4.4.6). —LetE =(E ,θ) be a stable Higgs bundle, and letρ : π1(X)→
GL(n,C) be the monodromy of the associated flat bundle. Then the Higgs bundle
on X corresponding to the flat connection with monodromyτ(ρ) = ˇ̄ρ is (E ,−θ).

PROOF. This proof is due to Simpson. We choose a harmonic metrich in the
underlying smooth bundleE. Let E be the complex conjugate bundle. Let∂̄ be
the holomorphic structure ofE . In (4.3.3) we madeE into a Higgs bundle onX
with same associated flat bundle using∂h as the holomorphic structure operator
and θ̄h as the Higgs field. By conjugating again, we can makeE into a Higgs
bundleE on X. Indeed, sections ofE are of the form ¯e for e∈ Γ(X,E), and we
takeē 7→ ∂h(e) to be holomorphic structure operator, and ¯e 7→ θ̄h(e) to be the Higgs
field. Moreover, we equipE with the induced metric(ē| f̄ ) = (e| f )h; this metric is
clearly harmonic. The flat connection associated toE is seen to be∇(ē) = ∇(e),
where∇ is the flat connection associated toE. The monodromy representation of
(E,∇) is the complex conjugate of the monodromy representation of(E,∇).

The metric gives a bundle mapM : E⊗E → X×C by M(e⊗ f̄ ) = (e| f )h. Let
F = (E, ∂̄ ,−θ), and consider the Higgs bundleF⊗E. We have

M(∂̄ (e), f̄ )+M(e,∂h( f )) = (∂̄ (e)| f )h +(e|∂h( f ))h = ∂̄ ((e| f )h)

since∂̄ + ∂h is compatible withh. But this means thatM is a morphism of holo-
morphic bundles. Similarly,

M(θF⊗E(e⊗ f̄ )) =−(θ(e)| f )h +(e|θ̄h( f ))h = 0

sinceθ andθ̄h are adjoint with respect toh. But this means thatM is a morphism
of Higgs bundles

M : F⊗E→ (OX,0).

M comes from the metric and hence it is a perfect pairing, which shows thatF
is the dual Higgs bundle ofE. Since the correspondence between Higgs bundles
and flat bundles preserves duality, the monodromy representation associated toF
is the contragredient of the representation associated toE. But this is precisely the

representationγ 7→ tρ(γ)
−1

. �

(4.4.7) The horizontal twistor lines are described in this framework by har-
monic metrics on the underlying bundles of theλ -connections: Letm∈MdR(X,n)
correspond to a semi-simple flat bundle(E,∇), and consider the decomposition
(4.3.1.1) of∇ issuing from the harmonic metric. Forλ ∈ A1(C) define inE an
almost complex structure

∂̄λ = ∂̄ +λ θ̄

and an operator
∇λ = λ∂ +θ .

Then∂̄λ is integrable and∇λ is aλ -connection in(E, ∂̄λ ). This family is clearly
holomorphic inλ , and so we have a relativeλ -connection onA1×X/A1 and thus
a sectionσ of the canonical mapλ : MdR(X,n)→ A1.
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We produce similarly a conjugate line inMHod(X,1), and we have to check that
these glue together underσ ′ to give the horizontal twistor line. The verification of
this is straightforward, see pp.233-234 in Simpson [63].

Proposition(4.4.8). —If X is a smooth projective curve, thenMHod(X,1) is a
finemoduli space, i.e., a universal familyU exists globally onMHod(X,1).

PROOF. We shall give an explicit construction since it will be useful for us
in what follows; it would also be possible to modify the proof of the analogous
statement for vector bundles with co-prime rank and degree in Newstead [55] to
apply to the GIT construction of the moduli spaceMHod(X,1) in Simpson [61].

By (4.3.5) and (4.4.5), we have a real-analytic isomorphism

MHod(X,1)∼= A1×J(X)×H0(X,Ω1
X).

On MDol(X,1) there is obviously a universal family of Higgs bundles with
underlying sheaf pr∗J(X)P; we wish to expand this to a family overMHod(X,1)
using the "halves" of the twistor lines in (4.4.7).

At a point(ξ ,θ)∈ J(X)×H0(X,Ω1
X), denote the complex structure operator of

Lξ by ∂̄ξ . At (λ ,ξ ,θ) ∈ A1×J(X)×H0(X,Ω1
X) choose as in (4.4.7) the complex

structure operator̄∂ξ +λ θ̄ and aλ -connectionλ∂ξ +θ . This gives a real-analytic
family U of rank-1λ -connections onMHod(X,1)×X, which clearly restricts to
the universal family onMDol(X,1).

The holomorphicity of the familyU in theλ -direction is clear sinceλ is linear
in the defining equations. Due to the trivialisation

MHod(X,1)×A1 Gm
∼= MdR(X,1)×Gm

in (4.4.4), it is enough to check the holomorphicity in the fibre direction for the fibre
over 1∈ A1, i.e., forMdR(X,1). But it follows from (4.3.5) that the monodromy
of U at

(c1, . . . ,c2g) ∈MdR(X,1) = (C∗)2g ∼= (U(1)×R∗
+)2g

is (c1, . . . ,c2g), and thus the restriction ofU to MdR(X,1)×X is indeed the uni-
versal family of flat line bundles. �

5. Autodual connections and twistor transform

We will be making use of the twistorial theory of auto-dual connections in
Kaledin-Verbitsky [40, 64]. What follows is a concise summary of the construc-
tions involved.

(4.5.1) Let M be a hyper-Kähler manifold. The complex structuresI , J andK
give an action of the quaternions on the tangent bundleTM and hence an action
of the groupSU(2) = Sp(1) of unit quaternions. This action extends to tensor and
exterior powers, and so in particular to the bundles of differential forms.

Definition (4.5.2). —A connection∇ in a vector bundleE on M is auto-dual
if its curvature 2-formF∇ is invariant under the action ofSU(2).

This generalises the self-duality condition from 4-manifolds to (not necessar-
ily Hermitean) connections on hyper-Kähler manifolds. There is also a slightly
stronger notion ofhyperholomorphicconnection, which is additionally required to
be compatible with a Hermitean metric in the underlying bundle.
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(4.5.3) Let E be a complex vector bundle onM, equipped with a connection
∇. The pull-back pr∗ME on Tw(M) has the natural pull-back connection pr∗

M∇. By
Lemma 5.1 of [40] the curvature of pr∗M∇ is of type (1,1) precisely when∇ is
auto-dual. In particular, for autodual∇ the pull-back pr∗M∇ defines a holomorphic
structure on pr∗ME; the resulting holomorphic bundle onTw(M) is called thetwistor
transformof the autodual bundle(E,∇).

Definition(4.5.4). —A holomorphic bundleF on Tw(M) is calledtwistorial
if the restrictionsm̃∗F are trivial for all horizontal twistor lines ˜m: P1 → Tw(M).

Proposition(4.5.5). —The twistor transform of an auto-dual connection is
twistorial.

PROOF. This follows directly from the construction. �

(4.5.6) Let F be a twistorial holomorphic bundle onTw(M) with underlying
smooth complex vector bundleF and holomorphic structure operator̄∂ . The a
real-analytic isomorphismTw(M)∼= M×P1 induces a splitting

A 0,1(Tw(M)) = pr∗MA 0,1(M)⊕pr∗P1A
0,1(P1)

of the type(0,1) forms. This gives the decomposition

∂̄ = ∂̄M + ∂̄P1

of ∂̄ : F → F⊗A 0,1 into operators

∂̄M : F → F⊗pr∗MA 0,1
M ,

∂̄P1 : F → F⊗pr∗P1A
0,1

P1 .

We call smooth sections ofF in the kernelΓtw(Tw(M),F) of ∂̄P1 twistor holo-
morphic sections, and define atwistorial direct image sheafprM+(F ) onM by

Γ(U,prM+(F )) = Γtw(pr−1
M (U),F).

Then prM+F is a sheaf of sections of a smooth complex vector bundle onM.
Moreover, sinceF is twistorial, pr∗MprM+F = F , and the operator̄∂M gives by
adjunction an operator

(4.5.6.1) ∇ : prM+F → prM+

(
F ⊗A 0,1

M

)
= prM+F ⊗A 1(M),

where the isomorphism results from a version of the projection formula for prM+.
It follows from Lemmas 5.8. and 5.9. of [40] that ∇ is an autodual connection
in prM+F ; the complex vector bundle prM+F with the autodual connection∇ is
called theinverse twistor transformof F .

Theorem(4.5.7). —The twistor transformation and the inverse twistor trans-
formation are quasi-equivalences to each other and establish an equivalence be-
tween the categories of bundles with autodual connections on M and twistorial
holomorphic bundles onTw(M).

PROOF. Theorem 5.12 of Kaledin-Verbitsky [40]. �



CHAPTER 5

An auto-dual connection in the transform

We shall now proceed to construct a natural autodual connection in the Fourier
transform of a stable Higgs bundle on a curve. Using the twistor theory of the
previous chapter, we are reduced to constructing a suitable holomorphic vector
bundle on the twistor space of the base manifold J(X)×H0(X,Ω1

X). But the twistor
space has been identified with a space glued from two copies of moduli spaces of
λ -connections. The construction is now based on derived direct images of natural
families ofλ -connections.

We continue to assume that all schemes are overC.

1. Construction

We shall construct a twistorial bundle on the twistor space of the base manifold
MDol(X,1) and show that it is the twistor transform of a connection living inÊ.

Notation(5.1.1). —Let X be a smooth projective curve of genusg≥ 2. We
denote byM the moduli spaceMDol(X,1) of rank-1 Higgs bundles onX. It is
naturally isomorphic to the cotangent bundle of the Jacobian J(X) of X, i.e., to
J×H := J(X)×H0(X,Ω1

X).

(5.1.2) We may translate the definition (3.1.9) into the framework of the pre-
vious chapter. In fact, the base manifold ofÊ is just the moduli spaceM =
MDol(X,1) of rank-1 Higgs bundles. The complex pr∗

X×H Ẽ⊗pr∗X×JM as an object
of Db

coh(X×M) is clearly the "de Rham complex"

DRX×M/M

(
pr∗XE

L
⊗H

)
,

whereH is the universal rank-1 Higgs bundle onX×M and the tensor product is
taken in the derived category of Sym•(TX×M/M)-modules (see section 1 of Chapter
4). Thus

Ê = R1prM∗

(
DRX×M/M

(
pr∗XE

L
⊗H

))
.

We shall show that this locally free sheaf admits an autodual connection by
using the twistorial description of the previous section.

Notation(5.1.3). —Let X be a smooth complete curve. We continue to denote
by M the hyper-Kähler moduli spaceMDol(X,1). Let T = Tw(M) be the twistor
space. By (4.4.5) it is glued together fromMHod(X,1) andMHod(X,1) by means
of the anti-holomorphic involutionσ ′ of (4.4.4.2); we denote these "halves" of
the twistor space byT+ andT− respectively. LetU be the universal rank-1λ -
connection onT+ ×X, and denote byλ : T+ → A1 the natural fibration. Then
U |λ−1(0) = H .

63
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(5.1.4) Let E be a stable degree-0 Higgs bundle of rankr ≥ 2 on X. The
construction in (4.4.7) of the (half of the) horizontal twistor line through the point
in MDol(X,n) corresponding toE gives us a bundle with aλ -connectionE′ on
A1×X, which restricts toE on{0}×X. Let

E+ = (λ ×1X)∗E′
L
⊗U .

We consider the object

F+ = R1prT+∗
(
DRX×T+/T+

(
E+))

of Db
coh(T

+). By construction the restriction ofF+ to M ⊂ T+ is the Fourier
transformÊ.

Lemma(5.1.5). —The sheafF+ constructed above is a locally freeOT+-
module.

PROOF. SinceX is complete, it follows from (4.1.12) thatF+ is a coherent
OT+-module. Hence it suffices to show that the dimension of the fibresF+(m) is
constant form∈ T+ = MHod(X,1). Form∈MDol(X,1) this follows from (3.1.8).
But by Corollary 2.3. of Simpson [60]

F+(m)∼= F+(m′),

wherem′ ∈ MdR(X,1) corresponds tom∈ MDol(X,1) under the homeomorphism
of (4.3.4). Finally, form /∈ M = MDol(X,1) this follows from the trivialisation of
MHod(X,1)\MDol(X,1) in (4.4.4) and the fact that multiplication of the differen-
tial of a de Rham complex by a constant does not affect its hypercohomology.�

Remark(5.1.6). —LetX be a curve of genus 2, and consider the sheafF+|λ−1(1)
associated to thetrivial Higgs bundle(OX,0); it is the first higher direct image of
the universal flat line bundle, and it fails to be locally free at(0,0). For an explicit
description of it, we refer the reader to Gunning [30].

(5.1.7) Consider the universal rank-1 Higgs bundle(X×C, ∂̄ξ ,θ) on the base
J(X)×H0(X,Ω1

X)×X = MDol(X,1)×X. Using the harmonic (i.e., product) metric
on L = X×C, we get by (4.3.1) the operators̄θ and∂ξ . By (4.3.3),(L,∂ξ ,−θ̄ξ )
is a (in fact universal) family of Higgs line bundles onMDol(X,1)×X. As in the
proof of (4.4.8), for eachλ ∈ C, ∂ξ − λ̄ θξ is a complex structure operator forL
on X, andλ̄ ∂̄ξ − θ̄ is a λ̄ -connection in(L,∂ξ − λ̄ θξ ). It is clear that the family is
holomorphic with respect toT−. We denote this family of rank-1λ -connections
onT−×X by U −.

Lemma(5.1.8). —The anti-holomorphic involutionτ of the moduli space of
representations ofπ1(X) used in the gluing of T from T+ and T− exchanges the
monodromies of the restrictions ofU andU − to moduli spaces of flat connections.

PROOF. First, by (4.3.3), the conjugate family ofU with complex structure
operator∂ξ + λ̄ θξ andλ̄ -connection̄λ ∂̄ξ + θ̄ restricted toMdR(X,1) has the same
monodromy asU .

It follows from (4.3.5.1) that the mapθ 7→ −θ corresponds to

(ϕ1, . . . ,ϕ2g, r1, . . . , r2g) 7→ (ϕ1, . . . ,ϕ2g,1/r1, . . . ,1/r2g)
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in polar coordinates on(C∗)2g. But this is just the map

(c1, . . . ,c2g) 7→ (c1
−1, . . . ,c2g

−1),

i.e., the involution of the moduli space. �

(5.1.9) Let E and∂̄ denote the underlying smooth complex vector bundle and
the holomorphic structure operator of the Higgs bundleE. Using a harmonic metric
h on (E, ∂̄ ,θ) we get by (4.3.1) and (4.3.2) operatorsθ̄h and∂h such that

∇ = ∂h + ∂̄ +θ + θ̄h

is the flat connection corresponding toE by (4.3.2). Now by (4.3.3) the operator∂h

defines inE a structure of a holomorphic bundle on the complex conjugate curve
X, and the operator−θ̄h makes(E,∂h) into a stable Higgs bundle we denote byE.

(5.1.10) As in (5.1.4), the Higgs bundleE gives us a holomorphic family

E
′
= (E, λ̄ ∂̄ − θ̄h +∂h− λ̄ θ)

of λ -connections onX parametrised byA1. This is just the family giving a half
of the twistor line corresponding toE in the twistor spaceT− = MDol(X,1) =
MDol(X,1). Let

E− = (λ ×1X)∗E
′ L
⊗U −.

Consider the object

F− = R1prT−∗
(
DRX×T−/T−E−

)
.

It is a locally freeOT−-module by the same argument that was used forF+ in
(5.1.5).

Proposition(5.1.11). —Let σ ′ : T+×A1 Gm → T−×A1 Gm be the morphism
used to glue together the twistor space T in (4.4.4). Then the pulled-back vector
bundleσ ′∗ (F−) is isomorphic to the restriction ofF+ on T+×A1 Gm.

PROOF. Consider the morphism

f = (σ ′×1X) : T+×A1 Gm×X → T−×A1 Gm×X.

Notice thatf is a morphism of schemes, but not a morphism ofC-schemes. Since
F− = R1prT−∗(E

−) is locally free, it follows that

σ
′∗(F−) = R1prT+∗( f ∗(E−)).

DenoteN = MdR(X,1). LetE+
1 be the restriction ofE+ to N×X, and letF+

1 =
R1prN∗E

+
1 be the restriction ofF+ to N ⊂ T+. Now onT+×A1 Gm = N×Gm we

have the familyλ−1E+ of flat connections by (4.4.4). But since multiplication of
the differentials in a complex does not affect its hypercohomology, it follows that
the restriction ofF+ to N×Gm is the pull-back pr∗NF+

1 . Similarly, letE−1 denote
the restriction ofE− to MdR(X,1)×X; then we see that the restriction ofF− to
T−×A1 ×Gm = N×Gm is the pull-back ofF−

1 = R1prN∗E
−
1 .

Hence it is enough to find an isomorphism

R1prN∗
(
E+

1

) ∼→ R1prN∗
(

f ∗E−1
)

But now the proposition follows from the following lemma.

Lemma(5.1.11.1). —There is an isomorphism f∗(E−) → −E+ on T+ ×A1

{1}= MdR(X,1).
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Let L + be the family of local systems (i.e., locally constant sheaves) onN×X
for whichE+

1 = L +⊗C ON×X, and letL − be the family of local systems onN×X
for which E−1 = L −⊗C ON×X. Then f ∗E−1 = f−1L −⊗C ON×X. But it follows
from (4.3.3) and (4.4.6) thatf−1L − ∼= L +, whence the lemma. �

(5.1.12) The proposition allows us to glue the sheavesF+ on T+ andF−

on T− together into a sheaf onT. Let us denote this sheaf byF . Notice that the
gluing map is essentially constant in theGm-direction, being pulled back from the
gluing map forMdR(X,1)⊂ T.

Lemma(5.1.13). —The glued-together sheafF constructed in (5.1.12) is a
twistorial locally freeOT-module.

PROOF. ThatF is locally free is clear since it is glued from two locally free
sheaves. We need to show that it is twistorial. Let ˜m: P1 → T be a horizontal
twistor line. Then formality Lemma 2.2 in Simpson [60] gives trivialisations of
m̃∗F overA1 andA1. Since the gluing in (5.1.12) is propagated from the isomor-
phismm̃∗F (1) → m̃∗F (−1), the transition function will be constant. Hence the
locally free sheaf ˜m∗F is in fact globally free. �

Proposition(5.1.14). —The the underlying vector bundle of the inverse trans-
form ofF is Ê.

PROOF. This is evident from the definitions and (4.5.7). �

Theorem(5.1.15). —The Fourier transform̂E of a stable Higgs bundleE on
X has a natural autodual connection.

PROOF. This follows from (5.1.13), (4.5.7) and (5.1.14). �

Remark(5.1.16). —The use we make of Simpson’s formality lemma in the
proof of (5.1.13) hides a crucial analytic input to the result. The formality lemma
is proved representing both the Dolbeault cohomology of a Higgs bundle and the
de Rham cohomology of the associated flat bundle using thesamespace of har-
monic differentials. The construction of the corresponding Laplacian depends on
the Harmonic metrics.

2. Further properties and open issues

We discuss briefly some further properties of the transform and outline a few
conjectures and questions for further research.

(5.2.1) As mentioned in Introduction, the Fourier transform can also be de-
fined as the bundle of kernels of suitable coupled Dirac-type operators. Indeed, in
[36] Hitchin discusses a Dirac operator

D∗ : A 1,0(E)⊕A 0,1(E)→A 1,1(E)⊕A 1,1(E),

whereE is the underlying smooth vector bundle of a (SU(2)-) Higgs bundleE, and
shows that the kernel ofD∗ is isomorphic to our hypercohomology spaceH1(X,E).
Now it would be a straightforward task to give a differential-geometric definition
of our transformation using coupled Dirac operators corresponding to our twists by
line bundles and one-forms.
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(5.2.2) Using the Hodge star and a metric inE, the differential-geometric con-
struction allows us to define a Hermitean inner product in the transform by the
point-wise formula ∫

X
(ψ1| ∗ψ1)+(ψ2| ∗ψ2)

on the kernels of the twisted operatorsD∗.
On the other hand, the Poincaré duality for Higgs bundles (see Simpson [60]

Lemma 2.5) can be used to give a twistorial description of a Hermitean metric in
the transform. We conjecture that these two metrics will turn out to be (essentially)
the same.

(5.2.3) The Hermitean metric in the Dirac operator kernels allows one to con-
struct a connection in the transform using the projection-of-the-trivial-connection
approach applied in Donaldson-Kronheimer [18] to the Fourier transform for in-
stantons. The connection obtained this way should turn out to be the same that we
construct using twistor methods. Moreover, the connection thus obtained should
be compatible with the Hermitean metric.

(5.2.4) An open issue we propose to work on in the future is the asymptotic
behaviour of (the curvature of) the autodual connection. We expect that suitable
asymptotic conditions on the connection should allow one to identify the essential
image of the transformation and thus strengthen the invertibility theorem (3.2.1).
The properties of the Hermitean metric are likely to be crucial to the understanding
of the asymptotics.
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