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Chapter 1

Introduction

We define a new approach to the concept of a gerbe and illustrate it with
applications to differential and algebraic geometry.

Our aim is to obtain a geometric realisation of abelian cohomology. Just as
nowhere-zero functions in H0(X; C∗) (or O∗) on a smooth manifold X have a
winding number realising classes in H1(X; Z), and smooth line-bundles classified
by H1(X; C∗) realise classes in H2(X; Z), by a “gerbe” we mean some more-or-
less concrete realisation of H2(X; C∗) and H3(X; Z).

Then we would expect such a thing to have links to “curvature” 3-forms,
codimension-3 submanifolds, holonomy over surfaces and the like. Physicists
have long been comfortable with the idea [11] that when they find a field which
looks like a closed integer-valued differential 2-form which is well-defined up to
the exterior derivative of a 1-form, what they have actually uncovered is a line
bundle with connection (or a vector bundle, given more exotic coefficients). In
recent years, all sorts of obscure fields have been cropping up in investigations
into string theory, amongst which are closed integral (n+1)-forms, well-defined
up to d(n-form). The string community seems to have become quite quite blasé
about such putative “n-gerbs”. There is clearly a need to understand their
underlying character.

Gerbes were originally defined by Giraud [18] in the early 1970s in an at-
tempt to understand non-abelian second cohomology, invoking the most rarefied
aspects of algebraic geometry such as stacks, torsors and toposes. The 1993 book
of Brylinski [5], taking inspiration from Deligne, tries to use abelian gerbes to
attack H3(Z) on a smooth manifold. This retains a degree of the impenetra-
bility of the original, with torsors and sheaves of categories omnipresent, but
is the starting point for current research. We can compare this with knowing
only the abstract coherent-sheaf definition of a line bundle: whilst the algebraic
approach has of course proven its worth in modern geometry, it would be nice
to have a more hands-on description.

In reaction to this, Murray [37] defines “bundle-gerbes”. Just as with a line
bundle, it is possible to describe a gerbe in terms of a concrete total space with
certain properties sitting over the base manifold X, but inevitably the fibres
(which are spaces of paths) are infinite-dimensional; and this approach also has
problems with defining the appropriate equivalence classes. Before turning to
gerbes, Brylinski too considers infinite-dimensional bundles, starting from the
projective Hilbert space bundles of the 1960s work of Dixmier and Douady [12]
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concerning H3(Z). Atiyah has remarked that, after 2-forms, the next concept of
“curvature” seems to require an infinite-dimensional setting rather than stepping
up by some finite degree: this was in the context of path integrals and quantum
field theory, but it is also in tune with these various attempts at definitions of
gerbes.

In contrast, our work advocates a new approach in seeking to understand
what is involved in a “gerbe”—we follow a third route to line bundles, that
of local trivialisations and transition functions. The underlying idea is nothing
more than to take Čech theory quite literally, guided by the principle that gerbes
are to line bundles what line bundles are to functions. We believe this offers
the simplest and most explicit way to get to grips with what a gerbe entails.
We can show that our structures are (particular expressions of) gerbes, and our
equivalence classes correspond with equivalence classes of gerbes. To emphasise
their stripped-down nature, we call our structures not gerbes but gerbs.

It seems that the tendencies—at least implicit in both Brylinski’s and Mur-
ray’s work—towards seeing gerbes as essentially infinite dimensional (or cate-
gorical) and principal (rather than vector) structures are in fact not at all vital.
Whilst comparison of our method with those of [5] and [37] is clearly of inter-
est, we have avoided devoting space to line-by-line translations, feeling it more
worthwhile to develop new examples in which the efficacy of the gerb definition
can be tested.

Since our thesis is that it is possible to do many things on manifolds without
invoking stacks or torsors, our technology is deliberately low-powered through-
out, requiring little more than Čech cohomology and a basic familiarity with
line bundles and their connections. Our use of algebraic geometry is gentle-
manly and transcendental rather than professional and algebraic. (To lay bare
our religious affiliation [15], we declare that the word “torsor” has no further
role in this work.) Our ambition is to be simple but not simplistic; and thereby
perhaps to offer a useful alternative approach to those of [5] and [37].



A guide to the chapters

Essentially we define in the smooth and the holomorphic cases three structures—
gerbs, their connections, and their sections—and the natural equivalences be-
tween them. This theory takes up about a quarter of the dissertation. (The
fact that it can be covered so rapidly is we hope a virtue.)

Chapter 2 lays out the basics of smooth abelian gerbs and connections,
works through the appropriate notions of gauge transformation or equivalence,
and offers a few minor examples to consolidate the definitions. This includes a
brief comment on “principal” gerbs (2.3.3).

Chapter 3 defines smooth gerb sections, which in deference to [5] we call
“objects” since these are the most natural link to category-theoretic gerbes.
(Compare this with moving between a vector bundle and a sheaf, its sheaf of
sections.) We outline this step, but not in depth since that would amount to a
regurgitation of most of chapter 5 of Brylinski.

The case of holomorphic gerbs is in broad terms the same as in these first
two chapters, but unsurprisingly there are more subtle questions of existence to
consider, and these are taken up in chapter 5. Before that, however, we wish
to pursue a key example in depth. Chapter 4 is concerned with holomorphic
gerbs, but on deliberately simple spaces (P3 and C3) so that the technicalities
of chapter 5 are not a concern. The example is a twistor-theoretic one, in which
we transform between a purely holomorphic setting and one with infinitesimal
structure, or connection. Twistor theory has proved so natural in the context
of vector bundles in a wide range of examples [3, 49] that we view this as a
significant test: given a class in H2(O∗), to what does this correspond on the
other side? If we believe H2(O∗) to be related to holomorphic gerbs (as we do,
in chapters 2 and 5) then its transform is showing us the essential content of
a gerb with connection—and so our definitions had better agree with it. The
outcome is highlighted in theorems (4.4.1) and (4.5.1): not only are gerbs quite
appropriate fields on P3, but “n-gerbs” are similarly efficacious on Pn+1.

Chapter 6 begins from the idea that, given that H3(Z) is identified by
Poincaré with Hn−3(Z), we can hope for gerbs to have interesting links with
real codimension-3 submanifolds. The smooth category is too loose to offer
much, but there are discoveries to be made once we fix a metric and consider
harmonic theory. It turns out that we can move between a certain natural
type of gerb with flat connection; a submanifold which is the singularity of an
abelian monopole; and a torus which is a direct analogue of the Jacobian variety
of line-bundles. Whilst theorem (6.4.2) is perhaps not quite as compelling as
our two twistor-theoretic chapters, we can certainly claim that it is a meaningful
extension of its starting place, which is Brylinski’s elementary example (chapter
7 of [5]) of a point in S3. (We should also declare a debt to Kodaira’s pa-
per [29], an accidentally-uncovered gem whose influence on chapter 6 is by now
well-buried since at the requisite times—fifty years apart—neither the author
nor the reader was aware of de Rham’s concept of a current.)

Chapter 7 is concerned with holonomy. Given the notion of a “error 2-form”
from chapter 3, a definition of the holonomy of a surface is immediate. Brylinski
on the other hand has a rather ornate approach to the holonomy of a loop: on
the space of loops, he defines a line bundle instead of a function. We explore
this idea further, but since we end up at a limited and well-known location
(the correspondence between monopoles on S3 and line bundles on the quadric



surface) we cannot view this chapter as fully satisfactory. Our constructions
seem interesting in their own right, however, and we offer them in the hope that
a more compelling application awaits.

We return to twistor theory for chapter 8, looking at the Ward correspon-
dence between even-dimensional quadrics and their collections of linear sub-
spaces. This is a more complicated setting than chapter 4, and we cannot
handle the general n-gerb case in full. We can certainly deal with gerbs them-
selves though, finding a natural correspondence between holomorphic gerbs on
one side and anti-self-dual connections on the other. We also lay out two ap-
proaches to higher-order structures, which seem to work convincingly enough to
conjecture that there is indeed a general Ward correspondence between gerbs of
arbitrary degree and anti-self-dual connections.

We conclude in chapter 9 with outlines of further directions. There is unsur-
prisingly a notion of divisor for holomorphic gerbs—indeed, there are two no-
tions. We have considered no sufficiently compelling example to let us choose be-
tween the two, and so we merely lay out some ideas for consideration. Secondly,
and in reaction to this, we consider an alternative and currently-fashionable
type of “divisor”: a special Lagrangian submanifold of a Calabi-Yau 3-fold.
Such spaces are sufficiently rigid that there ought to be some obvious gerb as-
sociated with them, but we can offer only the vaguest of hints as to how to
construct it. No doubt the string theorists can think of something.

Citations in square brackets [1] are listed in the bibliography which follows the
final chapter. Round brackets (2.1.1) refer to chapters in the text and sections
within them.
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Chapter 2

The definition of a gerb

All structures are oriented unless otherwise declared. “Smooth” is used through-
out to mean C∞.

2.1 Locally-trivialised gerbs

We work over a smooth real finite-dimensional manifold X.

Definition 2.1.1 (Gerb) A (smooth, abelian, locally-trivialised) gerb

G(I,Λ, θ)

is defined by the following data—

• An open cover of X

{Ui : i ∈ I} with
⋃
I

Ui = X

(and we shall write for instance Ui,j to mean Ui ∩ Uj);

• A smooth complex line-bundle Λj
i existing over Ui,j for each ordered pair

(i, j), i 6= j, such that Λj
i and Λi

j are dual to each other;

• For each ordered triple of distinct indices (i, j, k), a smooth nowhere-zero
section

θi,j,k ∈ Γ(Ui,j,k; Λj
i ⊗ Λk

j ⊗ Λi
k)

such that the sections θi,j,k of reorderings of a triple (i, j, k) are related in
the natural way.

One further constraint is to be obeyed: on four-fold intersections we require that

δθ = 1.

To clarify: over any four-fold intersection Ui,j,k,l we can tensor together the four
sections θi,j,k, . . . , to give a trivialisation δθ of the line-bundle

δ2Λ =
(
Λj

i ⊗ Λk
j ⊗ Λi

k

) ⊗ (
Λj

i ⊗ Λl
j ⊗ Λi

l

)−1⊗ (
Λk

i ⊗ Λl
k ⊗ Λi

l

) ⊗ (
Λk

j ⊗ Λl
k ⊗ Λj

l

)−1
.
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But thanks to the duality condition Λb
a = (Λa

b )−1, this untidy bundle is canon-
ically trivial (δ2 = 0). We are insisting that δθ is in fact this canonical section.

Now we must begin to free ourselves from the self-imposed prison of our
choice of cover.

Definition 2.1.2 (Refinement) A refinement of a local trivialisation is—

• A refinement of the cover, ie. a new cover and a map

{Va : a ∈ A} with
⋃
A

Va = X,

r : A→ I : Va ⊂ Ur(a) (∀a);

• Line-bundles

Λb
a :=

{
Λr(b)

r(a)|Va,b
if r(a)6=r(b),

trivial, with trivialising section 1b
a if r(a)=r(b);

• Sections

θa,b,c :=


θr(a),r(b),r(c) if all different,
1b

a ⊗ 1c
b ⊗ 1a

c if r(a)=r(b)=r(c),
eg. 1b

a ⊗ can if eg. r(a)=r(b)6=r(c)

over each Va,b,c.

In the last line can is to mean the canonical section of Λr(c)
r(a) ⊗ Λr(a)

r(c) .

Proposition 2.1.3 A refinement of a gerb is a gerb.

Proof—We must check that our new sections obey δθ = 1. This is a straightfor-
ward matter of testing the various cases for which r(a), r(b), r(c), r(d) are equal
or distinct. 2

Proposition 2.1.4 A locally trivialised gerb naturally gives rise to a class in

H2(X; C∗).

Here C∗ is the sheaf of smooth nowhere-zero complex functions on X. Recall
that, given the exponential sequence

0→ Z 2πi−−→ C exp−−→ C∗ → 0

and given the fact that, being soft [21], C has no cohomology, this group is equal
to

H2(X; C∗) ∼= H3(X; 2πiZ).

Proof—Refine the cover such that now all the Λj
i are trivialisable, and take

trivialisations. Using these as coordinates, θ becomes a Čech cocyle

t ∈ Z2(X; C∗)



thus inducing the cohomology class.
Different trivialisations shift the cocyle by

δC1(X; C∗).

A different refinement gives the same class in standard Čech fashion [21], by go-
ing to a common refinement. So the class of G(I,Λ, θ) is independent of choices.

2

Gerbs come with definitions of restriction and pull-back and the like, but
it seems unnecessary to write these down since they derive directly from the
well-known behaviour of bundles, sections and Čech cocycles. We shall simply
use such properties as needed.

Why do we not insist that the bundles Λ be trivialised? (In many proofs,
we shall refine so as to ensure this.) The reason is that many natural examples
of gerbs use non-trivial bundles: for instance, in (2.3.6) we consider a degree-1
line bundle on a punctured ball, and to break this up into subsets would be
unnecessarily artificial.

0-Gauge transformations

There is an obvious concept of equivalence between trivialisations.

Definition 2.1.5 (Equivalence of locally-trivialised gerbs) Two gerbs{
G(I,Λ, θ)
H(J,M, η)

are equivalent, if there exists a common refinement A of their covers I, J , and
isomorphisms

Λb
a

∼=−→ Kb
a over Va,b

on the pairwise intersections of this common refinement, such that the isomor-
phisms induce

θa,b,c 7→ ηa,b,c.

This is an equivalence relation. If we are given two local trivialisations over
the same cover, and given particular isomorphisms inducing an equivalence,
we might reasonably say the trivialisations describe one and the same gerb.
Given a single local trivialisation of a gerb, a 0-gauge transformation of the
gerb is an automorphism of each of the Λj

i , ie. a family of line-bundle gauge-
transformations. This gives a new local trivialisation that is equivalent to the
original.

Theorem 2.1.6 The collection of equivalence classes of gerbs is canonically
identified with

H2(X; C∗).

Proof—It remains to show that equivalent trivialisations induce the same class;
and in the other direction, that Čech cocycles induce gerbs; and that equivalent
cocycles give rise to equivalent gerbs.



For the first: go to a mutual refinement in which we can take bases for
the line-bundles on each Va,b. Then we clearly have a Čech equivalence of the
cocycles representing θ, η, and as before altering the refinement or the bases
does not alter the class.

For the second: an open cover {Ui} and a cocycle

ti,j,k ∈ Z2(X; C∗)

define an equivalence class of locally-trivialised gerbs, as follows. Choose trivial
bundles Λj

i with bases λj
i . Then we define the section

θi,j,k := ti,j,kλ
j
i ⊗ λ

k
j ⊗ λi

k

which obeys δθ = 1 since δt = 1. Different choices for λj
i give equivalent

trivialisations of the same gerb.
Finally: that a different cover and cocycle lying in the same Čech cohomol-

ogy class gives an equivalent gerb is yet another repetition of the same argument.
2

Note that the proof also demonstrates that gerbs exist, on any X.

Definition 2.1.7 (Global trivialisation of a gerb) A gerb G(I,Λ, θ) is glob-
ally trivialised by displaying bases λj

i for each line-bundle Λj
i such that δλ = θ,

ie. such that on each Ui,j,k

λj
i ⊗ λ

k
j ⊗ λi

k = θi,j,k.

Definition 2.1.8 (Trivial gerb) A gerb is trivial, if equivalent to a globally-
trivialised gerb.

Proposition 2.1.9 A gerb is trivial, iff its class in H2(X; C∗) is zero.

Proof—A gerb is trivial, iff it has a globally-trivialisable refinement. Such a
global trivialisation can be represented by the trivial cocycle 1i,j,k on its cover
I. 2

We remark that, given two gerbs over X and an equivalence between them,
by going to a suitable common refinement we can define their difference in
the obvious manner: we obtain the ratio of the line-bundles on each V b

a as a
canonically-trivial line-bundle; and these trivialisations have coboundary section

θ−1 ⊗ η.

Proposition 2.1.10 The difference of two equivalent gerbs is a trivial gerb;
and if given a particular equivalence between the two, the difference comes with
a particular global trivialisation. 2

This is in exact analogy with isomorphic line-bundles. Further, we shall
later discuss the analogue of a section of a line-bundle (3.1.1). Then a trivial
gerb will be seen to have global “sections”; and global sections of a trivial gerb
with given global trivialisation are naturally global line-bundles (3.1.3)—just as
global sections of a trivialised line-bundle are global functions.

The module structure of H2(X; C∗) ∼= H3(X; Z) over Z is expressed by a
simple operation.



Definition 2.1.11 (Tensor product) The product of two gerbs is obtained
by refining to a common local trivialisation, and tensoring the various pairs of
line-bundles and sections in the obvious way.

Proposition 2.1.12 The product of two gerbs is a gerb. Tensoring induces the
Z-module addition of equivalence classes in H2(X; C∗).

Proof—That products are gerbs is immediate. It is also immediate that tensor-
ing G by either of two equivalent gerbs gives isomorphisms between the bundles
forming the two products, making them equivalent. So the construction passes
to equivalence classes.

On the module structure: on a common refinement adequate to trivialise all
Λj

i , tensoring amounts to multiplication of Čech representatives si,j,k and ti,j,k,
thus inducing Z-addition. 2

2.2 Differential structures

We must break up the differential geometry of gerbs into two steps. The first
has a simple description in terms of standard geometry; the second remains
in general abstract, but we can hope to make it more concrete in particular
situations.

The idea can be described in local-coordinate terms. Consider a locally-
trivialised line-bundle with transitions f j

i . Then a connection is given by smooth
complex local 1-forms Ai such that

δA− d log f = 0

and its curvature is then F = dA.
We should be thinking in terms of the Čech-de Rham double complex

Cp(X;Aq)

writing Aq for the sheaf of smooth complex q-forms on X. Equivalence classes
of bundles with connection become hypercohomology classes in

H1(X; C∗ d log−−−→ A1).

What we shall do for gerbs amounts to nothing more than this: given a
cocycle ti,j,k representing θ, choose 1-forms αj

i such that

δα+ d log t = 0.

(The sign is to be consistent with the standard total differential δ + (−1)pd on
the Čech-de Rham complex.) Then we have the second step of choosing local
2-forms βi such that

δβ − dα = 0

which leaves us with a global 3-form curvature Ω = dβ.



0-Connections

Definition 2.2.1 (0-Connection) On a locally-trivialised gerb, a 0-connec-
tion is a family of line-bundle connections

∇j
i on Λj

i

such that the induced connection on each threefold intersection obeys

∇θ = 0.

Note that a 0-transform of the gerb induces line-bundle gauge transforms of
the ∇j

i . We view this transformed 0-connection as equivalent to the original.
What is the difference between two 0-connections on a given gerb? Fix some

local trivialisation over X. Then the difference is a collection of 1-forms

∇′ −∇ = αj
i ∈ C1(X;A1).

Since (∇ − ∇′)(θ) = 0 we know α is in fact a cocycle. In the smooth case we
can go further

Z1(X;A1) = δC0(X;A1)

which is pertinent to (2.2.5).

Proposition 2.2.2 Every gerb (expressed over some open cover I) has a 0-
connection (expressed on that same cover).

Proof—It suffices to observe that the sheaf A1 is soft [21].
To expand: choose an arbitrary connection ∇j

i for each bundle Λj
i . Then

on Ui,j,k we find
∇θ = η ⊗ θ

for some η ∈ C2(X;A1) with respect to the cover I.
Further, δη = 0. This is because on 4-fold intersections Ui,j,k,l by defini-

tion δθ is equal to the canonical section can; but the induced connection δ2∇ is
necessarily zero on can, whether or not (δ∇)θ = 0 on 3-fold intersections. (We
see this by taking local bases, for instance.)

Now choose a smooth real partition of unity ρ subordinate to I. In standard
fashion this gives us η as a coboundary

ζj
i :=

∑
k

ρk · ηi,j,k ⇒ δζ = η

thus offering us
∇′ := ∇− ζ ⇒ ∇′θ = 0

as a 0-connection on the given cover. 2

If we were discussing the holomorphic category, there would be an obstruc-
tion here to the existence of a holomorphic 0-connection. We shall consider this
in chapter 5.



1-Connections and 1-gauge-transformations

Since we know that gerbs are related to H2(X; C∗), we expect some sort of 3-form
“curvature” in H3(X; Z). The general way to reach this stage is disappointingly
short on geometry—

Definition 2.2.3 (1-Connection) Given a locally-trivialised gerb with 0-con-
nection, a 1-connection is any choice of local 2-forms

βi ∈ C0(X;A2)

satisfying
δβ = F.

Here F is the 1-cocycle of curvature 2-forms of the line-bundles

F j
i := Curvature of ∇j

i .

Proposition 2.2.4 1-connections exist for any 0-connection, on the given cover.

Proof—Just as for 0-connections, a subordinate partition of unity suffices. 2

For a given 0-connection, two 1-connections clearly differ by a global 2-form.

Definition 2.2.5 (1-Gauge-transformation) Given a locally-trivialised gerb,
a 1-transform is a cochain

γ ∈ C0(X;A1)

which acts as follows—

• The bare gerb is left unscathed.

• A 0-connection, if given, transforms as

∇ 7→ ∇+ δγ.

• A 1-connection, if given over the 0-connection, transforms as

β 7→ β + dγ.

We already know that any two 0-connections are related by a 1-transform
(as remarked before (2.2.2)). The purpose of the definition is to give the ap-
propriate concept of equivalence of 1-connections. (Note that if we say “gerb
with 1-connection”, we mean to say “gerb with 0-connection and compatible
1-connection”.)

Definition 2.2.6 (Equivalence of gerbs with 1-connection) Suppose
we are given two locally-trivialised gerbs G,H over X with two 0-connections,
and 1-connections on the 0-connections. Then they are equivalent, given three
conditions—

• The gerbs are equivalent.

View this as a 0-transform letting us identify the gerbs. We now have two 0- and
1-connections on one gerb. We insist that there exist a 1-transform γ obeying—



•
(∇′)j

i = ∇j
i + δγi.

•
(β′)i = βi + dγi.

Consider the case of a fixed gerb and a fixed 0-connection. Then the set of
1-connections equivalent to any given one is clearly

(β′)i = βi + dΓ

for any global 1-form Γ.

Theorem 2.2.7 The set of equivalence classes of gerbs with 1-connection is

H2(X; C∗ d log−−−→ A1 d−→ A2).

Proof—This is no deeper than previous remarks. The definitions deliberately
slot into the definition of hypercohomology of a complex [21]. 2

Curvature 3-forms and Chern classes

Definition 2.2.8 (Curvature and Chern form) The curvature of a
locally-trivialised gerb with 1-connection is the globally-defined closed smooth
3-form

Ω := dβi.

The Chern form of this 1-connection is

ω :=
i

2π
Ω.

Proposition 2.2.9 Two 1-connections on the same gerb define the same cur-
vature 3-form if and only if they are equivalent.

Proof—If equivalent, note d2γ = 0. If d(β − β′)i = 0, then refine and use the
Poincaré lemma to find suitable γi. 2

Theorem 2.2.10 The de Rham class of ω in H3
dR(X) is independent of choice

of trivialisation, of 0-connection and of 1-connection, and equals the image of

[G] ∈ H2(X; C∗)

in the long exact sequence of

0 −→ Z 2πi−−→ C exp−−→ C∗ −→ 0

(followed by the inclusion Z ↪→ C).



Proof—Standard. 2

Perhaps it will be convenient to write Hp
dR(X; Z) for the image in de Rham

cohomology of Hp(X; Z). We shall try to be consistent in writing [G] for the
class in H2(X; C∗), and describe the class

[ω] ∈ H3
dR(X; Z) ⊂ H3(X; C)

as the Chern class c(G) of the gerb. In this smooth case the exponential long
exact sequence degenerates, and moving to the Chern class loses nothing but
torsion.

2.3 The simplest examples

We start with gerbs of the trivial class in H2(X; C∗).

2.3.1 The vacuous gerb

Note that we can create gerbs using covers of less than three sets: we simply
have no data to specify on intersections that do not exist.

For instance, given a single set U = X there is a single vacuous gerb trivial-
isable on this cover, with nothing to specify; and it comes with a unique vacuous
0-connection. The collection of 1-connections on this trivialisation is the set of
all 2-forms β on U , and two 1-connections are 1-gauge equivalent if they differ
by dγ for some global 1-form γ over U . Of course, all choices yield the same
class of curvature

[dβ] = 0

and two choices yield identical Ω iff they are equivalent.
This example will feature in chapters 4 and 8, in which we study such local

gerbs under various twistor correspondences.

2.3.2 Coboundary gerbs

Now over a general cover Ui we consider some representative

ti,j,k = δsi,j

for [G] = 0 ∈ H2(X; C∗). Given the gerb represented by ti,j,k as in the proof of
(2.1.4), that t is a coboundary is equivalent to saying that there exist bases λj

i

such that θ = δλ, ie. we have a globally-trivialisable gerb as in (2.1.7).
Given such a trivialising basis for the Λj

i , any 0-connection is a coboundary
of 1-forms

αj
i = δζk : ζk ∈ C0(A1)

and fixing the 0-connection specifies ζ up to a global 1-form.
Choosing such a ζ gives a possible 1-connection for this 0-connection

βi := dζi



which has zero curvature Ω. Such choices (for fixed 0-connection) give 1-
connections varying by d(global 1-form) rather than by a general global 2-form.

Now consider some simple non-trivial gerbs [G] 6= 0.

2.3.3 Spinc-bundles and principal gerbs

Consider the oriented frame bundle of an oriented Riemannian manifold; this
is a principal SO(n)-bundle. Whether or not we can lift this to the universal
cover Spin(n) of SO(n) is a matter for the second Stiefel-Whitney class [35]

w2 ∈ H2(X; Z2).

Consider also lifts to Spinc(n) = Spin(n) ×±1 S
1, which sits over the special

orthogonal group
0→ S1 → Spinc(n)→ SO(n)→ 0.

Define W3 ∈ H3(X; Z) to be the image of w2 in the long exact sequence of

0→ Z ×2−−→ Z→ Z2 → 0.

Then the oriented frame bundle lifts to a Spinc-bundle iff W3 vanishes [30].
(This is always true for instance on a simply-connected 4-manifold, as featured
in Seiberg-Witten theory.)

It is straighforward to put a gerb interpretation on this well-known fact. Take
a cover for X such that we can lift over each Ui. Then put line-bundles Λj

i on the
intersections with some trivialisations λj

i . We also have S1-valued functions on
the Ui,j given by the failure of the local lifts to extend; and on triple intersections
the coboundary of these functions is some

η ∈ Z2(X; Z2)

which represents the second Stiefel-Whitney class. We define the line-bundle
section

θ := η · δλ

on Ui,j,k, thus fixing a smooth gerb.

Proposition The equivalence class of this gerb is

[G] ∼= W3.

(So G is (smooth-) trivial iff there is a global lift to Spinc.)

Proof—Viewing Z2 = {±1} as a subsheaf of C∗, we re-interpret the short exact
sequence Z→ Z→ Z2 as one of (locally constant) sheaves with inclusions

0 −→ Z 2πi−−→ πiZ exp−−→ Z2 −→ 0
↓ ↓ ↓

0 −→ Z 2πi−−→ C exp−−→ C∗ −→ 0.

The cocycle η represents both the Stiefel-Whitney class w2 ∈ H2(X; Z2) (when
viewed as a cocycle of {±1}) and also the gerb class [G] ∈ H2(X; C∗) (as a



cocycle of C∗). The images W3 and the coboundary of [G] in the two long exact
sequences are then both represented by the cocycle

1
2πi

δ log η ∈ Z3(X; Z)

which suffices. 2

Note that the Chern class c(G) is in fact zero, since the image of [G] in
H3(X; Z) has order 2 and vanishes in de Rham cohomology.

Other cases of central extensions can be handled in the same way. One could
argue that this example would be better handled by a “principal” gerb, in that
we should be thinking of the Λj

i as principal Z2-bundles. Then our construction
amounts to taking a principal Z2-gerb (with class [G] = w2) and viewing it as a
principal C∗-gerb (with class [G] ∼= W3). The second is trivial iff there is a lift
to Spinc, the first iff there is a lift to Spin.

We shall not pursue this since our other examples are quite reasonably de-
scribed by “vector” gerbs. We merely remark that our initial definition of a
gerb (2.1.1) should perhaps have described itself not simply as “abelian” but as
a “rank-1 vector C∗-gerb”. There is an immediate generalisation of the defini-
tion to principal gerbs of any abelian group, and to their representations. How
to handle the non-abelian case is altogether another matter.

2.3.4 Partitions of unity

As we have seen, partitions of unity can be a useful auxiliary tool in constructing
connections. Suppose given a locally-trivialised gerb with 0-connection, and
choose also a smooth partition of unity {ρi : i ∈ I} subordinate to the given
cover.

Then the 0-connection gives a cocycle of 2-forms F j
i (the curvatures of the

line-bundle connections), and we can define a 1-connection by

βi :=
∑
k 6=i

ρkF
k
i

which obeys

βi − βj = ρjF
j
i − ρiF

i
j +

∑
k 6=i,j

ρk(F k
i − F k

j )

= (ρj + ρi +
∑

k 6=i,j

ρk)F j
i

(since δF = 0)

= F j
i

as required. The curvature of this 1-connection is not zero.
(This example is just an expansion of the proof of (2.2.4).)



2.3.5 Holomorphic gerbs

On a complex manifold there is an uncomplicated translation from smooth gerbs
to holomorphic. Write O for the sheaf of holomorphic functions, and O∗ for the
nowhere-zero functions. Most of the results of this chapter survive unaltered.

Definition (Holomorphic gerb) A locally-trivialised holomorphic gerb is a
smooth gerb (2.1.1) on a complex manifold X, whose bundles Λj

i and sec-
tions θi,j,k are holomorphic.

Under the obvious notion of holomorphic equivalence (or 0-gauge transforma-
tion), the collection of equivalence classes over X is naturally identified with

H2(X;O∗).

The class of such a gerb will be written as [G]. Note that this is now quite distinct
from the Chern class c(G), which is defined by the holomorphic exponential
sequence

0 −→ Z 2πi−−→ O exp−−→ O∗ −→ 0

as the image (under inclusion Z ↪→ C) of

[G] ∈ H2(O∗)→ H3(Z)→ H3(C).

Accordingly, we expect analogues of the Atiyah class [1] to obstruct the existence
of holomorphic gerb connections. This matter and others will be studied in
chapter 5.

2.3.6 Points in 3-manifolds

Here we begin to consider the relation between gerbs and codimension 3. Pick
a finite collection of disjoint points

pi ∈ X3 : i ∈ I

in some real 3-manifold X3 (oriented as ever). Choose a cover of the form{
U0 := X \

⋃
i∈I{pi}

Ui := open-ball neighbourhood of pi

such that all Ui, Uj are disjoint: any pairwise intersection looks like a punctured
ball around one of the points, and there are no triple intersections.

So we define a gerb completely by installing line-bundles on the U0,i. It is
reasonable to choose these to be (isomorphic to) the standard degree-1 monopole
line-bundle over the punctured ball. Without a means to pick particular bundles
within this isomorphism class, we have at least fixed an equivalence class of
gerbs (2.1.5).

Given particular choices of bundles, any connection on each of these suffices
to fix a 0-connection on the gerb.

This obviously extends to arbitrary integral cycles

R := nipi ∈ C0(X; Z)

in that, about a weighted point, we would wish to put the line-bundle Λ0
i of

appropriate degree.



Proposition The Chern class c(G) ∈ H3(X; C) is Poincaré-dual to

[R] ∈ H0(X; C).

Proof—Pick a 0-connection. This has curvature 2-forms F on each punctured
ball, of degree equal to the multiplicity ni. Pick a partition of unity: this gives
a curvature 3-form supported only on the punctured balls

Ω = dρi ∧ F 0
i

on each Ui for i 6= 0. But now∫
X

ω =
∑
i 6=0

( ∫
S2

i

2π
F 0

i ·
∫ ri

r=0

dρi

)
=

∑
i 6=0

ni

as desired. (The integrals are hopefully self-explanatory.) 2

In chapter 6 we shall extend this example to a codimension-3 submanifold
in Xn.





Chapter 3

Objects and errors

There is a clear analogue of the concept for line-bundles of nowhere-zero section,
which we discuss in this chapter. Rather than compound our repetition of bun-
dle terminology, we shall speak not of sections of gerbs, but of local (or global)
objects. This is also in recognition of the fact that these things will demonstrate
the link between our gerbs and the original category-theoretic gerbes (3.4).

3.1 Objects and trivial gerbs

Definition 3.1.1 (Object) Given a locally-trivialised gerb G(I,Λ, θ), an ob-
ject is specified by

• line-bundles Li defined over each Ui;

• bundle isomorphisms on each Ui,j

mj
i : Li

∼=−→ Λj
i ⊗ Lj ;

such that the composition on each 3-fold intersection

Li −→ Λj
iΛ

k
j Λi

k ⊗ Li

is exactly
mj

i ◦m
k
j ◦mi

k ≡ θi,j,k ⊗ identity.

Proposition 3.1.2 An object exists, if and only if the gerb is trivial

[G] = 0.

Proof—Refine sufficiently; this does not affect the class of G. Take bases for all
bundles. View θ as a cocycle t ∈ Z2(X; C∗).

Suppose there exists an object. With respect to the selected bases, we can
view its isomorphisms mj

i as a cochain

m ∈ C1(X; C∗) : δm = t

so that 0 = [t] = [θ] = [G].
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In reverse, if G is trivial it has a globally-trivial refinement (2.1.7) with
bases λj

i . Impose trivial bundles Li with bases li and define isomorphisms

mj
i : li 7→ λj

i ⊗ lj

to give an object. 2

Recall that (2.1.9) described triviality in a “coordinate-dependent” way, in
terms of a coboundary of bases. This result in terms of a set of (non-trivial)
line-bundles is more geometric. We should think of the difference between the
two just like descriptions of a line-bundle either with transitions which are a
coboundary or with a more abstract nowhere-zero section.

An object on an already globally-trivialised gerb gives a global line-bundle:
the trivialisation singles out choices for bases λ, thus permitting us to use

m : li 7→ λ⊗ lj

as glue for a global bundle

m′ : li 7→ lj : δm′ = 0.

Just as an explicitly-trivial line-bundle turns (nowhere-zero) sections into global
(nowhere-zero) functions (and any such function is possible), the global bundle li
is very dependent on the trivialisation: varying the trivialisation by Z1(C∗) turns
a given object into any global line-bundle.

Example: a local object

In general, objects always exist locally, but not necessarily globally. As an
example (for a general gerb) of a local object around a point in some set Ua of
our cover, we can use the local trivialisation over Ua as follows. Restrict the
gerb to Ua, so the new cover is now

Vi :=
{
Ua if i = a
Ui ∩ Ua otherwise

with the same bundles Λc
b restricted to their new domains.

Then a local object is given by an arbitrary bundle L over Ua, inducing

Li :=
{
L if i = a
L ⊗ Λa

i otherwise

with the canonical isomorphisms for mj
i .

Proposition 3.1.3 In general, the difference between two objects is a global
line-bundle.

(“Global” here means global over the support of the objects.)
Proof—Go to a common trivialisation. Then we have two objects Li and Ki

on Ui whose maps induce

m−1 ⊗ n : L−1
i ⊗Ki → L−1

j ⊗Kj



with composition equal to the identity on triple intersections. So we use m−1⊗n
as glue to create a global line-bundle “L−1 ⊗K”. (Its two factors do not exist
globally in general.) 2

Compare (2.1.10). This result implies that, locally, any object has the form of
the above example for some general L.

Definition 3.1.4 (Equivalence of objects) Given an gerb with object, we
extend the idea of equivalence (2.1.5) by asking for isomorphisms on Ui of the
bundles Li and Ki, that commute with the maps m and n.

A 0-transform on an object is an equivalence with itself.

Proposition 3.1.5 Two objects on the same gerb are equivalent iff they differ
by a trivial bundle.

Proof—An equivalence
χi : Li → Ki

defines local nowhere-zero sections of L−1
i ⊗ Ki. Commuting with the maps

(m−1⊗n)j
i means that these join up to a global nowhere-zero section of “L−1⊗

K”, trivialising it.
Conversely, if this difference has a global basis, any such choice induces local

maps from Li to Ki that commute with the object maps m and n. 2

3.2 0-Connections on objects

Definition 3.2.1 (Object 0-connection) Given a trivial gerb with 0-connection,
and an object, we can define a 0-connection on the object as bundle connections
for each Li such that the isomorphisms mj

i preserve the structure

∇|Li

m∼= ∇|Λj
i⊗Lj

(so the 2-curvatures obey
δFi = F j

i ).

Proposition 3.2.2 Object 0-connections exist.

Proof—Since [G] = 0, we can refine and take a global trivialisation (2.1.7)

δλ = θ

and bases li for the line-bundles of the object.
Now the isomorphisms m can be viewed in terms of a cocycle

li 7→ mj
iλ

j
i ⊗ lj

mj
i ∈ Z1(X; C∗).

Say the 0-connection is given by 1-forms αj
i . We want a 0-connection on the

object, represented by 1-forms Ai. The constraint

∇l = ∇(m · λ⊗ l)



says that
Ai −Aj = αj

i + d logmj
i .

But the right-hand side is a cocycle

δ(α+ d logm) = −d log t+ d log t = 0

and the obstruction to the existence of Ai is just

[α+ d logm] ∈ H1(X;A1) = 0.

2

Proposition 3.2.3 Given a gerb with 0-connection and object, two object 0-
connections differ by a global 1-form.

Proof—Given α and m, any object connection Ai obeys

δA = α+ d logm

as in the proof of (3.2.2). So any alternative object connection A′i differs by
local 1-forms with vanishing coboundary. 2

(An object with “connection” means one with 0-connection.)

Proposition 3.2.4 Given a gerb with 0-connection, any two objects (with ob-
ject connections) differ by a global line-bundle (with line-bundle connection).

Proof—Without the connections, this is just (3.1.3). On each Ui the object
connections induce a connection on the restricted global bundle L−1

i ⊗L′i. The
transitions m−1 ⊗m′ preserve this connection. 2

A converse clearly holds: given an object (with connection) and any global
line-bundle (with any connection), we can create a new object (with connection).

A 0-gauge transformation of an object alters its 0-connection in the usual
way. Then we can relate equivalence to the above result.

Proposition 3.2.5 Given a gerb with 0-connection, two objects with connection
are equivalent iff their difference is a trivial line-bundle with flat connection.

Proof—As in (3.1.5) and (3.2.4). 2

Example: a local object 0-connection

Suppose given a gerb with 0-connection. Expanding on the example preced-
ing (3.1.3) of a local object defined on a set Ua of the cover, choose any bundle
L with connection ∇ over this space.

Combined with the connections on the Λj
i given by the gerb 0-connection,

this induces a connection on each Li of the object (ie. L or L⊗ Λa
i ). These are

certainly compatible with the canonical maps m, and so we have a 0-connection
for the object.

Proposition 3.2.6 Every object with connection has this local form.

Proof—See (3.2.4). 2



3.3 Errors and 1-connections

Now that we have defined objects, we can give another example of a 1-connection,
that despite its simplicity will feature widely in later chapters.

Definition 3.3.1 (Objective 1-connection) Given a 0-connection, and an
object with 0-connection, the 1-connection defined by

βi := Fi

is said to be objective.

That is, we just take the curvature of each Li. This gives zero gerb curvature

Ω = dβi = 0.

(Inevitably the class of Ω vanishes, due to triviality.) Given triviality, the most
general form of 1-connection is an objective 1-connection plus any global 2-form.

There is an alternative description of the same construction.

Definition 3.3.2 (Error 2-form) Given a trivial gerb with a general 1-con-
nection, and an object with connection, the error form is the global 2-form

ε := βi − Fi (∀Ui).

Note that the error obeys
Ω = dε

and that the gerb 1-connection is objective for the given object connection iff
ε = 0.

Slightly more generally (3.2.4), given a gerb with 1-connection and an object
with connection, the 1-connection is in fact objective (for some possibly different
object connection) iff dε = 0 (ie. Ω = 0) and ε is integral[ i

2π
ε
]
∈ H2

dR(X; Z).

We might try to use the error to give a different emphasis to the defini-
tion (2.2.3) of 1-connection.

Definition 3.3.3 (1-connection (alternative)) Fix a gerb with 0-connect-
ion. Then define a 1-connection to be a rule that, to every locally-defined object
with 0-connection, assigns a smooth local 2-form ε. The rule must behave well
under transformations, as below.

The transformation properties required are simple. First, any other object
with 0-connection differs by a bundle with connection, of curvature 2-form F ,
say. The 1-connection is to follow such a shift by

ε 7→ ε+ F.

(The same holds if the object connection is changed but not the underlying
object—this merely forces F to be exact.) Second, a 1-gauge transform γ is to
alter the 1-connection by

ε 7→ ε+ dγ.



Proposition 3.3.4 This definition is equivalent to (2.2.3).

Proof—Given β, our ε are just the error 2-forms for any local object with con-
nection, and they transform appropriately.

Conversely, given the new version of ε, recall the local object with connec-
tion described after (3.2.5). Given a locally-trivialised gerb with 0-connection,
and a rule providing the alternative 1-connection, take on each set Ui the object
with connection generated by (L,∇) being trivial and flat. This gives 2-forms
εi, and we define βi to equal these. Compare (3.3.2), and note that now Fi = 0:
tracing through the example shows that these β do form a 1-connection under
the original definition. 2

3.4 Gerbs and gerbes

To write out Giraud’s full definition of a gerbe [18] would be long and painful,
and indeed the point of this thesis is that a simple-minded differential geometer
can make do without the full algebraic-geometric technology. Following Brylin-
ski [5], we restrict to abelian gerbes over a smooth manifold X. Even this is
quite indigestible enough, but we summarise the exercise.

Sheaves of categories

A gerbe with band C∗ overX is a sheaf of categories satisfying certain properties.
To have a sheaf of categories means that for every open set in X, or indeed

for every smooth f : Y → X which is locally a diffeomorphism, we have a
category, possibly empty of objects. There are various niceness requirements
under composition of local diffeomorphisms and the like.

Further, we insist that every morphism be invertible (the category is a
groupoid); that the sheaf of automorphisms of any object is locally isomor-
phic to C∗; that, given two objects of any category, they are at least locally
isomorphic; and that there exists some surjective local diffeomorphism whose
category is non-empty.

There is a natural definition of equivalence between gerbes over X, and
happily the equivalence classes correspond naturally with

H2(X; C∗).

Details are omitted due to the number of unilluminating commutative diagrams
involved; but we now have a natural bijection between classes of gerbs and of
gerbes.

Theorem 3.4.1 Gerbs are gerbes.

Proof—(Sketch)—Take a local trivialisation of G over X. Given an inclusion or
indeed a local diffeomorphism

f : Y → X

this defines by pull-back a local trivialisation of a gerb f∗G over Y . Then to Y
we assign the collection of “objects” over Y in the sense of (3.1.1). These are



then objects of a category, with morphisms given (when possible) by equivalence
of objects (3.1.4).

To show the existence of a non-empty category for a surjective map: we
clearly cannot take just X itself, unless G is trivial. In general we can take the
disjoint union

Y :=
⊔
a∈A

Ua

with the obvious map to X. The pullback gerb on Y does contain objects, since
on each Ua we can put the object described before (3.1.3) with, say, all L being
restrictions of X × C. 2

Apart from involving merely bundles rather than categories, a further ad-
vantage of our approach is that we do not need this extra layer of objects and
local diffeomorphisms. This cuts out a level of bureaucracy, and lets us ignore
objects until they are explicitly useful.

Connective structure and curvings

Brylinski [5], following Deligne, has gone to some trouble to define what he calls
a “connective structure” on a gerbe. We make no attempt to reproduce this,
except to claim without proof that a 0-connection gives a connective structure
via the family of possible 0-connections on objects. The Čech version advocated
here seems rather more transparent.

We cannot claim much superiority in our definition of 1-connection over that
of a “curving”. That they agree is uncomplicated to prove using our alternative
definition (3.3.3). Our equivalence classes of gerbs with 1-connection (2.2.7)
canonically correspond with the appropriate classes of gerbes.

3.5 Gerbs and bundles

Perhaps it would help to clarify the relationships between our various construc-
tions if we make explicit some parallels with line-bundles.

Nowhere-zero function Line-bundle
Line-bundle Gerb (with 0-connection?)
Connection 1-connection

Nowhere-zero section Object (with connection?)
Connection 1-form Error 2-form
Curvature 2-form Curvature 3-form

Chern class Chern class

This work offers no definition merely because of such a supposed analogy. The
table should be viewed as hindsight rather than as justification. Parts that seem
obscure as yet will hopefully make more sense later—eg. compare the “connec-
tion 1-form” entry with the definition of gerb holonomy in (7.1). That the
analogue of a bundle should perhaps be seen as a gerb with 0-connection is im-
plied for instance by (2.3.1)—in which it costs no more to fix a 0-connection than
it does to give the underlying gerb—but perhaps not by the 3-gerb construc-
tion (4.5). A comparison of a basis of a bundle with an object with connection,



rather than with just an object, is again supported by the holonomy idea of (7.1)
but not by (4.5). (All three are supported by the alternative 1-connection defi-
nition (3.3.3).)

The moral is clearly that such fancies as feature in this table should take a
back seat to concrete geometry. Barring some more theory in chapter 5, which
considers the holomorphic case O∗ in the light of the smooth C∗, the pursuit of
such examples takes up the rest of this thesis.



Chapter 4

A twistor correspondence
on projective space

In this chapter we take advantage of the admirable capacity of twistor theory for
converting between holomorphic and differential constructs in a mathematically
meaningful way [3, 49]. We consider a very simple geometry: complex projective
space Pn+1 and its dual (actually slightly modified). Ignoring all the intricacies
of chapter 2, we start on one side merely with an element of Hn(X,O∗) and
ask what comes out on the other side. If we believe that Hn(O∗) is to do with
holomorphic “n-gerbs”—and given faith in the track record of twistor theory—
we must expect whatever comes out to represent an “n-gerb with connection”
even if we do not know what such a thing might be.

So the attitude of this chapter is to consider the geometry of Pn+1 in its
own right, and only at the end to compare what we find with our previous
definitions. The general case is described in the first two sections. Then in (4.3)
we interpret n = 1 as a transform between line-bundles; and we find in (4.4) that
the n = 2 case is indeed talking of gerbs. In both of these examples, we show
some explicit calculations that may help illuminate the abstract cohomological
work of (4.1). Finally, we discuss what the general case tells us of higher-order
constructions (4.5).

We should point out that in the line-bundle case n = 1, the result (4.3.1)
has long been known in the twistor-theory industry, although it appears not to
have been published. We discuss it in order to illuminate the gerb case n = 2.

All structures in this chapter are holomorphic, until declared otherwise in
section (4.5). For the definitions of holomorphic gerb and connection, we rely
on (2.3.5) and a little common sense. (For the details, see chapter 5—but the
point of this chapter is to work in a situation in which the gerbs themselves are
as simple as possible, and chapter 5 is hopefully superfluous.)

4.1 The geometry of punctured projective space

Throughout this chapter we are working within Pn+1, its dual P∗ and the cor-
respondence space between them. We view this as a twistor transform, taking
for instance points on one side to hyperplanes on the other, in the traditional
fashion [21, 39].
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We need something slightly more complicated than this, to get sufficient
structure (eg. there are very few interesting line bundles on Pn). The next
simplest geometry is obtained by removing a point{

P := Pn+1 − one point
Q := {all hyperplanes Pn ⊂ P} = affine Cn+1 ⊂ Pn+1∗

with the correspondence space

F := {(p, π) : p ∈ P, π ∈ Q, p ∈ π} ⊂ Pn+1 × Pn+1∗

(if the notational abuse is pardoned) projecting to each via maps f , g respec-
tively.

Over P we see that F is an affine Cn-bundle, whilst its projection (F g−→ Q)
is very simple: F is a trivial Pn-bundle over Q. In particular,

F = P(TQ)

for TQ the holomorphic tangent bundle of Q.
We can best describe P by choosing a hyperplane π0 ⊂ P (which corresponds

to a point in Q). Over π0 = Pn, the space P is naturally an O(1) line-bundle;
and Q is a vector space

Q = H0(π0;P).

Three properties of P
First we note that P does carry enough cohomology to be of value.

Proposition 4.1.1 Hn(P;O) is not zero. In particular, given two distinct hy-
perplanes π0 and η in P, and viewing η as a section of P over the base-space π0,

Hn(P;O) ∼=
⊕

i≥n+1

ηi Hn(π0;O(−i)).

Proof—We use Čech cohomology. We take the standard open cover {Ur}r=0,1,...,n

for π0 = Pn. Choose it such that U0 is the complement of π0 ∩ η. This lifts
to a cover for P, which is acyclic for the sheaf O since in general any cover-
ing by Ca × (C∗)b is acyclic [21]. (Indeed, this cover is acyclic for all other
sheaves we shall require.) Any class in Hn(P;O) thus has a representative (on
the (n+1)-fold intersection) of the form∑

i ≥ 0
br ∈ Z

ti,b1,...,bn
· ei

ζb1
0 · · · ζ

bn
n

for constants t and affine coordinates ζr on U0 = Cn ⊂ Pn; and for e the
coordinate in the fibre direction with respect to the basis vector η.

A little cordinate manipulation (eliminating terms which are coboundaries
of Cn−1(P;O)) soon shows that in fact there is a unique representative of the
form ∑

0 < br∑
br < i

t · ei

ζb1
0 · · · ζ

bn
n



(and any such function certainly gives a class). But if we now fix i, representa-
tives ∑

0 < br∑
br < i

ti,b1,...,bn

ζb1
0 · · · ζ

bn
n

correspond exactly to classes in Hn(π0;O(−i)). 2

Secondly, we remark on the relation between O and O∗ over P.

Proposition 4.1.2 Hn(P;O) is naturally isomorphic to the kernel of

Hn(P;O∗)→ Hn+1(P; Z)

in the exponential long exact sequence. And Hn+1(P; Z) is torsion-free, and
vanishes if n is even.

Proof—The point is that an adequate cover for any π0 ⊂ P lifts to one for P; so
for instance we can use the form of representatives of Hn(P;O) from the proof
of (4.1.1).

Alternatively, there is an exact correspondence between cocycles in the two
sets {

Zn(π0; Z),
Zn(P; Z).

But in the exponential sequence, the map

Hn−1(π0;O∗)→ Hn(π0; Z)

surjects (since Hn(π0;O) = 0). So, by lifting elements of Zn−1(π0;O∗) to P,
the map

Hn−1(P;O∗)→ Hn(P; Z)

also surjects, which suffices.
Given that P is diffeomorphic to a vector bundle over Pn, whose Z-cohomology

is well-known [21], the second claim is clear. 2

Thirdly, we consider the infinitesimal neighbourhoods of a general hyper-
plane π ⊂ P. Given that I is the ideal of π in OP—the sheaf of functions
vanishing on π—it is a general fact [49] that

Oπ ≡ OP/I

restricted to π. More precisely, but still restricted to π,

OP = Oπ ⊕ I/I2 ⊕ I2/I3 ⊕ . . .

and that
Ij/Ij+1 = SqN∗

where SqN∗ ∼= O(−q) is the q-th symmetric power of the conormal bundle.
The q-th formal neighbourhood of π (for q ≥ 1) is the scheme (π;Oq), where

Oq := OP/Iq+1.



We view this as an extension of (π;O). From the above, there is an exact
sequence

0→ SqN∗ → Oq → Oq−1 → 0

where O0 := O.
The normal bundle of π is of degree one (by adjunction, or by intersection

properties in Pn+1). We are interested in extending from Hn−1(π;O) to the
neighbourhoods of π, ie. in

Hn−1(Pn;O(−q))→ Hn−1(π;Oq)→ Hn−1(π;Oq−1)→ Hn(Pn;O(−q)).

But in fact

hn(Pn;O(−q)) =
{

0 q ≤ n
1 q = n+ 1

by Serre duality; and furthermore

hn−1(Pn;O(−q)) = 0 (∀q).

These groups are given by the following, of which we shall later have more need.

Proposition 4.1.3 Writing Ωp for the sheaf of holomorphic p-forms,

hq(Pn; Ωp(k)) =



(
k+n−p

k

) (
k−1
p

)
q = 0, k > p = 0, . . . , n;(

−k−1
n−p

) (
p− k
−k

)
q = n, k < p−n = −n, . . . , 0;

1 k = 0, p = q = 0, . . . , n;
0 otherwise.

Proof—Bott [4]; or as summarised in [39]. 2

The interest in this vanishing of cohomology of the normal bundle is that
it shows a unique extension exists from Hn−1(π;O) to Hn−1(π;On), with an
obstruction to further extension lying in Hn(π;SnN∗). In itself this is vacuous
unless n = 1, since Hn−1(π;O) = 0 (from the above); we shall take a more
productive line when we discuss the n = 1 case (4.3).

A twistor correspondence

Clearly the non-trivial content of our geometry is the bundle (F f−→ P), and
understanding this is the task in this section. The key observation of this chapter
is—

Theorem 4.1.4 There is a natural equivalence

Hn(P,O) ∼= H0(Q; Ωn)/H0(Q; dΩn−1).

The device by which we approach this is the tautological rank-n vector bundle

W → F

of tangent vectors in F along the directions of the fibres of

F f−→ P.



This comes with a well-defined operator dW differentiating along the same di-
rections, which for instance takes local functions on F to local sections of W∗.

Proof—Start from the left-hand side: choose a Čech representative for a class

θ ∈ [θ] ∈ Hn(P,O)

taken with respect to a standard open cover for P as in (4.1.1). This represen-
tative lifts to

f∗θ ∈ f∗[θ] ∈ Hn(F ,O)
(for which the lift of our cover is still acyclic).

But this group is zero by lemma (4.2.1); and also, by definition of W we see

dWf∗θ = 0.

So there exists some

µn−1 ∈ Cn−1(F ;O) : δµn−1 = f∗θ

which obeys
dWµn−1 ∈ Zn−1(F ;W∗).

As we shall see in lemma (4.2.3),

Hn−r(F ; ΛrW∗) = 0 r = 0, . . . , n− 1

so that we can progress from

dWµn−1 = δµn−2 : dWµn−2 ∈ Zn−2(F ; Λ2W∗)

as far as

dWµ2 = δµ1 : dWµ1 ∈ Z1(F ; Λn−1W∗)

to give finally a choice of

µ0 ⇒ dWµ0 ∈ H0(F ; detW∗)

which according to lemma (4.2.4) is canonically equal to

H0(Q; Ωn)

and we have reached a representative for the right-hand side of the theorem.
It is clear—since Hn−r−1(F ; ΛrW∗) = 0 for r = 0, . . . , n− 2 by lemma

(4.2.3)—that different choices of representatives cannot affect the outcome ex-
cept at the term µ0. So the n-form g∗dWµ0 is well-defined up to an element
of

H0(F ; dWΛn−1W∗)
which, after an unproblematic differentiation, is canonically identified in lemma (4.2.4)
with

H0(Q; dΩn−1)
and we have proved half of the theorem.

Now certainly there exists a Poincaré lemma for dW

dWζ = 0 ⇒ ζ = dWη

for some local η, and so the other direction of proof proceeds painlessly. The
maps in the two directions are inverses (on equivalence classes). We leave this
unwritten. 2



4.2 Lemmas for theorem (4.1.4)

Recall that (F g−→ Q) is a trivial Pn-bundle over Q ∼= Cn+1. The Leray spectral
sequence [32, 19] can easily be applied in this context: given a sheaf S over F ,
its direct image sheaves RqS over Q (where q ≥ 0) are such that their stalks at
a point y ∈ Q are

Hq(g−1(y);S).

Then the Leray spectral sequence starts from

Ep,q
2 := Hp(Q; RqS)

and abuts to
H∗(F ;S).

Since g−1(y) = Pn, which supports very little cohomology, the spectral se-
quences we shall need (taking S := O or ΛrW∗) will degenerate rapidly.

Lemma 4.2.1 Hp(F ;O) = 0 for all p > 0.

Proof—Since

hq(Pn;O) =
{

1 q = 0
0 otherwise,

we know that

Rq(OF ) =
{
OQ q = 0
0 q > 0

so that in the Leray spectral sequence

Ep,q
2 = 0

except for p = q = 0. 2

The proof of theorem (4.1.4) requires the vanishing of a collection of coho-
mology groups of the form Hr(F ; ΛsW∗). To check this, we first identify W up
to isomorphism over a single Pn ⊂ F .

Lemma 4.2.2 Restricting to any choice of fibre g−1(y) = π = Pn of (F g−→ Q),

W ∼= T ∗ ⊗O(1)

where T ∗ is the holomorphic cotangent bundle over π.

Proof—WhilstW is a rank-n sub-bundle of the tangent bundle of F , it is also a
sub-bundle of the rank-(n+1) normal bundle N of π ⊂ F . (N is trivial, though
not canonically so; and is not naturally a sub-bundle of TF .) So there is a
sequence

0→W → N → O(a)→ 0

for some integer a.
In fact, a = 1. This is because f∗π ⊂ P is a Pn whose normal bundle in P

is canonically the O(1) bundle with total space P itself—and whilst the lift of
this line-bundle cannot canonically be identified with a sub-bundle of (N → π),
it is certainly isomorphic to the quotient of W ↪→ N .



We have previously remarked that F = P(TQ). Restricting to y ∈ Q says
that π = P(V ), where V := TyQ. Note that we can canonically identify N with
the trivial pull-back bundle g∗V over P(V ). But this bundle is part of the Euler
sequence

0→ T ∗(1)→ g∗V → O(1)→ 0

over P(V ) [21].
Comparing our two exact sequences, it suffices to show that up to isomor-

phism there is only one possible kernel for an exact sequence of bundles

O ⊕ · · · ⊕ O︸ ︷︷ ︸
n+1

→ O(1)→ 0

over Pn. A general map
n⊕
0

O → O(1)

is an element of
n⊕
0

H0(Pn;O(1)).

We need a surjective map, which amounts to choosing n+1 linearly-independent
elements of the vector space H0(Pn;O(1)). Since this is the same as choosing
an element of

GL(n+ 1,C) = Aut(O ⊕ · · · ⊕ O)

we find that an automorphism of the trivial bundle exists that takes the kernel
sub-bundle of any choice of map to the kernel of any other. So the existence of
two exact sequences{

0 → W → N → O(1) → 0
0 → T ∗(1) → N → O(1) → 0

over π demonstrates that
W ∼= T ∗(1)

as claimed. 2

This result, together with (4.1.3), enables us to calculate the cohomology
of W∗ over any π, and thus its cohomology over all of F , by Leray. We can
now confirm the vanishing of various groups required for the proof of the theo-
rem (4.1.4).

Lemma 4.2.3 For all p > 0, and for all r,

Hp(F ; ΛrW∗) = 0.

(This subsumes lemma (4.2.1), by taking r = 0.)
Proof—By (4.2.2) and (4.1.3), we know that

hq(π; ΛrW∗) =hq(Pn; ΛrT ⊗O(−r))
=hn−q(Pn; Ωr(r − n− 1))
=0



given that q > 0, and independently of r. Thus the sheaves

Rq(ΛrW∗) = 0

for q > 0; and the noughth direct image is necessarily a trivial bundle over Q (of
rank equal to the rank of the bundle of r-forms onQ, of which more later (4.2.4)).
The Leray sequence of ΛrW∗ collapses at E2, with no non-zero terms except

E0,0
2 = H0(Q; R0)

and we are done. 2

The final information we need is the link between holomorphic forms on Q
and sections of W∗ on F .

Lemma 4.2.4 There are natural isomorphisms

H0(π; ΛrW∗) ∼= ΛrT ∗yQ
H0(F ; ΛrW∗) ∼= H0(Q; Ωr)

for all r = 0, . . . , n and for any y ∈ Q with π := g−1{y}.

(The lemma is immediate in the case r = 0, which we ignore).
Proof—Recall from (4.2.2) that there is a canonical identification

N = g∗TQ

of bundles over F , where N restricts to the normal bundle over each π; and
secondly that we have an Euler sequence

0→ O(−1)→ N∗ →W∗ → 0

over each fibre or over all of F , where O(−1) is a line-bundle over F that
restricts to a standard tautological line over each fibre.

Considering the exterior powers of the first observation, we find canonical
isomorphisms

ΛrT ∗yQ ∼= R0(ΛrN∗)|y
∼= H0(π; ΛrN∗)

H0(Q; Ωr) ∼= H0(Q; R0ΛrN∗)
∼= H0(F ; ΛrN∗).

The exterior powers of the Euler sequence [24] are, for r ≥ 1,

0→ Λr−1T (−r)→ ΛrN∗ → ΛrW∗ → 0

as bundles over π or F . (Here T is the tangent bundle in the fibre directions
of (F g−→ Q).) Its long exact sequence gives

H0(Λr−1T (−r))→ H0(ΛrN∗)→ H0(ΛrW∗)→ H1(Λr−1T (−r))

taken over either π or F . It remains to show that the first and fourth terms
vanish in both cases.



Over π we know that

hq(π; Λr−1T (−r)) = hn−q(Pn; Ωr−1(r−n−1))
= 0

for all q; and q = 0 and 1 are sufficient for the first claim of the lemma. To
extend over F , note that the vanishing for all q means that all direct images Rq

vanish, and the second term of Leray for Λr−1T (−r) is completely empty. Thus
we find

Hp(F ; Λr−1T (−r)) = Hp(π; Λr−1T (−r)) = 0

for all p ≥ 0 and for all r ≥ 1. 2

This completes the proof of theorem (4.1.4).

4.3 Line-bundles: n = 1

The result for n = 1 is well-known to those in the know, but seems to have
remained unpublished—

Theorem 4.3.1 In the case n = 1, so that{
P = P2 − one point
Q = {all lines in P} ⊂ P2∗,

there is a natural identification between holomorphic isomorphism classes of

• line-bundles on P with zero Chern class; and

• line-bundles on Q with connection.

Proof—By the exponential exact sequence (4.1.2), we can view classes of the
first type as elements of

H1(P;O).

Since Q ∼= C2, any holomorphic bundle over Q is trivial; and a class of
the second type is a holomorphic 1-form defined up to df for any holomorphic
function f .

These are identified under the twistor correspondence (4.1.4). 2

We can view this observation as confirmation that the geometry of (4.1) is
indeed relevant to the concerns of chapter 2. This supports our claim that the
interpretation we shall put on the n = 2 case in (4.4) is not a coincidence, and
does provide validation of the definition of a gerb. To back this up, we use
the rest of this section to show that our design of twistor correspondence is an
entirely reasonable way to treat a line bundle over P.

Infinitesimal extensions over l ∈ P
Choose a particular line bundle L that is trivial on each projective line l ∈ P:
this constraint is equivalent to the vanishing of the Chern class, and amounts
to selecting a representative

θ ∈ [θ] ∈ H1(P;O)



The twistor correspondence first lifts L to F via f∗. Then consider the noughth
direct image sheaf on Q: the constraint on L says that

R0(f∗L)→ Q

is in fact a line bundle, since

H0(l;L) ∼= C.

But we can do more if we note, not only that L is trivialisable on any (l;O), but
that such a trivialisation has a unique extension to the first-order infinitesimal
neighbourhood (l;O1) of l. Further, there exists an obstruction in general to
extension to the second-order neighbourhood.

These observations come from tensoring by L the extension sequence (4.1)(
0→ SqN∗ → Oq → Oq−1 → 0

)
⊗ L.

Since L|l ∼= O, the vanishing or otherwise of groups in the long exact sequence
follows exactly the results of (4.1) for Hr(l;SqN∗), namely

H0(l;N∗ ⊗ L) = H1(l;N∗ ⊗ L) = 0

H1(l;S2N∗ ⊗ L) ∼= C.

This is hinting that the sheaf over Q is not merely a (trivial, holomorphic)
line bundle, but comes with a particular induced holomorphic connection whose
curvature may not be zero. We can use the language of extensions explicitly to
write down the connection and its curvature obstruction in terms of the Čech
cocycle θ.

Given the multiplicity of perspectives on line bundles and their connections,
it is not surprising that the same result can be reached in a number of ways.
For instance, we can take the approach of (4.1.4) and write down transition
functions for W, thereby permitting us to evaluate dWf∗θ. Alternatively, we
might expect considerations of parallel transport to proffer a route of attack.

Holonomy

Given a trivialisation over some l0 ∼= P1 ⊂ P—ie. a non-zero section of (L → l0),
or equivalently a non-zero point in the fibre of the direct image R0(f∗L) over
the point l0 ∈ Q, with the obvious abuse of notation—there is a natural parallel
translation of this along affine complex lines in Q through l0, which we now
describe.

If we pick a second l1 ∈ Q, then in P these two projective lines intersect in
a single point (corresponding in Q to the C1 containing l0 and l1). The section
of L over l0 extends uniquely to one over l1, since it singles out a (non-zero)
point in the fibre over the intersection l0∩ l1 ∈ P; and this extends because L|l1
is trivial.

Thus we have a parallel translation of the fibre of R0(f∗L) over any l0 ∈ Q,
in any straight-line direction in Q. Infinitesimally, this creates a lift to any point
in R0(f∗L)|l0 of the holomorphic tangent space Tl0Q of Q at l0, and we have a
holomorphic connection for R0(f∗L).

If we try to extend the section from l0 to a third line l2, then there is no
reason why the sections over l1 and l2 should agree at their single point of



intersection (unless they happen to have a common intersection with l0). That
is, we expect non-trivial holonomy around triangles in Q.

(We might anticipate this result via classical geometry: two lines in P form
a degenerate conic in P2. A non-degenerate conic would be a rational curve,
on which any line bundle such that c1 = 0 is trivial. But three lines form a
degenerate cubic; and a non-degenerate cubic would be an elliptic curve, which
could certainly support topologically-trivial but holomorphically-nontrivial line
bundles.)

We can take coordinates for P and a cocycle θ, and calculate directly that
all this is indeed the case. The holonomy vanishes if and only if L is trivial,
ie. if and only if

[θ] = 0 ∈ H1(P;O).

Coordinate calculation

Let us illustrate one of the three approaches discussed above: that of infinites-
imal extensions. (A second, the twistor transform via W, will be displayed
in (4.4).)

Pick a base l0 ∈ P. This is covered by two affine-C1 patches, with coordi-
nates z and w = 1/z. Since P is an O(1)-bundle over l0, we have two C2 -patches
for P with coordinates {

(z, p) w = 1/z
(w, q) q = p/z.

We also have coordinates (a, b) ∈ C2 for Q, corresponding to the projective line{
p = a+ bz
q = aw + b

in P.
Choose a cocycle

θ = θ(z, p) =
∑

0<j<i

θj
i

pi

zj
.

This corresponds to a line-bundle L with total space covered by (z, p, s)
(w, q, t)
t = e−θs.

(In general we could take an isomorphic bundle by adding coboundary terms,
but we shall just take this representative, as in (4.1.1).)

Pick some projective line l ⊂ P, corresponding to (a, b) ∈ Q. Restricted to l,
L is trivial with sections

s = c · eθ0+
, t = c · e−θ−

where c is any constant and we view θ restricted to l as a function of (z, a, b); and
then “θ0+” means terms in non-negative powers of z. (To hold that θ = θ(z, a, b)
is to consider it as a cocycle on F in terms of (F g−→ Q); but we pass over this
until section (4.4).)



We seek to extend this section to the first formal neighbourhood of l. That
is, we require {

s = s0 + νs1 ν := p− a− bz
t = t0 + µt1 µ := q − aw − b = ν/z

in which s0 and s1 are functions of (z, a, b), and tr are functions of (w, a, b),
obeying transition functions

t ≡ e−θs mod I2

ie. we set ν2 to zero. Modulo this,

exp(−θ(z, p)) = exp(−θ(z, a, b)− ν∂θ)
= exp(−θ(z, a, b)) ·

(
1− ν∂θ

)
where

∂θ :=
∂θ

∂p
(z, p)

∣∣
p=a+bz

so that

t0 + µt1 = e−θ(s0 + νs1)
= e−θ(z,a,b)

(
s0 + ν(s1 − ∂θ · s0)

)
.

The terms of degree zero in ν just describe a section of L over l, so we set s0
and t0 to equal our previous choice c 6= 0 of such a section. We need also to
show that there are now unique non-singular choices of O(ν) terms. But the
constraint is

t1
t0

=
1
w

(s1
s0
− ∂θ

)
and the presence of the 1/w means that indeed there is no choice: we must
define

s1 := s0 · (∂θ)0+

t1 :=
t0
w
· (∂θ)−

to avoid singularities at z = 0 or w = 0.
Finally, consider a putative extension to the second infinitesimal neighbour-

hood: recall that we expect an obstruction in general. Suppose there exist
some {

s = s0 + νs1 + ν2s2 ν := p− a− bz
t = t0 + µt1 + µ2t2 µ := q − aw − b = ν/z

equated under the transition modulo ν3. To this order

exp(−θ(z, p)) = exp(−θ(z, a, b)− ν∂θ − ν2

2
∂2θ)

= exp(−θ(z, a, b)) ·
(
1− ν∂θ +

ν2

2
((∂θ)2 − ∂2θ)

)
and the O(1), O(ν) are set as before. But the second-order sections then require

t2
t0

=
1
w2

(s2
s0
− X

2
)



where
X = X(z, a, b) =

(
(∂θ)0+

)2 −
(
(∂θ)−

)2 + ∂2θ

and so, thanks to the factor 1/w2, a division of X (as a Laurent series in z) to
give non-singular functions s2, t2 is obstructed by the terms of X of order 1/z.
Such terms exist only in ∂2θ, and equal∑

0<i<j

(
i

j−1

)
θj

i a
i−j−1bj−1

which vanishes if and only if [θ] = 0.
If we were to calculate the connection on the induced bundle over Q by either

of the two other techniques discussed above, we would in fact find a well-defined
curvature 2-form ∑

0<i<j

(
i

j−1

) (
θj

i a
i−j−1bj−1

)
da ∧ db.

Compare the expression for the gerb 3-form at the end of (4.4).

4.4 Gerbs: n = 2

Theorem 4.4.1 Consider P and Q in the case n = 2{
P = P3 − one point
Q = {all planes in P} ⊂ P3∗.

There is a canonical identification between holomorphic equivalence classes of

• gerbs on P; and

• gerbs with 1-connection on Q.

Proof—The first alternative corresponds to elements of

H2(P;O∗) ∼= H2(P;O)

by (4.1.2). The second corresponds as in (2.3.1) to elements of

H0(Q; Ω2)/H0(Q; dΩ1).

Apply theorem (4.1.4). 2

The 3-curvature of the gerb over Q is the exterior derivative of any 2-form
representative of the class in H0(Q; Ω2)/H0(Q; dΩ1).

Strictly, the remainder of this section is superfluous, but as in (4.3) it seems
apposite to illustrate the rather austere result above with some explicit demon-
stration. We might take a holonomy point of view, buoyed by the classical
observation that two or three planes describe degenerate quadric or cubic sur-
faces, whose non-degenerate versions would be merely P2 (on which any gerb
would be trivial). But if we had a non-degenerate quartic, a K3 surface, then
since H2(O) is now non-zero it can support non-trivial gerbs. So, given an object



on a plane in P, we expect to be able to extend it to an object over any three
planes; but some obstruction to a fourth extension will carry the “holonomy”
around a complex tetrahedron in Q (7.1).

More mundanely, we shall content ourselves with taking coordinates for P
and Q, and displaying transition functions for W∗. Then we work through the
twistor transform of a gerb over P to calculate the resultant 3-curvature on Q.
Even in this low-dimensional case n = 2, there are many coordinate patches to
track and we shall not present every step.

The geometry of F and W∗

Fix some base projective plane π0 ⊂ P, and cover π0 with three affine sets (z, w),
(u, v), (s, t). Hence coordinate patches for P (z, w, p) ∈ U2 z = u/v = 1/t

(u, v, q) ∈ U1 w = 1/v = s/t
(s, t, r) ∈ U0 p = q/v = r/t, etc.

The bundle (F f−→ P) has three lifted patches. A point in F2 for instance
corresponds to a point (z, w, p) ∈ U2 and a plane π containing it. The plane
is specified by two further coordinates: take σ2 to be the value of q at the
point u = v = 0, and τ2 to be r at s = t = 0. We have similarly (z, w, p, σ2, τ2) ∈ F2

(u, v, q, σ1, τ1) ∈ F1 σ1 = τ2, τ1 = p− τ2z − σ2w
(s, t, r, σ0, τ0) ∈ F0 σ0 = p− τ2z − σ2w = τ1, τ0 = σ2

By definition the bundle (W → F) has local bases of sections

∂/∂σi, ∂/∂τi

and, with respect to the dual bases, sections of W∗ have coefficients(
e2
f2

)
=

(
0 −w
1 −z

) (
e1
f1

)
=

(
−w 1
−z 0

) (
e0
f0

)
(
e1
f1

)
=

(
−u 1
−v 0

) (
e2
f2

)
(
e0
f0

)
=

(
0 −t
1 −s

) (
e2
f2

)
.

We are now in a position to study W∗ directly, if we wish, rather than rely
on the sheaf cohomology of (4.1). For instance, we can now observe the Chern
class of W∗ restricted to any plane π ⊂ F by taking two sections(

e2
f2

)
=

(
1
0

)
or

(
0
1

)
to show that c = 1+h+h2 (where h is the class of a line in P2). It can be shown
thatW∗|π has no sub-line-bundle, whilst its splitting type is uniformly O⊕O(1).



Since W∗ is homogeneous by definition, and thus uniform, Van de Ven shows
that it must be a sum of lines or a twisted tangent bundle [51, 39]. Then its
Chern class forces it up to isomorphism to be

W∗ ∼= T ⊗O(−1)

over any π, agreeing with the general result (4.2.2). (A third and most imme-
diate proof of this result arises from a direct comparison of transition functions
for W and T ∗.)

The projection (F g−→ Q) can be dealt with by the same three patches

(a, b, c, ζi, ηi) ∈ Fi

—projecting by g to coordinates (a, b, c) ∈ Q—which correspond to the coordi-

nates on (F f−→ P) by

a = p− τ2z − σ2w

b = σ2

c = τ2

ζ2 = z

η2 = w

so that the point (a, b, c) ∈ Q has over it the P2-fibre (ζi, ηi), and corresponds
in P with the plane

p = cz + bw + a.

Computation of the twistor correspondence

So much for the underlying geometry. Now on the triple intersection U2,1,0 ⊂ P
we pick some gerb represented as

θ = θ(z, w, p) =
∑

s, t > 0
r > s+ t

θs,t
r

pr

zswt

(plus any coboundary, which we ignore). This lifts to f∗θ in F , which as a
function of (z, w, p, σ2, τ2) looks the same. (Equivalently, dWf∗θ vanishes.)

We convert to coordinates (a, b, c, ζ2, η2) of (F g−→ Q), and represent f∗θ as
a coboundary in the form

θ = δµ

where we might choose for example

µ1
2 := all terms in non-negative powers of ζ2
µ0

1 := all terms in negative powers of ζ2 and of η2
µ2

0 := all negative powers of ζ2 and non-negative powers of η2.

In general,

dWµ =
∂µ

∂σ
dσ +

∂µ

∂τ
dτ

=
(∂µ
∂b
− η ∂µ

∂a

)
db+

(∂µ
∂c
− ζ ∂µ

∂a

)
dc



whilst

θ =
∑

θr
s,t · (a+ cζ + bη)r/ζsηt

=
∑

θr
s,t

(
r
i, j

)
(ar−i−jcibj) · ζi−sηj−t

summed over all r ≥ 3, non-negative i and j such that i+j≤ r, and positive s
and t such that s+t<r. The combinatorial symbol is to mean(

r
i, j

)
:=

r!
i!j!(r − i− j)!

.

Our choice of coboundary µ is then

µ1
2 = terms with s ≤ i
µ0

1 = terms with s > i and t ≤ j
µ2

0 = terms with s > i and t > j.

Next is the differentiation dWµ and a further choice of coboundary

δν = dWµ.

Then the objects dWνi will naturally be holomorphic 2-forms on Q, and their
exterior derivative is the well-defined curvature form we seek to exhibit. This is
a messy task: we eschew a full demonstration of consistency in favour of dealing
with µ0

1 only, and finally differentiating ν0 to display the 3-curvature.
The first differentiation gives

dWµ0
1 =

∑
θr

s,t ·
db

ζs
2 − i

( −r!
i!(t− 1)!(r − i− t)!

ar−t−ibt−1ci
)

+
∑

θr
s,t ·

dc
ηt
2 − j

( −r!
(s− 1)!j!(r − s− j)!

ar−s−jbjcs−1
)

where the first term is summed over (r, s, t) as ever and also 0 ≤ i < s; and the
second is over (r, s, t) and 0 ≤ j < t. We want some

ν2 = B2dσ2 + C2dτ2
= B2db+ C2dc

ν1 = B1dσ1 + C1dτ1
= (−η2C1)db+ (B1 − ζ2C1)dc

ν0 = B0dσ0 + C0dτ0
= (C0 − η2B0)db+ (−ζ2B0)dc

where the B and C are functions of (a, b, c, ζi, ηi) that are non-singular on f∗Ui.
In terms of ζ2 and η2, this means that B1 and C1 can contain only non-positive
powers of η2, and terms in non-negative powers of ζ2/η2; and B0 and C0 have
non-positive powers of ζ2, and non-negative powers of η2/ζ2.

The requirement for ν is that

(δν)01 = (η2(B0 − C1)− C0)db+ (ζ2(B0 − C1) +B1)dc
= dWµ0

1.



Considering the cofficient of db in dWµ0
1, we could for instance set −C0 equal

to this, and take B0 = C1 equal to any function purely in (a, b, c). (The only
alternative is to add such a function to C0 and subtract this ×1/η2 from C1.)
And so on: the simplest solution consistent with what is so far displayed is

B0 = 0
C0 = −the db term of dWµ0

1

B1 = +the dc term of dWµ0
1

C1 = 0

and without further justification we claim that these choices do indeed extend
to a fully consistent ν. Given this, the three fields dWνi should each equal the
same 1-connection 2-form on Q. If dWν0 is calculated, for example, a string of
cancellations leaves

dWν0 =
∑

θr
s,t

( r!
(t− 1)!(s− 1)!(r − t− s)!

ar−t−sbt−1cs−1
)
· db ∧ dc

=
∂2

∂b∂c

(
θ(a, b, c, ζ2, η2)|terms of order zero in ζ2,η2

)
· db ∧ dc

which is explicitly independent of fibre-coordinates in (F g−→ Q), and so descends
to a 2-form over Q.

The exterior derivative of this in Q is the 3-curvature of the gerb, which is
independent of all choices made. After such involved calculations, its form is
reassuringly straightforward

Ω = d(g∗dWν0)

=
∂3

∂a∂b∂c

(
θ(a, b, c, ζ2, η2)|order zero in ζ2,η2

)
· da ∧ db ∧ dc

=
∑

s, t > 0
r > s+ t

θs,t
r

(
r
s, t

)
∂3

∂a∂b∂c
ar−s−tbtcs · da ∧ db ∧ dc

and vanishes if and only if θ = 0. Starting from θ(z, w, p), therefore, the net
result is to substitute

p = cz + bw + a

retaining only those terms of order zero in z and in w, and to differentiate with
respect to a, b and c. Compare the end of (4.3)

4.5 Higher-order gerbs

Given that theorem (4.1.4) extends beyond the case n = 2, this seems an ap-
propriate juncture at which to consider higher extensions of the gerb concept.

0-, 1- and 2-gerbs

Let us summarise the pattern so far developed. Suppose given a manifold X
with an open cover Ui. We shall describe the smooth case: the holomorphic def-
initions are similar, though we do not pause to worry about matters of existence
and Atiyah obstructions.



The fundamental structure is a 0-gerb, defined to be a global C∗-function
on X. No equivalences, no connective structures, no objects. Such things are
classified by H0(X; C∗), and have a curvature 1-form just equal to d log of the
function.

A 1-gerb is given by C∗-functions (0-gerbs) on each Ui,j such that their
coboundary is trivial—a global line bundle, in other words. A 0-connection
is a collection of local 1-forms Ai whose coboundary is the curvature of each
0-gerb (δA = d log f , ie. a line-bundle connection). An object is defined by
a 0-gerb on each Ui such that the coboundary is identified with the given 0-
gerb on Ui,j , thus describing a global nowhere-zero section. A 0-equivalence (a
gauge transformation) is given by arbitrary 0-gerbs on each Ui (an element of
C0(X; C∗)), which act by their coboundary on the transition 0-gerbs, and by
their curvatures on the 0-connection 1-forms Ai. Spaces of equivalence classes
are H1(O∗) and H1(C∗ d log−−−→ A1).

A 2-gerb—or a gerb—has bundles (1-gerbs) on each Ui,j with trivialisa-
tions (objects of 1-gerbs) on Ui,j,k whose coboundary 0-gerb vanishes. Bundle
0-connections making the trivialisations parallel describe a 0-connection. An
object with connection is as per usual. 0- and 1-transforms give equivalence
classes in second cohomology H2(C∗) and in

H2(C∗ d log−−−→ A1 d−→ A2).

We refer to a gerb here as a 2-gerb merely because this matches the pattern
n = 2 of theorem (4.1.4). It is also perhaps convenient to start at level zero with
functions. A category theorist following the Giraud/Brylinski definition would
no doubt prefer something different: a bundle (a sheaf of 0-categories) would be
a 0-gerbe, and a gerbe (a sheaf of categories, or 1-categories) a 1-gerbe. Given
useful definitions of higher-order categories, the sheaf description should offer
an alternative approach to higher cohomology.

No doubt the categorists can claim to offer the most fundamental approach
to geometry. But this does not seem likely to improve the unwieldly nature of
the categorical approach to gerbes—as viewed by those unwilling to fraternise
with torsors—and one can conceive that each stage could become increasingly
obscure. There is also Murray’s infinite-dimensional approach in defining higher
bundle gerbes [7], which struggles in handling issues of equivalence. Meanwhile
our rather scruffy Čech approach can easily step up the gears, as we shall now
observe.

3-gerbs

We sketch the natural constructions. (Full expansions and proofs can be given,
granted no more sophistication than that required by chapter 2.)

Given a manifold X with cover Ui, a 3-gerb is made up of: gerbs Gj
i on pair-

wise intersections (such that Gi
j is the dual gerb); objects Γi,j,k of the coboundary

gerbs on Ui,j,k (which we thus must insist be trivial); and trivialisations θi,j,k,l

of the coboundaries of the objects (which are naturally line-bundles—they are
required to be trivial) such that δθ = can, where can is the canonical section
(which exists automatically) of δ2Γ.

Some elaboration: given a locally-trivial gerb over some cover, its dual is
described by the same cover with the dual bundles and the dual section on 3-



fold intersections. Then the tensor-product of the two (2.1.11) is again on the
same cover, with trivialised bundles on pairwise intersections and the canonical
trivialisation on 3-fold sets. (So in Čech terms, we have ti,j,k ≡ 1.)

Back to the 3-gerb: whilst each object Γ is not itself a line-bundle, never-
theless we can view their coboundary

Γ⊗ Γ−1 ⊗ Γ⊗ Γ−1

on Ui,j,k,l as a pair of ratios of objects. Each ratio is naturally a line-bundle (3.1.3).
So to ask for a trivialisation θ of δΓ is legitimate.

And on Ui,j,k,l the double coboundary of Γ consists of a tensor product of
ten terms of the form

(Γ⊗ Γ−1)i,j,k ⊗ (others).

But Γ⊗ Γ−1 is a canonically-trivial line-bundle, thus giving can.

Equivalences

To find a Čech cocycle in all of this, refine such that the Gj
i are trivial and

select an object for each. Then, relative to the coboundary of these objects, the
object Γi,j,k is a line-bundle: refine such that we can pick a trivialisation. Then
θi,j,k,l becomes a C∗-function ti,j,k,l with respect to this basis, and necessarily
has vanishing coboundary

t ∈ Z3(C∗).

(This also shows the existence of 3-gerbs.)
Changing the bases shifts t by δC2(C∗), whilst changing the objects of G

shifts by δ2 of line-bundles, which is canonically trivial. So to no great surprise
we find

[t] ∈ H3(C∗).

What is the natural definition of equivalence? Suppose given two 3-gerbs
(G,Γ, θ) and (H,∆, τ) on a common refinement. Since δ(Gj

i ) and δ(Hj
i ) both

carry objects, they are both trivial and so 0-equivalent. But it need not be that
their objects are 0-equivalent (3.1.4). We say that these 3-gerbs are equivalent,
if there exists a gerb-equivalence of δG and δH that makes the objects Γ and ∆
equivalent (ie. their difference is a trivial bundle) and sends θ to τ .

Given two equivalent 3-gerbs, and comparing with the construction of [t]
above, we take bases for the trivial difference bundles between Γ and ∆ to find
that equivalence shifts by

t′ = t+ δ(something).

Thus the space of equivalence classes is H3(C∗).

Connections

A 0-connection on a 3-gerb (G,Γ, θ) is determined by a gerb 0-connection on
each Gj

i and object connections with respect to this on each Γ. The coboundary
of the object connections is a bundle connection, for which we insist θ is parallel.

A 1-connection is given by gerb 1-connections on the Gj
i with respect to their

existing 0-connections. These induce a 1-connection on δG—this 1-connection
must be objective (3.3.1) with respect to the extant object connection.



Now there exists a cocycle of 3-form curvatures Ωj
i . A 2-connection is a

family of local 3-forms
Πi ∈ C0(X;A3)

such that
δΠ = Ω,

thereby leaving us with a global 4-form curvature

M := dΠi (∀i).

The various levels of gauge transformation are clear: a 0-transform is a 3-
gerb equivalence as above, which affects the 0-connection in the obvious way.
A 1-transform is a family of 1-transforms of the Gj

i , and so affects the 1- and
0-connections but not the underlying 3-gerb. A 2-transform is a cochain of
2-forms

ζi ∈ C0(X;A2)

which leaves untouched the 3-gerb and its 0-connection, sends the 1-connection
to

βj
i 7→ βj

i + δζi

and shifts the 2-connection by

Πi 7→ Πi + dζi.

The full space of equivalence classes is then

H3(C∗ d log−−−→ A1 d−→ A2 d−→ A3)

by arguments which are by now transparent.

n-gerbs

By now it should be clear that we can continue without needing any new
technology—Čech cohomology is quite adequate to define gerbs of arbitrary
order. We resist all further demonstrations bar one.

Theorem 4.5.1 Given the spaces{
P := Pn+1 − one point
Q := {all hyperplanes Pn ⊂ P}

for arbitrary n ≥ 0, there is a canonical identification between holomorphic
equivalence classes of

• n-gerbs on P with vanishing Chern class; and

• n-gerbs with (n− 1)-connection on Q.

(And the Chern class constraint is automatic in case n is even.)



Proof—This is a repetition of (4.1.2) and (4.1.4). Even without writing out ex-
plicit definitions of holomorphic n-gerbs, we can be confident that their equiva-
lence classes on P are elements of Hn(P;O∗); and that n-gerbs with connection
on Cn+1 are classified by n-forms up to exact forms

H0(Q; Ωn)/H0(Q; dΩn−1).

(The result applies even when n = 0, for which P and Q are identified, and
equal C1). 2





Chapter 5

Holomorphic gerbs

Holomorphic gerbs on a complex manifold X have already been discussed briefly
(2.3.5); and they arise naturally in chapter 4 in a simple enough form not to
require further details. But of course there is more to be said, and in this chapter
we pursue their theory more fully.

5.1 Equivalence classes and moduli

Recall that a holomorphic gerb has a cohomology class

[G] ∈ H2(X;O∗)

and a Chern class

c(G) ∈ H3
dR(X; Z).

The Chern class is real; and we can restrict its type. By

H(2,1)+(1,2)
dR (X)

on a general complex manifold X, we mean those de Rham classes with some
d-closed representative containing types (2,1) and (1,2) only.

Proposition 5.1.1 The possible Chern classes c(G) ∈ H3
dR(X; Z) are exactly

those classes lying in
H(2,1)+(1,2)

dR (X; Z).

Proof—We seek the image in H3(X; C) of the kernel (in the exponential se-
quence) of

H3(X; Z)→ H3(X;O).

It suffices to show that the real part of the kernel of

H3(X; C) i∗−→ H3(X;O)

(induced by C ↪→ O) is
H(2,1)+(1,2)(X; C).
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Construct these groups via resolutions of their sheaves [50]{
0 → C → C d−→ A1 d−→ . . .

0 → O → C ∂−→ A0,1 ∂−→ . . .

so that i∗ is induced by sending a d-closed 3-form to its (0,3)-component. The
kernel is those classes with some representative devoid of this component. Its
real part is those classes with some representative containing only (2,1)- and
(1,2)-terms. 2

Now the exponential sequence yields the moduli space of gerbs of fixed topo-
logical type as a complex torus

0→ H2(O)
H2(Z)

→ H2(O∗)→ H3(Z).

The first term involves only H(2,0)+(0,2)
dR (Z); and the image on the right is exactly

H(3,0)+(0,3)
dR (Z) plus all torsion in H3(Z).

The torus is not a Jacobian under the standard definition (intermediate or
otherwise), since such things arise in odd degree, but the pattern remains that
set by the theory of line-bundles.

5.2 Holomorphic connections

A holomorphic 0-connection is a 0-connection (2.2.1) on a holomorphic gerb,
each of whose line-bundle connections is holomorphic. (A line-bundle connection
is holomorphic if it behaves as

∇ : L → L⊗ Ω1

mapping between holomorphic sheaves rather than to the more general smooth
sheaf L⊗A1.) Unlike the smooth case (2.2.2), these need not exist. The reason
is similar to that for the line-bundle Atiyah class in H1(Ω1).

Proposition 5.2.1 There is an obstruction

α0 ∈ H2(X; Ω1)

to the existence of a holomorphic 0-connection.

Proof—Given a cocycle
t ∈ Z2(X;O∗)

representing θ in some local trivialisation, a choice of holomorphic 0-connection
amounts to a choice of 1-forms

A ∈ C1(X; Ω1)

such that
δA = d log t ∈ Z2(X; Ω1).



But unlike in the smooth case, in which H2(A1) ≡ 0, this need not be possible

α0 :=
[ 1
2πi

d log t
]
∈ H2(X; Ω1) 6= 0

in general. 2

Given a holomorphic 0-connection Aj
i , a holomorphic 1-connection over it

is a 1-connection whose local 2-forms β are holomorphic. Again, unlike (2.2.4),
these may not exist: this requires the vanishing of

α1 :=
[ 1
2πi

dA
]
∈ H1(X; Ω2).

If the obstructions α0 and α1 vanish, then the gerb supports a curvature 3-form
which is holomorphic, and so the Chern class c(G) has a representative of type
(3,0).

Under the obvious notions of holomorphic 0- and 1-gauge transformation,
the space of holomorphic equivalence classes of gerbs with connection is

H2(X; O∗ d log−−−→ Ω1 d−→ Ω2).

We remark merely that in this holomorphic case it is no longer true that any
two 0-connections are related by a 1-transform, since in general

Z1(X; Ω1) 6= δC0(X; Ω1).

All this tightens up given access to the Hodge decomposition [21, 50].

Compact kähler manifolds

Theorem 5.2.2 Let G be a holomorphic gerb on a compact kähler manifold X,
with Chern class c(G). Then

c0,3 = c3,0 = 0
c1,2 = c2,1 = α0.

Further, α1 is zero when it is defined. That is, the Chern class is essentially
the obstruction to the existence of a holomorphic 0-connection; and given a
holomorphic 0-connection, there always exists a holomorphic 1-connection.

Proof—Aside from the reality constraint

cp,q = cq,p

the proof amounts to understanding how to move from Čech cohomology H3(X; C)
to its Hodge components Hp,q. This can be discussed in the language of the
spectral sequence of the double complex Cq(X; Ωp); or equivalently as follows.

The short exact sequences{
0 → C ↪→ O ∂−→ ∂O → 0
0 → ∂Ωr−1 ↪→ Ωr ∂−→ ∂Ωr+1 → 0



on a complex manifold (for r ≥ 1) give rise to long exact sequences
∗ → H2(∂O) → H3(C) → H3(O) → ∗
∗ → H1(∂Ω1) → H2(∂O) → H2(Ω1) → ∗
∗ → H0(∂Ω2) → H1(∂Ω1) → H1(Ω2) → ∗

0 → H0(∂Ω2) → H0(Ω3) → ∗

for which restricting to a compact kähler manifold ensures that all maps to and
from groups ∗ vanish. The reason for this is that such maps have the form

Hq(Ωp) ∂−→ Hq(∂Ωp)

but if for instance we define these groups by resolutions

0→ Ωp ↪→ Ap,0 ∂−→ Ap,1 ∂−→ . . .

and take the harmonic representatives for classes in

Hq(Ωp) := Hp,q

∂

then the map to Hq(∂Ωp) must vanish. (Alternatively, if we wish to define Hq(Ωp)
by Čech cohomology, we can show that there exist (non-unique) Čech represen-
tatives which are ∂-closed on the intersections; and that taking ∂ of a represen-
tative induces the map on cohomology.)

Given these sequences, we have sufficient grip on the components of H3(C) to
demonstrate the theorem. Suppose given a class in H3(C). Its (0,3)-component
is its image under the above map to H3(O), as is clear (given X compact kähler)
from the proof of (5.1.1). Suppose this component vanishes: then the class pulls
back to H2(∂O) and thereby projects to H2(Ω1). This is its (1,2)-component,
since (by converting to Dolbeault) it has a map to H3(C) which is a (one-sided)
inverse. And so on: if the class has no (0,3)- and (1,2)-terms, it lies in H1(∂Ω1),
whose map to H1(Ω2) is its (2,1)-component; and similarly for the final sequence.

Now to the theorem proper. It is already known that

c0,3 = c3,0 = 0
c1,2 = c2,1

by (5.1.1) and reality. Given some Čech cocycle

t ∈ Z2(X;O∗)

representing θ, the gerb G is described in H3(C) by any choice of

1
2πi

δ log t ∈ Z3(X; C)

(which also represents its explicitly-trivial H3(O)-component). Restricting to
H2(∂O) means to consider

1
2πi

∂ log t ∈ Z2(X; ∂O)

which, viewed as an element of Z2(Ω1), represents both c1,2 and α0 by (5.2.1).



It remains to consider α1. But this is defined only when α0 = 0. In the same
way that

α0 = c1,2

it turns out that

α1 = c2,1

which necessarily already vanishes. 2

5.3 Compatible connections and hermitian gerbs

Compatibility with the holomorphic structure

Definition 5.3.1 (Compatible 0- and 1-connection) Given a holomorphic
gerb G, a smooth 0-connection is compatible with the holomorphic structure if
each line-bundle connection is compatible, ie. holomorphic sections have con-
nection 1-form of type (1,0)

∇j
i : Λj

i → Λj
i ⊗A

1,0.

Given a compatible 0-connection, a smooth 1-connection is compatible if

β0,2
i = 0 (∀i).

Proposition 5.3.2 Such connections always exist.

Proof—Suitably trivialised, a general smooth 0-connection requires

α ∈ C1(A1)

such that
δα = −d log t ∈ Z2(A1,0).

Given α, take its (1,0) component, which suffices.
Similarly, we then seek 2-forms βi such that

δβ = F j
i

but the right-hand side vanishes in H1(A2) and has no (0,2) part, and the same
trick applies. 2

(Thus for a holomorphic gerb there always exist connections for which the
(0,3)-component of curvature vanishes.)

Since we are dealing with holomorphic gerbs, a 0-transform is described by
holomorphic isomorphisms of the Λj

i , as in (2.3.5). We obtain the expected
equivalence classes

H2(X; O∗ d log−−−→ A1,0 d−→ A2,0+1,1)

by defining 1-transforms to be given by

γi ∈ C0(X;A1,0)

which is different from both the smooth and the holomorphic cases.



Hermitian gerbs

Definition 5.3.3 (Hermitian gerb) A hermitian structure on a smooth gerb
is a hermitian metric on each line-bundle Λ such that |θ| = 1.

A 0-connection is compatible with the metric, if each ∇j
i is compatible in the

line-bundle sense (ie. if a norm-1 section has imaginary connection 1-form).
A compatible 1-connection is one such that each βi is imaginary.

All these structures exist: given arbitrary line-bundle metrics, the failure
of θ to be unitary is a 2-cocycle of the sheaf of smooth positive real functions,
which is soft. Given any smooth 0-connection on a hermitian gerb, and unitary
sections of the Λ, the failure to be compatible is a 1-cocycle of smooth real
1-forms, which again is necessarily a coboundary. Rectifying this, the F j

i are
imaginary, and then the imaginary parts of any smooth βi form a compatible
1-connection.

Hermitian gerbs are classified by H2(X;S1); and we must define 0-transforms
to be collections of isometries. The natural extension of

S1 d log−−−→ I1

as an exact sequence (in which Ip is the sheaf of smooth purely imaginary
p-forms) is

S1 d log−−−→ I1 d−→ I2.

So the appropriate notion of 1-transform is a smooth 1-transform in which the
local 1-forms γi are purely imaginary; and the set of equivalences of hermitian
gerbs with connection is

H2(X; S1 d log−−−→ I1 d−→ I2).

Proposition 5.3.4 A holomorphic hermitian gerb has a unique 0-connection
compatible with both structures.

Proof—Each ∇j
i is uniquely specified by the analogous line-bundle result [21]. 2

Note that it is similarly clear that hermitian structures exist on holomor-
phic gerbs. Further, a 1-connection β compatible with both structures must
be purely of type (1,1), thus proving (5.1.1) for a second time by cruder but
more transparent means. Given one such 1-connection, any other differs by an
arbitrary smooth global imaginary (1,1)-form.

(It is not clear whether the failure of such a 1-connection to be unique means
our definition of compatibility is incomplete. Perhaps our original definition of
a general 1-connection is inadequate, just as a definition of line-bundle connec-
tion involving merely throwing down some local 1-forms would miss the true
geometric issue. But the categorical definition of a gerbe [5] fares no better
on this score; and we can hardly expect every line-bundle theorem to translate
unchanged into one on gerbs.)

5.4 Objects for a holomorphic gerb

A holomorphic object—the definition mimics (3.1.1)—exists iff the gerb is holo-
morphically trivial

[G] = 0 ∈ H2(X;O∗).



Holomorphic objects always exist locally; and the example preceding (3.1.3)
applies as in the smooth case.

The existence of an object ensures the existence of a holomorphic gerb con-
nection (since [G] = 0 ensures c(G) = 0). Locally any object carries a holo-
morphic object connection: this is because any object locally looks like the
example referenced above, and so is dictated by a line-bundle L. Whilst L need
not be topologically trivial, we can restrict further to enforce this—and upon
choosing a holomorphic connection (L,∇) we obtain a holomorphic object with
connection as in the smooth example following (3.2.5).

As this implies, there need not exist a holomorphic object connection defined
over the whole of the object—given holomorphic 1-forms αj

i and functions mj
i

describing the line-bundle maps, there is an obstruction

[α+ d logm] ∈ H1(Ω1)

which does not vanish in general.

Example: the Riemann sphere

Consider an example, as an antidote to these layerings of definitions: the Rie-
mann sphere P1. All structures will be assumed holomorphic.

Any gerb is trivial, and carries holomorphic connections, since by the expo-
nential sequence H2(P1;O∗) = 0. Consider first a single open set

U := P1

so that there is no data to specify for any gerb trivialisable on this cover, nor
indeed for a 0-connection. A 1-connection is a holomorphic 2-form over U , which
is necessarily zero. Any object for this gerb is a line-bundle O(j); and there is
an object connection over all of P1 iff j = 0.

Example: same space, different cover

In the first example, at least there exists some object that can support a holo-
morphic object connection. This is not true in general: the reason is that there
is nothing to force the obstruction to be integral in H1(Ω1). If it were, we could
take a second object differing from the first by a global bundle whose Chern
class cancelled the obstruction (3.1.3).

As a second simple illustration, consider again P1 but now with gerbs trivi-
alisable over a two-set cover U := P1 − p0

V := P1 − p1

W := U ∩ V = C∗

so a gerb is specified by a line-bundle Λ over W . Since H1(W ;O∗) = 0, we can
take a trivialisation of Λ. A 0-connection is then a 1-form α over W , which let
us say is of type

α = c · d log z

for some complex constant c. An object is given by bundles on U and V , which
we trivialise, and a map which (given the three bases) amounts to a general
element

m ∈ H0(W ;O∗).



An object connection exists if and only if

[α+ d logm] = 0 ∈ H1(P1; Ω1)

where the right-hand side is spanned by d log z. But whilst [d logm] is always
integral in H2(P1; C), [α] is integral only when c ∈ Z. So in general there is no
object that can carry an object connection.

Compatibility

Given a holomorphic gerb and object, and a 0-connection compatible with the
holomorphic structure, a smooth object connection is compatible if each bundle
connection ∇i is compatible with Li. Such object connections always exist,
thanks to the obstruction being

[α+ d logm] ∈ H1(A1) = 0.

A hermitian object (for a hermitian gerb) is an object with metrics on
each Li, such that the maps m : L → Λ ⊗ L are isometries. These are ob-
structed by H1(R), which vanishes.

If G is holomorphic and hermitian (and [G] = 0 of course), then there exist
objects supporting both structures for the same reason. Such an object is not
unique: it can be tensored by any global holomorphic hermitian line-bundle.



Chapter 6

j-Equivalence of
codimension-three
submanifolds

In this chapter, we expand on the example (2.3.6) by considering not points in
3-manifolds but a real codimension-3 submanifold in Xn, with the extra struc-
ture of supposing that X comes with a fixed metric. In this context, a useful
way to move between submanifolds Rn−3 and differential forms (describing con-
nections) is through the classical language of currents. We use nothing but the
basics of this theory [10, 21].

We shall write down very general equations which describe a wide class of
1-connections on these gerbs. Then we find that considering the possibility
that such a 1-connection is in fact objective (3.3.1) starts to lead somewhere
interesting.

The underlying idea is this: given a point in a 3-manifold, it is natural
in the context of gerbs to want to put a degree-1 line bundle on a punctured
neighbourhood of the point (2.3.6). It is then perhaps unsurprising that such
gerbs are related to the equation for a (singular, abelian) monopole on that
neighbourhood (given a metric on the space). In more general codimension-3
contexts, such monopoles keep appearing: and objective 1-connections lead us
there (6.4.2).

As ever, all structures are oriented unless specified otherwise.
(We shall always try to write real dimensions in this chapter. Note also

that we shall now start using the notation of currents, with the convention that
the degree of a submanifold as a current—written as a superscript—is its real
codimension, so the submanifold Rn−3 is also the current R3. In compensation,
a differential form αr is also a current αr. Forms are always held to be smooth,
but currents may be smooth or singular.)

6.1 Motivation from line-bundles

The greatest interest in line-bundles and codimension-2 submanifolds is of course
in the holomorphic version. In this chapter our gerbs will be merely Riemannian,
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yet we quickly show that this approach can carry a good amount of the data of
a holomorphic line-bundle.

Holomorphic bundles on kähler manifolds

Suppose given a complex codimension-1 submanifold Y n−2 ⊂ Xn on a compact
kähler manifold.

Y determines a holomorphic line-bundle: if we have Y described by local
holomorphic functions fi, then we have an explicit description of the bundle by
transitions. Take then any global meromorphic section s of the bundle, and any
hermitian metric on the bundle.

Then it is standard [21] that, as a global current, s satisfies the Poincaré-
Lelong equation

i

2π
∂∂S = c− Y

where

S := log ‖s‖2

c :=
i

2π
F

and F as ever is the bundle curvature.
The curvature is displayed explicitly as follows, with respect to the bases of

the local trivialisation. Off Y we have the connection 1-form

A0 := ∂S

and on Ui we take
Ai := ∂S − ∂ log |fi|2

all obeying F = dAi (∀i).

Smooth version

Start again, on a compact Riemannian manifold Xn with Laplacian operator
∆, and fix a real codimension-2 submanifold Y n−2. (The 2 is not significant
and any proper codimension would work.) Pick a global smooth closed 2-form c
in the same (current-) cohomology class as Y . Then there exists [10] a global
2-current u solving

i

2π
∆u = c− Y.

(In particular, u is a smooth 2-form off Y and is unique up to any global har-
monic 2-form.)

On small enough open sets Ui, we can also locally solve

i

2π
∆vi = Y

such that the vi are closed currents (6.3.1). Do this for an open cover {Ui}i∈I

of Y , and write U0 for the complement of Y .
We can now write down a global 1-current

a0 := d∗u



which is smooth off Y , and smooth local 1-forms

ai := d∗u+ d∗vi

so that around any point we have some 1-form obeying

i

2π
da = c.

From smooth to holomorphic

If we now carry this out for our divisor on kählerX, and writing Λ for the adjoint
operator of right-multiplication by the kähler form, we find that this purely real
construction almost gives us the full line-bundle. Precisely, we obtain

S :=2iΛu globally
|fi| := exp(−iΛvi) on Ui

in the sense that these S and |fi| behave the same as those defined from the line-
bundle, ie. they satisfy Poincaré-Lelong and define the appropriate connection
1-forms.

One thing the real approach lacks is that we need to know in advance that Y
is holomorphic. (If we had started with local holomorphic equations fi = 0, this
would have been apparent.) We need the complex structure of X to get from |f |
to f . We shall keep playing with the real case even so in this chapter, since for
gerbs we do not already know what the answer will be and it is useful to see
how far the smooth theory goes.

6.2 Codimension-three submanifolds

Given smooth compact manifolds Rn−3 ⊂ Xn, we choose an open cover of X of
the form

U0 := X\R

R ⊂
⋃
i 6=0

Ui

on which for convenience we further impose that the Ui be suitable to trivialise
the normal bundle N of R and that all Ui,j,...k for i, j, . . . 6= 0 be contractible.
(When we write i, j, . . . , we shall now assume them all non-zero.) We implicitly
view N embedded in X as a tubular neighbourhood of R [35].

Now double intersections are either contractible (the Ui,j) or homotopic to
the 2-sphere (U0,i). Over the former spaces, put trivial line-bundles; over the
latter, put degree-1 Λ0

i . We seek to extend the construction of (2.3.6) to obtain
a gerb up to equivalence on X determined by R.

Proposition 6.2.1 There exists a gerb G(R) on this (I,Λ).

Proof—We need a cocycle θ of sections of the bundles on three-fold intersections
Ui,j,k or U0,i,j .



Choose arbitrary bases, say ej
i for Λj

i and vj
i for Λ0

i ⊗Λj
0. Then any nowhere-

zero section θ on
⊗3

1 Λ is given by scalars s and t, where{
θi,j,0 := sj

i · (e
j
i ⊗ vi

j) : sj
i ∈ C1(N\R; C∗)

θi,j,k := ti,j,k · (ej
i ⊗ ek

j ⊗ ei
k) : ti,j,k ∈ C2(N ; C∗)

(with respect to covers {Ui}i 6=0 for N and {Ui ∩ U0}i 6=0 for N\R.) It remains
to show that there exist s and t such that δθ = 1, the canonical section of δ2Λ.

On four-fold intersections of the form Ui,j,k,l this says simply that t must be
a cocycle, since δ2e is necessarily the canonical section.

Secondly and finally, on intersections Ui,j,k,0 we need

1 = δs · δe⊗ δv∗ ⊗ θ∗i,j,k
⇒ ti,j,k = (δs · δv∗)i,j,k

where we freely drop uninteresting canonical sections (such as e ⊗ e∗) from
our notation. To interpret this constraint, note that even though (so far) the
sections vj

i and the scalars sj
i have been arbitrary, nevertheless all choices give

the same cohomology class

σ := [δv∗] ≡ [δ(s · v∗)] ∈ H2(N\R; C∗)

in which by δv∗ we mean the coefficient of the section δv∗ with respect to the
canonical section of the bundle

(Λ0
i Λ

j
0)⊗ (Λ0

jΛ
k
0)⊗ (Λ0

kΛi
0).

The freedom we have is to vary the class [ti,j,k] ∈ H2(N ; C∗), and our need is
that there be a choice of t such that the inclusion map

H2(N ; C∗) i∗−→ H2(N\R; C∗)

induces
i∗ : t 7→ σ.

To demonstrate this, it is convenient to make two changes. First, take choices
of logarithm for the representatives t|S and δv∗|S so that we view our classes as
lying in H3(Z) rather than in H2(C∗). (The choices do not affect the result.)

Second, pick a metric for the fibre bundle N (for instance, one induced from
a Riemannian metric on X); and thus write B for the unit-ball sub-bundle of N ,
and S for the unit-sphere sub-bundle. Perform excision of the set N\B from
the pair (N,N\R).

Now the pair sequence S → B → (B,S) induces a long exact sequence [36]

−→ H3(B; Z) i∗−→ H3(S; Z) −→ H4(B,S; Z) −→

with [t|S ] lying in the left term and σ in the middle term. We need to show
that σ lies in the image of H3(B; Z); and that the representative t is adequate
to express a class whose image is σ.

The second is true because the map on cohomology is just restriction, which
is essentially all we have done to the representive ti,j,k.



The first is true because we have representatives for σ, such as 1
2πiδ log δv∗,

which are explicitly constant on each fibre not just of S but indeed of B, and
thus provide representatives of a preimage.

We have proved (after taking a series of choices) that a cocycle section θ
exists, and thus that we have a gerb. 2

It is clear by considering the choices made in the proof that our gerb is fixed
only up to equivalence, just as in (2.3.6).

Theorem 6.2.2 The Chern class c(G) ∈ H3(X; C) of this gerb is Poincaré-dual
to the homology class of R.

Proof—Pick a 0-connection for G over the given cover (2.2.2), with bundle cur-
vature 2-forms f j

i . Pick a subordinate partition of unity ρ, giving a 1-connection

bi :=
∑
k 6=i

ρk · fk
i

with curvature 3-form
o = db0 =

∑
k 6=0

dρk ∧ fk
0

as viewed in U0. Note that o ≡ 0 off U0, and indeed off the unit-ball bundle B
if we choose ρ appropriately; and that on any fibre S2 of the sphere bundle
intersecting Uk, i

2πf
k
0 has degree −1.

Now we turn to [R]. Its dual in H3
dR(X) is represented by a Thom form T

on the normal bundle, extended by zero to X [35]. To describe such a form,
take a fibre-volume 2-form V on the sphere bundle S and extend it by pull-back
to all of the punctured normal bundle N\R. Note that V has degree 1 on any
fibre S2. Now we can take

T := d(1− ρ0) ∧ V

as a representative for the Thom class. (This supposes that ρ0 = 1 on S, which
can certainly be arranged.)

It remains to show that [ i

2π
o
]

= [T ]

but

i

2π
o− T =

∑
i 6=0

dρi ∧
(
V +

i

2π
f1
0

)
Since V + i

2πf
1
0 is trivial in de Rham cohomology on Ui,0 (because it is of degree

zero), there exist 1-forms γi on Ui,0 such that

V +
i

2π
f1
0 = dγi

⇒ i

2π
o− T = d

∑
i 6=0

dρi ∧ γi

where the right-hand side is the exterior derivative of a global smooth 2-form. 2



6.3 Gerb connections via the Laplacian

1-connections in codimension 3

We construct a somewhat more geometric 1-connection for the gerb G(R) of
(6.2). Fix a Riemannian metric on X. Write ∆ := dd∗ + d∗d for the Laplace
operator. Pick any target for the Chern 3-form

ω ∈ c(R) ∈ H3
dR(X; Z)

(meaning the image of integral cohomology in de Rham cohomology)—for in-
stance, the unique harmonic representative.

We can certainly globally solve the equation

i

2π
∆γ = ω −R

for a 3-current γ, since ω and R share a cohomology class. Further, γ is auto-
matically a smooth closed 3-form on U0 (though singular on R) and is unique
up to any global harmonic 3-form. (We could specify γ precisely by insisting it
be globally exact.)

Take a cover U0, Ui 6=0 as in (6.2) for which we further insist the Ui be small
enough that we can solve

i

2π
∆σi = R

as a current equation for smooth 3-forms σ, but requiring that σ be closed.
(Say σ0 := 0 on U0.)

Proposition 6.3.1 This is always possible locally.

Proof—We apply a series of standard results, taken for instance from de Rham [10],
chapters 30 and 32.

Certainly local solutions exist. On their being closed: we need to know
things about the square-summability of the currents involved. For this, it is
more transparent (due to smoothness) to consider local solutions to

i

2π
∆τi = ω

for which we seek to enforce that dτ = 0, and then to take σi := τi − γ.
If U is small, then ω = dµ is exact, with µ smooth. Shrinking U if necessary,

µ is square-summable. So it decomposes into a sum of three unique square-
summable currents: closed and coclosed; exact but orthogonal to the first class;
and coexact but orthogonal to the first class. (This is Theorem 24 of de Rham,
due to Kodaira [29].) Since µ is smooth, its three components are smooth.
Without loss of generality, µ is of the third type only.

So µ = d∗ν, again with ν smooth. And we can again shrink U slightly away
from its boundary to be sure that ν is also square-summable. It decomposes as
above; take ν to be its (smooth) exact component.

Now dν = 0, so ∆ν = ω and we can solve for τ . 2

Given these choices we define local smooth 2-forms over Ui (including i = 0)

βi := d∗(γ + σi)



which all satisfy
dβi = Ω (∀i)

where by Ω we mean −2πiω (2.2.8). (We would like a 1-connection with these β
as our 2-forms). Note in particular that β0 extends as a global current, smooth
off R.

Choosing line-bundle curvatures

On each Ui,j we see that

0 = ∆(σi − σj)
= dd∗(σi − σj)

so we define closed (and coclosed) 2-forms

F j
i := d∗(σi − σj)

which obey
βi − βj = F j

i .

We want these closed 2-forms to be the curvatures of line-bundles Λj
i as described

in (6.2). We must show that they are integral of the appropriate degree.
Proof—For i, j 6= 0 there is nothing to prove. Our cover is such that Ui,j is
contractible; so certainly F j

i has trivial de Rham class as desired.
The Ui,0 are homotopic to 2-spheres, and in particular their second homolo-

gies are each generated by a fibre S2 of the sphere bundle of the normal bundle
of Rn−3. Say B3 is the ball it contains. And whilst F 0

i is a smooth closed 2-form
off R, the definition of σi forces it to extend as a unique current from Ui,0 to all
of Ui such that

i

2π
dF 0

i = R

which thus behaves as ∫
S2

i

2π
F 0

i =
∫

B3

i

2π
dF 0

i

= B ∧R
= 1

just as needed for a degree-1 bundle. 2

The existence of a 0-connection

Theorem 6.3.2 Pick a topological gerb G(R) in the manner of (6.2). Then
there exists a 0-connection such that the curvatures of its line-bundle connec-
tions ∇j

i of Λj
i are the harmonic 2-forms F j

i .

Corollary 6.3.3 The 2-forms βi give a 1-connection for G(R), with curva-
ture Ω. 2



Proof—of the theorem—The proof of (6.2.2) provides 0- and 1-connections ∇,
f , b, o. We shall adapt this into the desired F , β, Ω.

We know by (6.2.2) and by the definition of Ω that there exists a global
2-form B such that

Ω = o+ dB.

In particular, bi +B is still a 1-connection for the 0-connection ∇j
i .

Now there exist local 1-forms ψi for i 6= 0 such that

βi − bi −B = dψi

since the left hand side is closed and Ui is contractible. So (viewing ψi as a
1-transform) βi is a 1-connection for ∇+ δψ. This means that

δβ = Curvature(∇+ δψ)

but by construction
δβi = F j

i

so the new 0-connection ∇+ δψ has bundle curvatures F j
i as required.

It remains to consider the case i = 0, ie. to show that for some choice of B

[β0 − b0 −B] = 0 ∈ H2
dR(X −R)

noting that we are still free to vary B by any closed 2-form defined over all of
X. We shall demonstrate this separately for the two cases in which Rn−3 ⊂ Xn

is or is not a boundary.
Suppose first that

[R] 6= 0 ∈ Hn−3(X)

so that in the long exact homology sequence of the pair (X,R), the map

Hn−2(X,R)→ Hn−3(R)

vanishes (ie. R is not a boundary in X). This leaves

0 = Hn−2(R)→ Hn−2(X)→ Hn−2(X,R)→ 0

which (with real or complex coefficients) is canonically isomorphic to

0→ H2
dR(X)→ H2

dR(X −R)→ 0

so that for some closed globally-defined B′

[β0 − b0 −B] = [B′] ∈ H2
dR(X −R)

and modifying B 7→ B +B′ does the job.
If finally [R] = 0, we no longer have the isomorphism above. Instead there

are global forms BΩ and Bo such that

Ω = dBΩ , o = dBo

⇒ [β0 −BΩ] = [b0 −Bo] ∈ H2
dR(X −R)

and taking B := BΩ −Bo is enough. 2



Variations

Given R and a trivialisation Ui for N , the freedom to vary choices of Λ, e and
v amounts to (a restricted set of) 0-transforms, or gerb equivalences.

Given also a 0-connection with line-bundle curvatures F , these 0-transforms
act as expected on the 0-connection. Fixing the gerb, the 0-connection can vary
only by a closed 1-transform γ ∈ C1(X; dA0), which does not affect β or F .

Given ω, β0 is unique whilst the other βi are unique up to d(1-form). This
same 1-form must then act as a 1-transform on the 0-connection in order that
the new βi remain a 1-connection.

Changing ω—necessarily by a global exact form—takes us to an inequivalent
1-connection.

So if we restrict to harmonic ω (which is uniquely specified by R) then our
gerb with 1-connection on X is fixed by R up to equivalence. (It is fixed more
firmly than that, since by construction it has certain degree-1 singularities along
R, but this will do for now.)

6.4 j-Equivalence of different submanifolds

An obvious question is to consider variation in R itself: how does this affect
the gerb? So consider the case [R] = 0 (or, if we prefer, [R1] = [R2] and then
R := R1 −R2 as a singular-homology cycle).

The underlying topological gerb is clearly not interesting since [R] ≡ [G]. So
consider connections on G.

One approach that springs naturally from chapter 3 is to create an object for
the gerb G(R) now that it is trivial. In particular, consider the possibility that
the βi in fact represent an objective 1-connection (3.3.1), ie. the 1-connection
2-forms are the curvatures of an object 0-connection—or equivalently, the global
2-form ε vanishes (3.3.2). This requires the βi to be closed and integral (to i

2π ).
Closure is easy: we must take ω = 0 (which has already been imposed,

having restricted ourselves to harmonic ω ∈ [R]).
Since the Ui are contractible, we know the βi are integral for i 6= 0. What

about U0? There are several ways to describe the constraint on the integrality
of β0|U0 .

Since R is now a boundary, pick some singular homology chain ∂Cn−2 = R.
It gives a relative class

[C] ∈ Hn−2(X,R; Z) ∼= H2(X −R; Z).

Both C and β0 are global 2-currents, and as such decompose uniquely into exact,
harmonic and coexact parts. We write these as subscripts.

Definition 6.4.1 (j-map) We have a natural map given by integration over
any choice of C

j : {exact (n− 3)-cycles in Z-singular homology} −→ Jac

where Jac is the quotient by Hn−2(X; Z) of the dual of the vector space of real
harmonic forms

Hn−2(X; R)∗.



This real torus has a well-defined base-point 0.
The name is meant to imply a link with intermediate Jacobians [21]; but ours

is not such a torus even if X is compact kähler, since then n− 2 would be even
and intermediate Jacobians are defined in odd degree. On the other hand, there
are analogous definitions of j in all real codimensions Rn−c for c = 1, . . . , n, and
in codimension 2 we obtain

Hn−1(X; R)∗

Hn−1(X; Z)

which (if n = 2N and X is compact kähler) is equal as a real torus to the first
intermediate Jacobian, the Picard variety

H0,1(X)
H2N−1(X; Z)

of which more in (6.5). In the various even real codimensions, we form the
various such intermediate Jacobians.

Theorem 6.4.2 The following are equivalent—

1. Some 1-connection β of type (6.3) is objective;

2. On U0, i
2πβ0 is integral[ i

2π
β0|U0

]
∈ H2

dR(X −R; Z);

3. In X, Rn−3 is a “Dirac monopole” in the sense that there is a line bundle
with connection and a “Higgs field” (n − 3)-form φ, both defined off R,
such that

F = ∗dφ

—the Bogomolnyi equation, if n = 3—subject to a certain boundary con-
straint, below;

4. Any choice of C has integral coexact part on U0

[Ccoexact|U0 ] ∈ H2
dR(X −R; Z);

5. Any choice of C has integral harmonic part globally

Charmonic ∈ H2(X; Z);

6. The j-image of R is trivial

j : R 7→ 0 ∈ Jac.

We consider the interesting conditions to be (1.), (3.) and (6.)—the others are
given mainly to clarify the proof, which follows. For the monopole (3.), the
appropriate behaviour at the singularity R is that φ extends as a global singular
current satisfying

∗∆φ = 2πiR



(and consequently F extends globally such that

dF = 2πiR).

Recall that in this section [R] = 0, so such equations have global solutions.
For reference we note [10] that in general on p-forms{

∗∗ ≡ (−1)np+p

d∗ ≡ (−1)np+n+1 ∗ d∗

Proof—(1.⇔2.) Already discussed.
(2.⇒3.) We know

F0 =β0

=d∗γ

=(−1)n+1 ∗ d ∗ γ

so define

φn−3 :=(−1)n+1 ∗ γ.

Since dβ0 = 2πiR and γ is closed, this has the appropriate behaviour at R.
(3.⇒2.) Define γ := ∗φ, which then obeys

∆γ = 2πiR

and so [ i
2πβ0] is the Chern class of a line-bundle, and is integral.

(2.⇔4.) In general, β0 is the (unique) global coexact current such that

i

2π
dβ0 = −R.

But for any chain such that ∂C = R, Ccoexact is the (unique) global coexact
current such that

dCcoexact = (−1)n∂Ccoexact = (−1)nR

and so each is integral as a current on U0 if and only if the other is.
(4.⇔5.) Note that

[C] ∈ Hn−2(X,R; Z) ∼= H2(X −R; Z)

is exactly equivalent—in its evaluation on forms in Hn−2
dR (X,R; Z)—to the global

current
Ccoclosed = Charmonic + Ccoexact.

So Ccoclosed is integral on such forms. Then (4.) holds if and only if Charmonic

is similarly integral. Charmonic extends globally as a smooth form. If in fact
(5.) holds and Charmonic is integral globally—ie. evaluated on Hn−2

dR (X; Z)—then
then it is so in particular on forms compactly supported in U0. It remains to
show the converse.

The long exact homology sequence of (X,R) is dual to

· · · → Hn−3
dR (R)→ Hn−2

dR (X,R)
(inclusion)∗−−−−−−−→ Hn−2

dR (X)→ Hn−2
dR (R) = 0.



In particular, any class in Hn−2
dR (X; Z) has a compactly-supported representative

(off R). But as a global harmonic form, Charmonic has the same pairing with all
representatives in a given class. So if its pairing is integral on any compactly-
supported representative, it is so on any representative.

(5.⇔6.) This is tautologous. 2

(Currents have a dual pairing on differential forms. So when discussing for
example Charmonic evaluated on Hn−2

dR (X; Z), we mean its pairing with repre-
sentative forms of classes in the image of say singular cohomology in de Rham
cohomology

Hn−2(X; Z)→ Hn−2
dR (X).

Implicit in this is independence from choice of representative.)

Definition 6.4.3 (j-Equivalence) Two (closed) topologically-equivalent sub-
manifolds are j-equivalent, if their difference maps to zero

j : R1 −R2 7→ 0.

Considering the case n = 3 of points in a 3-manifold (2.3.6), we see that
there is nothing to show if X is simply-connected (since there are no global
harmonic 1-forms and j is trivial). Otherwise it is reasonable to ask whether or
not two points are related by an abelian monopole interpolating between them.
We can view this as a finer equivalence than the merely topological, as a smooth
analogue of linear equivalence of divisors.

6.5 “j-Equivalence” in codimension 2

We make explicit the analogy between j-equivalence and linear equivalence of
divisors, by expanding on section (6.1). To do this with purely real machinery
requires that we restrict to the case for which the metric carries all we need to
know about the complex structure: a Riemann surface, n = 2.

Riemann surfaces

Take a topologically-trivial collection of points [Y ] = 0 ∈ H0(X; Z). As before,
we can solve globally

i

2π
∆u = −Y

thus giving global currents

b := d∗u
a := ∗b.

From these we have a complex global current

A := a− ib



which is a smooth 1-form off Y . Further, dA = 0 off Y ; and the real part a of A
is an exact smooth form off Y

a = +d(∗u)

and so has zero periods. And in fact A is a (1,0)-form, since given n = 2
and p = 1 the complex structure obeys

I ≡ −∗
⇒ IA = − ∗ a+ i ∗ b

= +iA.

“j-Equivalence” on Riemann surfaces

Much of (6.4.2) can be repeated in arbitrary non-zero codimension. In par-
ticular, there is an obvious analogue of the j-map in codimension 2, and the
imaginary part of A has integral periods (to i

2π ) if and only if this j′(Y ) = 0. As
we have seen, the torus in this case is just the Picard variety viewed as a real
manifold (6.4.1).

Theorem 6.5.1 In this situation, j′(Y ) = 0 if and only if L is linearly-equivalent
to the trivial divisor.

Proof—Assume j′(Y ) = 0. Define

f := exp
(
i−

∫
∗d

)
(∗u)

= exp(i ∗ u+
∫
b)

where the integration means to fix some base-point and integrate along any
path (avoiding Y ) to the point in question. (Note that, since u is imaginary,
the modulus of f is exp i ∗ u and its argument is −i

∫
b.) This is a well-defined

complex function off Y , since b is closed off Y , and if a closed loop surrounds
a point of Y then db = 2πiY ensures that the integral jumps by an integer. If
two paths differ by some non-contractible loop, the integral jumps by an integer
precisely because b has integral periods (ie.j′(Y ) = 0).

We claim that (off Y ) this f is holomorphic. This would follow if d log f had
type (1,0). In fact we find

d log f = i(a− ib)

which we already know to be (1,0).
Finally, we must show that f extends over Y as a meromorphic function

with divisor Y . We shall derive globally the Poincaré-Lelong formula; then
it will be straightforward to show that the singularities of f must be of the
appropriate order and the work is done. As before, we use Λ for the adjoint to
right-multiplication by the kähler form.

Λ(
i

π
∂∂ log |f |) = − 1

π
Λ∂∂(∗u)

= −∆(
i

2π
∗ u)



(since ∆ ≡ −2iΛ∂∂ for 0-currents on any kähler manifold [21])

= + ∗ Y

(since ∗ commutes with ∆). Note also that acting on 2-forms in n = 2,

∗Λ = 1

so that applying ∗ to both sides yields

i

π
∂∂ log |f | = +Y

which is the Poincaré-Lelong equation as desired.
We claim this shows f to be meromorphic. It suffices to work locally in a

disc around Y = n copies of the point z = 0, for some integer n ∈ Z. Cauchy’s
formula [21] says that over this disc

1
2πi

∂∂ log zn = Y.

But Poincaré-Lelong shows that globally

1
2πi

∂∂ log f = Y.

So we know the local distribution f/zn is harmonic, and is in particular smooth
over z = 0. Thus f does not have an essential singularity there, and is locally f =
zm · g for some holomorphic non-zero g and some integer m ≥ n. By the same
reasoning, zn/f is harmonic; and so m = n.

So in fact f is a global meromorphic function cutting out the divisor Y .
The converse follows smoothly in reverse. Given f , define

u := −i ∗ log |f |

which then obeys i
2π ∆u = −Y and from which we define the currents a and b as

before. It remains to show that i
2π b is integral when evaluated on H1(X−Y ; Z).

But given some representative cycle γ, the fact that

b := d∗u = idArgf

ensures that ∫
γ

i

2π
b

is integer-valued. Consequently, j′(Y ) = 0. 2



Chapter 7

Holonomy of loops and of
surfaces

Given a line-bundle with connection on Xn, parallel translation defines a func-
tion (the holonomy function) on the infinite-dimensional space of loops on X.
There are two ways to extend this notion to gerbs. First, it would seem unsur-
prising if a gerb with 1-connection were to specify a function on the space of
closed surfaces in X. This is in fact the case (7.1), and a demonstration makes
clear that the error 2-form ε of (3.3.2) should be thought of as the equivalent of
a bundle’s connection 1-form.

Second, guided by the principle that gerbs are to line-bundles what bundles
are to functions, we might hope that (since a bundle creates a function) a
gerb creates a line-bundle on the loop space. Brylinski [5] describes such a
construction, crediting Gawȩdzki [17] and Deligne for the initial ideas. We can
offer a more geometric interpretation in (7.2) with the tools of chapters 2 and 3.

This alternative view of the holonomy of gerbs is in some sense viewing a
surface as a family of loops, and so is more complicated than (7.1). In return,
the complications suggest interesting new avenues. For instance, recall that in
chapter 6 a real harmonic-theoretic viewpoint was only partly enlightening when
applied to holomorphic line-bundles (6.1)—except for the special case n = 2, for
which knowing the metric gave complete control of the complex structure (6.5).
We might hope the analogous gerbs (in n = 3) to be similarly friendly. If we
notice further that in n = 3 there is known to be a natural almost-complex
structure on the space of loops [34], we might start wondering whether we have
in some sense a holomorphic bundle on the loop space: and even whether this
bundle might be holomorphically trivial when the gerb is j-trivial (6.4.1).

It seems reasonable in this context to upgrade the definition of the line
bundle (7.3). Then, however, the curvature of a typical loop makes it hard
to be explicit on the infinite-dimensional loop space; and it becomes natural
to want to restrict to the space of geodesics. Here a nice theory arises (7.4),
barring the most inconvenient fact that the set of geodesics is a manifold for very
few spaces. The obvious example is X = S3, whose geodesics form a complex
quadric surface Q2 = P1 × P1.
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7.1 The holonomy of a surface

Start with a completely general smooth gerb with 1-connection on a general
manifold Xn. For any surface Σ2, we define a number, its holonomy, which in
some sense is the result of “parallel translation” of the gerb around Σ.

Definition 7.1.1 (Holonomy of a surface) Given a gerb G with 1-connect-
ion on X, and a smooth compact surface Σ ∈ X (without boundary), pick any
object of G|Σ with 0-connection. The holonomy of Σ is then defined to be

exp−
∫

Σ

ε

where ε is the error 2-form (3.3.2) of the object connection.

Since H3(Σ; Z) = 0, objects exist for G|Σ. If the surface is a boundary
Σ2 = ∂M3, then Stokes lets us calculate its holonomy via the 3-curvature

exp−
∫

Σ

ε = exp−
∫

M

Ω.

This definition is offered because objects and errors are the natural structures
to seek to apply, given chapter 3; but we then see that this is in close analogy
with the line-bundle holonomy around a loop

exp−
∫

γ

A

where we trivialise the bundle over γ, yielding a connection 1-form A. That this
is the correct definition justifies the remarks made in table (3.5), that an object
with connection is a “trivialisation” of G and the error form is the equivalent of
the connection 1-form.

Theorem 7.1.2 The holonomy of Σ is independent of the choice of connection
on the object, and of the choice of object. The holonomy of any Σ is constant
within its homology class iff the 1-connection on G is flat (ie. ω = 0).

Proof—Fix a choice of object for G|Σ. Two object 0-connections differ by a 1-
form α over Σ, by (3.2.3). From the proof of that result, we see that the errors
differ by dα. Since Σ is closed, the integral is unchanged thereby.

Two choices of object (with 0-connection) differ by a line-bundle with con-
nection over Σ. By the proof of (3.2.4), the errors differ by the curvature of this
line-bundle. But this is integral∫

Σ

F = −2πic1[Σ] ∈ −2πiZ

and thus the exponential is unchanged. So the holonomy is well-defined.
If ω = 0 overX, then [G] = 0 and we can take a global object with connection.

In particular such a global error 2-form is closed, since

0 = ω =
i

2π
dε.



So its integral over Σ is determined by the surface’s homology class.
The converse: if the holonomy is independent of the surface within its class,

take Σ to be the boundary of a contractible ball B3. Pick an object over the
whole of B. Since [Σ] = 0,

1 = exp−
∫

Σ

ε = exp 2πi
∫

B

ω

and, since we can take arbitrarily small 3-balls spanning any element of Λ3TpX
around any point p ∈ X, ω must vanish. 2

7.2 A line-bundle on loop space

Start with a general gerb with 0-connection on some smooth Xn. Write LX
for the space of compact connected oriented 1-dimensional submanifolds of X,
ie. images of embeddings γ : S1 → X of an oriented unparametrised circle.
(Which particular space of loops we take is not crucial.) Brylinski defines a
principal C∗-bundle for his “gerbe with connective structure”. Whilst our ver-
sion looks a little different, it is directly inspired by an attempt to understand
Brylinski’s bundle.

Construction of the line-bundle

An open set in X lifts to one in LX (ie. all loops contained within it). We choose
an open cover Ua for X such that its lifts cover LX, and such that G restricted
to each Ua is trivial. (Note that these sets need have nothing directly to do
with any given local trivialisation of G.) Such a cover does exist: for instance,
for every point in LX, we slightly thicken the corresponding loop γ ⊂ X into
an open solid torus. Since this set Uγ has vanishing H3(Z), the restricted gerb
is trivial.

Accordingly, choose on each Ua an object with 0-connection: and on the lift
of the set, we place a trivialised line bundle Ûa×C1. We must declare transitions
for this cover.

On an intersection Ua,b the difference of the two objects fixes a line bundle
with connection (3.2.4), and its holonomy is a C∗-function on Ûa,b. We take
this to be the transition function between the two patches on LX.

Proposition 7.2.1 This construction is a well-defined smooth bundle on loop
space, given a gerb with 0-connection on X.

Proof—Such functions are smooth, so the bundle (if it exists) is smooth. Going
from Ub to Ua has, as the difference of the two objects, the inverse bundle
and connection; and thus the transition from Ûb to Ûa is the reciprocal of
that in the other direction. Finally, on a three-fold intersection the double
coboundary of the objects is canonically the trivial bundle and connection, and
so the transitions on LX have zero coboundary.

Thus we have a smooth bundle on loop space, given the initial choices of
objects and connections on each Ua. But if we consider alternative choices,
they amount to gauge transformations of the trivialisations on each Ûa, and the



holonomy on Ûa,b is unchanged. 2

We remark that there is no need to work over the whole of LX: we are
quite entitled to restrict to subsets if we wish. Also, it will later be convenient
for us to choose an arbitrary basepoint γa in each Ûa, and to insist that Ûa

be contractible. These can be accomplished, for instance, by taking open sets
which are thickenings into tori of given loops γa.

Proposition 7.2.2 This line bundle from a gerb with 0-connection is natu-
rally identifiable with the line bundle of the principal C∗-bundle of [5] (6.2)
constructed from the corresponding gerbe with connective structure. 2

Connection from 1-Connection

Suppose that G also comes with a 1-connection βi. Given an object with 0-
connection over Ua, we now have an error 2-form over Ua

ε := Fi − 2πiβi.

View a tangent vector to a point in LX

v ∈ TγLX

as a vector field on S1

v ∈ Γ(S1; γ∗TX)

which is transverse to TS1. With respect to the local trivialisation on Ûa, define
a connection by its local 1-form A

A : v 7→
∫

γ

i(v)ε

in which i is to mean contraction between vectors and forms in X.

Proposition 7.2.3 This connection is well-defined, with curvature 2-form

F : (u, v) 7→
∫

γ

i(u, v)dε

so that
i

2π
F (u, v) =

∫
γ

i(u, v)ω.

Proof—A direct translation of Brylinski [5] (6.2.2). We merely flag the two main
points. First, transgression (integration of forms around a loop γ) is a morphism
from the de Rham complex on X to that on LX. In particular,

d
∫

γ

(form) =
∫

γ

d(form).

Second, if the error form is ε for some object with 0-connection, then on any
alternative choice it differs by the curvature 2-form of the difference bundle.
This makes the connection 1-form consistent with the transition function, the
holonomy. 2



Higher gerbs

It is established that (2-) gerbs with 1-connection on X generate functions (0-
gerbs) on the space of 2-manifolds inX, and generate bundles (1-gerbs) with (0-)
connection on the space of loops. Given the corresponding facts about bundles
with connection on X, and indeed C∗-functions on X, the pattern might be
expected to continue without any great struggle to higher orders. A 3-gerb with
2-connection (4.5) should define a function on the set of 3-manifolds; a bundle
with connection on the set of 2-manifolds; and a gerb with 1-connection on the
loop space.

Although no new ideas should be necessary, we shall not write this out.
Working case-by-case seems inefficient: perhaps some suitably algebraic nota-
tion will make this a tautology in all degrees.

7.3 Loops in a 3-manifold

For the rest of this chapter we restrict to a Riemannian X3. Our starting point
is the observation of Marsden and Weinstein [34] that LX has a natural almost-
complex structure: given a vector v ∈ TγLX (viewed now as a vector field on the
loop γ that is normal, not just transverse), and writing γ̇ for the unit tangent
vector along the loop, define

I(v) := γ̇ × v

to be the vector product in three dimensions. This almost-complex structure
is not integrable [31], but its Nijenhuis tensor vanishes [5] (so that if the man-
ifold were finite-dimensional we would have integrability, by Newlander and
Nirenberg [38]).

We see that, given a real vector v in the loop space (a normal vector field
to γ), a vector of type (1,0) has the form

v − iγ̇ × v

whilst

v + iγ̇ × v

is of type (0,1). Then, as Brylinski notes, the curvature

F : (a, b) 7→
∫

γ

i(a, b)dε

of the line-bundle of (7.2) is a (1,1)-form (eg. by taking (u, v, γ̇) to be a real
orthonormal triple and testing F on combinations of these types of vectors).

In finite dimensions, Griffiths [20] pointed out that a (1,1) curvature would
define a unique holomorphic structure on the line-bundle: take the ∂-operator
to be the (0,1) part of the connection. Given the Poincaré ∂-lemma, there then
exist local holomorphic sections of the bundle.

In the context of the infinite-dimensional LX, this formal application of the
Poincaré lemma would then drag in questions of exactly “how holomorphic”
the bundle really is. (Lempert [31] for instance considers various more or less



strong notions of integrability of the almost-complex structure on LX.) We do
not propose to enter into this discussion. Instead, we remark that the particular
sections s described in (7.2) are certainly not holomorphic, since for instance
exterior derivatives of the transition functions with respect to such sections are
not of type (1,0). We seek a modified bundle which is explicitly holomorphic.

Harmonic 1-connections

Various restrictions will come into play as we proceed, but for the moment con-
sider a general smooth gerb G with 0-connection on a Riemannian 3-manifold X.

Definition 7.3.1 (Holonomy line-bundle L) Construct a line-bundle L
with connection on LX as in (7.2) but with two changes—

• we insist that the local object connections on each Ua be “harmonic”, in
the sense that their curvature 2-forms are coclosed as well as closed; and

• the transition function is now not merely the holonomy function on Ua,b,
but is multiplied by the function

exp i

∫ γ

γ0

T
)
)

where T is the 1-form on LX

T (v) :=
∫

γ′
dx ∗ F (v)

which is to be integrated from the base-point γa to γ by any path in Ûa.
(Here dx is induced by the metric on X; and F is the curvature 2-form of
the line bundle on Ua,b.)

To show that this gives a smooth line-bundle, we must add to (7.2) the
existence of such special object connections and the good behaviour of

∫
T .

The definition of T will be clearer when we consider the almost-complex
structure on LX (7.4.1): indeed, that calculation is how T was found in the first
place. Essentially, we are thinking of the holonomy function as the “modulus”
of a complex transition function (although it need not be real), and then T is
the “argument” that makes the function almost-holomorphic (meaning that its
derivative is of type (1,0)).

We do not insist on the name “harmonic” above: it merely seems less awk-
ward than “coclosed”. Originally we expected a condition of coexactness to be
necessary (due to its links with the Bogomolnyi equation) but this seems not
to be the case. Perhaps the failure to exploit that condition expains why this
chapter eventually runs into the sands, as we shall see.

Proposition 7.3.2 Suppose the 0-connection of G is “harmonic” (in that the
2-form curvatures F j

i are coclosed in some—and thus any—local trivialisation
of the gerb). Then such object connections exist as demanded above, in some
neighbourhood of any loop γ0 ⊂ X.



From here on, we restrict to such harmonic 0-connections on G. For example,
the 0-connection constructed in (6.3) from a submanifold R using harmonic
theory has the form

F j
i = d∗(σi − σj)

which is eminently suitable.
Proof—We know objects with some general smooth 0-connection exist on the
open set Ua. We shall take such a 0-connection and modify it.

First, note that if the forms F j
i are coclosed, then δFi = F j

i means that d∗Fi

has vanishing Čech coboundary, ie.

ξ := d∗Fi

is a global coclosed 1-form over Ua. If we shrink Ua so that H2
dR(Ua) = 0 (for

instance, by taking our sets to be thickened loops as heretofore suggested) then
any such ξ is in fact coexact

ξ = d∗χ.

Suppose that χ can be taken to be exact

χ = dψ

for some 1-form (defined over Ua). Then modify the object 0-connection by

∇i 7→ ∇i − ψ

to find that now each local Fi is coclosed as desired.
It remains to prove the supposition. This follows from Kodaira’s decompo-

sition [29, 10]: shrinking U so that χ is square-integrable, it decomposes into
three unique smooth components as in (6.3.1), two of which are coclosed. Being
interested only in d∗χ, we may insist that χ is of the third type, which is exact,
and we are done. 2

To answer the second difficulty, given that Ûa is assumed to be contractible
we need only show that T is closed for its integral to be well-defined.

Calculation of dT

Now that the object connections are coclosed, so is the curvature F of the
difference bundle on Ua,b.

Rather than worry directly about how to differentiate dx, pick a fixed
parametrisation ds for the circle—ie. take γ : S1 → X as a map so that now

T (v) =
∫

S1
ds

(
l ∗F (v)

)
l :=

∣∣∣dx
ds

∣∣∣
and view fields as sections over S1 of bundles associated to γ∗TX. Choose the
map such that l is constant along the curve, so it equals the length of the loop
with respect to the Riemannian metric. (Now, whilst γ̇ remains the unit-length



tangent vector, we shall write τ = lγ̇ for the tangent d/ds with respect to the
given parametrisation.)

For vectors u, v, it is general that

dT (u, v) = u(Tv)− v(Tu)− T ([u, v]).

On Ûa, therefore,

dT (u, v) =
∫

S1
ds

(
∗ F (v)u(l)− ∗F (u)v(l)

+l
(
u(∗F (v))− v(∗F (u))− ∗F ([u, v])

))
=

∫
S1

ds
(
∗ F (v)u(l)− ∗F (u)v(l)

)
since ∗F is closed. Now we need u(l).

With metric g and Levi-Civita connection ∇ on X,

l2 = g(τ, τ)

⇒ u(l) =
1
l
g(τ,∇uτ).

Since the connection is torsion-free

∇uτ −∇τu = [u, τ ]

which vanishes since u is a deformation of the loop. The vector fields are or-
thogonal: differentiating 0 = g(u, τ) gives

0 = g(∇τu, τ) + g(u,∇ττ)

⇒ u(l) = −1
l
g(u,∇ττ)

So, writing g(∇ττ) for the 1-form which is metric-equivalent to ∇ττ ,

dT (u, v) =
∫

S1
ds · 1

l

(
∗ F ∧ g(∇ττ)

)
(u, v)

=
∫

γ

dx
(
∗ F ∧ g(∇γ̇ γ̇)

)
(u, v)

since γ̇(l) = 0.
This is not zero in general.

Proposition 7.3.3 Suppose X is such that the set of closed geodesics G ⊂ LX
is a submanifold of the loop space. Then T restricted to G is a closed 1-form.

Proof—Restricting to geodesics kills ∇γ̇ γ̇. 2

From here on, we insist that X have this property. (Unfortunately, there are
very few examples.)

Theorem 7.3.4 With the restrictions made so far—

• G is a manifold, and

• the 0-connection of G is harmonic

—the construction (7.3.1) gives a smooth line-bundle over G. 2



7.4 The holonomy bundle is holomorphic

The virtue of all this becomes clearer when we consider the almost-complex
structure I on LX. We would wish to declare the special sections of (7.3.1) to
be holomorphic. This does not hold for the old version (7.2). With the new, we
need at least that the transitions preserve holomorphicity: in particular, that
d log(transition) is a (1,0)-form. This is d log(holonomy) + iT .

Proposition 7.4.1 On (LU0, I), d log(holonomy) + iT is a (1,0)-form.

Proof—

I(d log(holonomy) + iT )(v) = (d log(holonomy) + iT )(Iv)
= (d log(holonomy) + iT )(γ̇ × v)

= −
∫

γ

i(γ̇ × v)F + i

∫
γ

dx · ∗F (γ̇ × v)

=
∫

γ

dx
(
i ∗F (γ̇ × v)− F (γ̇ × v, γ̇)

)
=

∫
γ

dx
(
− iF (v, γ̇)− ∗F (v)

)
= +i

(
d log(holonomy) + iT

)
(v)

as is clear by viewing (γ̇, v, γ̇ × v) as an ordered orthogonal triple. 2

So if we wish to take our harmonic generating sections to be holomorphic,
we know now that the transition functions respect this formally in the almost-
complex manifold LX. But we also know that for the transitions to be well-
defined we must restrict to the putative submanifold of geodesics. If G were a
manifold, counting degrees of freedom shows that we could expect it to be real
4-dimensional. It is not yet clear that the almost-complex structure restricts
to G, ie. that I(TG) = TG. If that were true, the fact that the Nijenhuis tensor
vanishes would mean that the almost-complex structure is in fact integrable (by
finite-dimensionality) and we would have a complex surface.

Theorem 7.4.2 Given all previous constraints, L|G is explicitly a holomorphic
line-bundle (in that the local sections due to harmonic objects are holomorphic)
iff X is Einstein

Ricci = c g

for a constant scalar c.

Proof—It remains to show that I preserves TG if and only if X is Einstein.
Given a geodesic γ, take a vector

u ∈ TγG ⊂ TγLX

ie. a Jacobi field [43] along the loop in X

∇γ̇∇γ̇u = Rγ̇,uγ̇.



We are interested in whether v := γ̇ × u is also Jacobi.
In this proof we use ∗′ to mean the Hodge dual acting on skew-symmetric

products of vectors, but acting as the identity on forms. So for instance on
vectors a × b = ∗′(a ∧ b). Since ∗′ depends purely on the metric, it is parallel
under the Levi-Civita connection. So

∇γ̇v = g(γ̇,∇ ∗′ (γ̇ ∧ u))
= ∗′g(γ̇,∇(γ̇ ∧ u))
= ∗′(γ̇ ∧∇γ̇u)

since γ is a geodesic. Similarly,

∇γ̇∇γ̇v = γ̇ ×∇γ̇∇γ̇u

= γ̇ ×Rγ̇,uγ̇

=
1
|u|2

γ̇ ×
(
g(Rγ̇,uγ̇, u)u+ g(Rγ̇,uγ̇, v)v

)
=

1
|u|2

(
g(Rγ̇,uγ̇, u)v − g(Rγ̇,uγ̇, v)u

)
.

The deformation v is Jacobi if and only if this equals

Rγ̇,vγ̇ =
1
|u|2

(
g(Rγ̇,vγ̇, v)v + g(Rγ̇,vγ̇, u)u

)
so a necessary and sufficient condition is

g(Rγ̇,uγ̇, u) = g(Rγ̇,vγ̇, v)
g(Rγ̇,uγ̇, v) = 0.

In general, the Ricci tensor is a sum of sectional curvatures: given an or-
thonormal basis,

Ricci(ei, ej) =
n∑

k=1

g(Rej ,ek
ei, ek).

In three dimensions, this is invertible: say the basis is e, f, g. Then the full
Riemann tensor is given by

g(Re,fe, f) =
1
2
(Riccie,e +Riccif,f −Riccig,g)

g(Rf,gf, g) =
1
2
(Riccif,f +Riccig,g −Riccie,e)

g(Rg,eg, e) =
1
2
(Riccig,g +Riccie,e −Riccif,f )

g(Re,fg, f) = Riccig,e

g(Rf,ge, g) = Riccie,f

g(Rg,ef, e) = Riccif,g.

Thus our constraint says that pointwise

Ricciu,u = Ricciv,v

Ricciu,v = 0



at any point inX, with γ̇, u, v an orthogonal triple for any choice of unit vector γ̇.
This holds if and only if in any orthonormal basis at any point, the Ricci tensor
has all cross-terms vanishing and all diagonal terms equal

Ricci = cg

for some function c. In general, Bianchi forces c to be a constant. 2

It is immediate from the above formulae (and is standard [42]) that any
3-manifold is Einstein if and only if it has constant sectional curvature, which
then equals c.

A new connection

We need to upgrade the connection of (7.2) to take account of the complex
structure.

Definition 7.4.3 (Connection on L) Given a 1-connection on G, “harmonic”
in that the local 2-forms βi are coclosed, and a local basis of L on Ûa as in
(7.3.1), we define a connection 1-form

A(v) :=
∫

γ

i(v)ε − i

∫
γ

dx · i(v) ∗ε.

Such 1-connections do exist: in (6.3) we have for instance

βi := d∗(γ + σi).

Just as in our previous existence remarks, this would still work if we felt a need
to impose the tighter constraint of coexactness rather than coclosedness.

Note also that at this point our “harmonic” terminology looks a little bedrag-
gled, since we might expect a harmonic 1-connection to be one such that the
curvature 3-form Ω is harmonic. No matter.

Proposition 7.4.4 This defines a connection compatible with the holomorphic
structure. The curvature

dA(u, v) =
∫

γ

i(u, v)Ω

is of type (1,1).

Proof—As in (7.2), we check consistency with the transition. (That the 1-
connection is coclosed implies that ∗ε is closed.) Also A is of type (1,0), giving
compatibility. We have already remarked upon the type of F . 2

Conclusion

In the normal run of affairs, we would at this point consider some enlightening
example to demonstrate that our effort has not been in vain. Unfortunately, the
only example of a 3-manifold all of whose geodesics are closed is the sphere S3,
for which G is a quadric surface. There are things to say here but we leave them



unsaid since, in different forms, they have largely been said before. Jones [28]
and Pedersen [41] discuss line bundles on Q2 and abelian monopoles on S3:
and, as we have seen in chapter 6, there is little difference between a gerb and
a monopole on spaces with vanishing H2

dR.
However, the development in this chapter is perhaps merely misapplied

rather than without value, and we retain it in the hope that this be so. Rather
than dwell on the details of S3, therefore, we shall move on to a much more
productive exercise—the natural generalisation of the Ward correspondence to
abelian gerbs on Q6.



Chapter 8

Twistor theory of quadric
6-folds

We consider a new twistor correspondence, as a companion to chapter 4. This
time, rather than work with an affine-linear Q = Cn+1, we take a “quadratic”
C2n+2. That is, we begin with a non-degenerate complex quadric

Q2n+2 ⊂ P2n+3

on which there are two families of linear Pn+1. The twistor space of this quadric
is one of these families

Tn+1 := {all α-planes Pn+1 ⊂ Q2n+2}

and is a complex manifold of dimension (n+ 1)(n+ 2)/2 for all n ≥ 0.
Just as in chapter 4, we wish to start with a purely holomorphic n-gerb on

Tn+1 and see what this induces on Q2n+2 via their correspondence space. As
before, it is appropriate to remove a closed subset from each side. We shall find
that the transformation leaves us with a (holomorphic) n-gerb with anti-self-
dual connection, in the sense that the curvature (n+ 1)-form vanishes on each
αn+1. In the line-bundle case n = 1, this is just the abelian version of the Ward
correspondence [48, 2, 49] for which Q4 is the Klein quadric of lines in

T1 = P3.

The Ward correspondence is usually considered to apply to vector bundles
on the 4-sphere. A number of attempts have been made to broaden it (see for
instance [49, 8] and the many references therein). Restricting to the abelian case
for obvious reasons, and without worrying about reality conditions that would
transfer us from the quadric to the sphere, we aim to show enough to claim
that n-gerbs are the natural fields to which the correspondence generalises. (So
for instance if one claimed to know what an SU(2)-gerb might be, here is an
obvious place to test it.)

Initially we discuss a general even-dimensional quadric Q2n+2 [22, 21]. Unlike
chapter 4 however, we cannot complete the correspondence for arbitrary n since
the twistor spaces Tn+1 are now not as simple as were Pn+1. At least we can
make clear what further information is need (8.2). All the gaps can be bridged
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in the cases n = 0, 1, 2 for which Tn+1 is understood, and we elucidate these in
detail in (8.3) and (8.4). Of these, only n = 2 is a new result.

All structures in this chapter are holomorphic unless stated otherwise.

8.1 The geometry of quadrics

We gather some classical results which describe our correspondence [22, 21, 49,
8].

Quadrics, spheres and linear subspaces

Consider for n ≥ 0 the spaces{
Q2n+2 ⊂ P2n+3

Tn+1 := {all α-planes Pn+1 ⊂ Q2n+2}

and their correspondence space

C := {(p, a) : p ∈ Q2n+2, a ∈ Tn+1, p ∈ α(a)}.

This is a Pn+1-bundle over Tn+1, with the fibre over a point a ∈ Tn+1 corre-
sponding naturally to the plane α(a) ⊂ Q2n+2 represented by a.

It is also a Tn-bundle over Q, since any α through p ∈ Q lies in the degenerate
quadric

TpQ ∩ Q

and thus corresponds to a unique Pn in the “celestial” quadric at p

P(TpQ ∩Q) ⊂ P(TpQ).

As this is a smooth 2n-fold quadric, it has two families of Pn. Its αn-planes,
parametrised by Tn(p) ∼= Tn, correspond to the αn+1-planes through p.

Another way of describing this is to start with Tn+1 and define its dual
twistor space as the space of all Tn ⊂ Tn+1: this is then a quadric Q2n+2, and
C is the correspondence space for moving in either direction.

If we view Q as the complexification of a real quadric (the sphere S2n+2 for
mathematicians, or a compactification of Minkowski space R1,2n+1 for physi-
cists, with standard metric), then no α can hit the real quadric in more than
one point, and through each point runs exactly one α. So Tn+1 is a smooth
Tn-bundle over S2n+2. From this perspective, it is natural to consider the fibre
Tn(p) to be the space of orthogonal complex structures on TpS

Tn(p) = SO(2n+ 2)/U(n+ 1)

and the whole twistor space to be the space of orthogonal almost-complex struc-
tures on the Riemannian manifold S2n+2

Tn+1 = SO(2n+ 3)/U(n+ 1)
= SO(2n+ 4)/U(n+ 2)

(although we shall not dwell on this approach).



What are these spaces? In low dimensions one finds
T0 = P0

T1 = P1

T2 = P3

T3 = Q6

which we briefly justify: T0 = one point is of no interest except notationally, as
the trivial fibre of the correspondence space over Q2.

Since Q2 = P1 × P1, one ruling gives the α-lines and the other the β-lines,
each parametrised by the other. So T1 is any choice of β-P1 ⊂ Q2.

The space of all P1 (=T1) in P3 is the Grassmanian of 2-planes in C4, known
to one and all as the Klein quadric

Q4 ⊂ P(Λ2C4).

So P3 = T2.
To justify T3 = Q6 would mean delving into the triality of SO(8) for which

we have no use except this result, so we shall be brief. The 8 derives from
the R8 which, complexified and projectivised, becomes the P7 in which sits the
standard quadric Q0. SO(8,C) has an order-3 automorphism interchanging its
standard representation with its two spinor representations, which give rise to
further quadric 6-folds Q+ and Q−. It turns out that a point in Q+ corresponds
to an α in Q0 (and to a β in Q−); whilst a point in Q0 gives a β in Q+ (and
an α in Q−). On triality in general, see [9, 16]; and for examples of attempts at
twistor theory in this context, see [33, 26, 45, 8].

None of these references is relevant to us except as background: what we
need is that T3 = Q+, and that given a point p ∈ Q0 the space T2(p) is naturally
a β3-plane ⊂ Q+.

Removing points

The standard Ward correspondence can afford to work over the whole of S4

since there exist anti-self-dual SU(2)-bundles (for instance) on this space. In the
abelian situation, we do not have such an ability—a harmonic (n+1)-curvature
form on S2n+2 must vanish—and must instead work locally. Removing a point
from S2n+2 provides enough freedom: taking this as our guide but without
wanting to work on the sphere itself, what does this mean for T and Q?

We start by fixing for all time an arbitrary basepoint point x ∈ Q2n+2.
Knowing that Tn+1 is a Tn-bundle over the sphere, we shall have to remove the
whole of Tn(x) from Tn+1. This corresponds to all α-planes through x—these
cut out the whole of the null cone of x, the degenerate quadric

TxQ ∩Q,

and we thus remove all these points from Q. It is standard that this leaves
behind an affine C2n+2. Every αn+1 in Q that avoids x cuts out a Cn+1 in
this space, hitting the null cone of x in a Pn. Each point p off the null cone
corresponds to some Tn ⊂ Tn+1 that is disjoint from the special Tn(x).



Thus we have a satisfactory two-way conversion between
S := Q2n+2 − TxQ

= affine C2n+2

= {all Tn ⊂ T }
T := Tn+1 − Tn(x)

= {all α-planes ⊂ Q2n+2 not fully contained in TxQ}

over which we still write C for the correspondence space. This remains a Tn-
bundle over S (and is necessarily holomorphically trivial) with projection map
g; and is now an affine Cn+1-bundle over T , with projection f .

Tangent and normal bundles

As in chapter 4, the tautological vector bundle along the fibres of (C f−→ T ) will
be called

W → C

and comes with a differential operator dW . Given a point p ∈ S, we write

N → Tn(p)

for the normal bundle of Tn(p) ⊂ T : this induces a bundle over all of C which
we also call N . Both W and the tangent bundle to the fibres of g are sub-
bundles of the tangent bundle of C; and N is naturally its quotient by their
direct sum. As in chapter 4, we do not need the tautological g-fibre bundle
because its quotient—the normal bundle of the fibres of g—is canonically the
pullback of the tangent bundle T of S

0→W → g∗T → N → 0

and g∗T is trivial since S = C2n+2. By construction, both N and W are
homogeneous over each Tn(p)=SO(2n+ 2)/U(n+ 1) fibre.

8.2 A conjectural transform

A toy correspondence: n = 0

To motivate our programme, consider the simplest case. A point x ∈ Q2 =
P1 × P1 lies on a single αx and a single βx. Their union is the null cone:
removing it leaves

S = C2.

The twistor space T1 can then be identified with βx, since through each point
of βx runs exactly one α. Removing the single α in the null cone (ie. T0(x))
leaves

T = βx − {x} = C1.

The correspondence space C is S itself.
Note also that having chosen any p ∈ S, and thus its corresponding T0(p) ⊂

T (ie. a point in T ), the total space of the normal bundle N (T0(p)) can be
identified with the space T .



Proposition 8.2.1 In this situation there is a canonical correspondence be-
tween holomorphic equivalence classes of 0-gerbs on T , and of anti-self-dual
0-gerbs on S.

Proof—An equivalence class of 0-gerbs on T is a nowhere-zero holomorphic
function (4.5). This lifts to C as a function on C2 that is constant in α-directions,
and is thus a 0-gerb on S with the same property. This means its 1-curvature
(d log of the function) vanishes in α-directions.

The converse is not quite so demanding. 2

Surprisingly, this content-free model is—barring technicalities—a complete
guide to higher-dimensional quadrics.

The general case: n ≥ 0

Conjecture 8.2.2 For arbitrary n ≥ 0, there is a canonical correspondence
between holomorphic equivalence classes of

• n-gerbs on
T ⊂ Tn+1 := {all α-planes Pn+1 ⊂ Q2n+2}

with zero “Chern class”, in the sense that the class of the gerb lies in the
kernel of Hn(T ;O∗)→ Hn+1(T ; Z); and

• n-gerbs on
S ⊂ Q2n+2

with anti-self-dual connection, in that the (n+1)-form curvature vanishes
when restricted to any αn+1 ∩ S.

Proof—(Sketch)—As in the proof of (4.1.4), we begin with a representative for
an equivalence class on T , held to be some Čech cocycle

θ ∈ [θ] ∈ Hn(T ;O).

(We have not shown this cohomology group to be non-empty.) Lift to C

[f∗θ] ∈ Hn(C;O)

and conjecture this group to be empty (8.2.3). Then f∗θ is a coboundary:
choose some cochain

νn−1 ∈ Cn−1(C;O)

such that δν = f∗θ, and differentiate along the W-fibre directions to find

dWνn−1 ∈ Zn−1(C;W∗).

Conjecture (8.2.3) supposes further that

Hn−i(C; ΛiW∗) = 0 (∀i = 0, . . . , n− 1)

so that we can keep choosing coboundaries

νn−1−i ∈ Cn−1−i(C; ΛiW∗) : δνn−1−i = dWνn−i



and keep differentiating until we reach

dWν0 ∈ H0(C; ΛnW∗).

Given the vanishing of Hn−i−1(C; ΛiW∗) for i ≤ n− 2 (8.2.3), we would find ν0
to be unique up to a global dW -exact section.

Our second requirement (8.2.4) claims that this descends to give an n-form
on S. We suppose also that this n-form is unique up to a global exact form.
Further, d(g∗dWν0) vanishes on α-planes by (8.2.5), and we thus have an anti-
self-dual connection (fixed up to (n − 1)-equivalence) on the standard vacuous
n-gerb on S.

To go in the opposite direction: up to equivalence an n-gerb on S can be
held to be vacuous (2.3.1), with the vacuous (n−2)-connection. The only choice
in (n−1)-connection is then that of a global n-form—well-defined up to a global
exact form—whose derivative is anti-self-dual. Such a field lifts to a section of
ΛnW∗ (see comment after (8.2.4)); and anti-self-duality means that this section
is dW -closed (8.2.5). (This is not automatic, since the rank of W∗ is n+ 1, not
n.) The application of a Poincaré lemma for dW then permits us to drop down
the ladder to some element of

Zn(C;O)

which, being dW -closed, thus descends to T . The freedom of an exact form
on S—which selects a unique section of dWΛn−1W∗—varies this cocycle by a
dW -closed coboundary in C, and we are done.

This second direction is rigorous. If the first were to proceed as our outline
suggests, the two would be inverses up to equivalence and the correspondence
would be complete. 2

Open issues

We gather together the gaps in the programme for conjecture (8.2.2).

Conjecture 8.2.3 We need certain cohomology groups on C to vanish

Hn−i(C; ΛiW∗) = 0 i = 0, . . . , n− 1;
Hn−i−1(C; ΛiW∗) = 0 i = 0, . . . , n− 2.

Note that W is a sub-bundle of g∗TS, and so the operator dW is well-defined.
We write Π for the map (induced by projection) from g∗Ωi to ΛiW∗.

Conjecture 8.2.4 We also suppose the existence of natural isomorphisms in-
duced by g∗ and Π

H0(S; Ωn) ∼= H0(C; ΛnW∗)
H0(S; dΩn−1) ∼= H0(C; dWΛn−1W∗).

We note at least that it is immediate—since the Tn are compact—that g∗ gen-
erates isomorphisms

H0(S; Ωn) ∼= H0(C; g∗Ωn).

Indeed, the proof of (8.2.5) demonstrates that there exist injections of the left-
hand groups of (8.2.4) into the right, which suffices to make the direction from
S to T rigorous in (8.2.2).



Proposition 8.2.5 An i-form η defined locally on S (i ≥ 0) obeys

dW(g∗η) = 0

iff dη vanishes when restricted to any αn+1.

Proof—First, work pointwise at some p ∈ S. Pick also a point a ∈ Tn(p) in the
fibre over p, ie. pick some α-plane through p. Then by definition of W there is
a vector-space identity

W|(p,a)
∼= α(a)|S

where the right-hand space has base-point p. So, if given a form at p

ζ ∈ Ωi|p

of degree 1 ≤ i ≤ n+ 1, we see by definition that

ζ|α = 0 (∀α 3 p) ⇔ Π(g∗ζ) = 0.

(Still working pointwise in S, we remark that Π injects as a linear map

Ωi|p → H0(Tn(p); g∗Ωi)→ H0(Tn(p); ΛiW∗)

for all 0 ≤ i ≤ n. To prove this, it remains to show that if ηi vanishes on each
α 3 p, then it vanishes at p. Since the null cone

TpS ∩ S

spans TpS, we need only show that η vanishes on any rank-i vector space through
p lying in the null cone. But it is a general fact that such a space—for i ≤ n—
must lie on some α through p ∈ Q2n+2.)

Now suppose that η is defined locally in S. Then

dWg∗η = Π(dg∗η)
= Πg∗(dη)

and vanishes iff dη is zero in all α-directions. 2

All of the incomplete claims can be justified for n ≤ 2, which suffices to
prove the gerb case. To go further would require greater knowledge of the
twistor spaces

Tn+1 = SO(2n+ 3)/U(n+ 1)

than we can yet bring to bear.

8.3 Line bundles on P3: n = 1 done rigorously

It remains only to make explicit the transform from T to S. In this setting,
T = P3 − P1 = T2 −T1(x). Choosing some p ∈ S singles out a second, disjoint,
P1 = T1(p) in T . Its normal bundle N is easily seen to be isomorphic to
O(1) ⊕ O(1), and indeed the total space of N can naturally be identified with



T—any point in T defines a unique P2 (spanned by that point and the missing
P1) that forms a fibre of N .

(This same phenomenon occurs trivially in n = 0, and also occurs in n = 2.
Presumably it holds in general. The vector space of sections of N is for general
n canonically identified with S (with zero-point p), since each parametrises the
family of all Tn ⊂ T , but why T should be the total space of N is not so clear.)

The following result is the abelian Ward correspondence, and as such is not
original.

Theorem 8.3.1 Conjecture (8.2.2) holds true for n = 1: our twistor transfor-
mation naturally identifies holomorphic classes of—

• line bundles on

T = P3 − P1

with zero Chern class; and

• line bundles on the affine Klein quadric

S ⊂ Q4

with anti-self-dual connection.

Proof—Choose some local Čech trivialisation

θ ∈ Z1(T ;O)

for a topologically-trivial line bundle. Then f∗θ is dW -closed, and we need that
it be a coboundary

H1(C;O) = 0.

(This is all that is required to prove conjecture (8.2.3) for n = 1.) We use Leray
for the P1-bundle (C g−→ S): the direct image sheaves Rq(O) vanish except for
q = 0 (which gives a trivial line bundle over S), and so Hp(C;O) = 0 for all
p > 0, which more than suffices.

Choosing ν0 as in (8.2.2) gives

dWν0 ∈ Z0(C;W∗)

and we require Π to induce an isomorphism

H0(C; g∗Ω1) ∼= H0(C;W∗)

after which we can certainly descend to S.
To prove this, expand the sequence

0→ N ∗ → g∗Ω1 Π−→W∗ → 0

into
→ H0(C;N ∗)→ H0(C; g∗Ω1) Π−→ H0(C;W∗)→ H1(C;N ∗)→ .

But all direct images Rq(N ∗) of N vanish by the usual methods; and so by
Leray the two middle groups are canonically isomorphic.



Since dWν0 is now in fact the pullback of a 1-form on S, we apply (8.2.5) to
show that the curvature 2-form is anti-self-dual.

An alternative choice of ν0 differs by a global function on C, which—since
necessarily constant on any P1-fibre—is merely a global function on S.

It is clear that this transform is the inverse of the already-justified transform
in the other direction, and our mini-Ward correspondence is complete. 2

8.4 Gerbs on Q6
+: n = 2 done rigorously

Remove the degenerate 5-fold quadric through a point x in a smooth quadric
6-fold Q0, to give S. The quadric of the title is not this one but the space

T3 = Q+

of α3-planes in Q0. The point x ∈ Q0 corresponds to a β-plane T2(x) ⊂ Q+

and removing this leaves T .
Choose any point p ∈ S, thus defining a second β-plane T2(p) ⊂ Q+ disjoint

from the first. We need to know the rank-3 normal bundleN of this submanifold.

Proposition 8.4.1 The manifold T is naturally the total space of a rank-3
affine bundle over the dual P3 to T2(x).

Proof—T2(x) is a β3 ⊂ Q+. It is classical that through each point in Q+\β
runs a unique α such that α ∩ β = P2. (The generic intersection between an α-
and a β-plane is a point.) Conversely, each P2 ⊂ β lies on exactly one such α.
These α are thus parametrised by the dual of β; and their affine parts α − P2

form the fibres of a holomorphic bundle whose total space is Q+ − β = T . 2

Proposition 8.4.2 Choosing any second disjoint β = T2(p) ⊂ T , the affine
bundle (8.4.1) naturally becomes the normal vector bundle N of T2(p).

Proof—The fibres now become vector spaces, since their intersections with T2(p)
single out choices of zero vector. Since each fibre is an α that is transverse to
T2(p), we can identify it with the fibre of the normal bundle. 2

So again we have the curious fact that, given any two disjoint Tn ⊂ Tn+1,
removing one leaves canonically the total space of the normal bundle of the
other.

Proposition 8.4.3 There exists an isomorphism

N (T2(p)) ∼= Ω1 ⊗O(2)

of bundles on P3.

Proof—We resort to coordinates (x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) ∈ P7 and
take Q+ to be the hypersurface

x0y0 + x1y1 + x2y2 + x3y3 = 0.



Without elucidating the full system of α and β in this quadric [21], we summarise
the relevant calculations. We single out two disjoint 3-planes

T2(x) : xi = 0 (∀i)
T2(p) : yi = 0 (∀i)

—since these are disjoint, they must be from the same family. View these as
our two β-planes. Then S is the vector-C6 of skew 4×4 matrices Bi,j which
correspond to β-planes spanned by the four points Pj with coordinates

xi := 1 if i = j

0 otherwise
yi := Bi,j

for j = 0, . . . , 3. Take the four standard patches

Ui : (xi 6= 0)

for T2(p) = P3. Over the first patch U0, the unique α that hits T2(p) in one
point (1 : a0 : b0 : c0 : 0 : 0 : 0 : 0) and T2(x) in a P2 is the space spanned by
the four points 

(1 : a0 : b0 : c0 : 0 : 0 : 0 : 0)
(0 : 0 : 0 : 0 : −a0 : 1 : 0 : 0)
(0 : 0 : 0 : 0 : −b0 : 0 : 1 : 0)
(0 : 0 : 0 : 0 : −c0 : 0 : 0 : 1).

This gives an open C3 × C3 ⊂ T with coordinates (a0, b0, c0) × (u0, v0, w0)
parametrising points

(1 : a0 : b0 : c0 : −(a0u0 + b0v0 + c0w0) : u0 : v0 : w0)

—a local trivialisation of N—together with another three such patches lifted up
from the other three sets Ui≥1 in the cover of T2(p). The numbers (a0, b0, c0) are
coordinates along T2(p); and (u0, v0, w0) are coordinates in the fibre directions
of N (T2(p)). In the chart U1, this same point has the alternative description

(a1 : 1 : b1 : c1 : u1 : −(a1u1 + b1v1 + c1w1) : v1 : w1)

from which we can read off the transitions of N .
We now have control over N . For instance, its space of sections is 6-

dimensional (and naturally equals S). In terms of coordinates over U0, a section
is given by six constants (E,F,G,H, I, J) which cut out the P3 u0 := E +Hb0 − Ic0

v0 := F −Ha0 + Jc0
w0 := G+ Ia0 − Jb0

(which is a β ⊂ Q+, as required).
To show that in fact N ∼= Ω1 ⊗ O(2), we could for instance calculate the

transitions for Ω1. Slightly more elegantly, we know that N is homogeneous—
and hence that it must be isomorphic to a twisted (co-) tangent bundle or a
sum of lines [14]. We can calulate its Chern class to be

c(N ) = 1 + 2h+ 2h2 + 0



(where h is the positive generator of H∗(P3; Z)) by picking sections as above;
or, since N is globally generated by its sections, we need merely read off that
its determinant is O(2). Either constraint suffices to fix the holomorphic iso-
morphism class from amongst the limited homogeneous alternatives. 2

For a coordinate-free method of proof, adjunction and the Chern class of P7

give the Chern class of Q6. This and the class of P3 give that of the normal to
P3. Then the quoted homogeneity result fixes N as discussed.

Gerbs and twistors

It is time to plug the gaps in conjecture (8.2.2).

Theorem 8.4.4 There is a canonical equivalence between holomorphic classes
of

• gerbs on

T = N = {all α3 ⊂ Q0 not containing x} ⊂ T3 = Q+

(these necessarily have zero Chern class, since T is homotopic to P3 and
has vanishing H3(Z)); and

• gerbs with 1-connection on

S = H0(T2(x)∗;N ) = {all β3 ⊂ Q+ disjoint from T2(x)} ⊂ Q0

with anti-self-dual curvature 3-form.

Proof—The first problem in the sketch of (8.2.2) is that we need

H1(C;O) = H2(C;O) = 0.

But C is a P3-bundle over C6, and Leray shows that Hp(C;O) = 0 for all p > 0.
So we can move to H1(C;W∗). We need to know that this too vanishes. But

W∗ is homogeneous over each P3; and the sequence

0→W → g∗T → N → 0

shows that

c(W∗) = 1 + 2h+ 2h2

so that in fact we find that W∗ is isomorphic to N ∼= Ω1 ⊗ O(2). Its direct
images follow from (4.1.3)—R0 is a trivial rank-6 bundle over S, but all others
are empty so that

Hp(C;W∗) = 0

for all p > 0. We now have a global section of Λ2W∗ (unique up to one of
dWW∗).

To show that such a section is in fact a pull-back of a 2-form on S, we merely
calculate that the ranks of

Ω2
S |p = H0(g−1(p); g∗Ω2)



and of
H0(g−1(p); Λ2W∗)

both come to 15. Since we know there is a natural injection of global sec-
tions (8.2.5), this suffices.

As ever, we can merely reverse our steps to see that the direction from S to
T takes us back to the same class from which we started. 2

On reality

One attractive feature of the n = 1 case is the way it descends to the real quadric
S4. As is well-known [3], the transform can begin with a real anti-self-dual 2-
form curvature on S4, which lifts to a (1,1)-form in T2 = P3. This connection
then provides an integrable holomorphic structure on the bundle [20].

We shall not attempt to continue this in n = 2, but restrict ourselves to
some remarks. First, if n is even—so the dimension of Q2n+2 is not divisible by
4—then any (anti-) self-dual (n+ 1)-form cannot be purely real, since ∗2 = −1.

Second, consider representations. In n = 1 (ie. real 4-dimensional space), the
bundle of complex 2-forms has four irreducible sub-bundles under U(2) which
combine into two of SO(4)

self-dual : Ω2,0 ⊕ 〈k〉 ⊕ Ω0,2

anti-self-dual : Ω1,1
p

in which p means the primitive part and 〈k〉 is the ray spanned by the kähler
form k. This is why the (real) anti-self-dual 2-form curvature lifts to a form of
type (1,1).

In n = 2, or R6 and its complexification, things are less tidy. The six
irreducible parts of Ω3 under U(3) gather together under SO(6) as

self-dual : Ω2,1
p ⊕ (Ω0,1 ∧ k)⊕ Ω0,3

anti-self-dual : Ω3,0 ⊕ (Ω1,0 ∧ k)⊕ Ω1,2
p

(if by self-duality we mean ∗ = +i rather than −i). So suppose we fix a complex
3-form at a point p ∈ S3. The fibre T2(p) of T3 over p is the collection of
compatible complex structures on the real tangent plane of p; and so lifting
the 3-form amounts to viewing it under each of these complex structures in
turn. Now the representation theory above shows that anti-self-duality imposes
merely the condition that the lift of the 3-form has vanishing (0,3)-component
at every point of the fibre; and conversely any pull-back that has this property
is anti-self-dual at p. (Similarly, self-duality is equivalent to having vanishing
(3,0)-component under all compatible complex structures.)

Perhaps this is hinting that we should be considering 1-connections that are
merely compatible with the holomorphic structure of the gerb (5.3.1) (rather
than being themselves holomorphic), since such connections necessarily have no
(0,3)-curvature; but there is a slight subtlety. Such a 1-connection (for which by
definition the βi have zero (0,2)-part) cannot merely be a lift of the 1-connection
of S6. This is because Λ2T ∗(R6)⊗C is irreducible under SO(6), so that a 2-form
which has vanishing (0,2)-component under all compatible complex structures
is in fact identically zero. We do not pursue a solution.



8.5 The twistors of chapter 4

It is not a coincidence that the ideas of chapter 4 translate so easily into this
quadric problem. We remark first on the case n = 2, and then outline an
approach to the general case.

Punctured projective 3-space

Recall that the transform of (4.4) was between a gerb on P3 minus a point, and
a gerb with 1-connection on the dual P3 minus a hyperplane. This is in fact a
sub-transform of that of (8.4), as we now demonstrate.

We know that each β3 ⊂ Q+ corresponds to a point in Q0. Consider some
fixed α3 ⊂ Q+, which we call A, corresponding to some β ⊂ Q0 labelled B. Now
A intersects with T2(x) (which is a β3) in either a P2 or a point—the former if
x ∈ B and the latter otherwise. The fibres of N for instance lie in the former
class.

We choose A to be of the latter type. This means that restricting to T gives

A ∩ T = P3 − one point
B ∩ S = P3 − P2

(the P2 being the intersection with the degenerate quadric through x).
If we now restrict the correspondence C to these subspaces, it is unproblem-

atic to show that this is nothing other than the correspondence (P ← F → Q)
of (4.4), ie. that between a projective space and its dual. Further, the twistor
transformation from H2(A;O) to a gerb with 1-connection on B is the same in
both cases. We can see already that the discovery of chapter 4 that we naturally
get a 1-connection along (partial) β-planes B in S is a hint towards the fact
uncovered in (8.4.4) that the 3-curvature vanishes on α-planes.

This observation clearly suggests an alternative method of proof, by joining
up these mini-transformations over the whole of T and S. We do not follow this
through, but instead highlight that this idea is not restricted to n = 2—indeed,
Ward’s original arguments in n = 1 were along such lines.

The correspondence between T and T̃
In Q2n+2, consider the space L of all linear Pn ⊂ Q. It is classical that each such
Pn lies on a unique αn+1 and a unique βn+1. Also, a given α cuts out a Pn+1

in L, which is naturally identified with the dual projective space of α. Thus L
is a Pn+1-bundle over Tn+1, for which each fibre is the dual of the α-space to
whose modulus a ∈ Tn+1 it projects.

Writing T̃n+1 for the moduli of β in Q2n+2, L is similarly a β∗-bundle over
T̃n+1. Further, we claim that a given fibre β∗ identifies naturally with a Pn+1 ⊂
Tn+1 (and similarly from Tn+1 to T̃n+1).
Proof—Fix a point in T̃n+1 ie. a fibre β∗ ⊂ L. Through each point of β∗ runs
exactly one fibre α∗, because any point in L gives a Pn ⊂ Q, through which
lies one α and one β. And each α∗ intersects β∗ in not more than one point,
since an α and a β cannot share more than one Pn. Each point of β∗ thus cuts
exactly one fibre of (L → T), and then projects as claimed. 2



Proposition 8.5.1 Such a dual of a β-plane β∗ ⊂ Tn+1 intersects the given
Tn(x) in

• a hyperplane of β∗, if x ∈ β; or

• a single point, otherwise.

Proof—The sets β∗ and Tn(x) share a point a iff the corresponding α(a) ⊂ Q
shares a Pn with β. Now β either lies fully inside the degenerate null cone, or
intersects it in a Pn. The latter would mean that β∗ and Tn(x) share exactly
one point, determined by that one Pn; whilst the former requires us to find all
Pn ⊂ β that define an α also containing x. This constraint is equivalent to
requiring that the subspace Pn ⊂ β itself contains x; and the set of such Pn is
a hyperplane in β∗. 2

We expect similar ideas to yield a proof that T is in general the total space
of the bundle N , as found in the special cases n ≤ 2. The value of this would
be that it helps us get to W (which we need for conjectures (8.2.3) and (8.2.4))
since we also expect a general isomorphism

N ∼= W∗

This claim should be straighforward to prove by the method of (4.2.2).

Theorem 8.5.2 Fix such a βn+1 (such that β∗∩Tn(x) is one point). Defining{
P := β∗ − Tn(x)
Q := {all hyperplanes Pn ⊂ P} = β \ Null quadric of x.

Then the correspondence space

F := {(a, p) : a ∈ P, p ∈ Q, a ∈ p}

is a sub-bundle of the correspondence

C := {(a, p) : a ∈ P, p ∈ Q, p ∈ α(a)}

Proof—This is almost tautologous, given the above discussion. 2

If conjecture (8.2.2) were valid as described, presumably the twistor trans-
formation of (4.1.4) and (4.5.1) would be its restriction. Inverting that point
of view, attempting to glue together those chapter-4 fields should open up a
second possible method for making an honest theorem of our conjecture.



Chapter 9

Concluding remarks

This chapter is an appendix of incomplete ideas and suggestions for further
research.

9.1 Divisors and rulers

We present some plausible concepts of divisor for a holomorphic gerb. First,
recall the Čech approach to divisors on a complex manifold X [21]. With M∗

defined to be the sheaf of local meromorphic functions, not identically zero, a
divisor (or “1-divisor” for present purposes) can be seen as an element of

Z0(X;M∗/O∗)

being cut out by local meromorphic functions whose ratio is holomorphic. This
fixes a line-bundle, since such ratios on Ui,j provide local transitions; and if
alternative meromorphic functions were chosen, the differences on each Ui would
combine as gauge transformations. This fits into the long exact sequence of

0→ O∗ →M∗ →M∗/O∗ → 0

alongside notions of equivalence of line bundles and linear equivalence of divisors
under global meromorphic functions.

Definition 9.1.1 (2-Divisor) Given a cover Ui of a complex manifold X, a
2-divisor (or gerb divisor) is a Čech cocycle

D ∈ Z1(X;M∗/O∗).

That is, we take (ordinary) divisors Dj
i on each Ui,j whose boundaries on triple

intersections cancel out.

Proposition 9.1.2 A 2-divisor D generates a holomorphic gerb G(D).

Proof—Each Dj
i gives us a bundle Λj

i . To get a section θ, choose defining
meromorphic functions f for each Dj

i locally in Ui,j,k (not necessarily over all
of Ui,j,k). This gives a local trivialisation of δΛ, and the coboundary δf is a
local O∗-function. An alternative f shifts Λj

i by a gauge transformation and
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shifts the function δf by a matching factor. So the local functions δf can thus
be viewed as a section θi,j,k of δΛ throughout each Ui,j,k.

That δθ = 0 follows since locally this is represented by δ2f . So we have a
gerb G.

Varying the functions cutting out D varies the local trivialisation by holo-
morphic 0-gauge transformations, and the gerb is well-defined. 2

Proposition 9.1.3 Any gerb defined from a 2-divisor in the image of Z1(X;M∗)
is trivial.

Proof—The Λj
i are trivial, because each Dj

i is cut out by a single meromorphic
function f j

i over all of Ui,j . Since δf = 1, the section θ is the coboundary of
sections of the Λ. So in fact any choice of representative meromorphic functions
gives an explicit global trivialisation of G(D). 2

Proposition 9.1.4 If a 2-divisor D is a coboundary

D ∈ δC0(X;M∗/O∗)

then its gerb G(D) is trivial.

Proof—Given a 1-divisor Di on each Ui, we get line bundles Li. Since Dj
i = δDi,

we find that Λj
i = Li ⊗ L∗j , which gives canonical maps

mj
i : Li 7→ Λj

i ⊗ Lj

and thus a global object for G(D). 2

It thus seems that we would wish to define the group of linear equivalence
classes of 2-divisors to be

H1(X;M∗/O∗)
H1(X;M∗)

which injects to H2(X;O∗) in the long exact sequence of (O∗ → M∗). This
would then say that two 2-divisors generate equivalent gerbs if and only if they
are linearly-equivalent.

Existence of 2-divisors

If we fix a holomorphic gerb G, then can we say that there must be some 2-
divisor that generates it? This would mean that in some local trivialisation, the
bundles Λj

i each had meromorphic sections (global over Ui,j) whose coboundary
was the holomorphic section θ.

One might hope that a result analogous to that for line-bundles holds: that
such 2-divisors exist for gerbs on projective varieties X ⊂ PN . The proof for
bundles L amounts to noting that PN has a positive line-bundle O(1), so that
L can be tensored with arbitrarily large positive powers of O(1)|X eventually
yielding a holomorphic section, and thus a meromorphic section of L. But since
no such “positive gerb” exists (H3(PN ; Z) = 0) some other method is required.



Rulers

Now we take chapter 6 rather than chapter 5 as our starting point. One concep-
tual problem with 2-divisors (and their higher analogues for n-gerbs) is that—if
we view objects as the “sections” of a gerb—a 2-divisor does not link directly
with what we might wish a “meromorphic section” to be. Instead, consider real
codimension-3 submanifolds.

Definition 9.1.5 (Ruler) Given a holomorphic gerb G on a complex manifold
X, a ruler is a smooth codimension-3 submanifold R such that (for some open
cover Ui of X, with U0 := X\R) there exist complex manifolds D0

i ⊂ Ui,0 with

∂D0
i = R|Ui

in the sense of manifolds (or singular chains) with boundary on Ui.

Roughly, a ruler is the boundary of a 2-divisor. As the definition of 2-divisor
stands, however, the boundary of eachDj

i ⊂ Ui,j ⊂ X could be quite unpleasant,
and also needs to be apportioned between Ui and Uj . It seems better to start
with R as a given.

We discuss manifolds, but it may be appropriate to permit R to be a singular
homology cycle.

Sufficient conditions forR are that it be real-analytic and maximally complex.
This latter means that under the almost-complex structure I of X, at every
point x ∈ R the real tangent space of R has a subspace

TxR ∩ I(TxR)

of maximal dimension (in this case, real dimension 2n − 4). (No doubt a fa-
miliarity with the literature on CR manifolds [27] would have a bearing on
alternative conditions on R.) Harvey and Lawson [23] show that, given these
two constraints, R lies locally in a unique complex hypersurface (without local
boundary). Then there are exactly two possibilities for D0

i , namely either “half”
of this 1-divisor.

Without loss of generality, we suppose our cover to be as in (6.2): the Ui 6=0

suffice to trivialise the normal bundle of R; and all intersections Ui,j,...k (all
labels non-zero) are contractible.

Proposition 9.1.6 A ruler R generates a gerb G(R).

Proof—A choice of D0
i is a 2-divisor: for i and j non-zero, we define Dj

i by

Dj
i +D0

j +Di
0 = 0

ie. Dj
i is empty if D0

i and D0
j are on the same “side”, and their set-theoretic

union (a complex hypersurface containing R) otherwise. Then by construction
we have a cocycle of 1-divisors, or a 2-divisor, and hence a gerb G(D).

What if we had a different 2-divisor? Apart from a different choice of cover,
for which we merely take a common refinement, the only change can be that,
on a given U0

i , D′ is on the other side of R as D. One finds that such a change
induces a 0-gauge transformation, and accordingly G = G(R) is well-defined. 2



We can see this construction in coordinates, after a fashion. Suppose in Ui = Cn

we have real coordinates (x1, y1, . . . , xn, yn) or complex coordinates (z1, . . . , zn)
in the usual manner; and that R is the submanifold zn = 0, yn−1 = 0. (We
do not consider what constraints enable such coordinates to exist.) Of the two
choices for D, we take zn = 0, yn−1 > 0. To see the bundle Λ0

i , we break up
Cn\R into three sets  U = {yn−1 > 0}

V = {yn−1 < 0}
W = {zn 6= 0}

on which D is cut out by defining equations fU = zn

fV = 1
fW = 1

respectively. Then Λ is of degree 1 on the space Cn\R2n−3 (which is homotopic
to S3).

A ruler R ⊂ X faces an obvious topological constraint. The choice of ±1 on
each Ui,j according to whether D0

i and D0
j are equal or opposite is a representa-

tive for the Stiefel-Whitney class w1. If this vanishes (ie. R is orientable) then
necessarily the Euler class of the normal bundle vanishes. This is because we
can then take all D0

i to be on the same side, and they provide a smooth global
nowhere-zero normal section. (We can thus take just two sets U0 and U1 for
G(R), with a degree-1 line-bundle running along the whole punctured normal
bundle.)

Proposition 9.1.7 If R is the boundary of a global complex hypersurface D ⊂
X (with boundary), then the gerb G(R) is trivial.

Proof—The gerb generated by D has a global object: the line-bundle of D ex-
tends to all of U0, and we take a trivial bundle on Ui. 2

We can also construct a gerb from R without passing to 2-divisors explicitly,
by following the approach of (6.2.1). It is almost obvious (and easy to show)
that the two give the same gerb G(R).

Proposition 9.1.8 The cohomology classes{
[R] ∈ H2n−3(X; C)

c(G(R)) ∈ H3
dR(X)

are Poincaré-dual.

Proof—Given the above comment, this is just (6.2.2). 2

Being optimistic, we might take this as evidence that 2-divisors and rulers (or
something very similar) are quite reasonable constructs.



Rulers and subjects

A meromorphic section of a line bundle gives a submanifold D and a triviali-
sation of the bundle off D. For gerbs, we have concentrated only on non-zero
sections, or objects. Here we outline a possible position on singular objects,
or “subjects”. Note first that a gerb G(R) generated by a ruler comes with an
object on X\R, by choosing a trivialised bundle on U0 and taking Λi

0 on each
Ui,0 (seen as the restriction to X\R of Ui). Any two such objects are naturally
equivalent.

Definition 9.1.9 (Subject) Suppose given a holomorphic gerb G on a complex
manifold X. A subject of the gerb is specified by—

• a ruler R of X, and

• an object of G|X\R

such that there exists a 0-equivalence of G with G(R) over all of X that, restricted
to X\R, induces a 0-equivalence of the object with the object of G(R) defined
above.

That is, the two objects on X\R differ by a trivial holomorphic line-bundle.
Note that we work only indirectly with R, unlike the usual line-bundle case

where a meromorphic section explicitly cuts out the divisor D. To improve this,
perhaps we need to decide on an appropriate notion of singular line-bundle.
What we want to say is that the line-bundles of the object have degree-1 poles
around R, in the sense of bundles on S3 (or have poles of whatever degree
corresponds to the local multiplicity of R).

Proposition 9.1.10 If a holomorphic gerb has a subject with ruler R, then the
classes [G] and [R] are Poincaré-dual.

Proof—G is 0-equivalent to G(R). 2

9.2 Special Lagrangian submanifolds

Perhaps the main initial motivation for this dissertation was the recent flurry
of interest in special Lagrangian submanifolds [23] of Calabi-Yau 3-folds begun
by Strominger, Yau and Zaslow [46] in the context of mirror symmetry. Since
these are rather particular codimension-3 submanifolds, one might expect that
they are linked to rather particular gerbs and that their gerbs might provide a
new and useful way to understand them. To the extent that special Lagrangian
submanifolds deserve a status on a par with complex submanifolds—a view ex-
pressed for instance by Hitchin [25]—we could hope that special Lagrangian
submanifolds give a more interesting notion of ruler than the holomorphic ver-
sion in (9.1) (for some non-holomorphic but similarly rigid type of gerb).

We still hope this to be the case, but can offer little by way of results. In
this section we merely sketch some connections with the ideas of chapter 6 on
j-equivalence, but without bringing gerbs themselves into play. This section is
thus very much a collection of scattered remarks rather than of settled ideas.



We shall find at least that there are intriguing hints of a relationship with
current ideas of Donaldson and Thomas [13]. One way of reading that paper is as
a complexification of classical gauge theory in dimensions 2, 3 and 4: another is
as a search for the links between connections and submanifolds. They naturally
end up looking at calibrated submanifolds of Calabi-Yau 3-folds. (We should
also mention a recent preprint of Tyurin [47] exploring similar territory.)

Kähler forms and holomorphic forms

Definition 9.2.1 (Calabi-Yau manifold) A Calabi-Yau manifold X is a käh-
ler manifold of complex dimension m with a covariant-constant holomorphic
m-form; or equivalently a Riemannian manifold with holonomy contained in
SU(m).

It has become traditional in this context to write the kähler form as ω and
the holomorphic form as Ω. Since throughout this text these symbols have other
uses, we must break with tradition and write k and K respectively, for which
we apologise. We also split K

K = µ+ iν

into real and imaginary parts. As usual X is held to be compact.
Without loss of generality, normalise K such that

(−1)m(m−1)/2 i
m

2m
·K ∧K =

km

m!

—this fixes K up to a global constant exp(it) and means for instance that

∗µ = ν

∗ν = −µ

when m is odd, and

∗µ = µ

∗ν = ν

when m is even. There is a local unitary basis

ds2 =
m∑
1

φi ⊗ φi

such that

K = φ1 ∧ · · · ∧ φm.

(Note that ∗ is the conjugate-linear operator

∗ : Ap,q → Am−p,m−q

of the convention for instance of Griffiths and Harris [21], and not the complex-
linear operator

∗ : Ap,q → Am−q,m−p

of Wells [50], who writes ∗ for our ∗.)



Definition 9.2.2 (Special Lagrangian submanifold) A smooth real sub-
manifold R ⊂ X of a symplectic manifold is Lagrangian, if the kähler form k
restricts to zero on R and if the real dimension of R is half that of X.

If X is Calabi-Yau and R is symplectic, then R is a special Lagrangian
submanifold if also ν vanishes on R; or equivalently if the restriction of µ is the
induced volume form on R.

This follows Harvey and Lawson [23], who would call µ the calibration. They
work in Cm but point out that Calabi-Yau manifolds are the appropriate exten-
sion. A special Lagrangian submanifold is volume-minimising in its homology
class, just as are complex submanifolds (for which a similar approach can be
taken with calibration kd/d!). Alternative special Lagrangian calibrations are
obtained by rotating K by some exp(it), so that for instance in [25] one takes
ν to be the volume and µ to vanish.

Local coordinates

If we hope to treat special Lagrangian submanifolds as analogues of divisors
of holomorphic 1-gerbs (line bundles), we might try to use the local equations
cutting out the submanifold to define transitions for a gerb (of some special
structure).

Such equations are described in [23] in Cm, and to translate to a local man-
ifold is straightforward. Suppose R is locally the common zero of real smooth
functions f1,. . . , fm which are independent (in that the dfi are linearly inde-
pendent at each point). Then define two sets of vector fields

ui := i(g−1)dfi

vi := i(k−1)dfi

so that the ui are the gradient vector fields and are normal to R. Then R is
Lagrangian iff for all i and j

k(ui, uj) = 0

and then the vi are tangent to R. Now R is special iff

ν(v1, . . . , vm) = 0.

To convert into complex coordinates, split the local unitary basis into real
and imaginary parts

φi = αi + iβi

so that the Riemannian metric, the real part of the hermitian metric, is

g = α1 ⊗ α1 + β1 ⊗ β1 + . . . .

Then

vi =
∑

j

(
α∗j (fi)β∗j − β∗j (fi)α∗j

)



and the condition that ν vanish on these vectors becomes, if m is odd,

0 = Re det φ̄∗i (fj)

(and Im det if m is even). Unfortunately, such equations are more complicated
than the equivalents in the case of a holomorphic divisor, and how to construct
an explicit gerb from them remains elusive.

j-Equivalence and complex tori

The virtue of theorem (6.4.2) is that it shows a correspondence between gerbs
(with objective 1-connection) and two other structures: monopoles off a sub-
manifold, and tori of harmonic forms. This means that even without knowing
what a special Lagrangian gerb might be, we can still consider the remaining
two ideas. Recall that our general principle of j-equivalence is to consider two
submanifolds (of codimension at least one) in the same homology class, and to
choose an arbitrary chain whose boundary is their difference

∂C = R1 −R2

so that

[C] ∈ H∗(X,R; Z)

ie. Charmonic+Ccoexact is integral in its evaluation on compactly-supported closed
forms on X\(R1 ∪R2). Then we have established that Ccoexact is itself integral,
iff j(R1) = j(R2) in the appropriate torus. But Ccoexact is the unique global
coexact current whose exterior derivative is (up to sign) R1 − R2, and so now
it restricts to a closed smooth integral form on X\(R1 ∪R2). The question for
us now is what sort of submanifolds give rise to interesting structure for such
equivalences.

First, note that the particular formulation of chapter 6 is not the only possi-
ble. We chose to dwell on harmonic language therein to give some sort of rigidity
or naturality to our connections, but we can in fact cope without a metric, as
follows. In general we need a trivial gerb with flat 1-connection on a smooth
manifold. Since [G] = 0, choose any global object with 0-connection, thus giving
a global error form ε which is closed since Ω = 0. This singles out a class in
H2

dR(X). An alternative object with connection varies ε by some closed integral
2-form [F ] ∈ H2

dR(X; Z). So we have a well-defined class

j′(G) ∈ H2
dR(X)

H2
dR(X; Z)

.

This is zero iff the 1-connection is objective and iff the original j is zero (on
compact Riemannian X, and supposing G to be generated from some subman-
ifold R), thus returning us to theorem (6.4.2). The proofs of these two claims
are transparent.

A further space that has featured so far is the moduli of holomorphic gerbs

H2(O)
H2(Z)



with zero Chern class (5.1). Taking X to be compact and kähler, we see that
this complex torus is a part of the real torus

Jac =
H2(X; R)

H2(Z)

and we can try to tease apart the rest of Jac in terms of holomorphic connections
on G.

Instead, we choose another illustration. We repeat the harmonic approach of
chapter 6, now insisting that R1−R2 is the difference of two special Lagrangian
submanifolds in a Calabi-Yai 3-fold X. We need a few facts about such spaces
first.

The structure of a special Lagrangian submanifold

Proposition 9.2.3 On a compact Calabi-Yau 3-manifold, the harmonic com-
ponent ω := Rharmonic of a special Lagrangian submanifold R3 of volume v takes
the form

ω =
iv

8
K + π + π − iv

8
K

= −v
4
ν + π + π

in which π is a global primitive harmonic (2,1)-form.

Proof—First, note that ω is real and that each component is individually har-
monic. Next we claim that at every point of X

ω ∧ ν = 0.

To show this, consider a real smooth bump function f of total integralX[∗f ] = 1.
If the support of f has interior in a “small” neighbourhood of p ∈ X, then

(ω ∧ ν)|p = V ol|p ∗ (ω ∧ ν)|p

= V ol|p ·
∫

X

∗(ω ∧ ν)|p · f V ol

' V ol|p ·
∫

X

f ∗ (ω ∧ ν) V ol

= V ol|p ·
∫

X

ω ∧ (fν)

= V ol|p · ω[fν]
= V ol|p · ω[(fν)harmonic]

since ω is harmonic. But since ν is harmonic, and the harmonic component
fharmonic = 1, this is

ω[1 · ν] = R[ν]
= 0

and the claim is proven by localising the bump function arbitrarily finely.



As a consequence, and since

ω3,0 + ω0,3 = cK + cK

for some global harmonic function (ie. constant) c, we find that in fact c must
be imaginary. The general form in complex dimension m for this calculation is
that

ω3,0 + ω0,3 = (−1)m v

2m−1
∗ µ

= (−1)m iv

2m

(
K + (−1)mK

)
.

In fact we can calculate c directly, using the condition that µ restricts to the
volume form on R

v = R[µ]
= ω[µ]
= ω3,0+0,3[µ]

=
∫

X

c

2
K ∧K +

∫
X

c

2
K ∧K

= 4i(c− c)
∫

X

i

8
K ∧K

= 4i(c− c)

and so c equals iv/8.
It remains to show that the (2,1)-part of Rharmonic must be primitive [21],

which means in this context that ω2,1 ∧ k = 0. We shall demonstrate that this
follows from the constraint that k vanishes restricted to R.

Note that ω is trivial in its evaluation on H1
dR(X) ∧ k, since for any closed

1-form α ∫
X

ω ∧ α ∧ k =
∫

R

α ∧ k

= 0

by the Lagrangian constraint. Thus the component of ω in the dual of LH1
dR(X)

vanishes. (L is the operation of right exterior product with k, which again is
the convention of Griffiths and Harris rather than of Wells.) But this dual is
LH1

dR(X) itself: for instance, we have the general formula

∗Lrξp,q = (−1)(p+q)(p+q−1)/2 r!
(n− p− q − r)!

ip−qLn−p−q−rξ
q,p

if ξ is primitive [50, 21]. This proves the claim. 2

Two further remarks: first, if we want [R] = 0 we must consider the difference
of two special Lagrangian submanifolds and not a single manifold. This is
because a special Lagrangian submanifold is volume-minimising in its homology
class. Second, we might ask what structure can be put on the real 4-manifold
∂C = R. The shortest answer is that C cannot be a complex surface, since the
fact that the tangent 3-planes of R are Lagrangian means that their complex



span TpR ⊕ ITpR is the whole of TpX, rather than a complex hyperspace as
required.

We can now refine our torus in imitation of the way the Hodge decomposition
breaks up H2(X; C). Given [R1] = [R2], consider as in (6.3) solutions γ to

i

2π
∆γ = ω −R

for which we impose that the Chern form is harmonic ω = Rharmonic (and thus
zero). Then γ is a global closed current. The fact that R is special Lagrangian
means that γ splits by type as

γ = φν + η2,1 + η

where φ is real and η is primitive. Then since ∗ν = −µ

∗γ = −φ
2
K + iη + conjugate

d ∗ γ = −1
2
∂φ ∧K + i∂η + i∂η + conjugate

which we can simplify, since dγ = 0 means that

0 = − i
2
∂φ ∧K + ∂η

0 = ∂η + ∂η

⇒ d ∗ γ = (−∂φ ∧K + conjugate) + 2i∂η
= (−∂φ ∧K + conjugate) + Lα

for some real primitive (1,1)-form α. (Primitive, because η being primitive
means Lη=0, so that L∂η=0.) Then

β0 := d∗γ
= (∗3∂φ+ conjugate) + α1,1

where ∗3 is defined from the above formulae. The notation is taken from Don-
aldson and Thomas [13]. The three components of β0 are each primitive and
globally coexact; and their derivative vanishes off R

dβ0 = 2πiR.

Given R, we know β0 to be unique (as the unique global coexact current whose
derivative is 2πiR). Then the j-image of R vanishes iff there is a monopole on X
with singularity R for which the general Bogomolnyi equation F = ∗d(3-form)
of chapter 6 now has the more exotic form

F = (∗3∂φ+ conjugate) + α1,1

for real primitive coexact α.



Complex submanifolds

We can break up the Higgs field in similar ways for submanifolds of real codimen-
sion 2 and 4 as well as 3: again, a comparison with Donaldson and Thomas [13]
is suggestive.

Consider first the case of two homologous complex surfaces D = D1−D2 in
the Calabi-Yau 3-fold X. Then we can say

∆γ = 2πiD
γ = ak + ζ

for a real function a and a real primitive (1,1)-form ζ. Now

0 = dγ
⇒ dζ = −da ∧ k

and so

d ∗ γ = da ∧ k2/2− dζ ∧ k

=
3
2
da ∧ k2

⇒ β0 = −3
2
∗ L2da

= 3i∂a+ conjugate.

(The general form on a compact kähler m-fold X is

β0 =
(
1 + (m− 1)!

)
· i∂a+ conjugate

= −4π
(
1 + (m− 1)!

)
dca

where a is a 0-current as above, for a pair D of homologous divisors.)
This is globally coexact, and closed off D. If further it is integral (to i

2π ), a
Bogomolnyi-type equation

A1,0 = −3
2
∗ ∂a ∧ k2

(and its conjugate) constrain a real closed 1-form A+A, which under integrality
leads us to define ∫

i(A+A)

as the argument of some complex function on X\D: this is expected, as in (6.5),
to be a globally meromorphic function cutting out the divisor D, which is then
linearly equivalent to zero.

In real codimension 4, suppose that C is the difference between two homol-
ogous complex curves, and consider

∆γ = 2πiC
γ = f · k2 + λ ∧ k



for a real function f and real primitive (1,1)-form λ. Then we find

d∗γ = −2 ∗ (∂f ∧ k) + ∗∂λ+ conjugate
= 2i∂f ∧ k + ∗∂λ+ conjugate

and the Bogomolnyi equation in case of j-triviality becomes that this equal a
closed integral 3-form on X\C. It would be interesting to compare such “gerb
monopoles” (and the corresponding 3-gerb on all of X) with standard notions
of algebraic equivalence of curves lying in an algebraic family.

Hyperkähler manifolds

Finally, we remark that there is a similar array of structures if we consider
submanifolds of hyperkähler manifolds: 4-manifolds are uninteresting to the
extent that a special Lagrangian submanifold in one complex structure is merely
a complex curve in another; but hyperkähler 8-manifolds are leading us into
codimension four, and thus 3-gerbs. Again the idea is to use the representation-
theoretic decomposition of the appropriate bundles of forms [44]. This section
has enough poorly-understood formulae however, and we shall add no more.

9.3 Non-abelian gerbs

Whilst this dissertation has dwelt exclusively on abelian gerbs, we can be sure
that the most interesting future developments and applications will be in non-
abelian contexts. A naive attempt to apply the approach of definition (2.1.1)
to vector bundles (or non-abelian principal bundles) runs aground very rapidly;
and yet since the original purpose of gerbes [18] is to understand non-abelian
cohomology, there is surely some (relatively) straightforward gerb construction
also. Aside from trying to digest the ideas of Giraud, not a prospect we confess
that fills the heart with joy, three lines of attack present themselves.

The Ward correspondence

The twistor correspondence of chapter 8 between even-dimensional quadrics and
their spaces of linear submanifolds seems to give a quite convincing local trans-
formation between holomorphic gerbs and anti-self-dual connections. Knowing
that the case of Q4 and P3 is much more interesting when non-abelian bundles
are brought into play, we can perhaps look with some confidence for the 6-fold
quadric to be a natural playground for non-abelian gerbs.

Passing to, say, SU(2) might let us work with global fields rather than just
local, as in the bundle case. But a cautious start would be to remain local with
a Lie-algebra valued curvature 3-form on S = C6, and to ask what structures
this induces on T = Q6

+\P3. From S to T is not the more interesting direction
in which to move, unfortunately, since it will not be clear just how much of the
resulting data is necessary for a holomorphic structure on the “gerb” over T . It
might at least be suggestive.

Monopoles

In chapter 6 we see that abelian gerbs are closely linked with abelian monopoles
with singularities along a codimension-three submanifold. We might thus begin



with a singular non-abelian monopole, to search out some of the aspects of
a non-abelian gerb. Now the Higgs field is valued in the Lie algebra of the
group. It seems fair to begin with a monopole on a compact 3-manifold, with
singularities at a cycle of points R of class [R] = 0. The BPS boundary condition
for monopoles on R3

φ = φ∞ + ψ
1
r

+O
(1
r

)
might be suitable—here φ∞ takes values in an adjoint orbit in the Lie algebra,
and ψ is a map from the sphere at infinity to the algebra. Thus our ubiquitous
current equation

∆γ = 2πiR

will no doubt be enhanced by choices of adjoint orbits along R.
In this context we mention work of Pauly [40] on singular monopoles on

compact 3-manifolds. He discusses the idea that, locally around each pole, the
monopole corresponds to an anti-self-dual connection on a punctured 4-ball (a
Hopf bundle over the punctured 3-ball). The pole is controlled by insisting that
the connection extend over the whole 4-ball. It is not possible for topological
reasons to extend the lift globally over the 3-manifold: but arguably this is not
a problem for us, since (unless j=0) we do not expect a global monopole either.
Its local purpose is merely to formalise the singularity of the subject of the gerb.

Strings and branes

We end with another key original motivation for this work, from theoretical
physics. String theorists are nowadays compactifying all sorts of extended ob-
jects and finding various obscure fields induced upon them. Quite a cottage
industry has arisen in hunting “gerbes”, by which seems to be meant little
more than closed integral n-forms well-defined up to the exterior derivative of
an (n − 1)-form. The categorical definition of gerbes seems not to be widely
assimilated, for understandable reasons; neither does that of bundle gerbes (al-
though Murray and collaborators have considered quantum anomalies and the
like, most recently in [6]).

This therefore offers a set of examples on which to test our approach to
gerbs: partly for the sake of developing its geometric consequences, but also
in the hope that it will be of direct use in physical problems. Indeed, to the
extent that situations arise in which putative “non-abelian gerbes” seem to play
a role, we may find valuable hints as to a mathematical non-abelian codification.
Witten has spoken for instance, not entirely frivolously, of configurations of k
branes each of which supports a U(1)-gerbe, coalescing to form a single brane
with U(k)-gerb. To seek to understand such processes more precisely would
clearly have value both for mathematics and for physics, a unifying ambition
which would be entirely proper and traditional.
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théorie des spineurs—Hermann (Paris 1937).

[10] G de Rham—Differentiable manifolds—Grundlehren 266, Springer (Berlin
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