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Abstract

We lirst prove a G-invariani version of the theorem of Donaldson, Uhlenbeck and
Yau relating the stability of a holomorphic bundle over a compact Kahler manifold
to the existence of a Hermitian—Yang-Mills connection.

We then consider the vortex equation on a line bundle over a compact [Kahler
manifold. ‘This is a gencralization of the classical vortex equation over B*. We show
that this cquation is a dimensional reduction of the Hermitian-Yang—Mills equation.
Using this fact and the theorem above we give a new existence theorem for Lhe vortes
equation and describe the moduli space of solutions. An alternative direct proof js
given in the case of a Riemann surface by regarding the vortex equalion as a moment
map equabion.

We go on to study a system of coupled vortex equations over a compact Kahler
manifold. This system invalves a connection over a vector bundle, another connec-
tion over a line bundle, and a Higgs feld. It appears naturally as a moment Map
equation in an analogous way Lo the Rermitian-Yang-Mills equation. This system is
also a dimensional reduction of the Hermitian—Yang-Mills equation. Thus as above
we may prove the exislence of solutions and describe the moduli space. The sia-
bility condition for the existence of solutions is related lo the notion of 7-stability
mtroduced by Bradlow in connection with the vortex equation on a vector bundle,

Finally, we consider the Fourier transform for bundies, connections and Higgs
felds over an elliplic curve T We define a transform and inversion formula for
connections with constant central curvature, and also for pairs (£, $) where £ is
an lndecomposable holororphic vector bundle and ¢ s a holomorphic section. We
discuss the extension of these ideas to a Riemann surface of genus > 1.
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Introduction

Our main purpose in this thesis is to study some equations of Hermitian—Yanpg—
Mills—Higgs tyvpe, namely, the vartex equations over a compact Kahler manifold.
These equations are related to the Hermitian—Yang—Mills equation in twoe funda.
mental ways. They can be interpreted as moment map equations in a simlar way
as the Hermilian-Yang-Mills equation. This indicates that, as usual, a stability
condition has to be satisfied in order to have existence of solutions. On the other
hand, they appear as a dimensional reduction of the Hermilian-Yang-Mills equa-
tion. This links the stability condition mentioned above to the ordinary stabilily of
a holomorphic bundle, since this is preciscly the condition for existence of solutions
to the Hermitian-Yang—Mills equation.

[t 1 well-known that, on a holomorphic bundle aver a complex manilold, a
hermitian metric determines a preferred connection, the so-called meiric connection.
If the manifald 15 Kihler, such a hermitian metric a is said to be Hermitian—Finstein

or Hermitian- Yeng-Mills if the curvature F of the metric connection satisfies
AF = const. 1,

where A is contiaction with the Kahler form. If the Kahler manifold is now compact,
the existence of such a metric is equivalent to the stability of the holomorphic bundle.
This was first proved for a Riemann surface, in a slightly different formulation. by
Narasunhan and Seshadri [46]. A different proof was given by Donaldsoun [13] more
1in the vein of gauge theory, The higher dimensional case was conjectured by Hitchin
28] and independently by Kobayashi [36]. For an algebraic surface it was proved

by Donaldson [15]. T'he general case was proved by Uhlenbeck and Yau [54], and a
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simplified proof was given by Donaldson {16] for an algebraic manitold.

In Chapter 1 we prove a (-invariant version of this theoremn that will be used
in the sequel. Let £ be a holomorphic bundle over a compact Kahler manifold, and
suppose that a compact group & acts holomorphically on the mamfeld preserving
the Kahler lori. Suppose also that the action can be lifted holomorphically to £.
The sufficient condition [or the existence of a (G-invariant Hermitian—Yang-Mifls
metric is now that of G-invariand stability. I'his is like ordinary stability, but the
numerical condition on the normalised degrees has to be satished only for G-invarant
subsheaves of £.

In the remainder of Chapler 1 we introduce basic material on invariant connen-
tions and invariant holomorphic structures on a vector bundle that will be used in
the sequel.

In Chapter & we study the vorter equation on a line bundle over a compact Kahler
manifold. This is a direct generalization of the vortex cquation on R*. So we shall
recall this first; for details see [32, 51, 52].

el £ be a complex unitary line bundle on B* Let A be a unitary connection

and let @ be a smocth section of L. The abelian Yang-Mills-Hiygs functional 1s
defined by

YMIII{_,'ij QS:] o LE tFAF J- |dﬂ§6|l 4 }I{l . |q5|‘}_}2$

where F'y 1s the curvaiure of A and ds¢ 18 the covariant derivative of &.

[n arder to have a finite action we need (A, ¢} to satisfy
|+ 1, lda¢] =0 and |Fa| — 0, as |x| — oc.

The first condition implies that ¢/|¢| defines a map from a large circle in R* to the
unit circle, whose degree d is the vortex charge or vortex number. If we regard R? as
the complex plane C we may decompose with respect to the complex structure, to

get d4 = s + d'}. Then by mmtegration by parts,

. 1 . .
YMH(A, ¢) = 2rd+ [ [Fa— 5 x (1= |9[*) + [2¢,0["



So the action is bounded below by 2rd. This minimum is attained if and only il

ap =10
Fop=gz+(1-1¢")
TI'hese are the vorter equations which were first introduced in 1950 by Gnzburg
and Landau [20] in the study of superconductivity. They arc 1nvariant under gauge
Lransformations, and the moduli space of solulions is defined as the quotient space
of all solutions modulo gange equivalence. The basic result concerning the moduli
space is the existence theorem of Jaffe and Taubes [32]. They proved that given
d points z; @ A2 (possibly with multiplicities) Lhere exists a solution to the vortex
cquations, unique up to gauge equivalence, with ¢(z;) = 0 and YMH(A, ¢) = 2wd.
This means Lhat the moduli space of vortices is Lhe space of unordered d-tuples 5°C,
the d-th symmetric product of C. But this space can be thought of as the space of

zeros of a monic polynomial
d 4—1
plz) = 2"+ aqz™ " + ... +an

Hence the moduli space is just the vector space Cf of coeflicients of ali such poly-
nomials.

The important feature of the vortex equations we shall exploit 15 that ihey are
a dimensional reduction of the (anti)-self-dual Yang-Mills cquation. More precisely,
consider an SU/(2) bundle F on a Riemannian 4-manifold M. Suppose that SO(3)
(or ST7(2)) acts by isometries on M and that this aclion can be lifted to E. Then
SO(3) also acts on the space of connections on F, and there is a one-lo-one cor-
respondence between SO(3)-invariant connections A and pairs (A, ¢), where A is
a unitary connection on a hermitian line bundle L over the orbit space M/50C(3)
and ¢ is a section of L. The pure Yanp—Mills lunciional of an invarianl conneclion
reduces to the Yang-Mills-Higgs functional of (A, ¢). Moreover, { A, ¢) salisties the
vortex equations il and only il the corresponding invariant connection A satisfies
the (anti}-self-dual Yang-Mills equation. In this way, taking M = R? x 82 Taubes
[52] obtains the vortex equations over R?, and taking A = R% x §% Witten [56] gets

the vortex equalious over the hyperbolic plane RZ.
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Taking this invariant point of view we are able to prove existence theorenis for the
more general vortex equations studied in this thesis, Let (X,w) bea compact Kahler
manifold and let (L, &) be a hermilian hne bundle over X, Since X is compact one
can define the Yang—Mills Higps [unctional of & vmtary connection A and a section

# of L as in the B? case. Indeed we may consider the family of functionals
. 1., .
YMH(A,8) = [ [Fal + 1dadl + (18] = 7)?
parametrized by the real varnable 7. The vortex number 15 piven by

; w"
d=deg(L) = ﬂfl AFAH’

and has, somehow, a clearer topological significance than in the B? case, although
it 15 not necessarily an integer. If the connection A is such that the {0, 2)-part of
the curvature 1s zero, what we call an ntegrable connection, then, using the Kahler
identities, one can show that the functional is bounded below by 277 deg(L) and

that the minimum 1s attained if and anly if

W =10
AFy— P+ 1r =10
The first equation says simply that ¢ is holomorphic with respect to the holomorphic
structure defined by A. These equations are called the 7-vorter equations (though
the second equation alone is also sometimes called the T-vorter equation).
By integrating the second equation and assuming that ¢ Z£ 0, we see ihat a

necessary condition for existence of solutions is that

degfL}‘:'f“jgjfl

What is interesting is that this condition is also sufficient. Qur stratepy for proving
this 1s to show fizst that the vortex equations appear as a dimensional reduction of
the Hermitian-Yang--Mills equation, generalising results of Witten [56] and Taubes
(52].

Over X x P! consider the S{/(2)-invariant vector bundle

E=pL¢qgH?,



where p and g are the projections to X and P!, and H%? is the line bundle of degree
2 on P!, 'The action of SE7{2) 1s the trivial one on X and 1. and the standard one
on P! and H®Z. Give E the SU/(2)-invariant hermitian metric h = g*f $ 4/, where
h' s an SU{2)-invariant metric on g*H¥?. Finally, for ¢ > 0 let X x P! have the
Kaller form §2, = p*w D g w,, where w, is the Fubini-Study metric on P! such thal
fer w, = .

An integrable S{/(2)-invariant connection A on {E, h) corresponds to a par
(A, ¢) on L. Taking ¢ = 8w /7, we show that (A4, ¢) satisfies the 7-vortex equations
if and only if A 15 Hermitian-Yang-Mills with respecl o £1,. We can now apply
the (-invariant version of the theorem of Donaldson, Uklenbeck and Yau proved in
(Chapter 1. Thus to prove the existence of an ST/(2)-invariant integrable connection
A on L& satisfving the Hermitian-Yang—Mills equation, it sulfices to prove that B
equipped with the holomorphic structure defined by A iz SU7(2)-invariantly stable

with respect to £1;. But we show that this coincides with the condition
deg(L) < vVol(X') /4.

The r-vortex eguation has also been considered by Hradlow [10], who gives iwo
different proofs of the existence of solutions and a descniption of the moduli space
of solutions, as well as a number of interpretations of the parameter 7.

Our approach to the vortex equations also enables us to describe the moadnli
space of solutions. This moduli space can be described in lernmns of effective divisors
o X in a way comparable lo the description above of 1he moduli of vortices over R?
as zeros of polynomials. The vorlex moduli space coincides with the fixed point set
under the action of SU{2) of the moduli space of stable holomorphic structures on
E. It 15 then embedded 1o Lthe more farmliar Donaldson moduli space. In particular
1t inherits the structure of a complex analytic space, with a Kahler metric outside
of the singular points.

In the particular case when the Kahler manifold A 1s a Riemann surface, we give
an alternative proof of the existence of solutions of the vortex equations. This is a
direct proof based on the interpretation of the vortex equation as a moment map

equation. Indeed, as shown by Ativah and Bott [4], the moment map for the action
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ol the gauge group on the space of unitary connections is given by AFs. On the
other hand one can prove that Lthe momenl map for the action of the gauge group
on the space of sections of L i —%|d}|2. We model our proof of existence on that
of Ilitchin [30] for the sell-duality equatiens on a Riemann surface. However, in
the situation that we are considering things are much simpler, and the Uhlenbeck
cornpactness theoren, one of the main ingredients in Hitchin’s prool, is replaced by
pure havmomnie theory due to the abelian nature of L7{1).

[0 Chapter 3 we consider another systein of equations of Hermitian—Yang-Mills-
Higegs type, which we call a coupled systemn of 7-vorlex equati.uns. Let £ be a
hermitian vector bundle of rank » and L be a hermmitian hne bundle over a compact
Kahter manifold X. The system that we study nwvolves integrable connections 4
and A; on £ and £ respectively and a Higgs field ¢, a section of K& L* Tt is defined
by

A4 =10
Ay~ ¢3¢+ 471 =0
AFq, + E|ol2 + iD= 0

'

r

where 7 and 7" are related parameters, The first equation, as before, expresses Lhe
holomorphicity of ¢ wilh respect to the holomorphic strueture on £ ® L~ defined
by A; and A,. The other two equations appear naturally as momeat map equations
for the action of the gauge groups of £ and I on the product space of integrable
connections on E and L and on the space of sections of &/ % L*. This follows from
the fact, due to Donaldson [15, 16], that for any Kahler manilold, the moment map
for the action of the gauge group on the space of integrable connections is given
by AF4. Conseguently ithe Hermitian—Yang-Mills equation can be interpreted as
moment map equation, generaluang the result of Ativah and Bott [4] for a Rieniann
surface,

When the Hipgs field ¢ 1s wdentically zero, the systern decouples to give the
Hermittan Yang-Mills equation for connections on £ and L.

['he main resull in Chapter 3 i3 an existence theorem for the coupled system of

vortex cquations. The approach i1s completely analogous to that in the line bundle



case. Consider the SU(2)-invariant hermitian bundle E = pmF & p* L 0 ¢" H®? over
X x P, We show that the triple (A;, A2, ¢) corresponds to an S{/(2)-invariant
integrable unitary connection A on E. Taking
B 2Vol( X))

(r + 1)7Vol{ X'} /4r — (deg(£) + deg(L)}’

we prove that (A, A, @) satisfles the system of 7-vortex equations if and only if A is

T

Hermitian-Yang-Mills with respect to the Kahler form 2, on X xP'. We are then in
a positlon to apply the (-invananl version of the theorem of Donaldson, Uhlenbeck
and Yau, This says thal the existence of A satisfving the Hermitian—-Yang—Mills
equation is equivalent to the SU(2)-invariant stability, with respect to {1,, of the
holomorphic structure on E defined by A. We show that the invariant stability
of Ii can be expressed in terms of the {ollowing notion of 7-stability introduced by
Biradlow [10, 11]. Let £ be a holomorphic bundle over X, and let ¢ be a halomorphic
section of £. Bradlow introduces the two parameters

= sup{p{F) | FCE isa rellexive subsheal wilth rank(F) > 0},

() = mf{u(E/F) |F C £ ig a reflexive subsheat with 0 < rank{JF) <2 r and ¢ € F}.
For a real parameter 7, (£, @) is said to be 7-stuble il and only 1if

Vol X)
dar <

We prove that E, with the holomarphic structure defined by A, is SU(2}-invariantly
slable with respect to 01, if and only if (€& £, ¢) 1s (7 —~ 47 deg(L)/Vol{ X})-stable,

TS p(d).

where £ @ L* is the bundle F @ L* equipped with Lthe holomarphic structure defined
by A1 and A,.

As 1n the caze of vortices over a line bundle. we exploit our approach to describe
the moeduli space of sohutions to the coupled vortex equations,

In the remainder of Chapter 3 we introduce a few other equations of Hermitian—
Yang-Mills—Higgs type, always in the framework of the moment map. These gener-
alize not only the vortex equations but also the sell duality equations over a Riemann
surface considered by Hitchin {30} and their generalization by Simpsor [50] to an
arbitrary Kahler manifold. As usual, the existence of solutions to these various

equations oughl to be related Lo an appropriate notion of stability.
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Chapter 4 of the thesis 15 devoted to the study ol Lhe Fourier branslorm for
bundles, connections and Higgs fields over a real 2 dimensional torus. From a gauge
theorefical point of view Lhe oripin of this transform is the Afiyah—Drinfeld-Ilitchin-
Manin (ADHM) construction of instantons on R* [5, 3]. Nahm [43] adapted the
ADHM construction to describe monopoles on B?, which are instantons on B in-
variant under translation in one direction, see also [ﬁ]

In algebraic geometry, Mukai [42, 43| developed a Fourier transform for holo-
morphic bundles, and more generally, [or coherent analylic sheaves over complex
tori of any dimension. He proved an inversion theorem in the derived catepory. Au
analagons transiorm for instantons on a real 1-dimensional torus has been given by
Schenk [18] and Braam and van Baal [9] in the spint of Nuhm's 1deas; see also [17]

In Chapter 4 we initiate the study of the Fourier transform on a real 2-dimensional
torus. Our motivation is to find a Fourier transform for vortices similar to that for
instantons and monopoles. Although we makc some progress in this direction by
finding a transform {rom a holomorphic point of view, the compufations in differen-
tial geometry are inconclusive.

After specializing in sorne detall Mukai’s Fourler transform for an elliptic curve,
we conslder the Fourier transform for connections. Our main result is that, over
a real 2-dimensional torus T, a pair (F, A) consisting of a hermitian bundle and a
connection A wilth constant cenlral curvature has a well-defined Fourier transform.
This is a sirnilar pair {F, A) consisting of a hermitian bundle and a connection over
the dual torus T with the induced Rat metric, with the property that A has also
constant central curvature. We can likewise define the inverse transform of (£, A),
which is isomorphic to the original pair.

Our next task is the definition of a ¥ourier transform for a pair (£, ¢) consisting
of a holomorphic bundle over an elliptic curve with a holomorphic section. [t turns
out we must assume that £ 1s indecomposable, bui then there is a Fourier transform
of (£,9}, which is a similar pair (£, ¢) over the dual curve. I the original pair is
stable, Lhen so is the transformed pair. Morcover, the inverse transform is again

isomorphic to (£, ¢). The definition of the transform can be phrased in terms of

10



SU{2}-invariant bundles. ‘Lhe pair (€, ¢) defines an SU(2)-invariant helomorphic
bundle £ over T'xP'. One can define a *half’ Fourier transform from SU{2)-invariant
bundles aver T x P! Lo SU(2)-invariant bundles over T % P1. The transform of £ is
the bundle £ defined by (?,55) I is conceivable that the transform of a pair (A, @)
saliz[ying the vortex cquation might satisfly the vortex cquation as well, or, from the
S (2)-invariant point of view, that the transform of an S{7{2}-invariant Hermitian-
Yang-Mills connection might also be an 5¢/(2)-invarian! Hermitian-Yang -Mills con-
nection.

Finally, we extend the definmition of the Fourier transform to a Riemann surface
of genus bigger than one. If a holomorphic bundle over the Riemann surface is
semistable, then the Tourier transtorm is a holomorphic bundle over the Jacobian,
If now the bundle over the Riemann surface is actually stable, we ask whether
Lthe transformed bundle is stable with respect to the polarization given by the theta
divisor { Kempf [34] proves that this is true for the Fourier transform of the structure
sheaf, the so-called Picard bundle), We ask, even further, whether the Hermitian-
Linstein metric supported by the stable bundle transforms to a [lermitian—Finstein
metric over the Jacoblawu. [or a suitable choice of metric over the Riemann surface.
We make a preliminary step by checking that the transformed bundle satisfies the

Bogomolov-(riescker inequality.



Chapter 1

Basic Material

1.1 Invariant Connections and Dimensional Re-
duction

[n this section we give some background material about invariant connections and
dimensional reduction procedurcs. We consider the special case of SU/(2)-invariant
connections en an SU{2}-invariant hermitian veclor bundle and collect a sevies of
results tailored for our purposes. For a general description see [18, 24].

Let M be a compact smooth manifold and let £ be a ¢°° complex vector bundle.

We will think of a connection A as a covariant derivative, i.e. as a C-linear map

da: QU(F)} -+ QU E) satisfying
da{fs} =df.s + fdas for sc O%E) and fe0°

Let £ be a hermitian metric on £ and let A be the space of connections A on (I, 1),

which are unitary, i.e..
dhis, ) = h{das, )+ h(s, dat) for s, t € QOE).

Let G be the group of unitary automorphisims of (7, h). 'L'he group G acts on A by

the rule

I

dy{_4]:‘gﬂdﬁﬂg_1=dd—d4ﬁ§_ for AEA,.__{]’E__G

12



where the covariant derivative of g 18 formed by regarding it as a section of the
veclor bundle End(£). We define B to be the quotient space 4/G.

Cunsider now a compact Lie group {x acting on M. Suppose that £ is 5 ¢
equivariant vector bundle. This means thal there is an action of 7 on I covering
the action on M. Note Lhat there might in principle be several lifts of the artion of
G on M making F a (i-equivariant vector bundle, Let b he (7-invariant hermitian
metric on £. We call (£, 1) a G-invariani hermitian vector bundle. Let Aut( K 4)
denote the group of unitary bundle automarphisms of (&, h) which do not necessarily

act as the identity on the base M. There is an exact sequence

l-—=§ — Aul(E A} T Dift{ A1),

-

The action of & on M defines 3 map p : & ~ Diff{ M), Let G be Lhe subgronp of
Aut( £, k) which covers Lhe action of (7 an M, 1e. the preimage of p(G) under «.
To say that (£,4) is a C-invariant hermitian vector bundle means that the

sequence

1-_}g__}§—Lp(Gj—-+t

15 exact, that it splits, and we have fixed a splttling p{(7) - G.
Then & acts naturally on A .G and B; the action on A4 is given by

dygy=vodioy !l  for YyEL and Ac A
The action on G is given by conjugation:
Yigl=vogo4 ! far YEG and ge g,
The action on A4 clearly induces an action on B,
YA = [v(4)]  for [A]€ B and ~vec G,
This is well defined since if A’ = g{A) for ge@.
Gy =v0g0diog oy = yogort s qod, o1 toyogoeqyTl,

and since Yo go9~! € G we conclude that F([A]) = v([A).

13



We consider now 4 more concrete situation. Let ¥ be a compact smogth manifold
and 5% be the twa dimensional sphere. Let SU(2) act on X x 52 trevially on X and
it the standard way on 5% that is we regard 57 a3 SURYU(1). Let P and ¢ he
the projections to X and &% respectively. We wil] analyse firsl the structure of an

SEFOY o : C oy y ) I
SU{(2) -equivariant vectar bundle over ¥ x g2 and of an ST/{2)-invariant metric on

it

Proposition 1.1.1 Livery SU(2)-equivariant vector bundle over X x 5% coqn bo

eqrrvariantly decornposed, uniquely up to wsomorphism, as

]'_'ﬂ;:@lﬂl'1|

with B, = p F, & ¢ H® B is a vector bundle over X, H is the tine bundic over
5% unth Chern class I, und n; € I are all different.

Froaf. The result follows from lhe general facl that if ¢ is & compact Lie group
and I is a compact subgroup, then G-equivariant vector bundles over X x GiR
are 1L oue-to-one correspondence with f{-equivariant vector bundles over X with &
acting trivially on X. The correspondence is as follows. Any GG-equivariant vector
bundle over X x G/K defines by restriction a K-equivariant vector bundle OVer
X x K/K 2 X. On the other hand, if £ is a K-equivariant vector bundle over X,
then E =G %0 FEiza (F-equivariani vector bundle over X % Gf/K., Here & x; £
is the quotient of G x E by the action of I on both factors, and the action of
g€ GonG xkgE is given by ¢(m,e) = (gg,e). On the other hand, every f -
equivariant vector bundle over X is 1somorphic to a direct sum D; £ ® V;, where
the £; are vector bundles with trivial K-actionand V; = X x V; 18 the vector bundle
corresponding to an irreducible representatian Vi of K, see [49] for details. In our
case we regard $? as SU(2)/U/(1), and the irreducible representations of U/{1) are
all one dimensional and are parametrised by Z. Line bundles over 52 are in one-to.

one correspondence with irreducible representations of {/(1}, the line bundle H®n

corregsponds tan, € 7, O

14



Propasition 1.1.2 Let (E h) be an SU(2)-invariant hermitian vector bundle over
X x §% Let

E=n - Drrague
i=1

=1
be lhe decomposition given in Proposition 1.1.1. Then
(e} The vector bundles B; are SU(2)-invariantly ovthogonal to each other: in
otirer woerdsh = P2 h; with h; an SU{2)-invariant metric on B,

(6} hy = p*h; ® ¢*hl, where by is o metric on E; and Ay s an SU{2)-snoariont

melric on 8™

Froof. 'To prove that E; is erthogonal to Ey for I # £ we restrict to a point {x,n) €
X % 5% Letw e Eil(zmy and w € Eiljzm). For every element ¢ in the stabilizer

t7(1) of &, §U(2)-invariance implies that

h(E"?.v, o'

hiv,w) )
— h{ciiﬂv, Eikﬁ'w]

= E‘-“_Hﬂh{vj w). (1.1

smee { # & Lhis implies that hiv, w) = 0,

To prove (b) we note that after choosing an SU/(2)-invariant metric on H®-™
and tensoring E; with ¢*H®~" it suffices to notice that if E = p*L, and h is an
SU(2)-mvariant metric on E, then h = p*k lor a metric & on E, since SU(2) acts
trivially on & and transitively on §2. O

Consider an SU/(2)-invariant hermitian vector bundle (E,It) where

E = @Ei and h = EBhi'
1=1 =1

Let A be a unitary connection on (E, k). Since
0°(E) = DOYE)  and  Q(E)= DAVE,),
=1 =1

the covariant derivative dy : Omega®(E) - — QYE) can be written as an m x m

matrix {8}, 1 <4 ,7 < m, of first order differential operators.
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Proposition 1.1.3 (a) 8i; = da, jor some unitary connection A; on (E;, h;).
ﬂl) For ;é j ﬁ,’j - ﬂ'[IInrn{Ej-= Et)) is the Gdfﬂfnt {-‘f —,ﬁ_ﬁ ’ that 1s

hifus,t}+his, Bit) =0  jeral scQYE,) and te QYE;).

Proof. Let f be a function on X x 5%, and let s € Q% E;). Decomposing with respect
to E = §E; we get
dalfs) =da,(fs)+ D Bilfs).

1=1,
On the other hand
dﬁ(fﬂ) = df.s+ fdas
= df.s+ fdAiS + f E ﬂj,‘[ﬂ:],

=137
Comparing the E; and E; components of the two decompositions of da(fs) we

conclude that

da(fs) =dfs+ fda,s  and  Bu(fs) = fBu(s) for j#:.
This says that d4, iz & connection and the second says that 5; 15 a 1-form with
values in Hom(E;, E,).
If 5, s" € 1% E;), then
dhis,s’) = h(das,s’) +h(s dps")
= h{da,s4+) Bus, ')+ his,das'+3 i)

j#E1 J#t
= h{da,s,s") + his,da s

which proves that da, preserves h;.

Finally if s € QUE;) , t € Q%E;) and 1 # j, then

0=d(h{s,t})) = h(das,t)+h{s,dat)
== h(d.ﬂl..'s + Z ﬁkisv t} + h(.;} dﬁjt + Eﬁf.‘fi)

k£s 3]
= h(f;s,t) + h(s, Bit).
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[n the sequel we shall study some examples of S1/{2)-invariant connections which

will be nseful in the next Chapters.

Example 1. The most elementary example is the line bundle H®" over 5%, Recall
that SU{2)-equivariant line bundles over 2 22 SL/(2)/L/(1} are in cne to-one corre-
spondence with one dimensional representations of {/(1): if ¢*** is a representation
of /(1), then H®™ = S{/{2} x ) C, where (g,v) ~ (g', 2] if there is an ' ¢ ey
such that ¢’ = ¢~y and v = ¢™u.

The action of SU(2) on 5U(2) x C given by
v-(g,v) = (yg,v) for v € 8U(2) and {g,v} € SU(2) xC

descends to an action on H®", it is easy to see that any other action of 5/{2} is
equivalent to this one, i.e. it differs by conjugation with an element of the gange
group. Now fix an SU(2)-invariant melric £ on H®*. Then A% = [point} and
G- = /(1) (constant maps from §2 to [7{1)). Indeed, the trivial cannection
on SU(2} x C descends to give a SU({2)-invariant connection an H®. Any other
connection differs from it by a € R'(S?). For the connection to be SI/(2)-invariant,

o has to be 1dentically zera.

Example 2. Let ¥ bc a vector bundle over X. Consider the SU(2)-invariant
hermitian vector bundle (B, h) over X x S? given by E = p*F and h = p*h for A
a metric on & (the action of SU(2} on E is trivial). It is easy to see that there
15 a ane-to-one correspondence between SU/(2)- iuvariant connections on (E, h) and
connections on (£, %), thatl is, any clement A € A j5 of the form A — p* A
where A is a unitary connection on (£, k). This is because E|{z3x52 1s trivial and the
restriction of A must be SU(2)-invariant. Hence, since the action is trivial, by the
previous cxample, it musl be the trivial connection. Similarly €5V g in bijection
with Lhe gauge group G on (£, h). Therefore an SU{2)-invariant connection on E is
given by a connection en £ we encounter here the simplest example of dimensional
reduction.

A major event of the study of invariant connections is the appearance of con-

nections on a lower dimensional space together with some extra fields or sections of
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a certain bundle which ave usually called ffiggs fields, The following example will

show in a very elementary case how they arise.

Example 3 Lel (£1,4,) and (£, hy) be hermitian bundles on X and let &% he
an SU(2)-mvariant metric on 24, Consider the SU(2)-invariant hermitian vector
bundle over X x S? given by E = E, G E; = p*E, 3 " E; @ ¢*H®® with metric
h =hi @ hy = p hy @ pha ® g k). The group SU{2) acts Lrivially on £, and £,
and m Lhe standard way on H%%,

By Proposition 1.1.3 any connection A € A 15 of Lthe form

da, B
~8" da,

da =

for A; a connection en (E;, ;) and 8 € O X x 5%, Hom(E;, Eq)).

Proposition 1.1.4 For A an SU(2)-invariant connection on (E, h),

(a) Ay = p*A; end Ay = p*As x ¢ A, where A, and Ay are couneclions on
(B, h) and (Fy, ho) and AL is the SU(2)-invariant connection on ({92 AL}, By
the sccond equality we mean thal da, = dpes, R IH1E Gy Az -

(b} 5 = pr¢@gra, where d € Q°(X, By @ E}) and o is the unigue SU(2)-invariant

element of (52, H®2), up to a constant fuctor.

Proof. (a) follows easily from the previous two examples. To prove (b) we observe

that
TH{X x 52) > p "X @ gt TS

50 that

Q'(Hom(Ey, B))) = V(5 (B @ £ @ ¢ K% %)

112

P (@ E;@TeX)@g¢ H2 )

SO (@ B]) © ' (H 0 HO ). (L)
Here we have used the identity 752 = H®-2 and its complexification
1¢S5 = He g H®,
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But 8 1s SU(2)-invariant, so
FeMp (g E @ q HS)

since all SU(2)-invariant sections of A9~ and A%~ arc zero. The assertion now
lollows from the fact that every ST/{2)-invariant section of H%° ie. complex valued
[unclion, must be constant. O

If A; is the space of unitary connections on (£, £:) and AV s the space of
SU/(2)-invariant conneclions on {E, h), then the previous Proposition establishes a
ane-to-one correspondence hetween A and Ay x Ay x Q%E, ® E2), given by
A (A, Az, &), The section ¢ is usnally called a [figgs field.

Il X »x 57 hias a metric enjoying the same invariance as the ST/(2)-invariant
hermitian bundle (E, L), we can define a functional on the space of counections, e.g.
the Yang-Mills [unctional, and study the corresponding variational equations. I'he
restriclion of the functional to Lhe invanant couneclions will reduce to a funclional
involving connections and a Higzs fleld on a hermitian bundle over X, e.g.  the
Yang-Mills-Higgs functional and corresponding equations.

Just to finish the example, still need to show that G5V(3) | the subgroup of S(2)-
invariant elements of the gauge group of (E, h}, is in one-to-one correspondence with
G1 % e, where G is the gauge group of (£, 2;}). But this can easily be seen by writing
g€ G as

A
f2 i
where g; € Q°(LEnd(E;)), /i € Q°(Hom{E,, E;)} and f; € Q°(Hom(E,, E,)). Using

similar arguments to the ones in the previous Proposition we see that f) and f; are

g:

identically zero.

1.2 Invariant Holomorphic Structures

in this section we shall assume that X is a complex manifold. We can then relate

STU{2)-invariant connections to ST(2)-invariant holormorphic siructures and inter-
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nret the Higes fields in holomorphic terms. But before doing this we give some
general background relaling connections and holomorphic structures.

Let M be a compact complex manifold, and let E be a U'* complex vector
bundle over M. Recall, [4(] that a holomarphic structure on £ is delermined by an

integrable @ operator, that is a C-linear map
EE . ﬂﬂ,i{ E} _ QD.£+1(E}

which satisfies

35;(}%] =df s+ [Ops for s€ Q%(E) and fe° (1.3)
Js =0 (integrability condition).
Let C be Lhe space of integrable 8 operators on F, and let G© be the group of general

linear automorphisms of £. The group G* acts on € by the push-forward action

g(Bg)=godgog'.

Two & operators define equivalent holomorphic structures if and enly if they are in
the sarne orbil; in other words, C/G* is the space of equivalence classes of holomor-
phic structures on /.

We say that a connection A on # is compatible with the holomorphic structure

determined by &g if the (0, 1)-part of the covariant derivative
da=dy +d%: QUE) — OVE) o Q% E)

satisfies d'f = Jp.

Now fix a hermitian metric h on £ and consider the space A of unitary connec-
tions on (£, k). Tt is a standard fact that a holomorphic struclure Jz and the metric
h determine a unique connection A compatible with both, which is called the metric
connection. Moreover, since = IF)? = c?i = (), where F, is the curvature of 4, A
belongs to the space of integrable unitary connections A = {4 € A | F77 = 0}

Conversely a connection A € A" determines & holomorphic structure given by d”.

We can then identify the spaces C and A1,

Suppose now that a group G acts holomorphically on M and that the action can

be lifted to £, 1.e £ is a (F-equivariant vector bundle. Let Autof E) be the group of
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{775 hundle automorphisms of £ which induce a hiholomorpluc transfermation an

the hase space M. There 15 an exact sequence
] — G% — Autg{E) - Bihol{ M).

As in the case of connections, the action of & on M defines a map g : G — Bihol{M).
Let G€ be the subgroup ol Auty(FE) which covers the action of & on M, i.e. the

preimage of p((7) under w. We then have the exact sequence
| —G¢ — g% L p(G) — 1

and a splitting. Consequently &' acts naturally on €, G¥ and C/G%. The action on

C 1s given by
v.0g="o0dgao~rt for v€ G and g €C.
Similarly lor G©
vg=vogoy ! for &€ and geg".

We now revisit the examples of Lhe previous seclion and characterise the space
of SU(2)-invarnant holomorphic structures in each case. Recall that by hypothesis
X is & compact complex manifold and we regard 5° as the complex projective line

P!l. The action of ST/(2) which is as before trivial on X and standard on P! is of

course holomorphic,

Example 1. The line bundle H#%" over P! has a unique SU/{2)-invariant holomor-
phic structure compatible with the SU(2)-invariant metric and the unique S£7{2)-
invariant connection. In fact, as 1s well-known (see [21], for example), H®" has just
one equivalence class of holomorphic structures, as usual we denote by @(n) the linc

bundle H%* equipped with any holomorphic structure in this class.

Example 2. We deduce immediately from the previous section that the space of
SU(2)-invariant holomorphic struclures on B = p*F over X x P! is in cne-to - one

correspondence with the space of holomerphic structures on £, i.e. any element

A € (AYNSY3 gy the pull-back of some A € AVI(E, B).

21



Example 3. By Proposition 1.1.4 the (0, 1)-part of an SU{2)-invariant connection
Aon E=pFE Dp iy Q¢ H% can be written as
dye 4, gt
(=g d;f-.q:.:;.-.%
where 3 = p éi@gto, for ¢ € O X, B1@ E2) and a € QYPY, H®-?), §U(2)-invariant.
We can easily see that (=87 = (=8%Y)* = 0. This follows from the fact that

o
dy =

(1.4)

o' =0, Indeed, &'? is an SU{2}-invariant element of
ﬂl‘ﬂ{Pl, Hc@—zj oo E_ED[:PI}HE_EI),

where we have used that 'Y 22 22 But, as we mentioned before, the only SU(2)-
invariant section of 9% is identically zero. If we now suppose that A is integrable,
Le. (d%)? = 0, then a straightforward computation shows that (A, Az, ¢) in {1.4)
sabisfy

(d3,) =0, (d,) =0 and d} ., ¢=0

1% Az
Let (LAY be the space of SU/(2)-invariant holomorphic structures on

E=pL $®p &g H%, and let A be the space defined by
N ={{Ar, A, ¢) € Ay x A x (B & ) | d%,, 4,6 =0}
We have then proved the following,

Proposition 1.2.1 Let A € (AY)V2 and let (Ay, Az, ¢) be the triple given by
(1.4). Then the map A +—— (A, Ay, ¢) gives a one-lo-one correspondence between

(AJ,IJSU{E] and N

1o understand the interpretation of the Hipgs field, ocbserve that the space A

paramctrises extensions of the formn

0 —pé — € —p&eac02) — 0D (1.5)

where & = (Ey,d} ) and & = (Ey, ). ).

For iixed & and &; the extensions {1.5) are in one-to-ane correspondence with

HY{X xPLp{& @ &) ®¢0(-2)) = HYX, & 60E)0 H(P,O(-2)
~ HYX, & ® &), {1.6)
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by the Kiinneth formula and the [act that AP, {—-2)) =q.
As in the case of connections, to finish this example, we remark that one can

casily find a bijection (G%)*V(2) — QT x GT

1.3 Invariant Stability and the Hermitian—Yang—

Mills Equation

Inn this section we introduce the notion of dneariani stabifity. We are then able
to prove an invarliant version of the theorem of Donaldson, Uhlenbeck and Yau
[15, 16, 54] relating the existence of a Hermutian - Yang-Mills metric on a holomorphic
vector bundle to the stability of the bundle. 1L is convenient to review first the notion
of stability and the, by now, standard results.

Let M be a compact Kahler manifold with a fixed Kahler metric having Kihler
form w, and let £ be a holomorphic veclor bundle over Af. The degree of a coherent

sheal is defined as
|

(e —_J.}'!\

deg(F) = f c{Fraw™ b
Y,

where ¢ (F) = c(det F), and det F is a line bundle associated to any coherent
sheaf, which coincides with the determinant line bundle when 7 is locally free (sec

[37, 47], for instance). The normalized degree u(F) is the number
p{F) = deg(F) /rank({ F},

where rank(F) is the rank of the vector bundle that F, as any other coherent sheaf,
determines outside of a subset of M, called the singularity set of F and that has
codimension al least one,
We say that £ is stable with respect to w if for every coherent subsheaf F © &
with 0 < rank{F) < rank{&),
ulF) < pl€).

Likewise, & is semistable if for every coherent subsheaf F C £ with 0 < rank(F),
u{F) < (&),
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Remarks: 1. We identify £ with its sheal ol germs of holomorphic sections.

2. One can prove thal it suffices to check the (semni)stability condition for safuraled

subsheaves of £, i¢. coherent subsheaves F whose quotient sheal £/F is torsion

free.

3. The nolion of {(semi)stability can be exiended to any torsion free coherent sheaf
We say that 4 hermitian metric & on £ is Hermitian— Yang -Mills or Hermilian—

Pinstein with respect to w if

AL, = AL, (1.7)

where Fy, € (M(EndE) is the curvature of the metric connection, A is contraction
with the Kahler form, Iz € 0"(End&) is the identity and A is a constant given by

— D1

——

1.
VoMY ()
Equivalently, we could start with a hermitian vector bundle E over A and say thal

an integrable unitary connection is Hermitian— Yang-Mills if
ARy = Alg (1.8)

For delails sec [37] for example.

It 15 important to understand precisely the correspondence between these two
ponts of view — fixing the holomorphic structure and varying the metric, or fixing
the metric and varying ihe holomorphic structure (or corresponding connection).
The key point in this correspondence is that given two hermitian metrics » and A

on fv therc is an element g € G, unique up to a unitary gauge transformation, such

that b = hgg, 1.c.
h(s,t) = hlgs,gt)  for s,te€ QO(E).

et Jg be a holomarphic structure on I and supposc that a hermitian metric & on

& satisfies the Hermitian—Yang—Mills equation

AF; = Mg,

a

where A is the meiric connection determined by Jg and f. We wanl, however, to

find an integrable
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connection, unitary with respect to & (up to unitary gauge equivalence}, satis-
fying equation {1.8). Let A be the metric connection determined by Jg and A, and

let. g € GY be such that & = hg*g. The relation between 4 and A is given by
ﬁfg{;‘] =go d.-i 0 _z_j'_l

where

doga) = godyog +(¢7)  odyog"
15 the action of G& on A" induced by the identification of A'! with the space of
holomeorphic structures C (cf.[15]). This action extends that of the unitary gauge
Zroup
G={9€G" |gg=1}

[t is casy to see that

Foy = go Fy og

g{A] is then the desired solution to equalion (1.8). Tor details see for example
[15, 37].
The main resuits reiating the notions of stability and Hermitian-Yang—mills

metiic are given by the following.

Theorem 1.3.1 Let £ be a holomorphic vector bundle over M as above. Suppose

that £ has a Hermition Yang-Mills metric h. Then £ is scmistable, and (£, 1)

decomposcs as @ direct sum
(S:- h) = G_B(Eﬁ hi)
of stable vector bundles £; with Hermitian—-Yang-Mills metrics h;, all with normal-

wzeid degree pl( &) = p(€).
[For a proof see [36, 37, 39].
Theorem 1.3.2 Let £ be a holomorphic vector bundle over M as above. Suppose

that & is stable; then it admits a Hermitian- Yong-Mills metric which is uRiGue up

to scale.

b
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For & proal see 15, 16! in the algebraic case and [54] for a general compact Kahler

manifold.
Let M be a compact Kahler manifold as above. Suppose that a compact Lie
group (¢ acts holomorphically on M preserving the Kahler metric. Lel £ be a

(r-1nvariant holomorphic vector bundle (sce §1.2).

Definition 1.3.1 The bundle £ is G-invariantly stable with respect lo w if for every
C-invariant colierent subsheaf F with 0 < rank(F) < rank({£) we have p{F) < u(E).

1'he mam goal of this section is to prove (F-invariant versions of Theorems 1.3.1 and

1.3.2:

Theorem 1.3.3 Let £ he o G-invariant holomorphic vecior bundle over @ Kihler
muanifold M as above. Suppose thai £ has a G-invariant Hermilion— Yang-Mills
metric Ly then (€, h) = @,(E, h:), where & is G-invariantly stable haning o G-
mugriant Hermiltan—Yang-Mills metvic h;, and p(E;) = u(&).

Theorem 1.3.4 et £ be a G-invariant holomorphic vector bundle as above. Sup-
pose that & is G-invariuntly stabie; ihen it supports u G-iiwvariani Hermition- Yang—

Mills metric.

Before proving these theoremns, we establish the relation between G-invariant

stabilily and stability.

Theorem 1.3.5 Let £ be ¢ G-invariant holomorphic vector bundle as above. Then
& is G-invariantly stable if and only if £ is G-invariantly indecomposable and can

be writlen us a divect sum
= Pe
with &; stable and p(&;) = p(€). In fact £ = £,0V, where £, is sfable, (&) = p(&)

and V ig the trivial bundle essociated to en irreducible representalion of (3
We first prove the followg,

Proposition 1.3.1 1 £ is G-invariently stable, then it is semistable.
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Froof. Suppose that £ s -mvartantly stable but not semistable. Then there exists

a unique maximal destabilizing saturated subsheaf F such that

g{8) < p(F)

for any subsheaf § of &, In particular
p(€) < plF); (1.9)

also, F is semistable (See [37]).
By uniqueness F is G-invartant, and (1.9) contradicts the (G-invariant stability of £.

|

Lemma 1.3.1 let &£ be a holormoerphic veclor bundle over a compact Kéhler mani-
fold. Let F be a proper saturated subsheaf such that y(F) = p(E); then

(0] WEIF) = u(F) = p(E).

(b) If £ is semisiable, then F and £/ F are semistable.

Proof. (a) follows from the formula

rank(F)p(F) + rank(E/Flu(EfF)

HE) = ranl{F) 4- rank(&/F}

(b) is a direct consequence of (4) and the definition of semistability. O

Lemma 1.3.2 Let £ be a holomorphic vector bundle over a campact Kéhler mani-
fold. Suppose that £ is sermustable but not stable; then there ezists a

suturated subsheaf F with 0 < rank(F) < rank(€) such that

(a) 1{F) = 4(E);

(b} F is stable.

Froof. 1t £ is not stable there exists a salurated subsheaf F with 0 < rank(F) <
rank(€) and p(F) = p(€). Because of Lemma 1.3.1 F is semistable. If it is not
stable we can itcrate, and the result follows from the fact thal a rank oue torsion

[ree sheaf is always stable. O
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Lemma 1.3.3 Let & and Sy e torsion free coherent sheaves over a compact Kihler
manifold. Let f : & —+ S; be a non zere homomorphism. Suppose that S\ is stable,

&7 is semistable and p(8)) = u(8y); then rank(o ) = rank{f{S1)) and fis injective.

Proaf See [37].
Proof of Theorem [.8.5. Suppose that & is G-invanantly stable. Cleatly & is G-
invariantly indecomposable. On the other hand by Proposition 1.3.1 £ is sernistable,
puppose that it is not stable. By Lemma 1.8.2 therc exists a saturated subsheal F
such that 0 < rank(F) < rank(€), ¢(F) = p(€), and F is stable.

Obviously 7 cannol be G-invariant, since this would contradict the (7-invagiant
stabtlity of £. So choose g, € (3 such that Fo + F, where 2 s the transform of
F by a1

Consider the diagram

b — F — & —5 g — 9

f
T

Fm
where Q@ is the quotient sheaf £/F and f, is the projection of F91 tq Q.
The stability of 7 implies that of 791 and p(F9) = p{F). By Lemma 1.3.1 1(Q) =
#{F}, and @ is semistable. By Lemma 1.3.3 f1 is injective. Hence F N F% = 0, so
thal, 7'+ Fo = F g For In particular, u(F + Fa) = u(F).

We will consider separately the following two cases:
For o F 4L Fn for all g; € 7 and ¢ £ ¢; (1.10}
Foe g F4 Fo for some g, € & and fz ¥ . (1.11)

Suppose first that (1.10) holds. Then F + X9 is a (7-invariant subsheaf. Since &
s (F-invariantly stable and p(F + Fo) = .u(€), rank{F + F¢) = rank(E)., Hence
rank(F%') = rank{Q}, so deg( Fo) = deg(t}). Consequently, the torsion sheaf T in

0——Fn g 7 g

has degree zero. But since

deg(T) = / w1

SUPRPR{T)
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the support of T must be of codimension > 2. Since f; is an injection we conclude
that outside of a set, § of codimension = 2 f1 15 an isomorphism,

Let M' =M — & and consider the exact Set]lence

D — F|.¢f‘__3' & |‘.H;—+ Q JJM.'—-} 0. (112}

Because Q |2 F91 |y, the njoection Fa g gives a holomorphic splitting of the
sequence {1.12)

Ear=F |ar BD [arr .

[n fact, the sequence

0-—=F —0E—Q -1 (1.13)

splits over M as is shown by the following lemma.

Lemma 1.3.4 Let § and M’ be as before. If (1.12) splits holomorphically over AL,

then so does (1.13) and moreover F and & are locally free, i.e. veclor bundies.

Proof. First recall that a coherent sheaf S is reflezive If S 22 §** or equivalently if i,
1s normal and torsion frec. Here normal trieans thal for every open set, {7 © M and
every analytic set 4 C {/ of cadimension at least 2 the restriction map I'(U, §) —
P/ — A, 8) is an isomorphism.

Since £ is reflexive and ¢ is torsion free, F is reflexive, Consequently Hom({£, F)

and Hom{F, F) are also reflexive, and in particular, normal. Hence the splitting

tomomorphism p' € HO(A”, Hom(E&, F)} with
Poj =idr|an € HO M Hom(F, 7))
extends uniquely to a splitting hormomorphism p € HO A, Hom{£&, 7)) with
poy =idy € H'(M,Hom(F, F)).

This proves that £ = S B Q. Since £ is locally free both F and Q) are projective
Qyr-modules, and hence locally free. 2

Now suppose thal the secoud case (1.11) holds, i.e.

j_—:.':r ,;;ﬁ F |- FH for some gr € (7 and ifa ?5 4.
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{Consider the diagram

0 — F+Fn — & — Q' — 0.

|
o

As in the previous case, Q' is semistable. Since F is stable and w{ Fay = u(QN,
P

we can again apply Lemrna 1.3.3 to conclude that f; is injective and hence that
(F+FMynFe =,

lterating the previous argument, after a finite number of steps we prove that

where & = F% for ¢; € (7 all different and & = F. In other words, £ = £, @ 'V,
where V is the trivial bundle M x V associated to an irreducible representation V
af &7,

We now prove the other direction of the Theorem. If £ is actually indecomposable
we are finished. Suppose then that £ is G-invariantly indecomposable and £ = &, &
with & stable and u(&) = u(€) = u. Since £ is semistable it is {F-invariantly
semistable. Suppose that £ is not G-invariantly stable; then there exisis a -

invariant saturated subsheaf F with 0 < rank{F) < rank(£&) and

#(F) = p(€). (1.14)

Let &, be such that F;, = F (&, @ 0) satisfies 0 < rank( 5} < rank{&; ).

Clearly such an & exists, since rank{F) < rank(£). We have the diagram

0 — & -— & — @u & — 0
T T I
0 — F, — F — F — 0,
where F' 1s the image of F under the projection of £ to B iy &4
Consider first the case F* = 0. Then F C Eip: We claim that in faci F =

Eiy- First, rank{F) = rank(£&,), for otherwise the stability of £, would imply that
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d(F) < u(&,) = p, contradicting (1.14). But since F 1s saturated, 1t follows that
F = &,. Since F is G-invananl, so 1s &, conlradicting the hypothesis that £ 1s
(+-invariantly indecomposable.

Next suppose that 7' # 0. The semistability of £; implies that
deg(F;,) < prank(F;,] and deg{F") < urank{F"}).

On the other hand, since rank(F) < rank(£), we can suppose without lost of gener-

ality that rank(F;,) < rank(&;,). Then by the stability of £, deg(F.,) < praok(F,,),

$0
_ _deg(Fy,) + deg(F’) .

ur) = rank{ F;, ) + rank(F?) < (1.13)

again contradicting (1.14). This completes the proof of Theorem 1.3.5. 3

We are ready now [or our main theorems.
Preoof of Theorem 1.3.3, By Theorem 1.3.1, £ = @; F; with F stable and u(F) =
p(&). Suppose that F, is not (-invariant; then there cxists ¢; € & such that
F{1 # Fi, so there is a non trivial diagram

b — FH — & — GaFsi — O

f1
T 7

53
Fi

By Lemma 1.3.3, f; is an injection, and F; N FP = 0. We repeat this argunient,
considering as many gr € & as necessary, to pel £, = Fi @ F{' & ... @ FP*, -
invariantly indecoruposable. We repeat it again for ancther F; not G-invariant and
not contained in &, till we get £ = @E&;. Now Theorem 1.3.5 applies to cach £, O
Proof of Theorem 1.5.{ This is a corollary of Theorems 1.3.2 and 1.3.5.

Remark. Theorem 1.3.4 can also be obtained as a corollary of a more general

theorem of Simpsen [50].

1.4 Moment Maps and Stability

In this seclion we recall some standard facts about the moment map for the aymplec-

tic action of a group G an a symplectic manifold, and its relationship to the notion
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of stability when (7 acts by isometries on a Kahler manifold (see [17, 22, 33, 35])—
a relationship which is a cornerstonc of this thesis.

A symiplectic ruanifold 15 by delinition a diflerentiable manilold M together with
a non-degenerate closed Z-form w. A Kabhler mamlold with its Kahler form is an
example of a symplectic manifold. A transformation f of Af is called symplectic if
it leaves invariant the 2-form | 1.e, f*w = w.

suppose now Lthat a Lie group (= acls symplectically on M. If X is a vector ficld
generated by the action, then the Lie denvative L yw vamshes. Now lor w, as for
any differential form,

Lyw = i( X Ydw + d{i( X))

hence d{i{ X )w) = 0, and so, if H'{M,R) = 0, there exists a function gy : M — R
such that,

d.ﬂ}f — ?.(X)LJJ

As X ranges over the set of vector ficlds generated by the elements of the Lie algebra
gl of Gz, these funclions can be chosen to fit together to give a map to the dual of

the Lie algebra, 1 M — g*, defined by

{p(z), A}y = p (),

where A is the vector field generated by A € g. There is a natural action of & on
both sides and a constanl ambiguity in the choice of uy. If this can be adjusted so
that p is G-equivariant, 1.c. compatible with both actions, then p is called a moment
map for the action of G on M.

The remaining ambiguity in the choice of u is the addition of a constant abelian

character in g*. If ¢ is a moment map then
dpz(V)=w(AY) for Acg,YeTM,, z€ M.
We now give some examples which will be useful later on.

Example 1. Let M be C" and let G be the unitary group ¥ (n). 1f z = (z,,..., z,)

are orthonormal complex caordinates on C*, then U/(n) leaves invariant the Kihler
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form
W = %Zdz’t A dz;.
If Ais an element of the Lie algebra of {/(n), i.e. a skew hermilian matrix A;;, the

corresponding field A on C* is given by

. a . _d
=2 Agzig—+ AyTi—.
B SPTPKS

Thus
t'l:f:i)m = % Z A,'j'zfdfj — E{jf{dﬂ‘j
= %Z Aij(2dZ; + Z;dz) since Ay = —Aj,

;
= Iy aydi)
Il the invariant inner produet —Tr(ARB) is used to identify the Lic algebra with its

dual, lhe moment map becomes
)
plz) = — S OF.

Example 2. Now lct M be the complex vector space EndC™ of n % n matrices

7= Sy, with U{n) acting by conjugation. The syvinplectic form is the Kahler form

() = %Zdzﬁﬂﬂ,ﬁ
= %Tr(thdZ*}.

T'his case can be embedded in the previous example, becanse we are considering the
morrent map for a subgroup AdU(n) € I/(n?). From the previous cxample, the

moment map evaluated on an element A of the Lie algebra of I/{n?) is given by
(1(Z), A) = STH(AZZ),

using the invariant frace description of the inner product. If A = adB lies in the

subalgebra adu{n), then

(u(2),4) = ZTd(dBZ)Z")

- %’l‘r{BZZ‘ _ ZBZ"

2

STHAB(277 — 2°2)),
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Consequently, the moment, map is
ST T

ibxample 3. Let M be the complex vector space Hom{C"*, C™) of n » m matrices
Zis with U{m}) acting on the left by multiplication, and {/{n) aciling on the right
by multiplication by the inverse. As in Example 2, this is contained in Example 1,
because we are considering the moment maps for the subgroups gy ({(rn)) C U{m n)
and pa{l/(n)} C U(m n).

if an element A of the Lie aigebra of U(m n) lies in the subalgebra p, (u{m}), i.e.

A= p(R), then

W2),4) = ZI(m(B)Z)7)

%‘Tr{BZZ')]

and hence

) = —%—ZZ*.

Inn the next Chapters we will cansider infinite-dlinensional veysions of Lhose ex-

amples.

Example 4. To complete our list of exan ples we consider an infinite dimensional
case which is due to Atiyah and Bott [4] and Donaldson [15, 16]. Let E be a =
complex vector bundle over a compact Kahler manifold M. Fix a hermitian metric
hoon . We have seen that AV the space on integrable unitary connections can be
identificd with C, the space of nolomorphic structures on £. On ¢ we have an igner

product
(e, 3) = / "ol A 87) A Wit
M1

for e, 4 € 15 . C CQ*Y{EndE). This inner product makes  a Kahler manifold with

Kahler farin
wio, ) = ({0, B) — {5, ).

The standard action of the unitary gauge group G prescrves this Kahler forin, and

the moment map for the action is given, up to addition of a constant elernent of the
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centre, by

An important feature of the moment map 18 that it provides us with a way of
construcling new symplectic manifolds, More precisely, suppose that G acts freely

and discontinuously; Lthen

w0/

15 a symplectic manifold of dimension dimM — 2dimcs. This i3 the Marsden—
Weinstein guotient of a symplectic manifold by a group (see [22, 35, 27], for in-
slance).

We now suppose thal M is a complex I ihler manifold with Kahler form w, and
thal the group G acts by isometries on M and preserves Lhe svmplectic form. We
assume that g has an invarianl positive definite inner product, allowing us ta identify
g" with g. Suppose that & has a complexification G% with Lie algebra g* == g@g C.
Then the action of & can be extended to an action of G, This action prescrves Lhe
complex structure of Af but not necessartly the metric or symplectic structure.

We shall now discuss the fundamental relationship between the symplecric quG
tient of M by & and the orbit space of M under the aciion of GC, There are two
ways of describing this relationship, both invelving the critical points of a real-valued
function.

For the first approach consider the function F 1M — R defined by
) = lu(z).
The gradient vector field grad f at a point & € M s

(grad f. X)) = 2u(x). du (X))
2 Iu(z), X). (1.16)

IIEIJ.C:’:.

grad, f = 27 u(x),

e

where [ denotes the complex structure on T M., and u(x) is the vector field generatod

by p{x) evalvated at z. From (1.16) the gradient lines are contained in the orbits of
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Gt Let T be such an orbit; then the critical points of the restriction of f to [ are
also critical points of f on M. If x is a critical point then ;:IT] 15 zero. Also, if the
isotropy group under the action of 7 s trivial (or finite), then u{z) must be zero.

It M is compact the descending gradient flow lines converge to the critical sei
of f. There are two possibilities: either a descending flow converges Lo a single
point which is an absalute minimuin of § en I, or there is a subsequence in the low
converging to a point in I, where T is Lhe closure of T

For the second approach assume that M s a Hodge manifold, i.c. there is a
hermitian line bundle with a unitary connection whose curvature is —27iw. 'This
1s of type (1, 1}, so the connection induces a holomorphic stoucture on L. If there

exists a mornent map for the action of & on M, then the action of A € gon M lifts

to an action on L piven by the vector field
Apyzy = h{A) —ipy(x)n,

where 3 € L, and A(A) is the horizontal lift of A determined by the connection on
L. We suppose that the infinitesimal action of g can be integrated to an unitary
action of (7 on I, coveriug Lhe original G-action on M. This can then be extended
to an action of the complexification %, so we have orbits of GV in L lying over
those in M. Let I' C L be such an orbit, and consider the function P(v) = — log |y|?
oo I 1L is clear that the critical points ol v are precisely the points lying over
the zeros of the moment map in I Thus another way to find zeros of the morment
map in a given orbit I' is hy seeking eritical points of ¥ on any lifted orbit T
Choosing a base point in T, we can think of % as a function on (€ which, sincea it
1s invariant under {, descends to an induced function ¥ on Q = GC/G. The twe
possibilities mentioned in the previous approach translate into the following: either
Y has & unique minimurm on @, or there is a divergent minimizing sequence. The
uniqueness property mentioned above can be deduced from a convexity property
of ¥,

We now corne to the definition of stability.
Defimition 1.4.1 A G%-orbit is stable if the associated function O on Q is proper,
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unstable athermwise.

We call a pomnt of M stable 1l 1t hes in a stable orbit and denote by M, the set of
stable paints.

The discussion above implies the following.

Proposition 1.4.1 An arbit G*.x C M is stable if and only if it has no continuous
1s0tropy group and il confains a point ot which ¢ = 0. Furthermore, if if deoes

contain such a poinf, then the set G%.2 N w7 Q) will consisi of o single G orbit,

The Anal immportant result 1s that
M, /GY = M* 0 e Y0)/C

where M* C M is the subset of points with no conlinuous isotropy. In other words,
the complex guotient of M, by G* can be identified with the syinplectic quotient of
M* by (2. Tn this way the symplectic quotient becomes a complex manifold, indeed a
Kahler manifold [29] (strictly speaking an orbifold, since it might have singnlarities
due to a discrete isofropy group).

Finally let us return to Example 4 in this section. Recall thal the moment map

for the action of & on A is given, up to a constant element of the centre, by AF,.

If we let p{A) = AF, — Alg with

o _ _—2xi deg(F)
© Vol( X)) rank{EY’

then p=1(0) is the space of Hermitian—Yeng-Mills connections on (E, k). Now if
At C AM s the set of stable holomorphic strictures on E (see §1.3) Theorem

1.3.2 can be rephrased as

pH0)/G = ALY/GE

This is an infinite dimensional example of the Marsden—Weinstein quotient, and will

serve as a patadigm for the entire thesis.
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Chapter 2

The Geometry of the Vortex

FEquation on Line Bundles

2.1 The Vortex Equation

[n this section we introduce the vorter eguation on line bundles. [t appears as one of
bhe equations satisfled by the absolute minima of the Yang-Mills—Higgs funciicial.
Bradlew {10, 11] has studied Lhis equation in more generality considering it on a
vector bundle of arbitrary rank and we refer to him for details.

l.et X be a compact IKahler manifold of complex dimension . Fix a Kihler
metric with Kahler form w. Let £ be a complex line bundle over X. Fix a hermitian
metric A on L. Let A be the space of unitary connections on (L, &) and $2°(L) be

Lhe space of sections of L.

Definition 2.1.1 We define the Yang-Mills-Higgs functional YMH, : AXQ% L) —
R by
. B
YMH, (A, 8) = [|£4]* + ldasll® + Ilflﬁf’[ﬁ - (2.1)

Where || || denotes the L% norm, Fy € Q% is the curvature of the connection A,
dap € QL) is the covariant derivative of ¢, |$|s is the norm of ¢ with respect to k

and 7 s a real parameter.

3&



The functional YMH, is invariant under the standard action of the gauge group
¢ of unitary transformations of (L, 4), so it. defines a functional on the space (A %
Q1 1))/6.

Let [A'' be the space of integrable unitary connections on (L, k), i.e. the space

of A€ A such that F{* = 0.
Proposition 2.1.1 if (A, ¢} € AN x Q% L) then

. 1,
YMH, (A, ¢} = 2||d||* + |[1AF L + §|¢|§ — %H” + 27 rdeg(L). (2.2)

Where dj 1s the (0,1) parl of the econnection, AFy C 0% is the contraction of I'4

with the Rahler form, and deg{L} is the degree of L wilh respect te w.

FProof. We expand

2

= [[AFy

Ll -l
(iAF4|$[2) = (iAF4, 7). (2.3)

| - T
A _|af? — ..
AP+ 2|ff — 3|

The result follows now from the identities

ALY, |92 = =l d3l® + g,

n

. . Lot
[AFA? = 1 F4)? and j:raﬂFA—n—T=2?rdeg[L)+

sec [10] for details. w
We conclude then that the functional YMIL, is bounded below by 27~ deg( L),
This lower bound is attained at (A, ¢) € A" x Q% L) if and only if

ad =10

_ . (2.4}
AEy— 5ol +4r =10

The first, equation says simply that ¢ is holomorphic with respect to the holomorphic
structure on L induced by A € A, "T'he second equation is called the r-porter
equation since it 1s a generalization of the vortex equation aver R? (cf.{51, 32]).

In order to discuss the existence of solutions to the system of equations {2.4)

it 15 convenient to look at it as un equation for a hermitian metric on L. For this
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equivalent point of view we fix a holomorphic siructure J;, on L. We will denote [
togeiher with this holomorphic structure by £. We also fix a holomorphic section

of £. Then we are looking for a hermitian metric b on £ satisfying the equation

AFy— g + 27 = 0 (2.5)
2 2
where F, is the curvature of the metric connection,
in §1.3 we explained the equivalence between the twao different ways It dealing
with the Hermitian-Yang-Mills equation. The situation here is very sumilar. Sup-
pose that & is a metric on £ satisfying the r-vortex equation (2.5). Let A be the

metne connection determined by d; and A, Then

T
But we want of course a pair (A, §) € AW x Q%(L) satistying equalions (2.1). As
n §1.3 let ¢ € G s0 that £ = hg*g and let A be the metric connection determied

by 3r. and k. We saw that
Fagy=go0F;o0g70
On the other hand,
¢l = lgolt,
where the action of G on Q9 L) is given by mulliplication. This is because

g i h) — (L, 1) i3 an isometry, indeed

r-:fﬂfrj-.- Sf'i',?}h — {g*glﬁbﬁ Tj)h -= (TIJ! H);L

We conclude then that (g(A), g¢) is the desired solution to the equations (2.4).

2.2 The Vortex Equation as a Dimensional Re-
duction of the Hermitian-Yang-Mills Equa-
tion

In this section we will show that the vortex equation {2.5) for 2 metric on a holomor-

phic line bundie £ over X with a prescribed holomorphic section ¢ can be abtained
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as a dimensional reduction under the action of SU(2) of the Hermitian-Yang-Mills
equation on a rank two vector bundle over X x P!. This meneralises the results of
Witten 56| and Taubes[52] for the classical vortex equation over the kyperbolic and
euclidean plane respectively.

Let £ be a holomorphic line bundle over X and let ¢ be a holomorphic section of
£. As mentioned in §1.2 Associated ta (£, ¢) there is a holomorphic vector bundie

& of rank two over X' x P! pgiven as the extension

0 — p"L— £ —— ¢O(2) — 1), (2.6)

Where p and ¢ are the projections from X % P! to X and P! regpeclively. We denote
by O the structure sheaf of P and by Oy the structure sheal of X. By O(2) we
denote as usual the holomorphic line bundle with Chern class 2 on P, isomorphic
ta the holomorphic tangent bundie of P!

This is clear since extensions as ahove are parametrized by

Ext(q*O2), p*L) = HY{(X xPL L ¢ O(-2))
= HYX, L)@ HY(P', 0O(-2)
= HYX, L) (27)

since P, (3(—2)) = 0 and HU(P* O(-2)) > HYPLOy»~C.

Consider the action of SU(2) on X x P! given by the trivial action on X and
the standard one on P? = SU(2)/U(1). This action can be lifted to an action on £
given by the trivial action on p"& and the standard one on g (2}. Since the actions
induced on HO( X, £) and HYP', O) ate trivial, £ is an SU(2)-invariant holomorphic
vector bundle.

Consider on X x P! jhe SU(2)-invariant Kihler metric whose Kahler form 1s
given by

Qo =pw+qgw, for oecR* (2.8)

where w is the IKihler form on X and Wy 15 the Fubini-Study metric with coefficient

@, 1.e. in co-ordinates



o i dz A dz
T 2w (14 [2]?)?

[

We can now state the main result of this section

and then

Proposition 2.2.1 Let £ be a holomorphic line bundle over X and ¢ be o holo-
merphic section. Let £ be the holomorphic vector bundle ever X X P defined by
(L£.d). Leta =8nfr > 0. Then £ admits a hermitian metvic satisfying the T-vortes
equalion if and enly if £ admits an SU(2)-invariant Hermition- Yang-Mills metric

with respect {a €1, .

Froof. Suppose that £ admits an SU(2}-invarianl Hermitian-Yang-Mills metric h

with respect to {3,., This means that
Ay Ty = Mg, (2.9)

where A, = p"A + ¢"A, is contraction by the Kahler form Q, and X is a constant

given by
deg,(€)
A= -
Tl X % P
B odeg( L) + 2Vol{ X) .
T T avel(xy 240
sInCe
deg, (&) = ~ [ e(&)anr
& ol dxxp 1 i
1
= ol (e1(L) + a(OEZN) A (W™ +nw™ Aw,)
Fr. J X« P
= adeg(Ll) + 2Vol{ X). (2.11)

Since h is SU(2)-invariant and since the actions of SU/(2) on p*L and ¢*O(2)

correspond to differenl weights, by Proposition 1.1.2, h 1s of the form

h:hlﬂ_j'hﬂj
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for hy and hy S{/(2)-invariant metrics on p*£ and ¢*O(2) respectively. Moreover
hy =p*hy and hy = p'ha @ g™ hi

where fiy and b are metrics on £ and Oy and A% is an ST/(2)-invariant metric on
O 2).
The metric connection of (£,h) can be wrillen as
A M 7 , (2.12)
-5 A,

with A,, Ay the metric connections of (p* L, hy) and (¢*O(2), hy) and
e X <P prL &g X —-2))is a representative of the extension class in
HYX xPLp L@ {-2)). Then 8* € QV(X x P, p* £~ ® ¢*O(2)) is the second
fundamental form of p*L 10 (£, h).

The corresponding curvature matrix is

Fa - BAE D@ )
Fp = Fa = , (2.13)
DB Ea, AR

where D : QN pr L@ ¢ O(-2)) — {p L@g¢"O(-2)) is built from A, and A, (See
[37] , for example).

By Proposition 1.1.4 the connections Ay and A, are of the form
A[ = F*J"‘ll.]-_ and A = }th""lg * th‘fla

where Ay,A; and A) are the metric connections of (£, A1), (Ox, A2} and (3{2), kL)

respectively. ‘I'hen
Fa, =p'Fe, and  Fp, =p"Fy, + q*Fhrz.

Notice that because of the isomorphism (2.7} ¢ determines an extension class
[E] over X x P'. We are taking an ST/{2}-invariant representative in this extension

class which, as proved in Proposition 1.2.1, is given by
g=r¢aqo,
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where o € OQ™(P', O(~2)) is SU(2)-invariant. In other words, up to a constant to

he fixed later, e is given in co-ordinates by

iz

= v
R (N T

By 3* we mean the adjoint of 3 € 2% {Hom{¢*O(2), p* L)) with respect, of course,

to Lhe metrics hy; and hy;. Then

ﬁ* — ptﬁi’*hlﬁha & q*ﬂ’*

where h2 is the dual metric of Az, " " ®" denotes the adjoint of ¢ € Q¥ X, Hom{OQx, £))

with respect to the metrics fy and A;, and o* is the adjoint of & € QP Hom{D(2), )

with respect to a couslant metric on & and the metric &, on O(2).

Let,

dz :
o= dz  lor ~ € (.
T+
We can assume that the metric &) 15 given by
! — 4 o o =
ho{z) = T 2 dz & oZ.
Then
« _pm__T™ 10
o =hia=——dze QVP', Q2
- o = [ 1 '[: J}v

where 2 is the metric on O(—2) dual to k5. Thus by choosing v = o /87

3

oMo = —w,,
¥ A oy 4w
and then
- Er E ] - L]
AAG = 43} |¢’|Eﬂ-}h; & g Wy
] i - L
H A "H - _Ep ]qﬁlil@h; @ Wy

In lerms of {2.13) cquation {2.9) implies thal

Ao la, —BFAB)=A
Ag(Fa, — A NE) =)

(2.14)



The LIS’s of equations {2.14) become

Ao(Fa, —BABY) = p'AFy —p[el} e ® Aole A a®)

* t W
= pPAR, — ;P '@’Jilgh;

and

Ac(Fa, = B APR) = P AFw + 0 APy ~ 01812 o ® Aula™ A )

* - i *
= PAE @A+ 2p 815 any

since A,{a A e") = ¢/4. On Lhe other hand, A,F); = —4A7ifo, and the system of

equations (2.14) becomes

AFM — %l*ﬁ’ﬁ,@hi = A
f‘ith + ;‘l|'¢'1§1@h; — =)

T

Subtracting these two equations we obtain

; |
AFy, — AFy, — 1l + — = 0.

Calling A = h; @ A3 and noticing that
£y = Iy, + Fyy = Fiyy — Fy,

equation (2.16) becomes
A

:
AF, — EI@HE +—=0

Since ¢ = 8w /7 we conclude that % is a solution te the r-vortex equation .

(2.15)

(2.16)

To prove the other direction of the Proposition suppose that & is a solution to

the r-vortex equation and consider the metric

h =p7h @ p he & ¢,

where by = hy @ R, for hy a metric on Ox to be determined later on and &% is an

S{/{2)-invariant metric on O(2).

We then need to solve equation {2.9) or, equivalently, the system of equations



AFy - §|¢[E,gh5 = A
AFi + 5161 qny — 125 = A (2.17)
A (D'8) =1

AL (D"8) = 0

r

To solve the first two equations of (2.17) is equivalent 1o solving the system ol

enuations

(2.18)

But since o = 8 /7, the first equation of (2.18) is the 7-vortex equation. So we just

need to solve the second equation in (2.18).
Since hy is o metric on Ox, ha = e, for f a functiop on ¥

Then
AR, = iAgf
and the second equation of (2.18) hecores

: 1 412 )
‘dﬂgf = E(Ql - ﬁFh —|- —J—] _ (3;19}

By Hodge iheop ¥, the necessary and sufficient condition [or the existence of a solution

of [2.19) 1S
47y

/{m AR+ oy,
X £F

but this is satisfied since jt g precisely equivalent to the expressian (2.10) that

determines A,
Finally we shall solve the last two equations of (2.17).
D' = FUé@gat PO @ g e
ﬂ”_,f?* — ﬁ*.DH{,‘:‘?"* -§§} q*ﬂf* + pw¢5¢ @ q*ﬂh’ﬂl‘
One can €asily see that

Da =1 and  D7qc 0
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On the other hand,
A" D¢ Qg a) =0 and AP D"d* & g*at) == 0,

since the (1,1)-forms inside have mixed contributions from X and P!, O

2.3 An Existence Theorem for the Vortex Equa-
tion

In shis section we give a proof of an existence theorem for solutions lo the vortex
equation based on the dimensiona] reduction results of the previous section and the
invariant version of the thegrem of Donaldson, Uhlenbeck and Yau proved in §1.3.

This proof adds to the two different ones giveu by Bradlow [10, 11].

Theorem 2.3.1 Let £ be g holomorphic line bundle over o rampact ICikler maonifold
X and ¢ £ 0 a preseribed holomarphic section, and let T > 0. Then £ admits g

smooth hermitian metric R, solution to the r-vorfes equation

PR -
A F,I; —_ :2'-|¢-'|'th -+ ET == ﬂ. {5,2{}}
if and only if
Vol{ X))
deg(L) < o (2.21)

condition for existence of solutions. To see that jt 18 also sufficient we first prove the

lollowing

(2)-invarignt halomorphic vector bundle over
1 !
X % P determined by (L, 4) as the extension

0-—, P — g q‘@'{?j — {j. (i} ‘}2}

L -ﬂ —_— | ; 3 ¥ ' - ]
EL T 8-"' X(:' ::" D, Eﬁ.-‘.’-?l E 5 1.5' U{?)‘-iﬂﬂﬂ? Hﬁ?!f!'y S'ffﬂib!*ﬂ., 'i'.{-’lfh ?ES}]EC! -I!:{:' ﬂ '{fﬂﬁ,ﬂr ﬂnhf
if ir : !

4
OR X x P! defined i §2.9

where 3, s the SU(2)-invarigns Kdlider form




FProof If £ is SU(2)-invariantly stable, then
#o(p"L) < pa{E), (2.23)
where 11, is the normalized degree with respect to 2,; but
Help L) = o deg(L) and  uo(£) = % deg(L) + Vol(X),

and one can see very easily that (2.23) is equivalent to

2VollX)  7Vol( X)

deg( L) « = ir

since o = /v |
To prove the other direction of Lhe Propesition, suppose that Fisa destabilizing
subsheaf, i.e. a rank onc SU(2)-invariant subsheaf of £ with lorsion free quotient

such that
#o(F} 2 114(E). (2.24)

Consider for such an F the tellowing diagram

ﬂ——:rp‘“ﬂ——rE-—:-q*ﬂJfE}——iU

f
[

F

where the map f is the coinposition of the inciusion F —, £ and the prajection
E— g O(2),

We first notice that ker f = {0}, vtherwise = Is injected in p*f and, since &£/F ig

torsion free, p* £/ F is torsion free itnplying
= p L

If deg(L£) « TVol(X) /4, then

HolF) = 1o (p L) < pi(8),

contradicting (2.24).




We concinde then that unf is a rank one, 5U(2)-invariant subsheaf of g O(2)
which is of course torsion free. Then outside of a set 5 of codimension > 2 imf is
a line hundie. St;l1

fﬂlf]{x Py T ?'@(Ejf{xxpl}\s

15 not necessarily an injection of line bundles {i.e. an isomorphism): we need to
remove also a set 5% of codimension at least 1, the support of the torsion sheaf
a2}/ imf,

Because of SU(2)-invariance the singularity set is of the form
SUS' =8 xpt

where S ¢ X s & set of codimension > 1.

Then, outside of the sef S x pt imf is isomorphic to 7"0(2) and we have g
splitting of the sequence (2.22) when restricted to X\S x P, This implies that [or
agenericz € X (x & X\S) the restriction of the sequence (2.22) to {2} x P? splits

and is then the trivial extension
0-— 0 ——og H2) — G2y — 0. (2.25)

But this is impossibie since, by construction, (2.22) only splits when restricted to
D % P, where D — (#) is the divisor determined by the holomorphic section ¢.
Indeed, since D has codirnension lin X, for a generic z € X {2z € X\/D) the

restriction of (2.22) to {2} =% P! is the non trivial extension
0— 00— 0l s O(l) — &(2y — 0. (2.26)

We then get a contradiction and F satisfying (2.24) cunnot eXist, proving the SEH2)-
mvatiani, stability of £, G

To finish the proof of the Theorem 2.3.1, suppose that (2.21) holds. By the
Previous Proposition £ i SU[E]—invariantly stable with respect o {1,. Then by
Theorem 1.3.4 there exis ts an SU(2)-invariant Hermitian—‘k’a,ng—h*ﬁlls metric with
respect to £, on £, and finally by Propesition 2.9.1 we get the desired selution to

the r-vortex equatian . U
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2.4 A Direct Proof of the Existence Theorem for
Riemann Surfaces

Ln this section we give yet another proof of the existence theorem for the vortex
equation on a line bundle over a Riemann surface, We shall model our proof on
that of Hilchin for the self-duality equations over Riemann surfaces [30], which is
i turn modelled on Donaldson’s proof of the theorem of Narasimhan and Seshadri

[13]. We state the theorem we want to prove again.

Theorem 2.4.1 Let ¥ be a compact Riemann surface with a fired melric. Lef [
over X be a 0% line bundlc of degree d > 0 with « fized hermitian metric b, Let
D=3 2; be an effective divisor of degree d and consider T > 0. Then lhere exists

¢ smooth solution, unique up to gouge equivalence, of the equations

=10 (2.27)
:'qu_,q-— % rﬁ'lﬁ+%? :ﬂ
of and only if
R AT TN
d =deg{L} < —;_{—i

Moreover, this selution is such that £ = (L,d%) = [D], the holomarphic bundle
determined by D) and the set of zeros of ¢ is the divisor D, ie (@) =D, where (¢)
denotes the divisor defined by ¢.

Proof. ‘The easy direction is as in the existence theorem for a general Kahler man-
ifold, To prove the other direction, recall that since we are on a Riemann surface
CVery unitary connection on (L, k), A € A is inteprable, ie. A — A. Then we can

identify 4 with the space of holomorphic structitres ou L. Consider now the subscl

of A x 29 L) given by
.-".L'r = {{A, (;.5} - A X ilul:L]l |E}'".r-l §_£ 0 and dr':,;q.{t = ﬂ}

‘The complex gauge group G€ acts on A x 0"(L) and this induces an action on
A We can identily the quotient space A'/GC with the space of effective divisors of

degree d. i.e. the d-fold symmetric product of the Riemann surface S, This is the
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very standard fact that a helomorphic line bundie is the line bundle of an effeclive
divisor if and only if it has a non trivial holomorphic section, moreover, the divisor
ts given by the zeros of this holomorphic section {sce [21], for example).

By considering pairs (A4, ¢) € A the first equation of {2.27) is satisfied. We will
consider the second equation in terms of moment IMADPS,

As mentioned in §1.4 (example 4), the space of connections A is a Kaller mani-
toid, the unitary gauge group acts symplectically on it and the moruent map is given
by im(A) = AF,. Similarly the space of sections Q% L) is a Kahler manifold with
metric given by

¥, = j;{ur']*ﬁ:}h for +,n ¢ ﬂu{‘[’}'
The action of G is symplectic and, from example 3 in §1.4 the moment map is given
by pi2($) = —:|¢|3. Then A is a Kihler submanifold of A x 11° L) and the moment

map for the sympleciic action of G on A is given by

m(A) + a8) = AFy — Lo

Since we want (A, ¢) to satisfy the second equation of (2.27), by integratling this

equatlion we gel
i s TYol(%)
L=y

We are assuming that d < rVol(X)/4x, and then the L?-norm of ¢ is a number

different from zero that we will fix from Lhe beginning. We do this by considering
the symplectic action of the subgroup of constant unitary transformations /(1) C ¢
on M, which is trivial on A and multiplication on ¢, The mornent map lor this

action, ji : A" — u(l) is given by

. T
(A, )= = — (f 2
M) = ~ ooy i 191

We take ¢ = -—%T + 2xid/Vol(E) and consider the symplectic quotient

-

N = ! (e3/L(1).

The group § = G/U(1} acts symplectically on & and the moment map pu for this

aclion is given by

a1



— A : 2 1 L _i ;12
A = M=ol s L AR L [y

d ¢
= Al gleli+ g

since for (A, ¢) in W, f, AF, — : e 19)] = —1rvol(S).

We want to solve fhe equation AF, — %—f{.’}]ﬁ + %T = O by considering an orhi,
of a representative of the divisor D in A7 under the complex group G€ -- Ggtice
We will find & minimum for le{A, @)|[3, = AL, - el + 27112, on the orbit. The
action of ¢ € GC gn A is given by choosing a lifting 9 € G€ that leaves the L? norm
of the Higes field fixed, Le. ||gdli;e = l6lp2. Clearly the action of G€ extends that
of ¢ and since G acts lreely we will produce a solution to the - vortex equation
(this follows from the discussion in §1.4 of the relationship hetween momert raps
and stahility).

As in [13, 30] we shall be working with generalised connections of class L2, that
IS, connections which differ from a smoath connection by an element of the Sobolev
space L. We will also yuge gauge transforrmations ig L3. Since, as shown iy (4],
every L3 orbit in the L{ space of connections containg g (7% connection Lhere is no
loss of generality as for ag A s concerned. Also since ¢ satisfies the elliptic equation
494 = 0 we cafl, by elliptic regularity, deduce that ¢ 15 O As explained in 4,
414] the group action and properties of Curvature we use extend without substantjal
change, in particular L C 8 56 the topology of the line bundle IS preserved.

We observe that the linclional |lu(A. )2, on A is essentially the Yang- Mills—
Higgs functional. Indeed,; as shaw in 8.1, (A, ¢) c

M) = I+ gl + Loz -,

3 o
|AF, + ‘ifﬁfﬂfﬁ — -;—Tlff;z + 277 deg{L}

I

(A, 8N 72 + 277 deg(L). (2.28)

The Yang=h*f[ﬂls;—Higgs lunctional extends to » smooth functional for 4 and ¢

i the L2 spaces. Notjce that ¢ € L7 since as 4 particular case of the Soboley

inequalities the inclusion L2 ¢ f4 g compact.
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So given D € S9% choose a smooth vepresentative (A, do) € A, and consider
- . . - N :

the restriction of {li{A, #)]12, to the orbit of (Ag, ¢o) under (GF)° the group of 12

complex gauge transformations madulo C°. Talke a mMinimizing sequence (A, P )

for ||s|l72 in this orbit. Then for same constant

”N(f{lﬂ: ‘:E'ﬂ.}”iﬁ < ()

This, together with equality (2.28), gives an L%-bound on Fan- The main ingredicnt
. the proofs of Donaldson and Hitehin referred to above is the weak compaciness
theorem of Uhlenbeck [53]). This theorem states that if A, is a sequence of L2
connections lor which £, is hounded in L?, then there are unitary gauge transfor-
rmalions v, for which un(An) has a weakly con vergenl, subsequence. In our abelian
situakbion this is an easy consequence of the ellipticity of the Coulomb gauge., We
have then a subsequence A, and L% unitary gange transformations U, such that
Uns(Anr) converges weakly in L. Rename A, = Ul Ay) and @, = tp{dn). We
shall find now L? uniform bounds for ¢n. then by the weak compactness of Li, the
sequence ¢, will have a weakly convergent subsequence in L2 To do this consider

the elliplic estimate

“ﬁﬁﬁ: ”Lf = Kﬂ( ”d:n $n

22 + || B[l 12).

We have that d% ¢. =0 and on the other hand, the constants X, can he utiformly
bounded since Lhe d}, vonverge. We just need to find uniform bounds for ||@,||;-.
First realise that we have uniform bounds for |[¢a|[z6 as a consequence of (A, ¢,)
being a minimizing sequence for llelli. and the equality (2.28). Now the Holder's
incquality

Ifafizz < VoI(S)¢ ], ]

gives us the uniform L - bounds for 3

We conelude then that { possibly after renaming again) (A, ¢,) converges weakly
in L] to (A, ¢). We need to show that (A, ) is iu the same orbit as (Ag, ).

The (A4,,¢,) are related to (Ao, do) by elements gn € {GTY

{Aﬂ: ‘I}ﬂ} — gﬂ'(ACl: ¢ﬂ)
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such that
li$nllie = [lgnttollee = ||| 2. (2.29)

We will prove that ¥n has a subsequence that converges to a holomorphic map 4
between the holomaorphic line bundes {L,d3,) and (L, d%), then an 1somorphism.
From here we conclude that (A4, ) 1s in the same orbit as (Ao, ¢ho) and is a solution

to equations {2.27). To see this we write
dy —dy = a,,

where the e, are (0,1)-forms. Since ap converges the projection on the harmonic
part converges, but since

dy, —dy, =d"logg,,
the harmonic part is an integral class, and so must be constant for large enough n.

Tragsforming with a fixed U(1) gauge transformation, we can assumne
rr
Xn = d hn-

Now I} convergence of a, gives by elliptic regularity L3 convergence of #, — ¢,
where the coustant ¢, is the harmonic part (i.e. the integral) of the function .

Since we have L2 ¢ C® we get uniform bounds on A, —¢,. Now
gn = Ko explh, —c,),

for same non-zero constant .. The requiremeni, that 9n should preserve the level
set of the mement map gives that the L2 norm of ®r = Gathy should be constant
45 expressed by (2.29). Plugging in the above expression for g, and the uniform

bounds on &, — ¢, i.e

mo< A, — e, < M

EWVes upper and lower non-zero hounds for the ] thal shows immediately that
we can choose a uniformly tonvergent subsequence of g, which CONVEerges to an

invertible gauge transformation, .



2.5 The Moduli Space of Vortices

In the previous section, al the same time that we gave another proof for the exis-
tence theorem, we showed that the modulj space of vortices for a Riernann surface
18 given by the d-fold symmetric product 59, In this section we give a description
ot the moduli space of vortices for any Kahler manifold which is a straightforward
generalization of the Riemann surface case. This has heen {ivst given by Bradlow
[10] but we shall emphasize its relation to the SU(2)-invariant part of the mod-
ult space of Hermitian- ang-Mills connections and corresponding moduli space of
stable holomorphic structutes on a rank Lwo vector bundle over X x P': relation
provided by the dimensional reduction results obtained in the previous sections.
lixploiting this relation we are able to equip the moduli space of vortices with 4
siructure of a complex analytic space with a Kihler melric cutside of Lhe singular
polals.

Consider the set-up of §2.1, We define the moduli space of T-vortices U, ag the

quotient space of solutions to the equations
Zg=0
ﬂF_q - %|i}5[ﬁ + %T = {}
modulo the unitary gauge group G.

Consider the set
N ={{A,é}e A1 x QL) |6 20 and W =0},

The complex gauge group acts on A and, as mentioned in the previous section,
the quotient space M /GT can be identified with the space of cffective divisors £) of
Chern class o, {L) | ie a{[D]) = a{L), where [£2] is the holomarphic line bundle
determined by . We will denote Lhjs set by 2.

We will assume now that

Vol x)

4t

deg(L) < (2.31)

It is clear that a vortex [(4,¢)) € W, determines an element of @, specifically
the zero set of the holomorphic section ¢. The converse is a reformulation of the

N



existence theorem proved in §2.3. Let D € 9 o AN/GY, choose a representative
(A.¢) € M of D. I'he connection A determines & holomorphic structure 4% on L
and ¢ 15 a holomorphic section. We can solve for a metric j satisfving the r-vortex
equation. As shown at the end of §2.1, if % is related to A by b = hg*g for g & Gt
unique up to a unitary gauge transformation, then [(g(A}, o)) € U, .

Consider the € rank two veclor bundle E — P L@ H? over X %P (gec §1.1).
Let b = p*h @ gk’ be the SU(2)-mvariant metric on B, where 4 is the fixed metric
on £ and A" is a fixed S{{2)-invariant metric on H22. et H, be the moduli space
of Hermitian-Yang -Mills conncctions on (E,h) with respect to Q,. If ¢ = Sw/T
and (2.31) holds we can replirase Proposition 2.2.1 by saying that if HV s the

2U(2)-invariant part of H,., we have an injection
[ JRE— HfU[E}.

To see this in detail, let [(A, $)] € B,. The pair (A, ¢} determine an St7{2)-invariant
unitary connection on (E, h} given by
!
PR I J (2.32)
—B A

where 8 = p*¢ @ ¢*@ and A’ is the ST/(2)-invariant conneclion of (H2Z h'), We
saw in §2.2 that we have to modify A to get a Hermitian—Yang-Mills connection
on (E. h}. More precisely we saw that if b — e’ p"h D efq* k', where f s a function
satisfying cquation (2.19) then the metric connection of (£, 1) is Hermitian—Yang-
Mills, where £ is the holomorphic bundle determined by (E,d%). To produce the
desired connection in M, we have to find a complex gauge transformation g € g€

such that hs. t) = higs, gt}, lor s and f sections of E. We can take
ef
0 ef

and then [g{A)] € ‘H,.
We will describe now this injection from the holomorphic point of view. Let ¢

be the space of holomorphic structures on E. The quotient space €/G% is the space
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ol equivalence classes of holomorphic structures on E, We have an injection
T {C;gE)SU[E}

sending D to the equivalence class of the bundle £ determined by (£,d), where
£ = [D] and ¢ ¢ HY% X, £) such that (¢) = D. The bundle £, is given by the
extension

0—p'L S8, g 2) — 0. (2.33)

In fact we can see that this map is essentially a bijection. More precisely, from
example 3 in §1.2 the space (C/G%) V0 s in one-to-one correspondence with the
extensions

0—p'L — € plt g 0(2) — 0 (2.34)

where £ = (L, 5,) and if € Pic®{ X).

If now we assume Lhat deg(L) < vVol{ X} /4r and take ¢ — 87 /7, applying
Proposition 2.3.1, we dednce that £ 0 extension (2.34) is SU(2)-invariantly stable
with respect to §2,. Notice that by tensoring (2.34) with &= we are in the stiuation

of Prepesition 2.3.1. In fact we can ptove something stronger:

Proposition 2.5.1 fef £ € (C/ghysu(D) ffdeg(l) < 1 Vol X)/4r and o = 8T,
then £ is stable with respect to [,

Proof. We can assume that £ 15 given by
0 —pL — £ —, ¢ O(2) — 0. (2.35)

Suppose £ is not stable, By Thecrem 1.3.5, £ & W& C?, where W is a line bundle
over X' x P')and C? is the trivial ratk two veclor bundle over X x P? with ST7(2)
acting on the fibre via the fundamental representation. Then det £ = LR,
and on the other hand det £ — W2, This implies that

Wit 2 O(1)  far every 1 & X,

resulting in

Elsrem & O1) @ O(1) forevery ze X,

57



which falls to be true if # € O = {¢), where ¢ is the holomorphic section of £
defining the extension (2.35). 0
Let M, C C/GT be the moduli space of stable holomorphic structures with

respect to 3, on £. We nave then proved Lhat
(C/QE)SUI:E} . MSU{E}_

It is a well-known fact that the moduli space A, of stable helomorphic struc-
tures is a complex analytic space. The space M, is non-singular at the poiols [g]
in which H2(X < P!, End"(£)) = 0, where £ = (E, O ), and End®(£) is the trace-free
part of Erd(&) {cf.[41, 37]).

On the other hand it is a general {acl ihal if a group ¢ acts holomorphically
on a complex analytic space M, then the fix point set M© is a complex analytic
subspace.

As a resull of these two facts the space (C/GY)*V ) = MU comes equipped
with the structure of a complex analytic space. The Picard group Pic’( X} acts holo-
morphically on M, by tensoring, Clearly the space ® 15 the quotient of AT
under this aclion. We can define a holomorphic section by choosing the representa-
tive given by an exiension of the form (2.33). So we conclude from here that 2 is a
complex analytic space which is non-singular at & point D € D if H2(End®(€p)) = 0.
We will study now the conditions under which this happens. We first consider the

casc of a Riemann surface.

Proposition 2.5.2 Let & be a Kiemenn surface and D be an effective divisor of
degree d. Then H* (T <P, End®(£p)) = 0, and conscquently D, the space of effective

divisors of degree d, is « (smooth) rompler manifold.
Proof. By Serre dueality
HYT x PLEnd®(Ep)) = HYE x P',End%(€p) ® Kgypr)"
But now for 2 &€ 24\ D
End(£p) @ Keypilizyxm = (O(1) @ O(1) @ (O(-1) & O(—1)) ® O(-2).
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Hence [I°(End(€p) @ Kgxptliz)xpt) = 0 and, since this happens for a generic 2, we
conclude that
HYZ < P, End®(£p) = 0.
O

The result of this Proposition is of course not surprising, since as it very well-
known the space @ is isomorphic to the d-fold syinmeiric praoduct S95.

We now invesligate the casze of a general [(&hler manifold. The tool to do tlis is
the Leray spectral sequence (see [21] for example). We recall the

general situation here: let M —24 N be a preper surjective mapping of topo-
logical spaces and let & be a sheaf on M. The qth direct image sheaf is the sheaf

B[ {5} on N associated to the presheaf
U — HI(f 1), 8).

The Leray spectral sequence is a spectral sequence {E,} with

Eo = H(M,8&)
BT = HP(N, fI{5)).

We are going to apply this to the projection X x P? -2+ X and the sheaf
& = End®(£p) using information provided by [7]. The £27 groups are zero for ¢ > 1
since dim({P') = 1.

We have the long exacl sequence

— HYS) — HYR'P8) — HpS)

— HXS) — H\(R'PS) — H¥pS) — . 30
We need then to compute the sheaves p, S and Rlp,S.
The bundle § = End™{(X x P, Ep) is given by the extension
0 — P LRgO-2) — & — Q — 0, (2.37)
where & is itself the extension
0 — p'L"®@¢0O(2) — Q@ — Oy, pr — 0. (2.38)
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Associated to the short exact sequence (2.37) we have the long exact sequence in
direct 1magzes
0 — ppLee0=2) — p(&) — p(Q)
— Blp(prL®qO(-2)) ~— R'p(S) — R'p(Q) — 0.

(2.39)

On the other hand, we have the long exact scquence associated to (2.38)

0 — p(pl@q0R) — p(@) — P{Oxxpr)

— Ep(prL¢02)) — R'p(Q) — R'p(Oxep) — 0.
(2.40)

bul since Rl'p.(p*L* @ ¢*O(2)} = 0 and R'p (O p) = 0 then R'p.(Q) = 0 and
(2.40) becomes

) —g®H L — p{Q)— Oy — G, (2.41)

where g is the vector space of seclions of Of2). Since (2.41) is invariant under the

action ol SU(2), it splits, Thus from (2.39) we get

0 — p (&) — g& L POy EF,{: }Rlp,(ff)-—qﬂ.

By ST/(2)-invariance the map § must be zers for the first sununand and multipli-
cation by the section ¢ defining our initial bundle for the second summand, From

here we deduce that
p{S)=9g®L" and R'p.(8) = coker(0 5 £) = L& Op
We are now in a position to analyse sequence (2.36). [t becomes

—_— HI(S] —_— HU{J:@(:’U) — HE([I@J':'}
— HYS) — HY{L®Op) — HaoL') —.

But now by SU(2}-invariance, the maps
LR Op) — HYgo L") and HYL®Op) — HY g L)
musl be zero and this yields the final resuld
0 — HY{(X,g® L") — H (X x P, End®(€&p)) — HNX, L8O — 0. (2.42)
From here we immediately obtain the following
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Proposition 2.5.3 The spoce © 15 now-stinguler at oll the points D for which

HYX, (D) =0 and #'(X,[D]© Op) = 0.

Remarks. 1. Notice that these two conditions are satisfied if X i1s a Ricmann
surface.
2. It is probably true that condition H*(X,[D]*) = 0 in the previous Proposition is
not necessary. This could be seen by Kodaira and Spencer deformation theory [38]
or, [rom cur point of view, onc could prove thal for I} Lo be a non-singular point
il is enough to show thal the SU{2)-nvariant part of H?2(X x P! End(Ep)) = 0.
From (2.42} we see that (his is preciscly H1{X, £ & ).

[n the sequel we give some examples in which we can ensure that the conditions

of the previous proposition are met and then @D is smooth at every point.

Proposition 2.5.4 Let L be a positive O line bundle over a compact
Kihler manifold X such thot HY X, Ox) = 0 and Ky @ L* is negative (where
Kx 13 the cononical line bundle of X ). Then the spoce ® of effective divizors nsth

Chern elass e,(L) is a complex manifold.

Proof. Bince £ = [D] is positive the dual £* is negative and by the Kodaira vanishing
theorem {see(21, 37]) H*{X,L*) = 0. To show that H!(X, LR Op) = 0 we consider

the sequence

00— Or 5 S L00p —0,

and the part of the assucialed long exact sequence given hy
HYX, L) — X, LR Op) — HYX,O) — HYX.L).

The vanishing of HY{(X, £ ® Op) follows now from the hypothesis H*(X,?) = 0

and
HYUX, L) 2 HVYX, L @ Kx) =0,
agaln by the Kodaira vanishing theorem. [l
As an illustration of the previous Proposition one can cowsider a positive line

bundle on a Fane manifold, i.c. a manifold for which the canonical line bundle is
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negative. Then A x & £* 15 negative and
HY X, Ox) = HV3HX,Kx) =0

because of the negativity of K x. In fact in this situation we have that
HY X, Ox)=0 dorall p>»0,

and this unphes that HY(X,0%) =@ H4(X,7). So xing ¢ (L) means fixing the
holomarphic line bundle and the manifold 2 is then a projective space.

We now come to the question of existence of a Kahler metric on the non-singular
part of . Agaln we appeal to the fact that the non-singular part of the moduli space
of stable bundles A4, has a Kaller inetric as 1s well-known (4, 37]). This metric s
obtained by identifying A4, with the moduli space of irreducible Hermitian—-Yang—
Mills connections, which in turn is a svmplectic guotient of the space of integrable
conmnections, acquiring n Lhis way a symplectic slructure. Since the pon-singular
part of 2 i3 a complex submanifold of a Kahler manifold it inherits a I{ahler metric.
This metric depends on the parameter o (and then on 7) since it enters in the Kahler
metric of X x P,

Remarks. 1. One can pursue the slndy ol the existence of a complex analytic
structure on @ in a direct way. Since B can be described as the orhit space A /G€
ane can use inverse function theorems and Kuranishi-type arguments in a similar
way as is done for the moduli space of stable holomorphic structures (see [17, 37, 41]).
2. Similarly the moduli space of r-vortices can be realised as a sympleciic quotient

since, as we have seen in Lhe previous section, the equation

-
f

WA, 8) = AFs~ |91 +

i
2

s the moiment map for the symplectic action of the gauge gronp on A, and then
0, = H{O)/G.

Under the idenlification © 22 97, one can see that the symplectic structure of 2, is

cormpatible with the complex structure,



Chapter 3

Equations of
Hermitian—Yang—Mills—Higgs

Type

3.1 A Coupled System of Vortex Equations

In this section we shall consider a certain generalization of the Hermitian—Yang-
Mills equation {1.8) that involves a Higgs field and twa connections on two different
hermitian bundles. As mentioned in §1.4 the Hermitian-Yang-Mills equation ap-
pears as a moment map equalion for the action of the gauge group on the space of
connections [4, 15, 37]. This is precisely the framework in which we will obtain this
generalization.

Let £ be a (7 complex vector bundle of rank v and L be a U line bundle over
a compact Kihler manifold X. Consider fixed hermitian metrics by on £ and A2
on L. Let A; and G; be the corresponding space of unitary connections and unmitary
gauge group. Lel °(Hom(l, £}) = % E % L*) be the space of sections ol £ ® L.

This space has a Kahler metric given by

() = [ @mnan;  for ¥,n € W(ESLY).
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The corresponding Kahler form 15 then

ol n) = ({7} — (m, )

The unitary gauge groups G, and ¢ act symplectically on Q%(E @ L*) by
ald)=gro¢ and g{d)=dog;' for g1 E€G1, g2 € G @ E N E & LY.
Consider the §; x Go-invariant Kihler submanifold of A" x A3' x Q% E @ %)

N = {(Ag, Az, ¢)E At x Ayt x QN E® L) | dlf, 4,0 =0},

where of course Gy acts in the standard way on Ai‘l and trivially on Aé’l and similariy

for Gj.

Lemma 3.1.1 The moment maps for the action of G and G; on N,

a1 AN — Tie(G)* and gg @ N — Lie(Gy}" are given by

[

T . 2
ILT(AlaAE-..ﬁ'E‘} AP, — §¢’®¢ -+ ETIE

pe( Ay, 43 9) = AFa 4+ Sl¢ff+ 571

where ¢* denotes the edjoinl of ¢ with respect to the metrics by and by and |@| s
the norm with respect to hy @ A3 , hence ¢ @ ¢~ € LEod(L), |¢[? € BEnd(L), and 7

and 7' are real parameters.

Proof As mentioned in example 4 of §1.4, the moment map for the action of G; on
At is given by AF4.. It suffices to prove then that the moment maps for the action

of G) and G, on Q% £ @ L*) are given, up to a constant element of the centre, by

w8) = =904 (3.1)
W) = sl (3.2)

This is the infinite dimensional version of example 3 considered in §1.4. However we

will verily here (3.1). Let £ € Lie{G1) and n € T,0%E @ L*). Define

”E(ﬁf’} = {.I"t({'ﬁ)? §>
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We have Lo prove thal

(a) due(n) = wlXe,n),
(b) g 18 G;-eqiivariant.
Where X; is the vector ficld generated by € and is given by

Xe($) = {40 exp(tE)|o = € 0 0.

et us prove {(a):

keld) = (~2s@8.8)
;

= —{$,£ 0 ). (3.3

b

Hence

4,3

duelo(m) = L= th+ 0,60 (84 tn)))]eco

_ _%{(m{fﬂ ¢ + ($,6 0 n))

N %(—(tﬁﬁfﬂ )= (60 ¢)
e (3.4)

since £ = —£*, and then —(¢,fon) ={£ 0 @, 7).
To prove () we see that

ulgi(P)) = _%ﬂl o¢® ¢*ogy,

but g7 = ¢7". The proof of (3.2} is completely analogous. O
Our objective in this Chapter is to study the conditions for existence of zeros of
it- and g, Le. of solntions to the system of equations in (A;, Ay, $) € A given by

b

AFy —33@ ¢ + irlg =10 }

. _ {3.5)
AP g 4 3|8 + 27T = 0

We call this systern a coupled system of r-vorter equations. The naturality of this sys-
tem of equations comes not only from the fact that they are moment map equations
generalising the Hermitian Yang-Mills equation (in fact when ¢ = 0 the system

decouples to give the Hermitian-Yang-Mills equations for connections on E and Ly,
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but alse because they appear, as we will see later, as a dimensional reduction of the
Hermitian-Yang-Mills equation, providing us with a route to study the existence of
solulions. We will first note that the parameters 7 and v’ are not independent. By

adding the trace of both equations (3.5) and since I't(¢ @ ¢=) = |¢|® we got

3 2

TrAl's, + AFy, + ETT + 57" = 0.

By integrating this equation and, since

T

deg(E) = i jx TrAFy, <

n!

¥ ™
and deg(L) = fx AFa—r,

we chtain
4

Vol(X)

For reasons thal will become apparent later on we will cansider 7 and satisiying

(deg{ ~) 4 deg(L)). (3.6)

rr 7’ =

7T > 7' 1n addition to (3.6).

3.2 The System of Vortex Equations as a Dimen-
sional Reduction of the Hermitian—Yang—Mills
Equation

In this section we will show that the system of coupled vortex equations (3.3) can be
obtained as a dimensional reduction, under the action of 51/(2}, of the Hermitian—
Yang-Mills equation on a rank » + 1 vector bundle over X x P'. This is completely
analogous to what we did in §2.2 for the vortex equaticn on line bundles and for
this reason we will not give abundant details. As in the line bundle situation it will
be convenient o look at the equations (3.5} as a system of equations for two metrics.
For this purpose we fix holomorphic struciures £ — (#,9g) and £ = (L,8;) and
we also fix the Higgs field ¢ € HY(E ® £*). The system (3.3) becomes a system of

equations for two metrics &y and ko on € and £

ABy, — 3@ ¢* + irle =D

| , ? (3.7)
ARy, + 5P+ 27Tz = D
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where &y, and f3, are the curvaturcs of the metric connections.
Consider the SU(2)-invariant holomorphic vector bundle £ over X x P! deter-

muned by (£, £, ¢) as the extension

0 > p't — & — pL@qgO2) — 0. (3.8)
Recall that
Bxt? (5L & ¢“0(2), 7€) = II(X.£ @ L)

The action of SU{‘Z) 13 the trivial one on £ and £ and the siandard one on O(2).

Proposttion 3.2.1 Let ¢ be given by

2Vol( X)

T T F ¥ 1) Vol X/ dm — (deg(E) + deg(L)] (3-9)

Then £ and L have metrics, satisfying the t-vorter equalions (3.7} if and only if
E admits an SU(2)-invaeriant metric satisfying the Hermiliun-Yeng-Mills equation

with respect to £1,.

Proof. We first see Lhat o given by (3.9) is & positive nuinber. This follows from
considering 7 > 7' for 7 and 7' related by (3.6). Suppose now that £ admits an

SU(2)-invariant metric h satisfying the Hermitian—Yang Mills equation
A,y = Mg (3.10)

Where X 15 given by

Vo= —oni telE)
Vol( X x P!)
~2ms deg(&) +deg(L) | 2
r+ l[ Vol{ X) F -::r_}’ (311)

since deg {(£) = a{deg(£) + deg(L)) + 2Vol( X ).

il

As n Proposition 2.2.1 because of ST/{2)-invariance h is of the form
h =p*h @ p*hy & g*hs,

where hy and A, are wetrics on £ and £ and %, is an ST (2)-invarianl metric on

({2). The metric conueciion of (£,h) can be written as
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Ao | M 7 (3.12)
-3 A,
for Ay = p" Ay, Ay = p A+ 9 AL and 8 = "¢ @ ¢*a where A;,A; and A are the
metric connections of (£, (), (L, fia) and (G{2), £L) respectively and
o € NP, O(-2)) as in Proposition 2.2,1, but such that o A o® = ‘ws. The
corresponding curvature matrix is
Fo-Fa= | T8N DY (3.13)
D3 Fa,—B*Af{
Then
A =30 (¢Q97) B ¢w,,
B A B = =i (4) 8 g
where ¢* is the adjoint of ¢ with respect to the metrics &, and h,. Equation (3.10}

implies that

Ao(Fa, — B ABY) = My

| , (3.14)
Ao{Fa, — B* A 8) = A
which i3 equivalent to
AR, —i¢d@¢* = A

| i
Ay, + 52 — 4t = A
To see that {h;, h;) is a sclulion to the system of 7-vortex equations {3.7) we need

to verify that
A o ~%T
| _ : (3.16)
A4 e iy
Using that A 15 given by {3.11) oue can easily see that the first equation of (3.16) is
satisfied, since 1t is equivalent to (3.9). On the other hand, the second equation of
(3.18) becomes T — v/ = 8% /o which is equivalent to {3.6).

To prove the other direction of the Proposition we start with a solution {X;, hs)

to the system (3.5) and consider the metric on £ given by

h=p'h @& ph: g7
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To see that h is a solution to the equation (3.10) we just need to reverse the previous

arguments and recall from Proposition 2.2.1 that

A3 =0 and A, (D75} = 0.

3.3 An Existence Theorem for the System of
Vortex Equations

In this section we study the necessary and suflicient conditions for the exislence
of soluticne to the system of vortex equations. Let £, £, ¢, 7 and o be as 1 the
previous section. From Proposition 3.2.1 and Theorems 1.3.3 and 1.3.4 we have the

following.

Theorem 3.3.1 The bundles £ and £ support metrics satisfying the coupled system
of T-vortex equations of and only if the holomorphic bundle £ over X x P determined
by (E,L,¢) is a direct sum af SU(Z)-invariantly stable bundles with respect to 0,

all of them with the same normalised degree.

In the sequel we will express this condition on € in terms of the initial data (£, £, ¢).
We will suppose [first Lthat £ 15 SU(2}-invariantly indecomposable. To study this
situalion we consider the notion of v-siebifity introduced by Bradlow [10, 11].

Lel £ be a rank r holomorphic vector bundle over a compact Kahler manilold

X, and let ¢ be a holomorphic section of £. Consider Lhe following parameters

p=supf{p(F) | F C £ is a reflexive subsheal with rank{F) = (1},
1) = mi{pE£f/F) | F C £ is a reflexive subsheaf with 0 < rank{F} < r and ¢ € F}.

Definition 3.3.1 Let v be o real parameter, (£, ¢) is T-stable if and only if

r Vol( X)

P < ). (3.17)
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Theorem 3.3.2 Let £ be a holomorphic vector bundle over @ compact Kdhler man-
tfold X with a preseribed holommorphic section ¢, Let £ he the SU(2)-invarient

holomorphic vector bundle over X x P! defermined by (£, ¢) as the extension
0— '8 — & — g O02)— (3.18)

and {ct o be given by
B 2 Vell X)
© T o 1)7 Vol X)/4x — deg(&)
Then (£, ¢) is T-stable if and only if £ w5 SU{2)-invariantly stable with respect to

£,

(3.19)

Froaf Suppose first that £ is SU(2)-invariantly stable with respect to Q.. Denote

T = rVol{ X} /47, We have to prove that

p< T < plp).

Suppose that 4 > 7. There exists then a reflexive subsheaf F € £ with rank(F) > @
such that
u(Fj =zt

Consider the SU/(2)-invarianl subsheaf of £ given by F = s*F, we will see that
#a(F) = 1,(E) contradicting that £ 1s invariantly stable. ln fact

Ho(F) = op(F) =z ot
On the other hand,
(8] = o deg(£} + AVul(X)}
r+1

and (3.19) can be rephrased by saying that p,(£) = o,

Suppose now that + > u(¢). There exists then a reflexive subsheaf F C £ wilh

rank(F) = s < r and ¢ € F satisfying
p(EfF) < F.

Since ¢ C F the pair (F, ¢} determines an SU(2)-invariant sheaf over X x P! given
by the extension

0 —p"F — F — g O2) — 0. (3.20)

Moreover F is a subsheaf of £ This follows from the following lemma.

T0



Lemma 3.8.1 Let d € HO(X, £} and £ be the vector bundle over X x P determined
by (£,¢). Let F C £ be o coherent subsheaf and v € HY X, F) a global section. Lei
F be the sheaf over X x P! determined by (F,28), i.e. given by the cztension

) — p*F — F — g7 0(2) — D
Then F 15 o subsheaf of £ if and only if L) = &, where
HYX, F) 20 HY(X, ) (3.21)
15 the map induced by the inclusion F <+ £,

Proef The inclusion F <5 £ induces the map
Bxt!{¢"O(2), p" F) =+ Ext!{(¢*O(2), ). (3.22)

The extension ¢,(#) has the universal property that, up to isemorphisim, ¢,(F} is

the enly extension such that the follow ng diagram commules
0 — p& — iL(F) — ¢O2) — 0
1 r n (3.23)

0 — pF — F g2y — D,

1.e. the left square is a push-out diagram (see(26]). The map i, s injective since
Ilem(¢*((2),p*E/F) = 0, and is in fact given by the inclusion FYN X, F) — HY% X, &),
since
Ext'(q*O(2),p*F) = HY(X x PLPrreq0o(-2) = X, ),
Ext'(¢"(2),p*E) = HY(X x PLPE® ¢ O(—2)) = HYX,E).

Where the first isomorphism follows from the general fact that if £ and G are

-

Ox .pr-modules and £ is locally free one has the canonical 1somorphisin
Exto . (£,6) 2 X x P &g g (),

and the second isomorphism is a consequence of the Kiinneth formula. The result

of the lemma follows immediately, O
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We conclude then that £ = t.{F} and, since obviously the map F — £ is an

injection, F is an ST/(2)-invariant subsheaf of £ Now sjnce

7 deg{£) + 2Vol( X)

u:-rE: '
#q(E) -

and

a deg( F) + 2Vol{ X)
54 1

nsing the relation between o and 7 given by (3,19}, a straightforward computation

ol F) = :
shows that p(£/F) < 7 is equivalent to Ho{F} = po(€) contradicting that & is
SU(2)-invariantly stable.

We now prove the other direciion of the Theorery Suppose then that (£, ¢) is

7-stable, we first prove that o given by (3.19) is positive, i.e.
(r + 1)F ~ deg(&) > 0. (3.24)
Lemma 3.8.2 Suppose that (£,8) is T-stable, then deg(£) = (.

Froof. Consider the rank one subsheaf of £ generated by ¢ via the injection
Ox — £,

This subsheaf, $(Ox) can be extended to a rank one torsion free sheaf [¢] such that
€/[#] is torsion free and then is reflexive. [n other words, [¢] is the saturation of
$(Ox) and then

deglé] > deg (Ox) > 0,

We have therefore ihat
= u(g]) > 0. (1.25)

On the other hand,
wlE/18)) = SeBlE) ~ deg(lg])

r--1

Suppase thal deg(€) < 0, then u(E/[]) < 0, and this implies that

1@} < plEf[¢)) < 0.
This, together with (3.25), contradicts that g « (). G
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Since deg(£) > ) we have that
P> > ulE) = deg(€)/r > deg(€)/(r + 1),

and equation (3.24) is satisfied.
Now suppose that £ is not SU(2)-invariantly stable. Let F he an SU(2)-invariant

saturated destabilizing subsheaf of £, ie.

fa(F) 2 1ol E). (3.26)

Consider the map from F to ¢*@(2) given by the diagrarn

0 — p& — & — 012y — 0.
f ‘
t (3.27)
F

We have the following commutative diagram

0 — p& — £ g2) — 0
] i i (3.25)

0 — kerf — F — imf  — 0.
Suppose first that f = 0, then F = ker f. Let us consider the subsheaf of &
given by

F=pfF),

where p, denotes the direct image. The canonical map

prF = PpF) — F

5 an isomotphism oulside of a set of codimension at least two. Indeed, F is locally
free autside of a set of codimension at least two which, because of SU{2)-invariance,
is of the form § = §xP! for §  X. Now Flxrsxpr 1s an SU(2)-invariant subbundle
of p"Elx\5.e which, since it is trivial on the P! fibres, has to be isomorphic to
P*F s zepr- Since the degree of a torsion free sheaf is determined outside of a set

of codimension two we conclude that

ol F) = po(p* F) = op{ F).
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This, combined with p, (£} = o7, gives Lhal {3.26) is equivalent to u{F)} = 7. This
implies thal p = w{F) > 7, contradicting that p < 7.
Consider now the case f £ 0. The sheaf imf is an SU/{2)-invarianl rank cne

subsheaf of ¢"C(2), and Lhen
deg, (imf) < deg, (¢ 0(2)) = 2Vol(X), (3.29)

the normalized degree of F

odeg(F) + deg, (imf)

HolF) = rank({F) +1 (3.30)

where J = p,(ker f) and, as shown above, p.(ker ) = ou(F). One can see that
(3.29) and (3.30) together with (3.26) imply that

W&/ F) < 4. (3.31)

We will see that in principal ¢ ¢ F, however, we will modify it to get a subsheaf
F' C & containing F and so that ¢ € 7. We will verify that rank(F") = rank{F)
and deg(F’) = deg(F) which together with (3.31) implies that u(£/F’) < £, getting
what we need Lo contradict that # < g{¢).

The strategy is Lo consider the subsheaf generated by F and ¢, that is
F'=F 4+ {Ox).

We first see that rank(F') = rank(F). Qutside of a set, of the form §' = §' x P!, of
codimension at least one, imf = ¢*Q(2). The restriction of the diagram (3.28) to

M = {X x P'}\ 5 becomes

0 — p€ln — Elu — O — O

T 1 | (3.32)
0 — pFly — Fly — g0 — 0.

We can now apply Lemma 3.3.1 with the only difference that the space is X\ 57 x P!
mnstead of X x P1 (we uscd there the Kiinneth formula which still holds since one aof

the spaces in the product, P!, is compact; see 8], for instance). We then conclude
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thal ¢ € F outside of a set of codimension at least one and then rank(F*) = rank{F).

Hence we have a maonomarphism
F— F

between torsion [ree colierent sheaves of the same rank which induces the monomor-
phism det{F] — det(F’) implyving that deg(F) < deg(F). This concludes the
prool of Theorem 3.3.2. O

Let £, £ and ¢ be as at the beginning of the section. We introduce the following

Definition 3.3.2 The triple (£, £, &) 15 T-slable if and only if (£R L", $) is 7-stable

for
 Ax deg(L)
Vol X)

T =7

Proposition 3.3.1 Let £ be the bundle determined by (£, £, ¢) and let @ be given by
(3.8). Then £ is SU(2)-invariantly stable with vespect te Q, if and only if (£, £, ¢)

15 T-stable.

Proaf. By definition (£, £, ¢) is -stable if and only if (£ @ £*, ¢) is T-stable far

4 deg( L)
Vol( X}

T =17
By Theorem 3.3.2 this is equivalcnt to £ given by the extension

0-—p(ERL) — €— ¢*O(2) — 0

to be SU(2)-invariantly stable with respect to Q, [or o given by

2Vol( X))
(r+ 1)TVol( X)/4r — deg(€ @ L£*)
2Vol{ X)
(r + 1)rVol( X)/dx — (deg(£} + deg{£))"

since deg(& ® L) = dep(£} — rdeg(L). By lensoring with £ we realise that the
invariant stability of £ with respect to 9, is equivalent to the invariant stability of
EZERp L. O

We are going to consider now the general situation in which € in Theorem 3.9.1

is not ST(2)-indecomposable. We start by the tollowing

T3



Proposition 3.3.2 Let £ = @& be the decomposition of £ in indecomposable
SU(2)-tnvarieni bundies, then oll the €; are of the form & — PrE; for £ a sub-

bundle of £, cxcept for a unique E;, which is an extension of the form
) — p"&, — E;{f — p"L Q¢ 0(2) — 0, (3.33)
for & a subbundle of £ so that ¢ € Ey, @ Le,

Froef. Consider the projection map f; from £; to p*L © q*C(2). We have the

following diagram

0 — p& — & — pLReOR) — 0
1 1 1 (3.34)

0 — kerf, — & — imf; -—  {}

Clearly there exists i so that f; # 0. [n the proof of Theoremn 3.3.2 we have seen
that this implies that outside of a set § of codimension = 1,0 € &, @ L, where
ker f; = p*&,, and £, is a subbundle of £ outside S, Suppose now that there exists
another 7 7 ig so that f; # 0. Then ¢ € £ & L, for & corresponding to ker f;
and then &, N £, # §. We conclude therefore that imf;, = p*L ® ¢*Of2) and then
ker fi, = p*&y, for £, a subbundle of £ containing ¢ and £; = p*£;, for ¢ £ 7, and
& a subbundle of £.

We can now express whaf it means for E;=p*E; to he SU (2)-invariantly siable.

Proposition 3.3.3 Let £ = p*£; be a bundle appeiring in the irreducible S/ (2)-
wmvarant decomposttion of £. Then £, is SU(2)-invariantly stable with respect (o

LY, if and only if £; is stable with respect fo w. Moreover the slope of £ is given by
r Vol X) /4,

Proof. Clearly if £ is ST (2)-invariantly stable with respect to {t, then £; is stahle
with respect to w. This follows from pol€:) = opu(&) and p, (F) = op(F); where
F=p(F), for F C E; a saturated subsheaf To prove the converse we suppose that

F C &; is a destabilizing subsheaf, j.e.

ﬁ"’f?(ﬂ - P‘a‘(E{) -
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Consider the direct image sheaf F = p.(F) C & and the canonical map

prF=pt(pF) — F

As mentioned in the prool of Theorem 3.3.2. ouiside of a st of codimension at
leasl. two of the form S5 = § x P! { because of 5U(2)-invariance), this Map 1 an
isormorphism of vector bundies. Since the degree is determined outside of a set of
codlmension two, y,(#) = acu(F). We conclude that F is a destahilizing subsheaf

of £. To fnish
TVaol{ X _
4r

THE) = 1o £) = o (£) = o
where the last equality is a way of rewriting (3.9). We then gel that

7Vol( X)

# &) = T 4r

]
Remarks. 1. We could have considered the coupled vortex equations in more gen-
erality, i.e. we could start with twe holomorphic vector bundles &y and &, of ranks
rand vy and a prescribed ¢ ¢ HOE ® £5). We would be inierested in studying

the existence of metrics A, and fo satisfying

Ay, — fdog+ 271e, =0
AFp, + 30" 0 g+ iry, = 0
These more general equations appear also as moment map equations and in partic-
ular one can prove similar results to Propositions 3.2.1 and 3.3.1, but one needs to
find the right notion of T-stability for the triple (&1,E,, ).
2. As mentioned before the notion of T-stability has been introduced by Bradlow

in dealing with the higher rank vortex equation. In {11) he proves the tollowing

Theorem 3.3.3 Let € be holomorphic vecior bundie of rank v over a compaet
Kéhler manifold and let @ be a preseribed holarnorphic section of £. Then, if (£, )

15 7-stable, there exists a mefric i on & which is a solution to the r-vortes cqiuation

AT, — %{,ﬁ & ¢** + %ﬂg = (. (3.35)
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Consider £ = @y and # € &, then, if (£ @) 1s T-slable, (E£,0x,¢) is 7-stable and
there are metrics £, on & and Ry on Oy, which satisty the coupled 7-vortex equalions.
On the other hand, by Bradlow's theorem there is a metric & on £ solution to tle
equation (3.35). It would be mteresting to wnderstand the relation between Lhese
two solutions; in particular whether the existence of (f1, k) Ttuplics the existence

of #, as we have done it the case i which £ is a line bundle. We were alile then to

express & in terms of A; and fiq.

3.4 Moduli Space of Solutions to the Coupled
Vortex Equations

I this section we study the structure of the moduyli space of sclutions to the coupled
vortex equations. This is analogous to what we did in Lhe case of the moduli space
of vortices on a line bundle and again our strategy will be to relate it Lo the SU(2)-
wvariant part of the modul; space of stable bundles.

Consider the set-up of $3.1. The moduli space of eoupled T-wortices V. is definad

as the quotient space of solulions (A1, A3, 8) € & to the egnations
AFy — %?5*@ @+ %TIF,‘ ={
AFa + 61 + ir1y = o

modulo the action of the graup G x G,.
On the other hand, the modul; space of T-siable triples 90, s defined as the

quotient space

M, = N, /(GE x GF)
where AL s the subspace of A/ given by
N ={(4, Ay ¢y e N | (€.£.6) is r-gtable)

for £ = (E, dy. )and £ = (L,d% ).
We can rephrase the existence theorem of the previous section by saying thal

there is an injection M. V,, ie if (A, Ay, ) € A7, then there exisi metrics on

78



& and L satislying the conpled r-vortex equations. Similarly to what we did iu §2.5
we can find compiex gauge transformations {g1.52) € GE x GF, unique up Lo unitary

gauge transformations, such that

(5'1;5'2:1*{-’11, Az, ‘?5) = (ﬂl(r‘ﬂll)*ﬁz(ﬂz}ﬁm o¢o 1?:-_1}

15 the desired solistion.

Now consider the (o St7(2)-invariant hermitian bundle E = prE@pLggt H?
over X x P! equipped with the metric h = Py B pthy @ gtk (see §81.1 and
1.2}, Recall from Proposition 1.2.1 that the space (AR of ST(2)-invariant
holomorphic structures on E is in one-to-one correspondence with A

Also, (GT)5U(2) =~ @€ » G We have then the bijection
NIGE x G5) &5 (AM)V)(ge)sva),
Explicitly,
(£, 0,9) r— O0—p &£, PLHgOR2) — .

Let now ¢ be given hy (3.9} and let M., be the meduli space of stable holomer-
phic structures on E with respect Lo £2,.

As 1n the line bundle situation, we would like to say that there is a one-to-
one correspondence between the moduli space of r-stable triples, ", and AEE(2)

However we will be able tq prave this only in certain cases.

Proposition 3.4.1 Suppose that (€, L, ¢) is T-stable and the rank of £ is even, then

the ussociated bundle £ over X w Pl is steble with respect o S, .

Froof. We know by Theoremn 3.3.7 (hat £ s invariantly stable, Now by Theorem

1.3.5, € is a direct sum; of isomorphic stable bundles

N
E=(DE.
k=1

Oue can easily sec thai there are at most two summands in the decompaosition of £,

[ndeed, from the extension
0 - pf — € L p i ¢ O(2) — 10,
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we have that

det € = g (det{€) @ L)) @ g7 E(2).

On the other hand,
N

det £ = (Q(det £) = det(£,)®V,

=1

since all the £; are isomorphic. Therefore for everyz € X

det &(gy.p = (det £)|P7 L, = O(2),

which yields that & = | or 2. But, since the rank of £ is even, Lhe rank of £ is odd
and N = 1. Hence £ is stable, [
Then when the rank of £ is even, . & Mf”[z} and, reasoning as in the line
bundle case (§2.5) we conclude that 907, is a complex analytic space equipped wilh
a. Kahler metric outside of the singnlar points.
We investigate now when can we ensure that M, is smooth at a certain point.
For that we need to study the group H2(X x P!, End®8). We will just consider the

case of a Riernann surface ¥,

Propaesition 3.4.2 Suppose that X =T is a fueriann surface und the rank of & s

even, then the moduli space O, is smooth everywhere and is then a Kdkler manifold.
Proof. We proceed as in the line bundle case. By Serre duality
H* (% x PLERE) = HY%E x P EndE® Kewpr)®.
The restriction of £ to {z} x P is given by
0 — &0 — Elrsixp — O(2) — 0.

For a generic z, j.e. 2 € XY {4 = 0}

Elrayur = DO & D O(L),

r—1 2

and then

Eﬂd{EJ{r}xFI} 'E_’*E' Kfpl :

il

B o-ve @ o-ne B o,

fr—112+4 2{r—1) 2r—1)
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which yields

If'G(Elld(EI{r}xpi} (54 K.-,u] = (.

(Consequently

HYE « P EndE® Ky p) = 0.

Thus £ is a smooth point. Cl
Remarks. I. [t s of course not completely satislactory that we have o impose
restrictions on the rank of £. It is probably true that £ is stable if it is in variantly
stahle, independently of the rank of £ although the proof must he more involved,

An alternaiive way to overcome this problem would be to prove in full generality
that the moduli space of G-invariantly stable holomorphic structures is an analytic
space, using a (y-invariani version of the Kuranishi map, etc. If this is the case we
have automatically that 9%, is a complex space.

Of course another solution would be to address the problem ditectly by finding
slices for the quotient /G x G and using Kuranishi-type arguments.
2. In the Riemann surface case and, merec generally, if X is algebraic one can
substitute the hypothesis ou the rank of € in Proposition 3.4.1 by a hypothesis on
the degrees. Specifically if deg & + deg £ is odd then £ is stable. This is clear since,
if £ in the proof of Proposition 3.4.1 is the direct sum £, B E;, the restriction of £
to & x {p} 15 of the form

0 — & —&EDE — L— 0
Now, since &, & &,, deg(&,) = deg(£,) and then
deg(&) + deg(L) = 2deg(£,).

3. I'he study of the vanishing of H2(X = P End®€) for a general Kahler manifold
A can be certainly pursued by using, as in the line bundle case, the Leray spectral

segquence,
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3.9 Further Generalizations of the Hermitian—
Yang—Mills Equation

We have encountered in this Chapter and in the previous one different generaliza-
tions of the Hermitian-Yang—Mills cquation, They all have in common that they
ate moment map equations. Irom here it is almost obvious what the natural gen-
cralizations should be. In this last section we shall just present two generalizations
which contain the cases studied in this thesis.

For tle first generalization let £ be 3 o vector bundle over a compact Kahier
manifold X and let # be a fixed hermitian metric on A, Let AY be the space of
ntegrable connections o (L, A) and G the umtary gauge group. As mentioned in
previous occasions A s a Kihler manifold and G acts symplectically on it with
moment map given by AFy. Consider the vector bundle o — E® 6y F=91 Thig
bundle comes cquipped with a hermilian metric h = A%% @ 4*® Recall that the

space of (' sections of E, Q% E) has a Kihler inetric on il given by

W)= [ @ for 6,9 € 0E)

The corresponding Kahler form is then

7
L‘-'{T!f’an) = (‘2‘[{"1{’1 ’?} — {H: w”
Let G be the unitary gauge group of (E,h). The group § acts sympleciically on
(I°(E) with moment map g : QNE) — Lie(G)”* given by
: i .

as one can easily deduce from example | of §1 4.
Since the gange group G of (E, 1) is imbhedded in &, there is a symplectic action

of ¢ on O%E) whose moment map £ fits in the following commutative dirgram

OYE) -5 Lie(g)"
N (3.36)
Lie[G)*
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where * is the dual map of Lie(@) < Lic( G).

We make a short digression 1o explain in generality the situation we are consid-
ering here. Let (M, w) be a symplectic manifold and let ¢ be a Lie group acting
symplectically on M (see §1.4). Let #: M — g* be the moment inap for this ac
tion. If we consider now a subgroup 4 % (&, we have a moment map f: M —s §°

for the action of H on M which fits in the following commuttative dtagram

M O a*
N L (dpy (3:37)
h*.

If now we assume that g has an invariant positive definite inner product, we can
ldentify g* with g, and think of the map (dp)* as the orthogonal projection from g
io .

The situation we are considering is an infinite dirnensional version of Lhe follow-
ing: let V be a camplex vector Space representation of U{r), i.e. V has a Lermitian
metric. This rnetric is Kihler (see example in §1.4) and U(r) acts symplectically on
V. Consider now the complex veclor space V = Vok @ V=¥ This space has ag
induced hermitian metric or equivalently it is a representation space of Uir ). On
the other hand, the action of U(r) on V induces an action og V via the Krinecker

product representation and we are in the situation described above for M = v

G = U(r ) and H = {r).

1

After this digression we come back to our problem. Consider the G-invariant

Kéhler submanifold of A1 QE) given by
N =148} € A" x 9E) | dfg = 0}

wherc A is the conuection o E induced by A. {Actually A is gencrally a complex
subvariety and it might have singniarities bui we will not pay any attention to that
here).

Given a real parameter 7 Wwe can consider the moment map for the action of ¢
on A given hy

AP+ (@) + Lrp,
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and we can pursue the study of selutions of the equation
APy + () + %TIE = 0. (3.38)
It we consider B = F & E*, from cxample 2 of §1.4 we can easily deduce that
i(¢) = - 2[4, 87,
This case is essentially the situation consider by Hitchin [30] and Simpson [50]. The
parameter 7 is determined by the degree of E and the existence of solutions of {3.38)

is related to a certain notion of stability for the pair (A, ¢).

If we consider now E = E we have that
i - *
#(e) = “—ﬁ'i-' @ P
Ths is the situation considered by Bradlow [10, 11} and in the case of £ = £, a line

bundle, treaied also by us in Chapler 2. Again the existence of solutions to (3.38)

15 related, as mentioned in the previous section, to the notion of r-stability for Lhe
pair (A, ¢},

For the second gencralization that we will constder {which in fact includes the
fivsi one} let B;, i = 1,... N be N (™ vector bundles over the compast Kihler
manifold X. Fix hermitian metrics byt =1,...,N on B, Let A; and G; be the

corresponding space of unitary connections and gauge group. Consider the hermitjan

vector bundle
E=QEP @@ e,
with the induced hermitian metric h — RrP5 g @h;@j. Let G be the nnitary

gauge group of (E, h). The inclusions G: C & give the moment thaps
ri: QUE) — Lie(G;)*.
Then on the Gi-invariant Kahier manifold
-
M=l ) € 4 s A 0%E) | g1 g = 01

where A is the connection on E induced by (A, ..., AN}, we have the moment maps

for the action of i given by
:"iF_,.L. —I-;t;qu)) 4 %—TI& for § = L. V.
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if we consider the case It = £ @ L* tor I a rank r bundle and £, a lige buadle the
study of the zeros of the previous moment maps has been the abject of study ia the
previous sections of this Chapter. There the existence of solutions was related to
the notion of r-stability for the triple {4y, 4., ¢).

S50 one would expect that the existence of solutions of these different equations
should be related to a pariicular notion of stability following the formal relationship
between the moment map and the notion of stability discussed in 41.4.

T'he vortex equalions trested in the last two Chapters have also in common that
they are dimensional reductions of the Hermitian—Yang-Mills equation. Whether
any other of thesc generalizations enjoys the same property is something to be

explore,




Chapter 4

Fourier Transform

4.1 Fourier Transform for Holomorphic Bundles
over an Elliptic Curve

In this section we introduce the Faurier transform for analytic sheaves on an cliptic
curve. Lhis is a particular case of the moge general Fourier transform for sheaves on
an abelian variety, introduced by Mukai [43]. We study then the Fourier transform
of indecornposable bundles.

Let 7' be an elliptic curve and let 7" = Pic{T), the group of holomorphic line
bundles on 7T with first Chern class zero. Recall that any elliptic curve js the quotient
T = UfA, where U is 2 one dimensional complex space and A C I/ i3 a discrete

latiice of rank 2, From the exponential sheaf sequence
H(T,Z) — HY(T,0) — HYT, O") -4, H4YT,7)

the group Pic:ﬂ{Tj 18 given by

HYT,0) _

Pic(T) = 77,7y =V /A

ECE

HUT Oy = 7" = llome(T,C) and A* = Hom(A, Z)

(see [21] for example). Of course T o T, where the isomorphism is given by Lhe
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Albanese map (see (21}, for instance), but it wil] be conveiient for us to distinguish

them.
Denote by P the live bundle over T corresponding to 2 € T'. The key ingredient

n the definition of Lhe Faurier transform is the existence of the Poincaré line bundle.

Proposition 4.1.1 There 15 untque holomorphic line bundie P over T x T called

the Poincare line bundle, which is trivial on 10} x T and whickh satisfics
Pligys = P

For a proof see [21, 44]; cee also §4.4. L is clear that f’ =2 1 and then T' parametrises
line bundles of Chern class zerg on T e, § - Pic:”{f]. We denote by P, the line
bundle on 7 determined by 2 € T, The Poincaré lie bundle has also the property
that

PJ{;}KT =P =P

Let # and # be ihe projections to T and T respectively. We define the Fourier
functor % : Mod(T'} —+ Mod{7), from the category of Op-modules to the category
of Os-modules, by

§(S)=m(Pgrs).

Similarly we have % ; Mod(T) — Mod(T'), defined by
S(T) = To{P @ 7*T).

Let & be a coherent sheaf on 1. Following Muka] we say that & is WIT ( this
stands for weak index theorem ) iFR"{}“{S] = U tor all but one 7. We denote Lhis ¢ by
(&) and we

say more precisely that 8 js W’IT,-[S}. Notice that, since the higher than one
direct images are 2610, () can be 0 or 1. We denote by & the coherent sheaf
R"{‘SJ{;“({S] and call it the Fourier transform of S.

We say thal & js [T (index theorem) if HY(T S £) =0 for all bui one 1, for
all £ & PicTY. It is a conscgquence of the base change and cohomology theorem

(stated below) that, since P& TSl X PLaS 0T irmnplies WIT and & is locally
free if § is IT.
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Theorem 4.1.1 Let X and Vo be compler projeciive varietics. Assume that ¥ is
reduced and connecled, Let f: X — V be 4 proper morphism and Ict F be g coherent
sheaf over X. Denote by Xy the fibre of f over v, and ot Fy = F @0, E(y), where
Ry} = Oufm, is the residue field al the point y. Then for oll i the following are
cquivalend

(@) y —— dimc (X, F,) is a constant function,

(b) £ f.(F} is @ locally free sheaf € on V and for all y the fibre £, is isomorphic
to H'(X,, F,)
For a proof see [44, &3] or 25, III, §12].

Similarly we can define the Fourier transform of a coherent sheaf 7 over 7

aszociated to the functor F. We will denote it by 7. The key result is the tollowing

mversion theorem.

Theorem 4.1.2 (Mukai) IfS is WIT, then & is WIT\ ;. Moreover & and {~1p)*S

ave somorphie, where —1p is the mayp z i+ —z.

The proof given by Mukaj [42, §2] involves derived categories. A simplified proof can
he given in the case of locally frec sheaves by tneans of speciral sequences associated

with a double complex constructed ustng the d-operators as done in [17] for a two-

complex dimensional torus.

We also have the follow; ng theorem relating the topological invariants of a co-

herent sheaf and its Fourier transfornt.
Proposition 4.1.2 if S is WIT. then
rank{S) = {'-—131"51(5) and (S = (=1]£+lra,111c('5}+

Proof Toliows irom the Gr{}thendiﬁ:k—Riemann—RDch formuia (sce §4.4 for this

tomputation for a Riemanp surface of any genus). When & is 2 vector hund|

e i,
follows from the Aliyah-Singer index theorem for familjes. 0
We shal] study now the conditions under whicl the Fourier transform of a veciar

bundle is defiped and happens to be 5 vector bundle,
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Proposition 4.1.3 Lel £ be a semistable bundle of rank r and degree d # 0 over

I'. Then £ has a Fourier transform which is also a vector bundle.

Proof. Tt suffices to show that £ is TT. Suppose d > 0, then by Serre duality
HUT.E® L) = HT, & & L)

Now £ is semistable and then £ ® £7 s semistable. Since deg{f* @ £*) = —d < 0
this implies that H*£* & £*) = 0. Hence & is ITo. Similacly we can see that £ is
[T, il d <0,

Atiyah(2] has classified all vector bundles over arn elliptic curve. Among other
things he proved:
L. Let €7(r,d) be the set of equivalence classes of indecomposable vector bundles
of rank r and degrec d over T. if we fix one £ in Ex(r, d}, then every other vector
bundie is of the form £6 £, with £ ¢ Pic" (T} = @¢(1, 0). Moreover E@ L, = £ 0,
it and only if £37 = £27 wherc r' = r/(r, d).
2. ln €7{r,0) there is a unique element £, 4 such that HYE E 0) # 0.
3. Let (€)Y be the dimension of HYT £}, Then, for £ in Erlr, d)

AE)=d and ANE)=0 when 40,

AOE) =0  and RE) = {d] when d <0,
hUE) =hYE) =0 when d=0 and E#£E
RUEYy =R E)=1 when £ = Er 0

(4.1)

From 3. we have that if £ Er(r,d) and d 3£ 0 then £ is IT, and the Fourier
transforin is a vector bundle, In fact every indecomposable bundle is semistable. in
particular, if (r, d) =1, every mndecompaosable bundle s stable. If d =0 Ativah has

shown that £, , appears as the nen-trivial extension

” - f:] —F r E‘F‘-l,ﬂ — ﬂ}

and then if r > 1, Er0 15 not stabla,

Proposition 4.1.4 fei o # 0, then the Fourier transform. gives g ane {0 one cor

respondence befween Er(r,d) and Crld, —r) {resp. Epl—~d,r)) ifd > 0 (resp. if
o < (),
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Froof Tt is almosl immediate from the inversion theorerm. Suppose d > 0. Let

£ & Ep(r,d) and let £ = S(E) be the Fourier transforin of £. Suppose that £
decomposes as

£=£ &
Sice £ is [Ty we have that £ is WI'T|. But this implics that &, and £, are WIT,.
Thus is clear since, by applying the inverse Fourier functor to the SeqUence

[

0 — £ }f—}ég—h[h

we oblain
0 — F(&) — FE) — HE) — B'EE) — R'EE) — R'F(E,) — 0.

But {5“(&:1} = [}, since E(fj = . Analogously, reversing the rdles of £ and £, we get

[E{Eg] = 0. We then get the short exact sequence
0 — RUF(&) — (—1)E — R'§(E) — 0,

which splits by changing again the téles of £ and &,. ;From here we deduce that
1= (=12 B1J(E ) and £ = (~14)*R'E(E,) are subbundles of £ such that

& =& B &, contradicting the hypothesis. [
Remark. One could give an explicit description of the Fourier transform. As
mentioned before Pic%(7T) acts transitively on €7{r, d) and the stabilizer is the kerncl
of the map Pic’(') 24 Pic%(T) given by

(r,d)

Then Ep(r,d) = Pic’(T)/ ker ¢ q. Writing Pic(T") = C/A., where

';"E'f.1d{£) — )C'E”"r W’hEI‘E ?‘I _

i’lfr:{m—I—nTEC[m,nE?},

the map &, , is induced by the linear map C — C: 7y /3 enoting

Fr rr
A = {F T ST€Cmne 7},
we have that Er(r,d) = C/A(r"). We can identify 7" and 7" and then €, {d —r) =
C/A(d"), where d' — d/(r,d). The Fourier transforrn Ep(r, d) — E.(d

'-T'jl 1a
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probably induced by the map C — C : 3 (r'/d")z = (rfd)2. Clearly this map
sends A, (r') to A (d").

We now consider the case in which the degree of &£ is zero, We saw that
h':'I:E) =h'(E) =0 when £ # & o and h“{f) = h.l{E.') =1 when &=¢&,,.

This shows quite clearly that if £ € Er(r,0) then it is not IT. However we can see
that £ is WIT,.

Let k(z) be the one dimensional sky-scraper sheaf supported by £ € T. Since
HY T, k(2) @U) = 0 for every U & Pic™(T), k(2) is I'Tg and §(k(£)) & P:. Therefore
by Theorem 4.1.2 P; is WIT, and P, = ki—=2). In particular &, = k{fl)

Now, it is clear that &£ ¢ = @, which by the previous discussion is W1, By

induction, applying the Fourier functor to the sequence
0 — Or — &g — &1 00— 0,
we gel
0= §O) = §Ero) = $Ermr0) = BFOr) = BF(Ero) = RE(Er10) — 0.

Since {%{QT) =0 and (& _14) = 0, we have that F(E.0) =0, and then Eois WL

On the other hand, since &, o 2 £, applying the Fourier funclor to
D— & 10— &0 — Op — 0,
we get a sphitling of the sequence
0 — R'F(Or) — R'EE o) — R'E(E,_14) — 0,

Hence

ér,u — éi' e ‘ér-l.ﬂ = ﬁrk(f})

Jince any other vector bundle £ & Er{r,0) is of the form £ = P, @ &g for Py €
Pic(T) we get eastly that
£ = @,k(3).
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This is & particular instance of Lhe general fact, proved by Mukai, that Lthe Fourier
functor gives a one-to-one correspondence between homegeneous bundles over T and
coherent sheaves on T' supported by a finile set of points, Recall that a bundle is

called homogeneous if 77€ 2 £ for every ¥ € I', where 7, is the translation by z on

7.

4.2 Fourier Transform for Connections on a Bun-

dle over a Real 2-Dimensional Torus

[n this section we introduce the Fourier transform in the nermitian category. If B
18 & hermitian bundle on a flat real 2-torus T and A 15 a4 unitary connection with
conslant central curvature, then we can define a transform for (£, A). This 1s a pair
{E,ﬁ}, where A is a connection with constant central curvature on . a hermitian
bundle on the dual torus 7. Mareover this transform has an inverse which takes
(£, A) Lo a pair isomorphic to (£, A).

This is completely analogous Lo the Fourier transform considered m [9, 17, 48]
tor a real four dimensional torus which in a sense oughi to be considered as a
generalization of the more elementary two dimensional case.

Iollowing closely [17) we will introduce now some general theory which underlies
the construction of the Fourier transform in this section.

Let X be a smooth manifold and V and W be complex vector spaces, which
we take to be finite dimensional for the moment. Lel B X —, Hom{V, W) be a
smooth map. So &2 is a family of linear maps I, parametrized by X or equivalently

a bundle map,

E:V - W,

It Kz is surjective for all =, the kernels form a vector subbundle £ of the trivial
bundle V over X, with £, = ker(R;). Now V has the flat product connection d

and if we are given a smooth projection #: 'V — E left inverse to the inclusion
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map ¢, then we get an induced connection 4 on E with covariant derivative
dq4 = Pdi.

It V¥ has a hermitian metric we can choose £ to be the orthogonal projection to £
and the connection A Is unitary,

suppose now that X is a coraplex manifold and R is a holomorphic bundle map.
then the bundle £ of kernels inherits a holomorphic siructure which is obvicusly
compatible with the unitary connection.

We will derive now a formula lor the curvature of the the connection A. The

covariant dertvative 4 acting on a section s of £ can be written as
ds = d s+ as = (Pd)s + as, (4.2)

where o € Q' {Hom{ £, EL)) is the second fundamental form. The flatness of

implies that the curvature of 4, Fy = d%, is given by

Fa=Fa™ Aol

From (4.2) a 13 given by

v=d— Pd={{- P,

but {{ — P)s = 0, since Ps = s for s € N E). Then
0 =d{(/ — P)s) =(—dP)s + (T — P)ds:

hence a = dP. Similarly o* = —d@), where Q = 1 — P is the complementary

projection. But dP = —d0} and then
Fqa=PldPYyr{dPVF (1.3)

One can consider an infinite dimensional version of ihe previous construction by
substituting the hermitian complex spaces V and W by Hilbert spaces and f{ by a
farnily of Fredholm operators, e.g. elliptic operators. This is precisely the situation

that we are going to consider next.
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Consider the flat Riemannian real 2-torus ' = V/A, where VV is an oriented two
dunensional euclidean space and A is a maximal lattice. Consider the dual space

V* = Hom(V,R) and the dual lattice
A"={Le V" | {{A) el forevery A€ A).

The dual torus is T -= V*/A*. The pointsin T parametrize gauge equivalence classes
of unitary flat connections on the trivial line bundle over 7. Indeed, the element
£ € V* can be thoupht of as a 1-form with constant coefficients and we can define
a flat connection on the trivial line bundle over T' by the connection form —2wif.
[t & € A®, the U{1)-valued funclion €277 on V descends to 7" and gives a gauge
transformation taking this connection o the trivial product connection.

Denote by Pg the flat line bundle on 7" defined by £ € 7. The torus 7" is in
a symmetric position with respect to 7. In fact T = T and then T parametrizes
flat line bundles on 7. We dennte by P, the line bundlc on T defined by = € T.
As in the holomorphic case we can rephrase all this by proving the existence of the
‘Poincaré bundle’ on the produci T x T. Denote by T theslice T x {€Y of T x T

and by 7 the shce {x} x 7

Lemma 4.2,1 There ¢s a line bundle P over T x T' with a unilary cenneclion such
that the restriction of P to T¢ is isomorphic (as a tine bundle witk connection) lo

Ps and the restriction lo T, is isomorphic to F.=P_,.

Froof Following [17] we starl with the covering T x V*. For simplicily we wiil
suppose that A s the standard lattice 2* in a co-ordinate system z; on V. Then
A™ 1s also the standard lattice in the dual co-ordinales £ on V*. Over T x 1'* we
consider the connection one form A = 2x: T £:dz; on the trivial hundle C. Then we

Lift the action of A on T x V= to C by
2,6, 0) = (3,6 + v, e 2Tl gy,

This action prescrves the connection A. We define P ta be the quotient bundle C/A"

over T x 7" with the connection induced by A. (Sec [17] for more details).
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Let £ be a rank » and degree d # 0, €/ vector bundle over T. Fix a hermitian
metric A on . Let 4 be a unitary connection on (E,h). Consider the family of

connections paramectrized by 7' given by
AE = A+ Eﬂrfz&dﬂ:;, 1:‘1—,4]

It is clear that A is the restriction of the connecction A 1 4 7 @A ona"E&F
to Ty =1 x {£}. Since P is topologically trivial we regard the connection A, as a
connection on £. Obviously the curvature of Ae is the same as that of A, since the
curvature of fA|y, is zeru.

Choose a complex siructure on T. This induces of course a complex structure
on T by identilying V* with 7. The connection A defines a holomorphic structure
on P which makes it isomorphic to P, the Poincaré line bundle considered in the
privious section.

In terms of the complex co-ordinate 2 in 7" the family of connections (4.4) defines

a family of Cauchy-Riemann operators
G4, QUE) — (1R,
depending holomarphically on } hy
84, = G4+ wiidz.

Proposition 4.2.1 Suppose that the connection A on E has constant central ryr-

vature, Then for every 3 € T

kerd, = {0} if d>0,

kerdla, = {0} if d<0.
Proef. Since the connection A; has constanl central curvature the holomorphic
bundle £ & P; = {(E,84,) i3 a direct sum of stable bundles all with the same

normalized degree (see [37] for iustance). In particular it 15 semistable and the

result follows from Proposition 4.1.3, since

kerg:{f s Htﬁfﬂgﬁpﬁ =0 ifd>0 and l{ergﬂi = H"(T,S@Fg} =0 i d<q
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It is uselul, however, to give a direct prool of this Proposition.
The friviality of the tangent bundle of T allows us to ideniily Q™ with £2°
via the map +(dz) : 0% —- O° defined by contraction with dz, denoted by ((d7).

Consider the operator
D =dz)ds: Q%E) — Q%)
Lemma 4.2.2 The curcalure of A is rclated to the eperator 1) by the formula
tALy = [0, DY,
where A denoles contraction by the Kihler form.

Proof. If we wrile the covariant derivative d4 in co-ordinates as dy4 = Vide, +Vaodz,,

thEI_'I. D = %{1\71 -+ lvg) '-FI'IE.‘ cld_]l:llﬂt 18 D* = %(—?1 + 1?‘!} |l].1}".ll.'?:[1
[Di D*] — i[vla ?EJ:

and the result follows since F; = [V, Vaold, A dxs. O
We can then regard the operalors 34, as a family D; - Q9 E) — DUEY. The

assumnption that A; has constant central curvalure means that

P 2r  deg(E) = 2r d
A7 Vol T) rank(£}  Vol(T)r’

Applying the previous lemma this translates into

=

29

1Dz D3] = Vol(T)r ~

c.
Suppose now that d > 0 and u € ker D%, then
—-DE_DL';H = U,

This implies that (—DiDsu,u) = ofu,u), and then —1Dull® = ¢||lu|®. Since ¢ > 0,
we must have that u = 0, which proves that ker Dy = {0}. Similarly we prove that
ker D; = {0} for d < 0. Notice Lhat, in any case, we need d # 0. =

We can now apply the construction given at the beginning of the section. We

have a family of surjective operators D; il d > 0 (D3 if d < 0) parametrized by 7.
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TI'he only dilference is that the spaces involved are infinite dimensional. But this
puses no problems since, by standard results on famnilies of elliptic operators varying
smaothly, the kerneis of the D; (resp. D3} it d > ¢ (resp. if d < 0}, which all have
the same dimension given by the Fredholm ind ex, form the fibres of & smoolh vector
bundle £ over 7* with £, = ker D;.

The L*-hermitian metric on Q°(E) defines a metric and & unitary connection A
on £, via the orthogonal projection | ie., if H is the trivial Hilbert bundle whose
fibre 1s the L2-completion of O%EY, and P2 H — E is the orthogonal projection,
then

d; = Pdi,

where d is the trivial connection on H and 1 js the incluston £ — N,

We are doing things in the covering V* of 7', but this is unimportant since the
gauge transformations that relate the line bundles F: that differ by an elemnent of
A* give similar ideatifications of the fibres of F and this respects the connection A.

30 the bundle and connection descend to 2 pair over 7.

Definition 4.2.1 The Fourier transform of (E, A} is the pair of bundle and con-
nection (£, A).

The bundle £ has a holomorphic structure which i compatible with the connec-
tion A. Tt is clear that E, equipped with this holomarplic structure coincides with
£, the Fourier transform of £ = (F,8,4) described in the previous seclion. However
the definition of (£, 4) does not depend on the holomorphic structure that we have
chosen |

The rank and the degree of £ were computed m Theorem 4.1.2 aund could be

computed again by using the Atiyah~Singer index theorem for families.

We can now state the main resull of this section.

Theorem 4.2.1 Let B be o O hermitian bundle on 7' and let A be g unitary
connection with constant central curvatuyre. Let (E, A) be the Fourier transform of

(£,A); then A has also constant central curvature.

97



In order to prove the Theorem we consider first the following. Let
Dy TV — (V3

be a family of elliptic operators parametrized by a smooth manilold X. Suppose
that D, is surjective for 2 € X and let E over X be the vector bundle of kernels.
Suppose that we have metrics in order to consider the L*-completion of T'(V}). Let
o W — E be the orthogonal projection, where H is the trivial bundle of Hilber,
spaces with fibre the L?-completion of I'(V]). Let A be the connection on # induced

by projection, t.e. dy = Pdi, where d is the trivial flat connection on H.

Lemma 4.2.3 The curvature of A is given by the expression
Fa=PdIXG.dD. P,

where (75 is the Green’s operator of Dy, and we have omitted the wedge product

symbol,

Proof For simplicity we will drop the subscript z {from the operators. By Hodge

theory the projection operator P is giveir By
P={_DGD,

where ( = (DD*)~1 is the Green’s operator and f is the identity operator, As seen

above, the curvature of A is given by

Fg = P(dP) N (dP)P. (4.5)
We have
P’ = ~(dI»¥GD + D dG: D + D GdD),
and using
PO =D"—D'GDD*=0 and DP=5D_ DDCD — a,
the only surviving term in (4.5) is Fy = PdIrGdDP. O
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Froposition 4.2.2 Let D, : T(V) — T{V) be a family of elliptic opevators parametrized
by the complexr numbers: D, = Do+ Iz, for Dy a fized operator and z € C. Supposc
that the family D). satisfies the condilions of the previous Lemma. [f

(D, D" = el for a positive conslani ¢

then the connection induced on the vector bundle of kernels E has constant cenirvel

curvalure.

Proof. Since d1), = [dz and 4D, = Idz, by the previous lemma, the curvalure of

the connection A induced on A is given by
Fa = PG, PdiAdz,

where we have used the fact that the identity operator commutes with the Green’s

aperator (. We then have to prove that for every u € ker D,
G.u= Au + v,
where A is a constant and v € (ker £.)1. To see this suppose that
Gou=u'4+v for v’ €kerf?, and »c {ker IJE)J:
Operating by G, = D,D* we get
w=0,Du'+ D Div. (4.6)

But by hypothesis [Dy, D] = <I; this implies that [D,, D?] = ¢l and, since {21 = 0,
(4.6) becomes

w— i = .")zﬂzv.
Now we see Lhat D, D¥v € (ker D), since for cvery u; € ker D).,
(L Dv ) = (eo+ DiD,v,uy)

= {ev,uy} + (D,v, Do)

= ().
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Thus w—eu' € ker 2, N{ker2,)+ = {0}. Hence ' = ¢~ 'u. Concluding that

Fis=—cldz A dz.

Remark. Observe that the constant « has to be strictly positive.

Take 0 # u € ker D),. We have that
(D:D%u,u) = |1D5u® £ 0,
sinee we are assumning that ker * = {0}, On the other hand, making use of
LD, =D0, + ¢,
we get thait
(D, Du,u) = cf|uf?.

1'his clearly implies that ¢ > 0.

Proof of Theovem 4.2.1. Ts an immediate consequence of applving Proposition 4.2.2

to Lhe family £; if d » 0 and te D} if d < 0. O
We can now define the inverse Fourier transform (ﬁ?", A} of (E ) fi] following the

same procedure.
Theorem 4.2.2 The pair (E°, A7) is isomorphic to (—17)*(E, A).

Proof. Follows from Theorem 4.1.2 and the uniqueness of the constant projectively

flat connection on & = (£, 84) ([37], for example). O

4.3 Fourier Transform for Pairs

In this section we explore a possible definition for a Fourier transform of a pair
formed by a bundle over an elliptic eurve and a holomorphic section. The Fourier
functor defined in §4.1, as every other functor, gives a carrespondence not only
between objects buf also between morphisms. We shall see some instances in which

the inversion theorem 4.1.2 can be exlended to morphisins. The motivation to
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sludy this transformation for a pair comes from the fact that under certain slabibity
corcditions, considered in the previous two Chapters, such a pair supports a metric
satisfying a Hermitian—Yang-Mills-Higgs type equation. The study of a holomorphic
transform should serve as a preliminary step in the search for a transform for the
metric itself. In the particular case in which the bundle in the stable pair considered
s indecomposable we are able lo define a Fourier transform. The transformed data
happens lo be stable and it is then conceivable that the trausformed metric salislies
a lermitiau~Yang-Mills Iliges type equation toa. At the end of the section we shall
describe the transform of a pair in a way which is probably geometrically clearer. We
relate the pair to the SU(2)-invariant bundle that it defines on T x P and consider a
‘hall® Fourter transform from SU({2)-invariant bundles on T x P! to SU(2)-1nvariant
bundles on 7" x P!,

We will consider first the case of a line bundle. Lel £ be a holomorphic line
bundle of positive degree d over an elliptic curve 7. Let ¢ be a holomorphic sectiorn.

The pair (£, 4) defines the short exact sequence

0 —Or -2 L L0, — 0. (4.7)

Let £y be the line bundle of degree 1 over T defined by the divisor 0 € T, 1.e.,

Lo = [{0)]. By the Poincaré line bundle of degree k we will mean the line bundle
Pr=n"L3F P

where P is the Poincaré bundle considered in §4.1.

We tensor now the pull-back of the sequence (4.7) to 7' x T by the Poincaré line
bundle of degree 1

) — TJ} i} L &P, —= TI'*{E (% @E; &Py —- D] {48)

and consider the long exact sequence for the direct image 7.. A moment’s reflexion

makes us realise that

fl'.(:'l'*(') X pl) = ﬁ',,,(ﬂ‘“(* ) f:,;]} T :D:l

-

— El[ & I:n]
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Then the long exact sequence in cohomology on il fibres associated to (4.8) becomes

0 —  §Ly) — FLOL) — FHLOLo®Op)
— R'E(Lo) —— RF(LO L) — RFL@ LSOO, -— 0.

Since £y and £ & £y have both positive degree they are IT, and then
RIS(Lo) = BF(L @ Lo) = R'E(L & Lo ®Op) = 0;
hence we get Lhe sequence of Fourier transforms
0— Lo — (L Lo)) — (£2 Ly & Op) — D {4.9)
I'rom Proposition 4.1.4
Lo € €2(1, 1) = Pic{(T) and (L@ Loy € Eald+1,-1),
since deg(Ls) = 1 and deg(£ ® Lo} = d + 1. Tensoring now (4.9) with £, we get,
00— O — Ly @L®L) — Lo @ (LB Lo& Op) — 0.

The tmap Oy — £ © (£@ Lo)" defines an element ¢ ¢ HYT, Ly (L@ L)
Dengte J'f = ﬁu* o (ﬁ & .{:ﬂ:]*.

Definition 4.3.1 We define the Fourier transform of (L, ¢) as the pair (£, 3).

An easy computation shows that rank(£) = d + 1 and deg(L) = d, that is,
£cCuld+1,d).

We will show now that this transform has an inverse. This is based of course on the

inversion Theorem 4.1.9.

The Poincaré bundie P, parametrizes line bundles of degree k over T'. To obtain
a Poincaré bundle parametrizing line bundles of depree k& over 7' we Just have to

twist P by powers of L5 = Lo . We obtain in this way the line bundle

- A~ Wk
Pe=i* (L") &P
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Similatly, as before, tensoring the pull-back of (4.9) with P_, = #*(La) @ P aud
considering the long exact sequence for the direct image m. 15 equivalent te applying

the inverse Fourier functor to {4.9). We gel then

0 — ;f[i:u} — %[(1:@1:{})*) — fj‘if:(i:@f:u@@u)hj
—+ R'F(Lo) — RFULS Lo)) — RFLR Lo Dp)) — 0.

Stiiee £y, £® Ly and £ & Lo 8 Cp are WIT, (in fact 1Ty} because of the inversion

theoren we have that
ff(fn) =F(L® Lo =8(£L® Lo® Op)™)y =0
and we get the sequence
0 — Lo — (L8 Lo)" — (£ B Lo® Op) — 0.
Applying (—17)* and since & = (—=17)*S, it becomes
00— L~ LRL— LDLGOp — 0.
Finally tensoring with £ we get,
ﬂ—-+{fl'r—r£—r—r£®@ﬂ-—}[],

recovering the pair (£, 4).
This is an example of Mukai’s theorem concerning the invertibility of morphisims
under the Fourier functor. In the elliptic curve situation that we are considering

this says the following.

Theorem 4.3.1 (Mukai) Les 51 and S; be coherent sheaves over T which, are

WIT. Then far every integer i
Exth_(S1,8;) = Extg 8018 Sy,

Inour case & = Loand & = £ Lq are hoth ITg and, taking ¢ = 1 in the Theorem,

we get

I‘IDIH;:}T[;C[;, £ = ﬂn] = HUmDT (Eﬂ: (*‘C 3 Lﬂ}ﬂ)}
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or 1nt other words
HYT, L) = HYNT, Ly @ (L@ Lo)) = HYT, £).

We would like to extend the definition of the Fourier transform to a pair (£, ¢)
consisting of a vectar bundle of arbitrary rank and positive degree, and a holomor-
phic section. It turns out that we have to assume that £ is imdecomposable in arder
to have a well-defined transform. If £ is indecomposable, 1L.e. using the notation
of section 4.1, £ ¢ Er(r.d) say, we can repeal everything we did before for the
line bundle £. The main fact that we used then was that L@ Lois ITy, property
that £ & Lo certainly enjoys, since it is indecomposable and has positive degree (sce
Propositiond.1.4), We end up then with a pair {fj E}] where £ = .-lfﬂ* @& r_’zgﬂf.g IS In
Es(r + d,d) and ¢ & HY(T, £).

We come now to the question of whether the Fransform preserves the slability of
the pair. The notion of stability we are referring to is that introduced by Bradlow
(10, 11], considered in Chapter 3. Recall that associated o (£,¢)] one has the

parameters

#o=sup{plF} | F C € asubbundle with rank(F} = G},

£(¢) = inf{u(E€/F) | F < £ is a subbundle with i < rank(F) < rank(£) and ¢ & F1,
By definition (£, @) is stable if
t < pl ).

In particular if £ is stable then (£, $) is stable.

Proposition 4.3.1 Let (£, @) be a pair such that £ is mdecornposable. Suppose thul
(£, ¢) is stable. Then the Fourier iransform (€, &) is stable.

FProof. Since £ ig indecompasahble it is scmistable and then if fioand p($) are Lhe
parameters given by (4.3) for (£, # they satisfy

u(€) = i < p(§).
Suppose that w(£) = ufd). There exists then a subbundle W C £ with 0 <«
rank(W) < rank(£) containing @ so that #(E) = (£/W). By Lemma 1.3.1 this is
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equivalent to

1) = W(€) = p(E/W), (4.10)

and W and £/W are semistable. Applying the inverse construction to the short

exact sequence

0 —W— & — /MW — 0,

we gel. the sequence over T’
0— W — & — E/W — 0.

T'he key fact we have used is that the semistability of £/W implies that of £, &/ W,
which is then TT since it has nepalive degree. This is crucial in getting the injection
W — E£. Notice that we are using lhe same symbol for the I'ourier transform and
its inversc,

That the bundle W contains the section ¢ is a consequence of the functorial
propetties of the Fourier transform. Applying the inverse construction to the com-

mutative diagram

Op 2 £
| 1

"5 1
O — W,

we get the commutative diagram

or % €
I I
IIi}']" — 1‘:‘:‘}1

where all the arrows are injections.
Now let u(W) = d'/r’. The equality (4.10} is equivalent to &'/+" = d/{r + d),

wiiich is the same as dfr = d'f{r' — d'), yielding

#(E) = w(W) = u(EJW) > u(¢),

contradicting the stability of (£, ¢). O
Remark. If we start with a pair (£, ¢) such that £ is in €7(», d) and (v, d) == I then,
not only is £ semistable but in fact stable. This implies the stability of (£, ). We
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now obtain the result of the previous Proposition in a much easier way by realising
that £ is in €u(r + d,d) and (r,d) = 1 implies (r + d,d) = 1. This implies that £ is
stable, vielding the stability of (£, #). This is in fact the situation of the line bundie
case thal we (rst considered.

We can obtain the Fourier transformn of {£, ¢) in the context of SU(2)-invariant
vector bundles considered in the previous Chapters. Recall that the pair (&, &)

defines an SU(2)-invariant holomoerphic vector bundic £ over T' x P! given by

0 —p& — € —g°02) — 1, (4.11)

where p and q are the projections to T and P! respectively.
Let p; be the projection of T x T x P! to the i-th factor and let 7; be the
projection to the ij-th factor. Consider the pull-back of (4.11} to T x 7 % P! and

tensor it with the pull-back of Py, the Poincaré bundle of degree one. We get
0 — pi& @ pio P — pa€ B pP1 — 502} 8 Pl P — 0.

Assuming again that £ is indecornposable (in fact we just need € to be 1Ty} the

direct image of this scquence to T x P! is
00— 5(E@ Lo} — pau(pla€ B Py P1) — Lo ©§7O(2) ~— 0,

where p and § are the projections from T x P! to 4" and P’ regpectively. Tensoring

by ﬁ.}*: and denoting

l

E=7p Lo B paalpla€ @ pl,71),

wiz obtain the extension

0~ P& — & — ¢*O(2) — 0,

It is not difficnit to see that the bundle £ is the SU(2)-invariant bundle delined by
(£, 3).
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4.4 Fourier Transform for Holomorphic Bundles
over a Riemann Surface of Genus ¢ > 1

We have seen in §4.1 that the main ingredient in the definition of the Fourier trans-
form for an elliptic curve is the existence of the Poincaré line bundle. On the product
ol a Riemann surface with its Jacobian there is also a Poincaré line bundle. This al
lows us to define a functor from analytic sheaves on the Riemann surface to analytic
sheaves on the Jacobian. From this functor we arce able to define a Fourier transform,
however the symmetric rdle played before by the elliptic curve being isumorphic to
the dual of its Jacobian 1s lost here. In this section we just study the conditions un-
der which the Fourier Translorm of a vector bundle is also a vector bundle and pose
some questions concernmg the behaviour of this transform with respect to stability,
We make also some remarks aboul the Fourier transform from a hermitian point of
view. Let X be a Riemann surface of genus g. The space Pic*(%) will denote the
space parametnzing degrec & line bundles on E. By a Poincaré bundle of degree k
for  we mean a line bundle P vn £ x Pic* (%) which for each £ in Pic*(2) restricts
exactly to £ oo
L2 Ex{L].
Following Arbarello ef. 2l[l] one can see that if P and P’ are two Poincaré line

bundles one can write in a unique way
r *
PP=P&v'R,

where v 1 B x Pic*(Z) — Pic*(%) is the projection and R is a line bundle on
Pic* (%), Ta see that Poincaré line bundles exist it suffices to censtruct it for one &.

By choosing a line bundle £4 on E of degree k — 1, we obtain an identification
a: Pic(Z) — Pict(5),

given by
L) =L G Lo
[ is clear then that

(l}_; ! ﬂ}*p 4 T-Ttl:,lc[?])
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is a Poincar¢ line bundle of degree !, where 7 : I x Pic'(%) — ¥ is the projectio.

We might then assume that & > 2¢ ~ 1. so that the fibres of
u: SH(E) — Pick(D)
are all projective spaces of dimension k — g. One can then prove that
P = (15 x u).([A " X,]),
where X} is a divisor on §F% assigned £o any point pin © by the expression
Xo={p+ D', D' c kL),

718 x §*5 — 5§58 s the projection and A « T x g4y 15 Lhe universal effective

divisor of degree k on &, ie. A cuts
EE x (D)

exactly an the divisor 1.

We remark that for any p in ¥ there is a umque Poincaré bundle of degree
whose testriction to {p} x Pic*(%) is trivial,

After choosing a point pg in £ we can identify the Jacobian of ¥ with Pic*(%).
This is clear since J(I) o Pic®{¥X) and, on the other hand, the line bundle £, = ((po}]
gives the identification

2o ! Pic’(Z) — Pic*(X),

defined by
a{l) = L3R L.

We will regard the Poincaré line bundle as a lie bundle over 3} x J(X) and we will
dencte by P the Peinzaré bundle of degree zero tniguely determined oy py oin N

We will then refer to the Poincars bundle of degree £ as the line bundle
Pe=x" (L8 e P,

where from now on # and » will be the projections from ¥ x J(I) to 5 and J(X)

respectively,
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We define the L-th Fourjer functor ff‘k . Mod{Og) — h’IDd(@J(E)} from the

category of analytic sheaves op T to the category of analytic sheaves on JE) by
5e(S) = v(Pe ® 1*8).

As in the genus one case we will say that a coherent sheal § ig WIT, if ¢ is the
only integer for which R"i%,;[.ﬂ) 15 different from zero. We will denote the cohierent
sheaf H‘G’g(ﬁ) by &, Or just 3, if there is no confusion about k, and call it the k-th
Fourier transform of §.

We say that S is [T if 7 is the only integer for which H(Z. § @ £} is non zero
for every £ Pic*(2). Asin the elliptic curve situation [T implies WIT and if § is

I'T the Fourier transform is locally free.

Proposition 4.4.1 Let £ be g holomorphic bundle of rank r and degree d over ¥,
Suppose that £ is semistable; then

&8s ITy for k> (20— 2) — dfr, rank(é,) = r(k+1~g) 44,

€ isITy for k< —d/r and rank(&) = r(g - k—1)— 4.

FProof Let £ € Pic*(L). By Riemann—Roch Theorem

PEDLY-k(Eg L) = deg(€ @ L)~ r(g—1)
d+rk—r(g—1). (4.12)

Now by Serre duality
HESO A o @ K)*

Sinee £ is semistable, £ @ £ and £* & L& K are semistable and the result follows
from the fact that, if a semistable bundle F has negative depree, then HO(F) = 0,
N

IL is then natural to ask the fellowing question. Suppose that £ is stable and et
k be an integer for which £ is IT. Is the Fourier transform £ on J(Z) stable with
respect the polarization determined by the theia divisor?

A first result in this direction has becn chtained by Kempf [34]. Consider the

structure sheaf Oy and tuke & - 2g — 2. By the previous Proposition the &-th
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Fourier transform of Oy is a vecior bundle of rank & — y+1 which is actually knowrn

ar the £-th Picard bundle, Kempf obtains the following

Proposition 4.4.2 7%e (2 — 1)-th Picard bundle is stable with respect to the po-

larization. given by the theta divisor.

A preliminary test in exlending Kempf’s theorem to a stable bundle of arbitrary
rank and deprec is 10 verify if £ satisfies the Bogomolov—Gieseker equality [19].
This inequality is satisfied by every stable bundle. We shall see that In fact £ satisfies

the strict ineg uality.

Lemima 4.4.1 Let £ be g stable bundle of rank v and degree d over . Let b be an

inleger such thal £ is ITy, Then the k-th Fowricr transform satisfies the inequality
(27e2{E) = (F — 1)ey (£)2).6572 g
where 7 = rank(&).

Proof To prove it we shall compute the Chern character of & by means of the
Grothendieck—-Riemann Roch formula. This computation for £ — Os can be found
in {1). The generalisation to an arbitrary £ is straightforward. The Grothendieck-

Ricmann -Raoch formula applied to our case is
ch(E)Ad(J(Z)) = v,(ch(x"E & P)id(% x J())). (4.13)

Here P is the Poincaré line bundle of degree k.
We first choose a syimplectic basis &, ... bz, lor HY(X, 7). We will also denote by

81, ..., 82, the classes of HYJ(Z),2) via the 1Isomorphism
IY{J(D),2) 2 5%, 7).

We will denote by /s ..., 85, (resp. 015+, 83.} the pull-backs to 5 x J(X) of this
classes from J(E) (resp. L}. We will write 8 for the pull-back to ¥ x J(E) of the
class § € H?(J(3), 2} defined by the #-divisor and we will denote by 5 the pull-back
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of the class of a point un T, i.c., the dual of the fundamental class [Z] € Ho(7, 7).

in other wards we have

bobign =—0, 80 =0 for a= |
brds =0 il f=oady,
{;I — 2 B gt

=l VT g

We compute now the Chern character of P. We write
e(P) = 20 4 Il 4 O

where ¢ is the component of ci{?) in the (2, j)-th term of the Kiinneth decompo-

s1tion

HYEZ x J(B),Z) = HY%,7)® U°J(5),7)
GH(E,2)@ H'(J(),Z)
SHYL, Z) @ HYJ(¥),2).

3ince P has degree k£ on I {z} we have that ¢*® = k. and. since P is Lrivial on
{p} x J(E), we deduce that "2 = Q. lIsing the universality of the Poincars bundle

one can deduce that

g
1,1 :
¢ = = ) (608040 — 80, 060)

a=]1

(sce [1] for details). Call this class 7. Observe that

o
T? - = Z(E-:é;+a6.;r+né; +£;+'-’f"5;'5‘:é;’+“]
=1
= —2nd

and clearly

Summarizing,
a(P) =k 1+,

and hence

ch{P) =PV =1 4 fp + v —n.0.
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The Chern character of 7€ is just the pull-back of the Chern character of £, lLe.,
chin &) =r + dn.

[Hence

chir*ERP)=r+ry+ (vk + dlgg — 5.6,

And finally
td{J(E)) =1 and (T x J(T)) =1 + (I — g)m.

Plugging all this in {4.13) we get
ch(€) =r(k+1—g)4+d—r0.
5o we obtain the already computed formula for the rank
F=rank(€&) =r(k +1 -~ g) + d,

also,
2

a{€)=—-r0 and ea(€) = %Hi,

and more generally

A slraight forward computation shows that
(2Fca(£) — (7 — 1)e,(£)2).67% = 2412 > (),

[}
With this little bit of encouragement a posaible approach in the direction of
finding a positive answer to our question would be lo use hermitian techniques
as I §4.2. Por this we choose a metric on . Since £ is stabie by the theorem
of Narasimhan and Seshadri [16] it admits a Hermitian-Einstein metric. The line
bundle P admits also a Hermitian—Einstein metric. Using these metrics we can
consider the L*-completion of %€ & P.), ( where P, is the line bundie of degree &
defined by z € J(X)).
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We can regard £ as the bundle of kernels for the family of elliptic eperators
d,: QY ER P, - QN EQ P,

parametrized hy J(I).

We have then an induced metric on £, and a connection induced by the or
thogonal projection which is compatible with both, the metric and the kolororphic
structure, and whose curvalure is given by the formula 4.2.3. The natural question
to ask now is whether this connection is Hermitinn—-Finstein, This wouald show, in
particular, shat £ is a direct sum of stable bundles, all with the same normalized
degree. As wesaw in §4.2, this is true in the case of an elliptic curve when we choose
a flat netric on it. The first problem is then what metric to choose on the Riemann
surface. A possible natural choice would be to iake the pull-back of the flat metric

on the Jacobian by the map

W M — J(E)

u(g) = {_/.qula'*'rquwﬂ)i

where wy, ..., w; is a basis for the spece of Eolomerphic forms #9(Z, K).

given by

Recall that if v, ..., v, is a symplectic basis for Hi(3, 1), the vectors

ﬂj = { TR I l:-l'.?ﬂ) (*’114:]
iLr) Vy

define a maximal laltice A in C? = HY(Z, K)* and then J(E) dngfA.

So, with this choice of netric on £ one can try to see, to start with, if the
transtorm metric on the (24 — 1)-Picard bundle W = Oy is Hermitian-Finstein. At
least, for this case Kemp{'s theorem gives a hope that this might be true.

The (29 — 1)-th Picard bundle is the hundle of kernels of the family of operalors
J.: (%(P,) — 0o (P

where, here, P is the Poincaré line bundle of degree (2g — 1). Since all the line
bundies P, are isomorphic as € bundles 10 £ = L&) we can regard 3, as 4
family

. : QL) — QUL (4.15)
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In terms of the standard complex co-ordinates z = (215, 25) on €9 {after the
choice of the basis un, ., w, for HYE, K)) the operator (415} is given explicitly by
¥
.= 8y + ¥ ziel@),
i=1
where 7, defines the cornplex structure of L and e(%5;) denotes exterior multiplication
by ;.
The curvature of the connection induced on W is given by the formula in Lernma
(1.2.3)
F'= Pd0,G.dd. P, = 5 Pu(w;)Ge(m;) Pudz; A az;,

7
where ((i5,) denotes contraction by @;.

In terms of the co-ordinates (214..., 2;) the principal polarization of the Jacohian

1s representad by
3 _
-I'.I'.-TJEJ} = 5 z}“;] 1!1;.3',' A tffj,
%)
where ¥ = ImZ determined by the period matrix ) = (1,2}, i.e., the matrix whose

j-th column is the vector 2, given by (4.14).

Now the contraction of F with Wital 18

Aoy ¥ = const, 3 V7' Poe(@;) Gl P,

1,7
One should then be able to prove Lthat for s € kerd,

(AsioyF)s = const.s,

using the fact that the curvature of the Hermitlan-Einstein connection A, on P,

satisiies

Vol{ )

In the elliptic enrve case we were able to express this condition jn Lerms of a
commutator. This together with the fact that dz, the base element of the Bpace
of holomorphic I-forms ie coustant and commutes with the Green’s operalor made

things a great deal easier.
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