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ABSTRACT

This work concerns the study of certain finite-energy solutions of the anti-
self-dual Yang-Mills equations on Euclidean 4-dimensional space which are

periodic in two directions, so-called doubly-periodic instantons. We estab-
lish a circle of ideas involving equivalent analytical and algebraic-geometric

descriptions of these objects.
In the first introductory chapter we provide an overview of the problem

and state the main results to be proven in the thesis.
In chapter 2, we study the asymptotic behaviour of the connections we

are concerned with, and show that the coupled Dirac operator is Fredholm.

After laying these foundations, we are ready to address the main topic
of the thesis, the construction of a Nahm transform of doubly-periodic in-

stantons. By combining differential-geometric and holomorphic methods, we
show in chapters 3 through 5 that doubly-periodic instantons correspond

bijectively to certain singular Higgs pairs, i.e. meromorphic solutions of
Hitchin’s equations defined over an elliptic curve.

The circle of ideas is finally closed in chapter 7. We start by presenting
a construction due to Friedman, Morgan & Witten that associates to each

doubly-periodic instanton a spectral pair consisting of a Riemann surface plus
a line bundle over it. On the other hand, it was shown by Hitchin that Higgs

pairs are equivalent to a similar set of data. We show that the Friedman,
Morgan & Witten spectral pair associated with a doubly-periodic instanton

coincides with the Hitchin spectral pair associated with its Nahm transform.
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Chapter 1

Overview and statement of the

results

Since the appearance of the Yang-Mills equation on the mathematical scene in

the late 70’s, its anti-self-dual (ASD) solutions have been intensively studied.

The first major result in the field was the ADHM construction of instantons

on R4 [3]. Soon after that, W. Nahm adapted the ADHM construction to

obtain the time-invariant ASD solutions of the Yang-Mills equations, the so-

called monopoles [32]. It turns out that these constructions are two examples

of a much more general framework.

The Nahm transform can be defined in general for ASD connections on

R4, which are invariant under some sub-group of translations Λ ⊂ R4. In

these generalised situations, the Nahm transform gives rise to dual instantons

on (R4)∗, which are invariant under:

Λ∗ = {α ∈ (R4)∗ | α(λ) ∈ Z ∀λ ∈ Λ}

There are plenty of examples of such constructions available in the literature,

namely:

• The trivial case Λ = {0} is closely related to the celebrated ADHM

construction of instantons, as described by Donaldson & Kronheimer
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[15]; in this case, Λ∗ = (R4)∗ and an instanton on R4 corresponds to

some algebraic data.

• If Λ = Z4, this is the Nahm transform of Braam & van Baal [12] and

Donaldson & Kronheimer [15], defining a hyperkähler isometry of the

moduli space of instantons over two dual 4-tori.

• Λ = R gives rise to monopoles, extensively studied by Hitchin [20],

Donaldson [14] and Hurtubise & Murray [23], among several others;

here, Λ∗ = R3, and the transformed object is, for SU(2) monopoles, an

analytic solution of certain matrix-valued ODE’s (the so-called Nahm’s

equations), defined over the open interval (0, 2) and with simple poles

at the end-points.

• Λ = Z correspond to the so-called calorons, studied by Nahm [32], Gar-

land & Murray [17] and others; the transformed object is the solution

of certain nonlinear Nahm-type equations on a circle.

The purpose of this work fits well into this larger mathematical pro-

gramme. We study instantons, i.e. finite energy solutions of the Yang-Mills

anti-self-dual equations, on SU(2) bundles E → T ×C, which can be seen as

solutions over R4 invariant under a two-dimensional lattice. More precisely,

we search for a definition of a Nahm transform in this situation.

According to the general scheme outlined above, the dual object should

be an instanton over (R4)∗ invariant under Λ∗ = Z2 × R2. This is the same

as a solution of the so-called Hitchin’s equations [21] over a two-dimensional

torus T̂ , which we call the dual torus. Indeed, our first main result, theorem

1 below, addresses such a correspondence. As in the case of monopoles, some

singularities appear [20], essentially due to the non-compactness of T × C.

Although the moduli space of singular solutions of Hitchin’s equations

is relatively well studied [27] [28], nothing has been said about the moduli

space of doubly-periodic instantons. This is actually one of the main advan-

tages of our approach, since we can then use known information about the
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moduli space of Higgs pair to probe the structure of the instanton moduli.

In particular, existence of Higgs pairs will imply existence of doubly-periodic

instantons.

We then move to a more traditional approach and study this moduli space

within the usual framework of gauge theory, and the second main result in

this work is a characterisation of some if its basic properties.

Another recurrent theme on the study of instantons on Euclidean space

is the equivalence with certain algebraic curves. They appear as jumping

lines in the original ADHM construction and as spectral curves in Hitchin’s

construction of monopoles and on the study of instantons invariant under

R2. One might then expect that some suitable algebraic curves will also play

a significant role. This turns out to be indeed the case, as we shall see in

theorem 2. Again, useful information about the instanton moduli space is

gained from this point of view.

1.1 Instantons and Hitchin’s equations

Before we state the results to be proven in this thesis, it is convenient to

gather some relevant definitions here. More precisely, we set up our configu-

ration space of connections on a vector bundle E → T ×C in order to make

clear what we mean by an instanton. Due to the non-compactness of our

base manifold T ×C, this really requires some extra work. We then proceed

to briefly recall the definition of the Hitchin’s equations over an elliptic curve.

On the choice of metric and complex structure. The surface we want

to consider has at least three reasonable models:

T × C ' T × (P1 \ {∞}) ' T × S1 × [0,∞]

which we respectively call the plane, round and cylindrical models. Of course,

these surfaces are all diffeomorphic, but each one has its own natural choice

of a riemannian metric, namely the product one.
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Moreover, the respective product metrics are not conformal to one an-

other. This leads to three different concepts of anti-self-duality and finite

energy, so that instantons in one model are not instantons on the others.

There is a good amount of literature studying the round and cylindrical

cases (see [7] and [28], respectively). In this work, however, we are interested

only on the plane model, since we want to think of T ×C as the quotient of

R4 by a two-dimensional lattice Z2. Hence, T × C will always be equipped

with its product riemannian metric; a complex structure I coming from the

product of a complex structure on the torus with a complex structure on the

complex line is assumed to be fixed and we denote by κ the associated Kähler

form. Moreover, the compactified version T×P1 will always be equipped with

its product riemannian metric and a complex structure compatible with I is

chosen; we denote the associated Kähler form by κ.

Actually, note that T × C inherits a hyperkähler structure from R4; the

two other complex structures arise if we regard T ×C as the product of two

cylinders (S1 × R)× (S1 × R).

On the other hand, we also want to think of the dual torus as a quotient

of (R4)∗ by the dual group of translations Λ∗. Thus, T̂ is given the flat,

Euclidean metric. Moreover, the choice of a complex structure of T ×C also

fixes a complex structure on T̂ , since this is seen as a lattice in (R4)∗.

1.1.1 Instantons over T × C.

An instanton is a smooth, anti-self-dual connection A on an SU(2) bundle

E → T × C with a system of transitions functions lying in L2
3(AutE). As

we mentioned above, anti-self-duality is taken with respect to the product

metric κ on the base.

Alternatively, T × C can be thought as a quotient of R4 by a two-

dimensional lattice Z2. In this way, A is regarded as a SU(2) connection

on a bundle over R4 which is invariant under the action of Z2 by transla-

tions, i.e. A is periodic in two directions of the 4-plane, fitting therefore in

4



the framework described at the introduction.

Given a function f : C→ R, we say that f ∼ O(|w|n) if:

lim
w→∞

|f(w)|
|w|n <∞

In this work, to avoid deeper analytical problems, we will consider only

anti-self-dual connections A on E → T×C satisfying the following conditions:

1. |FA| ∼ O(r−2);

2. there is a holomorphic vector bundle E → T × P1 with trivial deter-

minant such that E|T×(P1\{∞}) ' (E, ∂A), where ∂A is the holomorphic

structure on E induced by the instanton connection A;

Such connections are said to be extensible. Moreover, we assume the restric-

tion of the extended bundle to the added divisor splits as a sum of flat line

bundles, i.e.:

E|T∞
= Lξ0 ⊕ L−ξ0

and ±ξ0 can be seen as points in the Jacobian torus J (T ) = T̂ . We say

ξ0 is the asymptotic state of the connection A. We also fix the topological

type of the extended bundle E by making c2(E) = k > 0; the integer k is the

instanton number of the connection A.

Finally, we also assume that A is irreducible as an SU(2) connection.

In particular, this implies that E admits no square-integrable covariantly

constant sections, i.e.:

||∇As||L2 > 0 (1.1)

for all s ∈ L2(E) not constant.

Spectral curve. The holomorphic extension of E → T ×C to E → T ×P1

we mentioned above leads us to look at a construction due to Friedman,

Morgan & Witten [16]. These authors have shown how one can associate
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a pair of spectral data, consisting of a complex curve S plus a line bundle

L → S, to holomorphic vector bundles over elliptic surfaces. We shall pursue

this point of view in section 7.1.

1.1.2 Hitchin’s equations.

If Λ = Z2 then Λ∗ = Z2 × R2. According to the scheme outlined in the

introduction, we must look at ASD connections on a suitable (R4)∗ which

do not depend on two coordinates and are periodic on the other two. These

objects were studied by Hitchin [21] and correspond to solutions of the so-

called Hitchin’s equations over the two-dimensional torus T̂ = (R4)∗/Λ∗;

these can be obtained via dimensional reduction of the usual ASD equations

from four to two dimensions.

More precisely, let V → R4 be a rank k vector bundle with a connection

B̃ which does not depend on two coordinates. Pick up a global trivialisation

of V and write down B̃ as a 1-form:

B̃ = B1(x, y)dx+B2(x, y)dy + φ1(x, y)dz + φ2(x, y)dw

Hitchin then defined a Higgs field Φ = (φ1 + iφ2)dξ, where dξ = dx+ idy. So

Φ is a section of Λ1,0EndV , where V is now seen as a bundle over R2 with a

connection B = B1dx+B2dy.

The ASD equations for B̃ over R4 can then be rewritten as a pair of

equations on (B,Φ) over R2:

{
FB + [Φ,Φ∗] = 0
∂BΦ = 0

(1.2)

These equations are also conformally invariant, so they depend only on the

conformal class of the Euclidean metric on T̂ . Solutions (B,Φ) are often

called Higgs pairs.

As we mentioned above, the Nahm transform will produce singular solu-

tions of (1.2); in fact, there are very few smooth solutions for bundles over
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elliptic curves (see [21]). The particular class of singular solutions that will

appear was studied by several authors [36] [27] [28] [8], and are related to the

parabolic vector bundles of Mehta & Seshadri [31]. The presence of singular-

ities in the dual object is not at all surprising. In fact, we shall see that they

encode the asymptotic behaviour of the original connections over T ×C, just

as in the case of monopoles [20].

Therefore, we will study solutions of (1.2) over T̂ with the singularities

removed. The Euclidean metric becomes incomplete, and one cannot expect

to have a finite dimensional moduli space of solutions. However, since the

equations depend only on the conformal structure, we are allowed to perform

conformal changes in the metric. Indeed, we will follow Biquard [8] and

consider the so-called Poincaré metric (which is complete) when we study

the relevant singular Higgs pairs in section 4.

We have one last important hypothesis. A Higgs pair (B,Φ) is said to be

admissible if the bundle V has no covariantly constant sections, i.e.:

||∇Bs||L2 > 0

for all s ∈ L2(V ) not constant.

Spectral curves. In [22], Hitchin has shown that smooth solutions of (1.2)

are equivalent to a set of spectral data, consisting of a complex curve C plus

a line bundle N → C. This was later generalised to singular solutions by

various people. We will review this construction more carefully in section

7.2.

1.2 Statement of the main results

We are now in position to state the first main result to be proven here. It

provides a correspondence between finite energy ASD connections over T ×C

and singular solutions of Hitchin’s equations over the punctured dual torus,
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where the Higgs field is allowed to have simple poles with a definite residue.

More precisely, we have:

Main Theorem 1 The Nahm transform is a bijective correspondence be-

tween the following objects:

• gauge equivalence classes of irreducible, extensible SU(2) instanton con-

nections on E → T ×C with fixed instanton number k and asymptotic

state ξ0; and

• admissible U(k) solutions of the Hitchin’s equations over the dual torus

T̂ , such that the Higgs field has at most simple poles at ±ξ0 ∈ T̂ ;

moreover, its residues are semi-simple and have rank ≤ 2, if ξ0 is an

element of order 2 in the Jacobian of T , and rank ≤ 1 otherwise.

It is interesting to note here that the behaviour of the Higgs field Φ

near the singularities ±ξ0 is determined by the behaviour at infinity of the

original instanton, and vice-versa. This is analogous to what happens in the

monopole case [20].

The proof of this theorem will be carried out in chapters 3 to 5. There are

two possible approaches: the gauge-theoretical construction of sections 3.1

and 4 and the purely holomorphic approach of sections 3.2 and 4.1. These

actually complement each other, and the whole proof uses a mixture of both.

The above result has a physical interpretation in terms of certain super-

symmetric theories, given by Kapustin & Sethi [25] [24]. The four dimen-

sional theory containing the instanton is regarded as the low energy limit

of a type IIA string theory containing NS5- and D4-branes wrapped around

a torus T . A version of mirror symmetry (T-duality) plays the role of the

Nahm’s transform, mapping this theory to another one containing only D-

branes wrapped around the dual torus T̂ . Simultaneously, the Coulomb

branch of the original 4-dimensional theory (i.e. the moduli space of doubly-

periodic instantons) is mapped onto the Higgs branch of a 5-dimensional

impurity theory (i.e. the moduli space of Higgs pairs on T̂ ).
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In appendix B we will indicate how the above result could be modified

to assume a more general condition on the instanton connection. More pre-

cisely, one can expect to exchange the extensibility hypothesis for a pointwise

estimate for the asymptotic behaviour of the curvature FA.

In chapter 7 we turn to the study of the spectral curves associated to each

side of the Nahm transform. We start by reviewing the construction of the

spectral data associated to holomorphic vector bundles over elliptic surfaces

[16] and to singular Higgs pairs [22]. After establishing various facts about

them, we show that:

Main Theorem 2 If (V,B,Φ) is the holomorphic Nahm transform of (E,A),

then the instanton spectral data (S,L) associated to (E,A) coincide with the

Higgs spectral data (C,N ) associated to (V,B,Φ), in the sense that the curves

S and C coincide pointwise and there is a natural line bundle isomorphism

L → N .

One of the consequences this last result is a nice picture of the moduli

space of doubly-periodic instantons: it has the structure of a fibration over

the space of spectral curves (of complex dimension 2k+ 1), with fibres given

by the Jacobian of the given curve (of genus 2k − 1). Thus, we conclude

that the moduli space of extensible doubly-periodic instanton connections is

a smooth, complex manifold of dimension 4k. Moreover, the latter and the

moduli space of singular Higgs pair are explicitly seen to be diffeomorphic,

with the Nahm transform as a diffeomorphism.

Finally, theorem 2 closes a circle of ideas analogous to the one considered

by Hitchin in the case of monopoles [20], giving a correspondence between

doubly-periodic instantons, the Nahm transformed singular Higgs pair and

the associated spectral data.

9



Chapter 2

Analytical background

The first stage towards the proof of our main theorem is to sort out a few

analytical problems caused by the non-compactness of T × C. Clearly, the

extensibility hypothesis saves us some hard work (see however appendix B).

In this chapter we will look at the Dirac operator coupled to an extensible

connection, proving that it is Fredholm in section 2.3.

First, let us recall the conditions for extensibility; an instanton connection

A is extensible if it satisfies:

1. |FA| ∼ O(r−2);

2. there is a holomorphic rank two vector bundle E → T ×P1 with trivial

determinant such that E|T×(P1\{∞}) ' (E, ∂A), where ∂A is the holo-

morphic structure on E induced by the instanton connection A.

2.1 Instanton number and asymptotic states

We now use the extensibility hypothesis to study the compatibility between

the instanton connection A and the extended bundle E → T × P1. More

precisely, we first want to show that the holomorphic type of the restriction

of the extended bundle to the added divisor T∞ = T ×{∞} is indeed directly

10



determined by the asymptotic behaviour of the instanton connection A. Then

we argue that the topology of E is fixed by the energy (L2-norm) of A.

Before that, we must fix an appropriate trivialisation at infinity.

2.1.1 Good gauge at infinity

Let BR denote a closed ball in C of radius R, and let VR be its complement.

Also, consider the obvious projection p : T × VR → T . We shall need the

following technical result, whose proof we postpone to appendix B.

Proposition 2.1 If |FA| ∼ O(r−2), then, for R sufficiently large, there is a

gauge over T × VR and a constant flat connection Γ on a topologically trivial

rank two bundle over the elliptic curve such that:

A− p∗Γ = α ∼ O(r−1 · log r)

Asymptotic states. By general theory, a constant flat connection on a

bundle S → T determines uniquely a holomorphic structure on this bundle.

Moreover, S must split, holomorphically, as the sum of two line bundles, i.e.

S = Lξ0 ⊕ L−ξ0 , uniquely up to ±1. Here, ±ξ0 are seen as points in T̂ , the

Jacobian of the elliptic curve T .

Therefore, by proposition 2.1, to each extensible instanton connection we

can associate an unique pair of opposite points ±ξ0 ∈ T̂ . Such points are

called the asymptotic states of A.

Lemma 2.2 If an extensible instanton connection A has asymptotic states

±ξ0, then E|T∞
= Lξ0 ⊕ L−ξ0 .

Proof: Let V∞ ⊂ P1 be a small neighbourhood centred at∞ ∈ P1; let w be

a coordinate there. We can regard E|T×V∞
as a family of rank 2 bundles over

T , parametrised by w, Furthermore, If ∂ denotes the holomorphic structure

11



on E , let ∂w be the holomorphic structure on the restriction E|Tw
. Clearly,

as operators:

lim
w→∞

∂w = ∂∞

However, from condition (2) in the definition of extensibility, we know that

∂w = ∂A|Tw
away from∞. But proposition 2.1 tells us that ∂A|Tw

approaches

∂Γ as w →∞. Therefore, ∂∞ = ∂Γ, and the lemma follows. �

2.1.2 The instanton number

Moreover, as we mentioned before, the topological type of E is determined

by the energy of the instanton connection:

Lemma 2.3 c2(E) = 1
8π2

∫
T×C
|FA|2

Proof: Again, let V be a small neighbourhood of ∞ ∈ P1. Let Γ±ξ0 be

the canonical connection on the bundle Lξ0 ⊕L−ξ0 over an elliptic curve and

consider the projection p : T × V → T .

Now consider a connection A′ on the extended bundle E that coincides

with p∗Γ±ξ0 on T × V . Therefore

c2(E) =
1

8π2

∫

T×P1
Tr(FA′ ∧ FA′) =

1

8π2

∫

T×(P1\{∞})
Tr(FA′ ∧ FA′)

=
1

8π2
lim

R→∞

∫

T×BR

Tr(FA′ ∧ FA′) (2.1)

On the other hand, we have from lemma 2.1 that A−A′ = α is a 1-form in

O(r−1 · log(r)). Define the 1-parameter family of connections At = A′ + t ·α,

so that the corresponding curvatures:

FAt
= t · FA + (1− t) · FA′ −

(
t− t2

2

)
· α ∧ α

=⇒ |FAt
| ∼ O(r−2 · log2 r) ∀t ∈ [0, 1] (2.2)

12



So let:

i(A) =
1

8π2

∫

T×C

Tr(FA ∧ FA) =
1

8π2
lim

R→∞

∫

T×BR

Tr(FA ∧ FA)
(2.3)

Usual Chern-Weil theory tells us that:

c2(E)− i(A) =
1

8π2
lim

R→∞

{∫

T×BR

(Tr(FA′ ∧ FA′)− Tr(FA′ ∧ FA′))
}

=

=
1

4π2
lim

R→∞

{∫

T×BR

d
(∫ 1

0
Tr(α ∧ FAt

)
)}

=

=
1

4π2
lim

R→∞

{∫

T×S1
R

(∫ 1

0
Tr(α ∧ FAt

)
)}

= 0

by our estimates in proposition 2.1 and in equation (2.2). This completes

the proof. �

In particular, the integral in the right hand side of the equation in lemma

2.3 has to equal an integer number k > 0, which we call the instanton number

of A.

Finally, we say that an extensible connection A on the bundle E → T ×C

belongs to A(k,ξ0) if it has instanton number k and asymptotic state ξ0.

2.1.3 Estimating the Dolbeault operator

Finally, we need a final lemma that will be useful in the following section

section, where we develop a Fredholm theory for the Dirac operator coupled

to an instanton connection A ∈ A(k,ξ0).

First, note that the bundle Lξ0 ⊕L−ξ0 → T admits a flat connection with

constant coefficients, which we denote by Γξ0 . Use the projection T×VR
p1→ T

to pull it back to T × VR. We show that:

Lemma 2.4 Let A ∈ A(k,ξ0) be any extensible instanton connection. Given

ε > 0, there is R sufficiently large such that:

||∂A − ∂Γξ0
||L2(T×VR) < ε

13



Proof: Since ∂A − ∂Γξ0
is just the (0, 1)-part of the 1-form α = A − Γξ0 ,

the statement is a simple consequence of the gauge-fixing proposition 2.1. �

2.2 The Poincaré line bundle

We now quickly review some facts regarding holomorphic vector bundles over

elliptic curves and surfaces that will be useful later on. We are particularly

interested in the definition of the Poincaré line bundle and on Atiyah’s clas-

sification result [2].

Recall that an elliptic curve is a two-dimensional torus T with a complex

structure, plus the choice of a point e ∈ T which plays the role of the identity

element of the torus as an abelian group. For simplicity, we denote an elliptic

curve only by T , letting the choice of the identity element always implicit.

The Jacobian J (T ) = T̂ of T is defined as the set of flat holomorphic line

bundles over T . Such bundles can be parametrised by T itself in the following

way: to each z ∈ T , we associate the bundle Lz = OT (e)⊗OT (z)−1. Hence

T and T̂ are isomorphic as elliptic curves, and the identity element ê ∈ T̂

corresponds to the holomorphically trivial line bundle C → T . Moreover,

the set of flat holomorphic line bundles over T̂ is again T . Throughout the

thesis, points in T are denoted by z and points in T̂ are denoted by ξ.

An element ξ of T̂ has order 2 if Lξ⊗Lξ = C. The are four such elements,

one of them being the identity ê.

Moreover, the line bundles Lξ → T and Lz → T̂ can be given a natural

constant connection compatible with the holomorphic structure. This follows

from the differential-geometric definition of T̂ :

T̂ = {ξ ∈ (R4)∗ | ξ(z) ∈ Z, ∀z ∈ Λ2}

where Λ2 ⊂ R4 is the two-dimensional lattice generating T × C. Hence each

ξ ∈ T̂ can be regarded as a constant, real 1-form over T, so that ωξ = iξ

is a connection on a topologically trivial line bundle L → T . Each such
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connection defines a different holomorphic structure on L, which we denote

by Lξ. The holomorphic line bundles Lz → T̂ are defined on the same way.

Note that, in the notation of lemma 2.4, Γξ0 = ωξ0 ⊕ ω−ξ0 .

The Poincaré bundle. The Poincaré line bundle P→ T × T̂ is the unique

holomorphic line bundle satisfying:

P|T×{ξ} ' Lξ P|{z}×T̂ ' L−z

It can be constructed as follows. Identifying T and T̂ as before, let ∆ be the

diagonal inside T × T̂ , and consider the divisor D = ∆−T × ê− e× T̂ . Then

P = OT×T̂ (D); it is easy to see that the sheaf so defined restricts as wanted.

Note that although the two restrictions above are flat line bundles over

T and T̂ respectively, the Poincaré bundle itself is not topologically trivial;

in fact, c1(P) ∈ H1(T ) ⊗ H1(T̂ ) ⊂ H2(T × T̂ ). More precisely, the unitary

connection and its corresponding curvature are given by:

ω(z, ξ) = i
∑2

µ=1 ξµdzµ − zµdξµ Ω(z, ξ) = i
∑2

µ=1 dξµ ∧ dzµ

Restricted to T × {ξ}, these give the bundles Lξ → T flat connections ωξ =

i
∑2

µ=1 ξµdzµ, with constant coefficients. Similarly, the bundles Lz → T̂ also

have canonical flat connections ωz = −i∑2
µ=1 zµdξµ.

Finally, note that c1(P)2 = 2 · t ∧ t̂, where t and t̂ are the generators of

H2(T ) and H2(T̂ ), respectively.

Atiyah’s classification result. Holomorphic vector bundles V → T are

classified by the following result due to Atiyah [2]. The building blocks

for Atiyah’s classification are the holomorphic vector bundles constructed as

follows. Start by defining F1 = C; then Fn is defined recursively as the

unique non-trivial extension of Fn−1 by C:

0→ C→ Fn → Fn−1 → 0
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Theorem 2.5 Let V → T be an indecomposable rank r holomorphic vector

bundle such that degV = 0. Then V = Fr ⊗ L, for some flat line bundle

L→ T .

In particular, for the case of rank 2 bundles we have:

Theorem 2.6 Let V → T be a semi-stable rank 2 holomorphic vector bundle

such that detV = C. Then either of two possibilities must hold:

• V is decomposable, and V = L ⊕ L−1, where L ∈ T̂ is uniquely deter-

mined up to ±1;

• V is indecomposable, and V = F2 ⊗ L, where L ∈ T̂ is an uniquely

determined element of order 2.

Note that semi-stability excludes only decomposable bundles looking like

Q ⊕ Q−1, where Q → T has degree n > 0. Moreover, semi-stability is a

Zariski open condition.

Elliptic surfaces. Recall that an elliptic surface is a complex surface S

with a map π : S → B to a compact curve B such that π−1(b) is an elliptic

curve for generic b ∈ B; there might be points b ∈ B such that π−1(b) is

singular or multiple. This is a vast class of complex surfaces and there is a

large theory about them, but we are interested here only in a quite simple

case: S = T × P1 and π the usual projection onto the second factor (hence

B = P1).

The Jacobian surface J (S) of S is defined to be the elliptic surface ob-

tained, roughly speaking, in the following manner. For each b ∈ B, we replace

the elliptic curve T = π−1(b) by its Jacobian curve, so that they fit together

to form a new elliptic surface. In our case of interest, J (S) = T̂ × P1.

It is also possible to define a Poincaré bundle PS over an elliptic surface.

For the case we are interested in, PS = p∗13P, where p13 : T×P1×T̂ → T×T̂ is

the natural projection on to the first and third factors. For the most general

definition, see [16], p. 688.
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2.3 Fredholm theory of the Dirac operator

We begin by recalling that the dual torus T̂ parametrises the set of flat

holomorphic line bundles L → T . Moreover, such bundles have a natural

choice of connection, denoted iξ, which is consistent with the holomorphic

structure.

In fact, T̂ also parametrises the set of flat holomorphic line bundles over

T × C. Using the projection p1 : T × C → T , one obtains the holomorphic

line bundle p∗1(Lξ) over T×C, which we shall also denote by Lξ for simplicity;

let ωξ be the pullback of the flat constant connection on Lξ → T described

above; clearly, such connection is also flat.

As usual, let E → T × C be a rank 2 bundle provided with an instanton

connection A ∈ A(k,ξ0). Form the bundle E ⊗ Lξ with the corresponding

connection Aξ = A ⊗ I + I ⊗ ωξ; since all we have done was to add a flat

term to our original instanton, Aξ is still an instanton on the twisted bundle.

We also require A to be irreducible; clearly, its twisted version Aξ is also

irreducible.

Consider now the Dirac operator acting on the bundle E(ξ) = E ⊗ Lξ,

coupled to the connection Aξ, and its adjoint:
{
DAξ

: Γ(E(ξ)⊗ S+)→ Γ(E(ξ)⊗ S−)
D∗

Aξ
: Γ(E(ξ)⊗ S−)→ Γ(E(ξ)⊗ S+)

(2.4)

where the spaces of sections are provided with norms suitably defined. Since

the base manifold is flat and the connection is anti-self-dual, the Weitzenböck

formula on E(ξ)⊗ S+ → T × C is simply:

D∗
Aξ
DAξ

= ∇∗
Aξ
∇Aξ

(2.5)

⇒ ||DAξ
s||2 = ||∇Aξ

s||2

Hence, if Aξ is irreducible, there are no covariantly constant sections of

E(ξ) ⊗ S+. This means that the kernel of DAξ
is trivial. Now, if DAξ

is

a Fredholm operator, then kerD∗
Aξ

(which coincides with cokerDAξ
) is a fi-

nite dimensional subspace of Γ(E(ξ)⊗ S−).
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In this rather technical but fundamental section, we prove that this is

indeed the case:

Theorem 2.7 Given any extensible instanton connection A ∈ A(k,ξ0), the

Dirac operators:

D∗
Aξ

: L2
1(E(ξ)⊗ S−)→ L2(E(ξ)⊗ S+) (2.6)

form a smooth family of Fredholm operators parametrised by T̂ \{±ξ0}. More-

over, indexD∗
Aξ

= k, for all ξ ∈ T̂ \ {±ξ0}.

The Sobolev norm in the left hand side of (2.6) is defined as follows. Let

D∗
ξ be the Dirac operator Lξ ⊗ S− → Lξ ⊗ S+. Then L2

1(E(ξ)⊗ S−) is the

completion of Γ(E(ξ)⊗ S−) with respect to the norm:

||s||L2
1

= ||s||L2 + ||D∗
ξs||L2 (2.7)

The proof consists of three steps, which we now outline. We first prove

that the operator D∗
ξ : L2

1(Lξ⊗S−)→ L2(Lξ⊗S+) is invertible for nontrivial

ξ ∈ T̂ . A gluing argument then shows that the Dirac operator coupled to a

twisted instanton Aξ is Fredholm if ξ 6= ξ0, after using the fact that the set

of Fredholm operators is open. To compute the index, we use an argument

based on the Gromov-Lawson Relative Index Theorem [19]; the details are

left to the appendix.

The flat model. Let Lξ → T ×C be the flat line bundle described above,

provided with the constant connection ωξ. Our starting point to prove the-

orem 2.7 is the following proposition.

Proposition 2.8 For non-trivial ξ ∈ T̂ , the coupled Dirac operator

D∗
ξ : L2

1(Lξ ⊗ S−)→ L2(Lξ ⊗ S+)

is invertible. Its inverse is denoted by Q∞
ξ .
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Proof: Let Lξ → T ×C be the pull-back via p1 : T ×C→ T of a flat line

bundle over the 2-torus, provided with the constant connection ωξ = p∗(−iξ),
as described in section 2.2. Consider the twisted Dirac operator:

Dξ : Γ(Lξ ⊗ S+)→ Γ(Lξ ⊗ S−)

and its adjoint D∗
ξ .

Since M = T × C is a Kähler surface, we have the following decomposi-

tions:
{
S+ = Λ

(0,0)
M Lξ ⊕ Λ

(0,2)
M Lξ

S− = Λ
(0,1)
M Lξ = Λ

(0,1)
T Lξ ⊕ Λ

(0,1)
C

(2.8)

With respect to these decompositions, the Dirac operator and its adjoint are

given by:

Dξ =


 ∂

(z)

ξ −∂(w),∗
ξ

∂
(w)

ξ −∂(z),∗
ξ


 D∗

ξ =


 −∂

(z),∗
ξ −∂(w),∗

ξ

∂
(w)

ξ ∂
(z)

ξ


 (2.9)

where ∂
(z,w)

ξ denotes the Dolbeault operator twisted by ωξ along the toroidal

(z) and plane (w) complex coordinates, i.e. the components of the covari-

ant derivative. Hence, the coupled Dirac laplacian 4ξ = D∗
ξDξ mapping

Λ
(0,0)
M Lξ ⊕ Λ

(0,2)
M Lξ to itself is just:


 4

(z)
ξ +4(w)

ξ 0

0 4(z)
ξ +4(w)

ξ


 (2.10)

The off-diagonal terms are cancelled, for they are proportional to the curva-

ture, which was supposed to vanish. Moreover, the flat connection ωξ is a

pull back from the torus, so that 4(w)
ξ is just the usual plane laplacian 4(w).

Let us concentrate on a single component, say Λ
(0,0)
M Lξ.

First, we want to solve the homogeneous equation 4ξf = 0 for

f ∈ Λ
(0,0)
M (Lξ) and a fixed ξ ∈ T̂ . Now, separate variables, supposing that

f(z, w) = ϕ(z)g(w):

4ξf = 0 ⇔ g4(z)
ξ ϕ+ ϕ4(w)g = 0
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Therefore:
{

(i) 4(z)
ξ ϕ = λ2ϕ

(ii) 4(w)g = −λ2g → (4(w) + λ2)g = 0
(2.11)

where λ2 are the eigenvalues of the ξ-twisted laplacian over the torus. They

form a discrete, unbounded set {λn(ξ)} of R+, each being a function of the

parameter ξ. Note that since H0(T, Lξ) = 0 for nontrivial ξ ∈ T̂ , we can

indeed guarantee that λn(ξ) > 0 for all nontrivial ξ. On the other hand, for

Lξ = C, the laplacian has a 1-dimensional kernel, i.e. one zero eigenvalue.

As usual, we can decompose f on the eigenstates of 4(z)
ξ , i.e.:

f =
∑

n

gn(w)ϕn(z) (2.12)

where {ϕn} is an orthonormal basis for the L2 norm on Λ
(0,0)
M (Lξ) of eigen-

states with eigenvalues {λ2
n}; so, ||f ||2L2(T×C) =

∑
n ||gn||2L2(C). Moreover:

4ξf =
∑

n

[(4(w) + λ2
n)gn]ϕn (2.13)

Proposition 2.9 Let ρ ∈ L2(Lξ ⊗ S+) be compactly supported and suppose

that ξ is nontrivial. Then there is f ∈ L2(Lξ ⊗ S+) and a constant k < ∞
such that ∆ξf = ρ and ||f ||L2 ≤ k||ρ||L2.

Proof: Given (2.13), solving the equation 4ξf = ρ amounts to solve

(4(w) +λ2
n)gn = ρn for each n, where gn, ρn are the components of g, ρ along

the eigenspaces of λ2
n, respectively.

Fix some integer n and denote by Fn the fundamental solution of (∆(w) +

λ2
n)Fn(w) = 0. Rescale the plane coordinate w′ = λnw, which transforms the

previous equation to (4(w′) + 1)Fn( w′

λn
) = 0. The unique integrable solution

for this equation is the Bessel function K0 (see below), so that Fn(w) =

K0(λnw). Solutions to the non-homogeneous equations will then be given by

the convolution:

gn(w) =
∫

R2
Fn(w − x)ρn(x)dxdx (2.14)
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and recall that ||gn||L2 ≤ ||Fn||L1||ρn||L2. So, all we need is an estimate for

||Fn||L1 which is independent of n.

From the expression above, one sees that each Fn is integrable if the Bessel

function K0 is, so that ||Fn||L1 = λ−2
n ||K0||L1. So, let λ = min{λn}n∈N; there-

fore, ||Fn||L1 ≤ λ−2||K0||L1; putting k = λ−2||K0||L1 we have

||gn||L2 ≤ k||ρn||L2 for each n. This completes the proof. �

Consider the Hilbert space L2
2(Lξ ⊗ S±) obtained by the completion of

Γ(Lξ ⊗ S±) with respect to the norm:

||s||L2
2

= ||s||L2 + ||4ξs||L2 (2.15)

The map 4ξ : L2
2(Lξ ⊗ S−) → L2(Lξ ⊗ S−) is then bounded, for clearly

||∆ξs||L2 ≤ ||s||L2
2
. Let Gξ : L2(Lξ⊗S−)→ L2

2(Lξ⊗S−) be the inverse of 4ξ

given by proposition 2.9. Using the inequality of the proposition, one shows

that Gξ is also bounded, if ξ is nontrivial:

||Gξs||L2
2

= ||Gξs||L2 + ||4ξGξs||L2 = ||Gξs||L2 + ||s||L2 ≤
≤ k||s||L2 + ||s||L2 ≤ (k + 1) · ||s||L2

Moreover, we also conclude that:

||Gξ|| < 1 +
C

λ2
(2.16)

Hence, Gξ is an invertible operator when acting between the above Hilbert

spaces, if ξ is non-trivial.

Remark: We emphasise the necessity of assuming that ξ is nontrivial. If

ξ = ê, then the equation (2.11(i)) admits one zero eigenvalue; on the other

hand, the fundamental solution of 4(w)g = 0 is essentially log r, which is

not integrable. It is then impossible to get the estimate of proposition 2.9,

in other words, the operator 4(ξ=ê) fails to be invertible. In addition, the

parameter k also depends on ξ, and k →∞ (i.e. λ→ 0) as ξ → 0.
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Now, define the norms:
{ ||s||L2

1
= ||s||L2 + ||D∗

ξs||L2 if s ∈ Γ(Lξ ⊗ S−)

||s||L2
l+1

= ||s||L2
l
+ ||Dξs||L2

l
if s ∈ Γ(Lξ ⊗ S+)

(2.17)

and consider the Dirac operators as maps between the following Hilbert

spaces, obtained by the completion of Γ(Lξ ⊗ S±) with respect to the above

norms:
{
D∗

ξ : L2
1(Lξ ⊗ S−)→ L2(Lξ ⊗ S+)

Dξ : L2
l+1(Lξ ⊗ S+)→ L2

l (Lξ ⊗ S−)
(2.18)

Then D∗
ξ is clearly bounded. Furthermore, it has an inverse given by

(D∗
ξ)

−1 = DξGξ : L2(Lξ ⊗ S+)→ L2
1(Lξ ⊗ S−), which is also bounded:

||(D∗
ξ)

−1s||L2
1

= ||(D∗
ξ)

−1s||L2 + ||D∗
ξ(D

∗
ξ)

−1s||L2 =

= ||DξGξs||L2 + ||s||L2 = ||DξGξs||L2
1
≤

≤ ||Gξs||L2
2
≤ (k + 1) · ||s||L2

So, D∗
ξ is also Fredholm when acting as in (2.18), and our proof is com-

plete. To further reference, we shall denote Q∞
ξ = (D∗

ξ)
−1; note, moreover,

that this is a bounded, elliptic, pseudo-differential operator of order −1. �

We are left with one point to establish: the integrability of the funda-

mental solution of (4 + 1)F = 0 in the plane. Indeed, first note that since

the operator 4 + 1 has polar symmetry, then the fundamental solution F

also has. After imposing this symmetry, we obtain the following ODE, for

r > 0:

(4+ 1)F (r) = 0⇒ F ′′ +
1

r
F ′ − F = 0

This is a Bessel equation with parameter ν = 0. Its solutions are linear com-

binations of the Bessel functions of imaginary argument I0 and K0 (see [1],

chapter 11). Below are possible integral representations for these functions:

K0(r) =
∫ ∞

1
e−rt(t2 − 1)−

1
2dt [18] 8.432.3

I0(r) =
∫ 1

−1
cosh(rt)(t2 − 1)−

1
2dt [18] 8.431.2
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It is easy to see that I0(r) increases exponentially with r; it is also finite for

r = 0. For the purpose of finding a Green’s function for the operator 4+ 1,

this solution can be eliminated.

With the help of a table of integrals, one finds out that K0 is integrable;

indeed:

∫

R2
K0(r)d

2vol =
∫ ∞

0

∫ 2π

0
K0(r)rdrdθ = 2π

∫ ∞

0
rK0(r)dr = 2π

by [18] 6.561.16 (choosing µ = 1, ν = 0, a = 1). This means that

||K0||L1 = 2π.

Proposition 2.10 The solution f of the flat laplacian problem ∆ξf = ρ

of proposition (2.9) decays exponentially if ξ is nontrivial, in the sense that

there is a real constant λ > 0 such that:

lim
r→∞ e

λr|f | <∞

Proof: As r →∞, the Bessel function K0 admits the following asymptotic

expansion ([39], p.202):

K0(r) ∼
(
π

2

) 1
2 e−r

√
r

[
1− 1

8r
+

9

128r2
+ . . .

]
(2.19)

Now since each ρn has compact support, it follows from (2.14) that each gn

will also decay exponentially:

gn(w) ∼
(
π

2

) 1
2 ·
∫

Ω

e−λn|w−x|
√
λn|w − x|

[
1− 1

8λn|w − x|
+ . . .

]
ρn(x)dxdx

where Ω is the support of ρ. As |w| → ∞, then also |w − x| ∼ |w| for all

x ∈ Ω. Therefore,

gn(w) ∼
(
π

2

) 1
2 e−λn|w|
√
λn|w|

[
1− 1

8λn|w|
+ . . .

]
·
∫

Ω
ρn(x)dxdx, as |w| → ∞
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Choosing 0 < λ < min{λn}n∈N, the statement follows from the eigenspace

decomposition of f (2.12) and (2.13). �

In particular, note that (f/w) also belongs to L2(Lξ ⊗ S+). Define

L̃2(Lξ ⊗ S+) as the space of sections ψ such that ψ/w is square-integrable.

The proposition just proved implies that the flat model laplacian acting as

follows:

4ξ : L̃2(Lξ ⊗ S±)→ L2(Lξ ⊗ S±)

is an invertible operator. Since 4ξ = DξD
∗
ξ , we conclude that:

D∗
ξ : L̃2(Lξ ⊗ S−)→ L2(Lξ ⊗ S+) (2.20)

is also invertible.

Completing the proof of the theorem 2.7. To show that D∗
Aξ

is Fred-

holm, first note that usual elliptic theory for compact manifolds guarantees

the existence of a parametrix for D∗
Aξ

inside this compact core T ×K; this

is a bounded, elliptic, pseudo-differential operator:

QK
Aξ

: L2(E(ξ)⊗ S+|T×K)→ L2
1(E(ξ)⊗ S−|T×K)

of order −1.

On the other hand, it follows from lemma 2.4 that:

||D∗
Aξ
− (D∗

ξ0+ξ ⊕D∗
−ξ0+ξ)||2L2(T×DR) < 2ε

where ε can be made arbitrarily small. Thus, D∗
Aξ
|T×DR

is also invertible for

sufficiently large R� 0, if ξ 6= ±ξ0. Denote this inverse by Q∞
Aξ

; this is also

a bounded, elliptic, pseudo-differential operator of order −1.

Now choose β1, β2 : C → R respectively supported over K and DR and

satisfying β2
1 +β2

2 = 1 everywhere. We can patch together our two parametrix

QK
Aξ

and Q∞
Aξ

in the following way:

PAξ
g = β1Q

K
Aξ

(β1g) + β2Q
∞
Aξ

(β2g) (2.21)
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This is the same as restricting the section g to T × K (respectively,

T×DR), apply QK
Aξ

(Q∞
Aξ

) and restricting the result again to T×K (T×DR).

Note that PAξ
acts as follows:

PAξ
: L2(E(ξ)⊗ S+)→ L2

1(E(ξ)⊗ S−).

We want to show that this is a parametrix for D∗
Aξ

. In fact, take

g ∈ L2(E(ξ)⊗ S+); then:

D∗
Aξ
PAξ

g = D∗
Aξ

[β1Q
K
Aξ

(β1g)] +D∗
Aξ

[β2Q
∞
Aξ

(β2g)] =

= {β1D
∗
Aξ
QK

Aξ
(β1g) + β2D

∗
Aξ
Q∞

Aξ
(β2g)}+ (2.22)

+ dβ1.Q
K
Aξ

(β1g) + dβ2.Q
∞
Aξ

(β2g)
︸ ︷︷ ︸

S∞g

where “.” means Clifford multiplication.

Since QK
Aξ

is a parametrix for D∗
Aξ

inside T × K, the first term (inside

brackets) equals the identity plus a compact operator SK acting on β1g.

Similarly, in the second term, Q∞
Aξ

is the inverse of the Dirac operator outside

K. Together, the first two terms form the identity operator plus SK. Hence:

(D∗
Aξ
PAξ
− I)g = SKg + S∞g

where S∞ : L2(E(ξ)⊗S+)→ L2(E(ξ)⊗S+) is the operator over the brackets

in (2.22). Since QK
Aξ

and Q∞
Aξ

are bounded operators, so is S∞; we argue that

this is also a compact operator.

In fact, let ∂̃K denote the closure of the the support of dβ1 and dβ2 (which

is an annulus around the boundary of K). Consider the diagram:

L2(E(ξ)⊗ S+)
s−→ L2

1(E(ξ)⊗ S+|
T 2×∂̃K

)

↓ i
L2(E(ξ)⊗ S+|

T 2×∂̃K
)

∩
L2(E(ξ)⊗ S+)
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Now, let Υ ⊂ L2(E(ξ)⊗S+) be a bounded set; since s is a bounded operator,

s(Υ) is also bounded. By the Rellich lemma (see, for instance, [9]), the map

i is a compact inclusion; note that ∂̃K is a compact subset of the plane.

Hence, i(s(Υ)) is a relatively compact subset of L2(E(ξ) ⊗ S+|
T 2×∂̃K

), and

clearly also a relatively compact subset of L2(E(ξ)⊗ S+). This means that

S∞ = i ◦ s : L2(E(ξ)⊗ S+)→ L2(E(ξ)⊗ S+) is a compact operator, as have

we claimed.

We conclude that

D∗
Aξ
PAξ
− I = [compact operator]

and (2.21) is indeed a parametrix for D∗
Aξ

if ξ 6= ±ξ0.
Finally, to compute the index of D∗

Aξ
we need a relative index theorem,

which is stated and proved in the appendix A. There, we show that:

Corollary 2.11 If A ∈ A(k,ξ0), then indexD∗
Aξ

= k.

The Green’s operator. Clearly, the Dirac laplacian, with the norms as

in (2.15):

∆Aξ
: L2

2(E ⊗ Lξ ⊗ S+)→ L2(E ⊗ Lξ ⊗ S+)
∆Aξ

= D∗
Aξ
DAξ

(2.23)

is also a Fredholm operator. In particular, by general Fredholm theory,

there is a bounded operator GAξ
, called the Green’s operator, such that

∆Aξ
GAξ

= Id−Hξ, where Hξ is the finite rank orthogonal projection operator

Hξ : L2
2(E ⊗ Lξ ⊗ S+)→ ker(∆Aξ

).

2.3.1 Harmonic spinors and cohomology

To conclude this chapter, we want to interpret the harmonic spinors

ψ ∈ kerD∗
A as some holomorphic object defined in terms of the compactified

bundle E → T × P1. Indeed, we aim to establish the following identification:
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Proposition 2.12 If A has nontrivial asymptotic state ξ0 ∈ T̂ and k > 0,

then there is an isomorphism H1(T × P1, E) ≡ kerD∗
A.

Note that kerD∗
A ⊂ L2

1(E ⊗ S−), with the norm defined in (2.7). First,

we must show that H1(T × P1, E) has the correct dimension.

Vanishing theorem. Since χ(E) = −k, in order to conclude that

h1(T × P1,O(E)) = k, it is enough to show that the cohomologies of or-

ders 0 and 2 vanish.

Let us assume that the restriction of E to the elliptic curves E|T×{w} is

semi-stable for all w ∈ P1. We can regard E → T × P1 as a family of

extensions:

0→ Lξ → E|Tw
→ L−ξ → 0

of a flat line bundle Lξ by its dual L−ξ, where ξ ∈ T̂ depends holomorphically

on w ∈ P1; in other words, the family is parametrised by P1.

Since such extension bundles can be indecomposable if and only if ξ = −ξ
(i.e. ξ has order 2 in T̂ ), we conclude that E|Tw

splits as a sum of flat line

bundles for all but finitely many points w ∈ P1. Furthermore, these flat

line bundles are holomorphically nontrivial for all but finitely many points

w ∈ P1.

This observation leads to the desired vanishing result:

Lemma 2.13 If E is irreducible and k > 0, then:

h0(T × P1, E) = h2(T × P1, E) = 0

Let Lξ → T be a flat line bundle with its canonical connection, as de-

scribed in section 2.2; denote:

E(ξ) = E ⊗ p∗1Lξ and Ẽ(ξ) = E ⊗ p∗1Lξ ⊗ p∗2OP1(1)

Note that we can regard p∗2OP1(1) as the line bundle corresponding to the

divisor T∞. It follows from the lemma that:

h1(T × P1, E(ξ)) = h1(T × P1, Ẽ(ξ)) = k
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for every ξ ∈ T̂ .

Proof: Take w ∈ P1 such that E(ξ)|Tw
= Lξ1 ⊕ Lξ2 for some non-trivial

ξ1, ξ2 ∈ T̂ ; the existence of such point follows from the observations made

prior to the statement of the lemma. Let V ⊂ P1 be an open neighbourhood

of w such that every point of V satisfy a the same condition.

Suppose there is a holomorphic section s ∈ H0(M, E(ξ)); it gives rise to

a holomorphic section sw of E(ξ)|Tw
→ Tw. On the other hand, we have that

h0(T, E(ξ)|T×{w}) = 0, hence sw ≡ 0. Moreover, sw ≡ 0 for all w ∈ V , so that

s must vanish identically on the open set T × V , hence vanish everywhere

and h0(E(ξ)) = 0. The vanishing of h0(Ẽ(ξ)) is proved in the very same way

by noting Ẽ(ξ)|Tw
≡ E(ξ)|Tw

since p∗2OP1(1)|Tw
= C.

The vanishing of the h2’s follows from Serre duality and a similar ar-

gument for the bundle E(ξ) ⊗ KT×P1. More precisely, Serre duality implies

that:

H2(T × P1, E(ξ)) = H0(T × P1, E(ξ)∨ ⊗KT×P1)∗

= H0(T × P1, E(ξ)∨ ⊗ p∗2OP1(−2))∗

On the other hand, it is easy to see that:

E(−ξ)|Tw
≡ (E(ξ)∨ ⊗ p∗2OP1(−2))|Tw

so that we can apply the same argument as above to show that

h0(T × P1, E(ξ)∨ ⊗KT×P1) = 0. �

Proof of proposition 2.12. Let {wi} be the set of points in P1 for which

h0(Twi
, E|Twi

) 6= 0. As we argued above, there are only finitely many such

points; in fact, it can be shown that there are at most k such points (see

lemma 7.1). Suppose that #{wi} = p ≤ k; note also that ∞ /∈ {wi} if ξ0 is

nontrivial.

Denote by B the divisor in T × P1 consisting of the elliptic curves lying

over these points, i.e. B =
∑

i T × {wi}. Also, denote E(p) = E ⊗OT×P1(B).
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Consider the exact sequence of sheaves:

0→ O(E)→ O(E(p))→ O(E(p)|B)→ 0

which induces the following sequence of cohomology:

0 → H0(B, E(p)|B) → H1(T × P
1, E)︸ ︷︷ ︸ → H1(T × P

1, E(p))︸ ︷︷ ︸ → H1(B, E(p)|B) → 0

dim = k dim = k (2.24)

and note that p ≤ h0(B, E(p)|B) = h1(B, E(p)|B) ≤ 2k. It follows from (2.24)

that h0(B, E(p)|B) = h1(B, E(p)|B) = k, so that the left map in the sequence

(2.24) above H0(B, E(p)|B)→ H1(T × P1, E) is an isomorphism.

This means that each element in H1(T × P1, E) can be represented by a

(0, 1)-form θ supported on tubular neighbourhoods of the fibres T × {wi}.
Pulling θ back to T ×C, we obtain a compactly supported (0, 1)-form, which

we also denote by θ, since ξ0 is nontrivial.

We want to fashion a solution ψ ofD∗
Aψ = 0 out of θ, and within the same

cohomology class. In other words, by virtue of the extensibility hypothesis,

we want to find a section s ∈ L2(Λ0E) such that D∗
A(θ + ∂As) = 0. Since

D∗
A = ∂

∗
A − ∂A, this is the same as solving the equation:

∂
∗
A∂As = ∆As = −∂∗

Aθ

for a compactly supported θ.

In the Fredholm theory for the Dirac operator developed above, we con-

structed the Green’s operator GA of the Dirac laplacian ∆A. Thus, we can

write s = −GA∂
∗
Aθ and ψ = θ − ∂AGA∂

∗
Aθ = Pθ, where P denotes the L2

projection L2(E ⊗ S−)
P→ kerD∗

A.

We must verify that ψ ∈ L2(E⊗S−); it is enough to show that ∂AGA∂
∗
Aθ

is square-integrable for any compactly supported (0,1)-form θ. First note that

γ = ∂
∗
Aθ also has compact support, so that s = GAγ ∈ L2(Λ0E). Therefore,

we have:

||∂As||2L2 = 〈∂As, ∂As〉 = 〈∂As, (∂AGA)γ〉 =

= 〈(∂AGA)∗∂As, γ〉
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which is finite, since γ is compactly supported. Note the the integration by

parts made from the first to the second line is justified by the same fact.

Therefore, ψ is indeed a square-integrable solution of D∗
Aψ = 0.

Finally, to see that the map defined above is injective (hence an isomor-

phism), let θ′ be another (0, 1)-form supported around B and within the

same cohomology class as θ, so that θ − θ′ = ∂Aα. Thus:

ψ − ψ′ = (θ − ∂AGA∂
∗
Aθ)− (θ′ − ∂AGA∂

∗
Aθ

′) =

= (θ − θ′)− ∂AGA∂
∗
A(θ − θ′) =

= ∂Aα− ∂AGA∂
∗
A∂Aα = ∂Aα− ∂Aα = 0 (2.25)

This completes the proof. �
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Chapter 3

Nahm transform for instantons

over T × C

We are finally ready to present the construction of the Nahm transform for

an instanton over T × C, proving theorem 1. In the first section, we outline

a purely differential geometric approach to this construction. As we have

mentioned in the introduction, such approach is not powerful enough due to

the non-compactness of T × C, but has the virtue of being very clear and

explicit.

Inspired by this gauge-theoretical approach, we bring forth the powerful

tools of algebraic geometry to probe the singularity of the Higgs field. The

compactification results established in the previous chapter puts us in posi-

tion to approach the problem in a holomorphic fashion, completing the proof

of theorem 1 in chapter 5.

3.1 Gauge-theoretical construction

Recall that our starting point is a rank 2 vector bundle

E → T × C provided with an instanton connection A ∈ A(k,ξ0), where the

instanton number k and the asymptotic state ξ0 are from now on fixed.

Over the dual torus, consider the trivial Hilbert bundle Ĥ → T̂ \ {±ξ0}
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whose fibres are Ĥξ = L2
1(E(ξ) ⊗ S−). Taking the L2

1-norm on the fibres,

Ĥ becomes an hermitian bundle. Moreover, call d̂ the trivial connection on

Ĥ; such connection is clearly unitary, hence one can define a holomorphic

structure over Ĥ.

Now, consider the finite-dimensional sub-bundle V ↪→ Ĥ whose fibres are

given by Vξ = kerD∗
Aξ

. We shall call V → T̂ \ {±ξ0} the dual bundle of E;

remark that this is actually the index bundle (see [9] or [15]) for the family of

Dirac operators DAξ
. Let i : V → Ĥ be the natural inclusion and P : Ĥ → V

the fibrewise orthogonal L2 projection; more precisely, Pξ = I −DAξ
GAξ

D∗
Aξ

for each ξ ∈ T̂ \ {±ξ0}, where GAξ
denotes the Green’s operator for (2.23), I

is the identity operator. We can define a hermitian connection on V via the

projection formula:

∇B = P ◦ d̂ ◦ i (3.1)

where B is the associated connection form.

Clearly, V inherits the hermitian metric h from Ĥ, and B is also unitary

with respect to this induced metric. Hence, we can provide V with the

holomorphic structure coming from the unitary connection B.

Alternatively, V also admits an interpretation in terms of monads, see

[15]. The Dirac operator can be unfolded into a family of elliptic complexes

parametrised by T̂ \ {±ξ0}, namely:

0→ L2
2(Λ

0E(ξ))
∂Aξ−→ L2

1(Λ
0,1E(ξ))

−∂Aξ−→ L2(Λ0,2E(ξ))→ 0
(3.2)

which, of course, are also Fredholm. Moreover, the cohomologies of order

0 and 2 must vanish, by proposition 2.13. As in [15], such holomorphic

family defines a holomorphic vector bundle V → (T̂ \ {±ξ0}), with fibres

Vξ = H1(ξ) = kerD∗
Aξ

, plus an unitary connection, induced by orthogonal

projection, which is compatible with the given holomorphic structure. Such

connection will be denoted by B. We will invoke this construction repeatedly

throughout this work.

32



The curvature FB of B is simply given by:

FB = ∇B∇B = P d̂(P d̂)

Explicit formulas for the matrix elements on an arbitrary local trivialisation

of V → (T̂ \ {±ξ0}) will be useful later on. For instance, pick up an or-

thonormal frame {ψi}kn=1 over an open set U ⊂ T̂ \ {±ξ0}. Then, we have

that:

(B)ij = 〈ψj,∇Bψi〉 = 〈ψj, d̂ψj〉
(FB)ij = 〈ψj, FBψi〉 = 〈ψj, P d̂(P d̂ψi)〉 = 〈ψj, d̂(P d̂ψi)〉 (3.3)

Higgs field. We now define the Higgs field Φ ∈ End(V ) ⊗ KT̂ . Recall

that w is the complex coordinate of the plane. Let ψ ∈ Γ(V ), i.e. for each

ξ ∈ T̂ \ {±ξ0}, ψ[ξ] ∈ kerD∗
Aξ. For a fixed ξ′, the Higgs field will act on ψ[ξ ′]

by multiplying this section by the plane coordinate w and then projecting it

back to kerD∗
Aξ

:

(Φ(ψ))[ξ′] =
1√
2
Pξ′(wψ[ξ′])dξ (3.4)

Its conjugate is clearly given by (Φ∗(ψ))[ξ′] = 1√
2
Pξ′(wψ[ξ′])dξ

Again, there is a subtle analytical point here. The spinors ψ belong

to L2(E(ξ) ⊗ S−) but is not necessarily the case that wψ also belong to

L2(E(ξ)⊗S−). To show this is indeed the case, we have the following lemma:

Lemma 3.1 If ψ ∈ kerD∗
A and A has nontrivial asymptotic state, then

wψ ∈ L2(E ⊗ S−).

Proof: The key result here is proposition 2.10, and the observation that

follows it, in particular the invertibility of the operator (2.20).

Let K ⊂ T ×C be a compact subset such that D∗
A is sufficiently close to

the flat Dirac operator D∗
±ξ0 outside K. Thus, restricted to the complement

of K, D∗
A is invertible acting from L̃2 → L2.
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Now if ψ ∈ kerD∗
A, then D∗

A(wψ) = dw · ψ ∈ L2(E(ξ) ⊗ S+|T×C\K) and

the proposition follows. �

Note that the dependence of (B,Φ) on the original instanton A is con-

tained on the L2-projection operator P , i.e. on the k solutions of D∗
Aξ
ψ = 0.

It is easy to see that the finite dimensional space spanned by these ψ is gauge

invariant; moreover, the multiplication by w also commutes with gauge trans-

formations ĝ ∈ Aut(V ). Therefore, we have that:

Proposition 3.2 If A and A′ are gauge equivalent irreducible instantons,

then the corresponding pairs (B,Φ) and (B ′,Φ′) are also gauge equivalent.

A pair (B,Φ) is called a Higgs pair on the bundle V → T̂ \ {±ξ0} if it

satisfies Hitchin’s self-duality equations:

{
(i) FB + [Φ,Φ∗] = 0
(ii) ∂BΦ = 0

(3.5)

Recall from section 2.2 that the unitary connection, and its corresponding

curvature, of the Poincaré line bundle P→ T × T̂ are given by:

ω(z, ξ) = i
2∑

µ=1

ξµdzµ Ω(z, ξ) = i
2∑

µ=1

dξµ ∧ dzµ

From Braam & Baal [12], we know that if s ∈ Γ(E(ξ)⊗ S−), then:

D∗
Aξ

(d̂s) = [D∗
Aξ
, d̂]s = −Ω · s (3.6)

where · means Clifford multiplication. The local formula for the curvature

(3.3) may now be cast on a more convenient form:

(FB)ij = 〈ψj, d̂(P d̂ψi)〉 = 〈ψj, d̂(DAξ
GAξ

D∗
Aξ
d̂ψi)〉 =

= 〈−D∗
Aξ
d̂ψj, GAξ

(D∗
Aξ
d̂ψi)〉 = 〈Ω · ψj, GAξ

(Ω · ψi)〉
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Since the Clifford multiplication commutes with the Green’s operator, we

end up with:

(FB)ij = −〈(Ω ∧ Ω) · ψi, GAξ
ψi〉 =

= 2〈(dz1 ∧ dz2) · ψj, GAξ
ψi〉dξ1 ∧ dξ2 = (3.7)

= −i〈(dz1 ∧ dz2) · ψj, GAξ
ψi〉dξ ∧ dξ

Note moreover that the inner product is taken in L2(E(ξ)⊗S−), integrating

out the (z, w) coordinates.

Hitchin’s pairs from instantons. Our first step towards the proof of

theorem 1 is the following result:

Theorem 3.3 If A is an irreducible, extensible instanton connection on

E → T×C, then the associated pair (B,Φ) on the dual bundle V → T̂ \{±ξ0}
constructed above satisfies the Hitchin’s equations (3.5).

Proof: Choose a point ξ and an open neighbourhood ξ ∈ U ⊂ T̂ \ {±ξ0}
and pick up a local orthonormal trivialisation of V → T̂ \ {±ξ0} over U ,

such that the corresponding local frame {ψi}kn=1 is parallel at ξ. Recall that

ψi(ξ) ∈ kerD∗
Aξ

.

First, we shall look at the second equation of (3.5), and recall that

T̂ \ {±ξ0} was given the flat Euclidean metric induced from the quotient.

Once a local trivialisation is chosen, the endomorphism Φ can then be put

in matrix form, with matrix elements given by:

aij(ξ) = 〈ψj(ξ),Φ[ψi](ξ)〉

where 〈, 〉 is the inner product on L2(E(ξ)⊗ S−), integrating out the (z, w)

coordinates. Clearly, Φ is a holomorphic endomorphism if its matrix elements

in holomorphic trivialisation are holomorphic functions. However:

Φ[ψi](ξ) = Pξ(wψi(ξ))dξ = (I −DAξ
GAξ

D∗
Aξ

)(wψi(ξ))dξ
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so that:

aij(ξ) =
1√
2

{
〈ψj(ξ), wψi(ξ)〉 − 〈ψj(ξ), DAξ

GAξ
D∗

Aξ
(wψi(ξ))〉

}
=

=
1√
2

{
〈ψj(ξ), wψi(ξ)〉 − 〈D∗

Aξ
ψj(ξ), GAξ

D∗
Aξ

(wψi(ξ))〉
}

=

=
1√
2
〈ψj(ξ), wψi(ξ)〉

Therefore:

∂aij

∂ξ
(ξ) =

1√
2

{
〈∂Bψj, wψi〉+ 〈ψj, ∂B(wψi)〉

}
=

=
1√
2
〈ψj,

(
∂w

∂ξ

)
ψi + ∂Bψi〉 = 0

as ψi is parallel at ξ. Since this can be done for all ξ ∈ T̂ \ {±ξ0}, the second

equation is satisfied.

Now, we move back to (3.5(i)). Let us first compute the matrix elements

([Φ,Φ∗])ij. Note that:
{

(i) [D∗
Aξ
, w]ψi(ξ) = D∗

Aξ
(wψi(ξ)) = −dw · ψi(ξ)

(ii) [D∗
Aξ
, w]ψi(ξ) = D∗

Aξ
(wψi(ξ)) = 0

(3.8)

where we used the fact that DAξ
= ∂

∗
Aξ
− ∂Aξ

.

Recall that for 1-forms [Φ,Φ∗] = ΦΦ∗ + Φ∗Φ. We compute each term

separately:

Φ∗Φ(ψi) =
1

2
P [wP (wψi)]dξ ∧ dξ =

=
1

2

{
wP (wψi)−DAξ

GAξ
D∗

Aξ
wP (wψi)

}
dξ ∧ dξ =

=
1

2

{
wwψi − wDAξ

GAξ
D∗

Aξ
(wψi)−

−DAξ
GAξ

D∗
Aξ
wP (wψi)

}
dξ ∧ dξ

ΦΦ∗(ψi) =
1

2
P [wP (wψi)]dξ ∧ dξ =

=
1

2

{
wwψi − wDAξ

GAξ
D∗

Aξ
(wψi)−

−DAξ
GAξ

D∗
Aξ
wP (wψi)

}
dξ ∧ dξ
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The two first terms of ΦΦ∗ and Φ∗Φ cancel each other and the third

terms will cancel out when we take the inner product with ψj. Moreover, the

second term of Φ∗Φ is zero by (3.8(ii)). So we are left with:

([Φ,Φ∗])ij =
1

2
〈ψj, [Φ,Φ

∗]ψi〉 =
1

2
〈ψj, wDAξ

GξD
∗
Aξ

(wψi)〉 dξ ∧ dξ =

=
1

2
〈D∗

Aξ
(wψj), GξD

∗
Aξ

(wψi)〉 dξ ∧ dξ =

= −1

2
〈(dw ∧ dw) · ψj, Gξψi〉 dξ ∧ dξ =

= −i〈(dw1 ∧ dw2) · ψj, Gξψi〉dξ ∧ dξ

where we have once more used the fact that the Clifford multiplication com-

mutes with the Green’s operator. Summing the final expression above with

(3.7), one gets:

(FB)ij + ([Φ,Φ∗])ij = −i〈(dz1 ∧ dz2 + dw1 ∧ dw2) · ψj, Gξψi〉dξ ∧ dξ = 0

for the first term of the inner product is zero since it consists of a self-dual

form (the Kähler form κ) acting on a negative spinor. �

Clearly, the above result has two weak points: it tells nothing about the

behaviour of the Higgs field around the singular points ±ξ0; and it fails to

show that the Higgs pairs so obtained are admissible. In fact, establishing

the first point requires the use of algebraic-geometric methods, and will be

taken up in section 3.2 below. The second point will be clarified in section

4 when we give the inverse construction, obtaining instantons from singular

Higgs pairs.

3.2 Holomorphic approach

The vanishing results of section 2.3.1 put us in position to define the trans-

formed bundle V → T̂ . Indeed, consider the following elliptic complex:

0→ L2
2(Λ

0E(ξ))
∂Aξ→ L2

1(Λ
0,1E(ξ))

−∂Aξ→ L2(Λ0,2E(ξ))→ 0 (3.9)
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According to proposition 2.13, H1(T × P1, E(ξ)) is the only nontrivial co-

homology of this complex. It then follows that the family of vector spaces

given by Vξ = H1(T × P1, E(ξ)) forms a holomorphic vector bundle of rank

k over T̂ ; denote such holomorphic structure by ∂V . Note that Vξ is de-

fined even if ξ = ±ξ0. Furthermore, by proposition 2.12, V|T̂\±ξ0
coincides

holomorphically with the dual bundle V defined on the previous section, i.e.:

(V, ∂V)|T̂\{±ξ0} ' (V, ∂B)

Moreover, V comes equipped with a hermitian metric h′, which we want

to compare with h, the hermitian metric on V induced from the monad (3.2).

The key point is a fact we noted before in lemma 2.4: given an 1-form a on

T × P1, its L2-norm with respect to the round metric is always larger than

its L2-norm with respect to the flat metric on T × (P1 \ {∞}):

||a||L2
R
> ||a||L2

F

Thus, comparing the monads (3.2) and (3.9), one sees that h is bounded

above by h′. In particular, the metric h is bounded at ±ξ0.
We can regard V as an index bundle for the family of Dirac operators

over T × P1 parametrised by ξ ∈ T̂ . Hence, its degree can be computed

by the Atiyah-Singer index theorem for families. Consider now the bundle

G = p∗12E ⊗ p∗13P over T × P1 × T̂ , and note that G|T×P1×{ξ} = E(ξ). Then

we have:

ch(V) = −ch(G) · td(T × P1)/[T × P1] =

= −
(
2 + 2c1(P) + c1(P)2 − c2(E)

)(
1 +

1

2
c1(P

1)
)
/[T × P1] =

= k − 1

2
c1(P)2c1(P

1)/[T × P1] = k − 2t̂

where the “−” sign in the first line is needed since V is formed by the null

spaces of the adjoint Dirac operator.

Summing up:
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Lemma 3.4 The dual bundle (V, ∂B) → T̂ \ {±ξ0} admits a holomorphic

extension V → T̂ of degree −2. Moreover, its hermitian metric h is bounded

above at the punctures ±ξ0.
The determinant line bundle of V is not fixed, however. In fact, let

tx : T ×P1 → T ×P1 be the translation of the torus by x ∈ T , acting trivially

on P1, and let E ′ = t∗xE . If V ′ is the dual bundle associated with E ′ then

V ′ = V ⊗ Lx. Indeed:

V ′
ξ = H1(T × P1, E ′(ξ)) = H1

(
T × P1, p∗12(t

∗
xE)⊗ p∗13P|T×P1×{ξ}

)
=

= H1
(
T × P1, t∗x(p

∗
12E ⊗ p∗13P)⊗ p∗3Lx|T×P1×{ξ}

)
=

= H1
(
T × P1, p∗12E ⊗ p∗13P|T×P1×{ξ}

)
⊗ (Lx)ξ

⇒ V ′
ξ = Vξ ⊗ (Lx)ξ

as a canonical isomorphism for each ξ ∈ T̂ . Thus V ′ = V ⊗ Lx.

Note also that if B is an admissible connection, V admits no splitting

V = V0 ⊕ L compatible with B for any flat line bundle L.

Defining the Higgs field. The next step is to give a holomorphic descrip-

tion of the Higgs field Φ.

Recall that h0(T×P1, p∗2OP1(1)) = 2, and regarding P1 = C∪{∞}, we can

fix two holomorphic sections s0, s∞ ∈ H0(P1,OP1(1)) such that s0 vanishes

at 0 ∈ C and s∞ vanishes at the point added at infinity. In homogeneous

coordinates {(w1, w2) ∈ C2|w2 6= 0} and {(w1, w2) ∈ C2|w1 6= 0}, we have

that, respectively (w = w1/w2):

s0(w) = w s0(w) = 1

s∞(w) = 1 s∞(w) =
1

w

Let us first consider an alternative definition of the transformed Higgs

field. For each ξ ∈ T̂ , we define the map:

H1(T × P1, E(ξ))×H1(T × P1, E(ξ)) Ψξ−→ H1(T × P1, Ẽ(ξ))
(α, β) 7→ α⊗ s0 − β ⊗ s∞ (3.10)
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If (α, β) ∈ kerΨξ, we define an endomorphism ϕ of H1(T × P1, E(ξ)) at the

point ξ ∈ T̂ as follows:

ϕξ(α) = β (3.11)

We check that ϕ actually coincides with the Higgs field Φ we defined in

the previous section, which is part of the transformed Higgs pair. Note that:

α⊗ s0 − β ⊗ s∞ = 0 ⇔ β = α(⊗s0)(⊗s∞)−1

Moreover, recall that, for any trivialisation of OP1(1) with local coordinate

w on P1, the quotient s0(w)/s∞(w) = w. The claim now follows from the

proof of proposition 2.12; we denote Φξ = ϕξ.

Proposition 3.5 The eigenvalues of the Higgs field Φ have at most simple

poles at ±ξ0. Moreover, the residues of Φ are semi-simple and have rank ≤ 2

if ξ0 is an element of order 2 in the Jacobian of T , and rank ≤ 1 otherwise.

Proof: Suppose α(ξ) is an eigenvector of Φξ with eigenvalue ε′(ξ) = 1/ε(ξ),

i.e. Φξ(α(ξ)) = ε′(ξ) · α(ξ). Thus,

α(ξ)⊗ s0 − ε′(ξ) · α(ξ)⊗ s∞ = 0 ⇒ α(ξ)⊗ (ε(ξ) · s0 − s∞) = 0

Therefore, denoting sε(ξ) = ε(ξ) · s0 − s∞, we have that α(ξ) ∈ ker(⊗sε(ξ)).

On the other hand, consider the sheaf sequence:

0→ E(ξ) ⊗sε(ξ)→ Ẽ(ξ)→ Ẽ(ξ)|Tε′(ξ)
→ 0

since the section sε(ξ) vanishes at ε′(ξ). It induces the cohomology sequence:

0→ H0(Tε′(ξ), Ẽ(ξ)|Tε′(ξ)
)→ H1(T × P1, E(ξ)) ⊗sε(ξ)→ ...

(3.12)

so that ker(⊗sε(ξ)) = H0(Tε′(ξ), Ẽ(ξ)|Tε′(ξ)
) which is non-empty if and only if

E(ξ)|Tε′(ξ)
= Lξ ⊕ L−ξ or F2 ⊗ Lξ.
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Hence, as ξ approaches ±ξ0, we must have that one of the eigenvalues of

Φ, say ε′(ξ) approaches ∞, since E|T∞
= Lξ0 ⊕ L−ξ0 . Moreover, sε(ξ)→ s∞,

so that:

lim
ξ→±ξ0

α(ξ) ∈ ker(⊗s∞) = H0(T∞, E(ξ)|T∞
)

Therefore, we conclude that, if ξ0 6= −ξ0, then one of the eigenvalues of Φ

has a simple pole at ±ξ0 since h0(T∞, E(±ξ0)|T∞
) = 1; similarly, if ξ0 = −ξ0,

then two of the eigenvalues of Φ have a simple poles at ξ0.

Note in particular that the images of the residues of Φ at ±ξ0 are precisely

given by:

H0(T∞, Ẽ(±ξ0)|T∞
) ⊂ H1(T × P1, E(±ξ0))

�

This proposition almost concludes one way of the correspondence in the

statement of our main theorem; it only remains to be shown that the Nahm

transformed Higgs pair is admissible. We must then show how to obtain an

instanton connection Ǎ on a bundle Ě → T × C from a singular Higgs pair,

and match these with the original objects A and E → T × C. These tasks

are taken up in the following chapter.

A conjecture regarding the hermitian metric on V. So far, we only

know that the hermitian metric h on the Nahm transformed bundle is bounded

above. Unfortunately, this is not enough for the construction of the inverse

transform in the next chapter, where we shall need a precise knowledge of

the behaviour of h at the punctures ±ξ0. More precisely, we must assume

that:

The hermitian metric h is non-degenerate along the kernel of the

residues of Φ. Furthermore, in a holomorphic trivialisation of V

over a sufficiently small neighbourhood around ±ξ0, h ∼ O(r1±α)

along the image of the residues of Φ, for some alpha 0 ≤ α < 1/2.
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In fact, we expect that h indeed satisfy this assumption. However, further

technical work is necessary to establish this claim.

Final remarks. Before we proceed, let us make a few remarks about the

proposition 3.5 above. In [36], a Higgs field is said to be tame if its eigenvalues

have at most simple poles. Kovalev has shown that, if (B,Φ) is a Higgs

pair on the punctured surface, this condition is equivalent to the following

regularity condition [28]:

∫

D0

(
|ξ|2|FB|2 + |∇BΦ̂|2

)
dξdξ <∞ (3.13)

where D0 is a punctured disc centred at ±ξ0 with complex coordinate ξ, and:

Φ̂ = ξ
∂

∂ξ
xΦ

In other words, proposition 3.5 shows that the transformed Higgs pair

(B,Φ) is regular in the sense of Kovalev, i.e. it satisfies condition (3.13)

above. A direct proof of the regularity condition (3.13) within the gauge-

theoretical framework of section 3.1 is possible; it involves an estimate of the

operator norm ||GAξ
|| as ξ → ±ξ0, as in (2.16). However, such approach

would not give the precise form of the residue obtained in proposition 3.5.

Finally, we would like to emphasise that the transformed Higgs data

(V,B,Φ) depend on the original instanton connection only through the in-

duced holomorphic structure ∂A. Indeed, (V,B,Φ) arise by looking at the

kernel of the adjoint Dirac operator, which depend only on the holomorphic

structure on E → T × C (which in turn depend on the choice of complex

structure on T ×C) and on the choice of metric on the base. Note also that

the holomorphic structure ∂A is entirely encoded on the extended bundle

E → T × P1. That is why we were able to give a completely holomorphic

description of the transform despite the fact that, in principle, the extended

holomorphic bundle E contains less information than (E,A).
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3.3 A T × C × S1 action on the moduli space

of instantons

Seen as an abelian group, T × C× S1 acts on T × C as follows:

(T × C× S1)× (T × C) → T × C

(x, y, γ) · (z, w) → (z + x, eiγ · w + y) (3.14)

Clearly, this action lifts to an action of T × C × S1 on the moduli space of

extensible instantons. We are interested in understanding the effect of this

action on the Nahm transformed Higgs pairs.

So let t(x,y,γ)(z, w) = (z + x, eiγ · w + y) and denote E ′ = t∗(x,y,γ)E,

A′ = t∗(x,y,γ)A and E ′ = t∗(x,y,γ)E . Let (V ′,V ′, B′,Φ′) and (V,V, B,Φ) be

the corresponding objects obtained via Nahm transform on (E, E , A) and

(E ′, E ′, A′).

Setting y = γ = 0, we have seen that the effect of translations on the

torus t∗x is simply to add a flat tensor factor, i.e.:

V ′ = V ⊗ Lx

Of course, bundle V and the connection B are similarly twisted. It is easy

to see from the definition that the Higgs field remains unaltered: Φ ′ = Φ.

Now set x = 0. One sees from the calculations following lemma 3.4 that

t∗(y,γ) has no effect on the dual bundle V, i.e. V ′ = V. On the other hand,

(3.4) tells us that the Higgs field varies in a particularly simple way:

Φ′ = eiγ · Φ + y · I

Clearly, the action of t∗γ multiplies the residues of Φ by eiγ , while the action

of t∗y leaves them unchanged.
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Chapter 4

Constructing instantons via the

inverse transform

Our task now is to construct a holomorphic rank 2 vector bundle over T ×C,

with an instanton connection on it, departing from a suitable singular Higgs

pair. We will later show that these coincide with the original objects from

which we started in section 3.1.

Let V → T̂ \ {±ξ0} be a hermitian, holomorphic vector bundle of rank

k with a Higgs pair (B,Φ), as described in theorem 1. More precisely, the

connection B defines a holomorphic structure ∂B on the bundle V , which is

also compatible with the hermitian metric; and Φ ∈ EndV ⊗KT̂ has simple

poles at ±ξ0, with semi-simple residues of rank≤ 2. Recall also that a (B,Φ)

is said to be admissible if there are no covariantly constant sections of V , in

other words, if the following holds for every section s ∈ Γ(V ) which is not

constant:

||∇Bs||L2 > 0 (4.1)

Motivated by lemma 3.4, we assume also that there is a hermitian, holo-

morphic vector bundle V → T̂ of degree −2 such that:

(V, ∂V)|T̂\{±ξ0} ' (V, ∂B)
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Moreover, the hermitian metric on V is bounded above by the hermitian

metric V.

Of course, this rigid set-up is motivated by the Nahm transform construc-

tion of the previous chapter.

Let S+ = Λ0 ⊕ Λ1,1 and S− = Λ1,0 ⊕ Λ0,1. The idea is to study the

following elliptic operators:

D : Γ(V ⊗ S+)→ Γ(V ⊗ S−) D∗ : Γ(V ⊗ S−)→ Γ(V ⊗ S+)

D = (∂B + Φ) − (∂B + Φ)∗ D∗ = (∂B + Φ)∗ − (∂B + Φ) (4.2)

where (B,Φ) is a Higgs pair. Note that the operators in (4.2) are just the

Dirac operators coupled to the connection B̃, obtained by lifting the Higgs

pair (B,Φ) to an invariant ASD connection (R4)∗ as in the introduction. In

particular, DB = ∂B − ∂∗B is the coupled Dirac operator acting on V ⊗ S−.

Due to the non-compactness of the base space, the choice of metric in

T̂ \ {±ξ0} is a delicate issue. From the point of view of the Nahm transform,

it is important to consider the Euclidean, incomplete metric on the punctured

dual torus, as we explained in the introduction. However, such a choice of

metric is not a good one from the analytical point of view. For instance, one

cannot expect on general grounds to have a finite dimensional moduli space

of Higgs pairs.

Fortunately, as we mentioned before, Hitchin’s equations are conformally

invariant, so that we are allowed to make conformal changes in the Eu-

clidean metric localised around the punctures to obtain a complete metric on

T̂ \ {±ξ0}. Thus, our strategy is to obtain results concerning the Euclidean

metric from known statements about complete metrics.

In [8], Biquard considered the so-called Poincaré metric, which is defined

as follows. We perform a conformal change on the incomplete metric over

the punctured torus localised on small punctured neighbourhoods D0 of ±ξ0,
so that if ξ = (r, θ) is a local coordinate on D0, we have the metric:

ds2
P =

dξdξ

|ξ|2 log2 |ξ|2 =
dr2

r2 log2 r
+

dθ2

4 log2 r
(4.3)
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We denote the complete metric so obtained by gP . The Euclidean metric

is denoted by gE. Whenever necessary, we will denote by L2
E and L2

P the

Sobolev norms in Γ(Λ∗V ) with respect to gE and gP , respectively, together

with the hermitian metric in V .

Admissibility and vanishing theorem. The next step is to prove that

the admissibility condition (4.1) implies the vanishing of the L2-kernel of D:

Proposition 4.1 The Higgs pair (B,Φ) is admissible if and only if

L2
E−kerD = {0}.

Proof: Given a section s ∈ L2
2(V ⊗S+), the Weitzenböck formula with respect

to the Euclidean metric on the punctured torus is given by:

(∂
∗
B∂B + ∂B∂

∗
B)s = ∇∗

B∇Bs+ FBs = ∇∗
B∇Bs− [Φ,Φ∗]s

⇒ ∇∗
B∇Bs = (∂

∗
B∂B + ∂B∂

∗
B + ΦΦ∗ + Φ∗Φ)s

=
{
(∂B + Φ)(∂

∗
B + Φ∗) + (∂

∗
B + Φ∗)(∂B + Φ)

}
s

= D∗Ds

and integrating by parts, we get:

||Ds||2L2
E

= ||∇Bs||2L2
E

Thus, if B is admissible, then the L2
E-kernel of D must vanish. The converse

statement is also clear. �

In other words, the above proposition implies that the L2
E-cohomologies

of orders 0 and 2 of the complex:

C : 0→ L2
2,E(Λ0V )

Φ+∂B−→ L2
1,E(Λ1,0V ⊕ Λ0,1V )

∂B+Φ−→ L2
E(Λ1,1V )→ 0

(4.4)

must vanish. On the other hand, since the L2-norm for 1-forms is conformally

invariant, so the L2-cohomology H1(C) does not depend on the metric itself,

only on its conformal class.

46



Motivated by a result of Biquard (theorem 12.1 in [8]) we will see how

one can identify H1(C) in terms of certain hypercohomology vector spaces

which we now introduce.

Let V → T̂ be the extended holomorphic vector bundle mentioned above.

Recall that if ξ0 is not an element of order 2 then the residue of the Higgs field

Φ at ±ξ0 is a k × k matrix of rank 1. Therefore, if s is a local holomorphic

section on a neighbourhood of ±ξ0, Φ(s) has at most a simple pole at ±ξ0
and its residue has the form (∗, 0, . . . , 0) on some suitable trivialisation.

Similarly, if ξ0 is an element of order 2, Φ(s) has at most a simple pole

at ±ξ0 and its residue has the form (∗, ∗, 0, . . . , 0) on some suitable triviali-

sation.

This local discussion motivates the definition of a sheaf P±ξ0 such that,

given an open cover {Uα} of T̂ :

• P±ξ0(Uα) = OT̂ (V)(Uα), if ±ξ0 /∈ Uα;

• P±ξ0(Uα) = {meromorphic sections of Uα → Uα × Ck which have

at most a simple pole at ±ξ0 with residue lying either along a 2-

dimensional subspace of Ck if ξ0 has order 2, or along a 1-dimensional

subspace of Ck otherwise}, if ±ξ0 ∈ Uα.

It is easy to see that such P±ξ0 is a coherent sheaf. To simplify notation, we

drop the subscript ±ξ0 out.

Hence, Φ can be regarded as the map of sheaves:

Φ : V → P ⊗KT̂ (4.5)

Seen as a two-term complex of sheaves, the map (4.15) induces an exact

sequences of hypercohomology vector spaces (see for example [11], section

3.1) parametrised by (z, w) ∈ T × C, namely:

0 → H0(T̂ ,Φ) → H0(T̂ ,V)
Φ→ H0(T̂ ,P ⊗KT̂ ) →

→ H1(T̂ ,Φ) → H1(T̂ ,V)
Φ→ H1(T̂ ,P ⊗KT̂ ) →

→ H2(T̂ ,Φ) → 0 (4.6)
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It is easy to see that:

H0(T̂ ,Φ) = ker
{
H0(T̂ ,V)

Φ→ H0(T̂ ,P ⊗KT̂ )
}

H2(T̂ ,Φ) = coker
{
H1(T̂ ,V)

Φ→ H1(T̂ ,P ⊗KT̂ )
}

and admissibility implies that the right-hand side must vanish: restricted to

T̂ \ {±ξ0}, a section there would give a section in the kernel of D. Therefore,

the dimension of H1 is equal to χ(P ⊗KT̂ )− χ(V).

To compute this number, note that there is also a natural map

V ι→ P defined as the local inclusion of holomorphic local sections (elements

of OT̂ (V)(Uα)), into the meromorphic ones (elements of P(Uα)). It fits into

the following sequence of sheaves:

0→ V ι→ P resξ0−→ Rξ0 → 0 if ξ0 has order 2,

0→ V ι→ P res±ξ0−→ R±ξ0 → 0 otherwise
(4.7)

where Rξ0 is the skyscraper sheaf supported at ξ0 and stalk isomorphic to

C2 and R±ξ0 is the skyscraper sheaf supported at ±ξ0 and stalks isomorphic

to C. Since χ(R±ξ0) = 2, we conclude that H1 is a 2-dimensional complex

vector space.

Proposition 4.2 The hypercohomology induced by the map of sheaves (4.5)

coincides with the L2
P -cohomology of the complex (4.4).

In particular, we have identifications:

H1(T̂ ,Φ) ≡ L2
P−cohomology H1(C) ≡ L2

E−cohomology H1(C)

Furthermore, note also that the L2-cohomology of 1-forms with respect to

the Euclidean metric is a 2 dimensional complex vector spaces.

Proof: The hypercohomology defined by the map (4.5) is given by the

total cohomology of the double complex:

Λ0V Φ→ Λ1,0P
∂ ↓ ↓ ∂

Λ0,1V Φ→ Λ1,0P
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which in turns is just the cohomology of the complex:

0→ Λ0V Φ+∂→ Λ1,0P ⊕ Λ0,1V ∂+Φ→ Λ1,0P → 0

Now restricting the complex above to the punctured torus T̂ \{±ξ0}, we get:

0→ Λ0V
Φ+∂B→ Λ1V

∂B+Φ→ Λ2V → 0

which is, of course, the complex C.
So, let s be a section of Λ1,0P ⊕Λ0,1V defining a class in H1(T̂ ,Φ). Thus,

restricting s to T̂ \ {±ξ0} yields a section sr of L2(Λ1V ) defining a class in

H1(C).
Such restriction map is clearly a well-defined map:

R : H1(T̂ ,Φ) → H1(C)
< s > → < sr >

We claim that it is also injective. Indeed, suppose that sr represents the zero

class, i.e. there is t ∈ L2
2(Λ

0V ) such that sr = (∂B +Φ)t. However, L2
2 ↪→ C0

is a bounded inclusion in real dimension 2. Thus, h(t, t) must be bounded

at the punctures ±ξ0, and t must be itself bounded along the kernel of the

residues of Φ. On the other hand, the hermitian metric degenerates along the

image of the residues of Φ, so t might be singular on this direction. However,

h ∼ O(r1±α) is a holomrophic trivialisation, so that t ∼ O(r−
1
2
(1±α)). But

then the derivatives of t will not be square integrable, contradicting our

hypothesis that t belongs to L2
2. So t must be bounded at ±ξ0.

This implies that t ∈ L2
2(Λ

0V) also with respect to the h′ metric, so that

sr is indeed the restriction of a section representing the zero class in H1(T̂ ,Φ).

Finally, to show that R is an isomorphism, it is enough by admissibility

to argue that the L2 index of the complex C is −2.

It was shown by Biquard (theorem 5.1 in [8]) the laplacian associated to

the complex C is Fredholm when acting between L2
P sections. This implies

that D is also Fredholm. Its index can be computed via Gromov-Lawson’s
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relative index theorem, and it coincides with the index of the Dirac operator

on V:

index(D) = index(∂B − ∂∗B) = degV = −2

as desired �

Constructing the transformed bundle. We are finally in a position to

construct a vector bundle with connection over T × C out of a Higgs pair

(B,Φ). Let Lz → T̂ \ {±ξ0} be a flat line bundle as in section 2.2, with its

natural connection ωz, and form the tensor product V (z) = V ⊗ Lz. The

connection B can be tensored with ωz to obtain another connection that we

denote by Bz.

Let i : V (z) → V (z) be the identity bundle automorphism and define

Φw = Φ−w · i, where w is a complex number. It is easy to see that (Bz,Φw)

is still an admissible Higgs pair, for all (z, w) ∈ T × C.

Now, consider the following continuous family of Dirac-type operators:

D(z,w) = (∂Bz
+ Φw)− (∂Bz

+ Φw)∗ (4.8)

From proposition 4.1, we have that kerD(z,w) = {0} for all (z, w) ∈ T × C,

and since its index remains invariant under this continuous deformation, we

conclude that kerD∗
(z,w) has constant dimension equal to 2.

Consider now the trivial Hilbert bundle Ȟ → T ×C with fibres given by

L2(V (z)⊗ S−). It follows that Ě(z,w) = kerD∗
(z,w) forms a vector sub-bundle

Ě
i
↪→ Ȟ of rank 2. Furthermore [15], Ě is also equipped with an hermitian

metric, induced from Ȟ, which we denote by H; and an unitary connection

Ǎ, so-called inverse transformed connection, defined as follows:

∇Ǎ = P ◦ d ◦ i (4.9)

where d means differentiation with respect to (z, w) on the trivial Hilbert

bundle and P is the fibrewise orthogonal projection P : L2(V (z) ⊗ S−) →
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kerD∗
(z,w), with respect to the natural hermitian metric on the Hilbert bundle.

Clearly, Ǎ defined on (4.9) is unitary.

Note also that the hermitian metric in Ȟ is actually conformally invariant

with respect to the choice of metric in T̂ \ {±ξ0}, since the inner product in

L2(V (z)⊗ S−) is. Therefore, the induced hermitian metric H in Ě depends

only on the conformal class of the metric on the punctured dual torus.

Finally, it is not difficult to see that gauge equivalent Higgs pairs (B,Φ)

and (B′,Φ′) will produce gauge equivalent instantons Ǎ and Ǎ′. The depen-

dence of Ǎ on the Higgs pair (B,Φ) is contained on the L2-projection oper-

ator P , i.e. on the 2 linearly independent solutions of D∗
(z,w)ψ = 0. Gauge

equivalence of (B,Φ) and (B ′,Φ′) gives an automorphism of the transformed

bundle Ě, in other words, a gauge equivalence between Ǎ and Ǎ′.

Anti-self-duality. In order to complete the inverse transform we must

check if the connection Ǎ is anti-self-dual and if it is extensible. We now

consider the first problem; the second will be treated in the following section.

Proposition 4.3 Ǎ is irreducible and anti-self-dual.

Proof: Irreducibility follows from proposition 4.5. Since Ǎ is an unitary

connection, we only have to verify that the component of FǍ along the Kähler

class κ of T × C vanishes. Calculations are similar to those in the proof of

theorem 3.3. Let {ψ1, ψ2} be a local orthonormal frame for Ě, with respect

to the hermitian metric induced from Ȟ. Fix some (z, w) ∈ T × C so that,

as a section of V (z)⊗ S− → T̂ , we have ψi = ψi(ξ; z, w) ∈ kerD∗
(z,w).

In this trivialisation, the matrix elements of the curvature FǍ can then

be written as follows:

(FǍ)ij = 〈ψj,∇Ǎ∇Ǎψi〉 = 〈ψj, d ◦ P ◦ dψi〉 =

= 〈D∗
(z,w)(dψj), G(z,w)D∗

(z,w)(dψj)〉
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where the inner product is taken in L2(V (z) ⊗ S−), integrating out the ξ

coordinate. Recall also that this is conformally invariant with respect to the

choice of metric on T̂ \ {±ξ0}.
Moreover, G(z,w) is the Green’s operator for D∗

(z,w)D(z,w). Note that:

[D∗
(z,w), d]ψi = Ω′ · ψi

where Ω′ = (idz1 + dw1) ∧ dξ1 + (idz2 + dw2) ∧ dξ2 and “·” denotes Clifford

multiplication; compare with (3.6). So,

κx(FǍ)ij = 〈ψj, κx(Ω′ ∧ Ω′) ·G(z,w)ψi〉 = 0

�

Asymptotic estimate of the curvature. We must now work towards

establishing that the inverse transformed instanton connection Ǎ satisfies

the extensibility conditions described in the introduction. We start with the

following result:

Proposition 4.4 |FA| ∼ O(r−2).

Proof: As in proposition 4.3, the matrix elements of the curvature, in the

local frame {ψi}, are given by:

(FǍ)ij = 〈(Ω′ ∧ Ω′) · ψj, G(z,w)ψi〉

Therefore, it is easy to see that the asymptotic behaviour of |(FǍ)ij| depends

only on the behaviour of the operator norm ||G(z,w)|| for large |w|.
We can estimate ||G(z,w)|| by looking for a lower bound for the eigenvalues

of the associated laplacian acting on V (z)⊗ S−:

D(z,w)D∗
(z,w) = DzD∗

z − wφ∗ − wφ+ |w|2 (4.10)
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where Dz = D(z,w=0) and Φ = φdξ, with φ ∈ EndV ; φ∗ denotes the adjoint

(conjugate transpose) endomorphism.

In other words, we want to find a lower bound for the following expression:

|〈(DzD∗
z + |w|2)s, s〉 − 〈(wφ∗ + wφ)s, s〉| ≥

≥ | 〈(DzD∗
z + |w|2)s, s〉 − |〈(wφ∗ + wφ)s, s〉| | (4.11)

for s ∈ L2
1(V ⊗ S−) of unit norm.

For the first term in the second line, it is easy to see that:

|〈(DzD∗
z + |w|2)s, s〉| = ||D∗

zs||2 + |w|2 · ||s||2 = c1 + |w|2
(4.12)

for some non-zero constant c1 = ||D∗
z||2 depending only on z ∈ T .

The second term in (4.11) is more problematic; first note that:

|〈(wφ∗ + wφ)s, s〉| ≤ |w| · (|〈φ(s), s〉|+ |〈φ∗(s), s〉|)

In a small neighbourhood D0 of each singularity ±ξ0, we have:

〈φ(s), s〉L2(D0) =
∫

D0

〈φ0(s)

ξ
, s〉rdrdθ+

(
regular
terms

)

∼
∫

D0

|φ0|
r
· |s|2rdrdθ +

(
regular
terms

)

Let 1 < p < 2; using Hölder inequality, we obtain:

∫

D0

|φ0|
ξ
· |s|2 ≤

{∫

D0

(
|φ0|
r

)p

rdrdθ

}1/p {∫

D0

|s|2q
}1/q

≤ c · ||s||2L2q

where q = p
p−1

, and for some real constant c.

Since 2q > 4, the Sobolev embedding theorem tells us that L2
1 ↪→ L2q is a

bounded inclusion (in real dimension 2). In other words, there is a constant

C depending only on q such that ||s||L2q ≤ C · ||s||L2
1
. Thus, arguing similarly

for the 〈φ∗(s), s〉 term, we conclude that:

|〈(wφ∗ + wφ)s, s〉| ≤ c2 · |w|
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where c2 is a real constant depending neither on z nor on w, but only on the

Higgs field itself and on the choice of p.

Putting everything together, we have:

∣∣∣〈(DzD∗
z − wφ∗ − wφ+ |w|2)s, s〉

∣∣∣ ≥
∣∣∣|w|2 − c2|w|+ c1

∣∣∣

so that

lim
|w|→∞

|w|2 · ||G(z,w)|| < 1

and the statement follows. �

Monad description. As in the definition of the dual bundle, Ě also admits

a monad type description. More precisely, once a metric is chosen, the family

of Dirac operators (4.8) can be unfolded into the following family of elliptic

complexes C(z, w):

0 → L2
2,E(Λ0V (z))

Φw+∂Bz−→ L2
1,E(Λ1,0V (z) ⊕ Λ0,1V (z))

∂Bz
+Φw

−→ L2
E(Λ1,1V (z)) → 0

(4.13)

Admissibility implies that H0(C(z, w)) and H2(C(z, w)) must vanish, and

H1(C(z, w)) coincides with L2
E−kerD∗

(z,w). As (z, w) sweeps out T × C,

H1(C(z, w)) forms a rank 2 holomorphic vector bundle with a natural her-

mitian metric and a compatible unitary connection A, equivalent to the ones

defined as above; see [15].

We now pass to the holomorphic description of the inverse transform. It

will allow us to compute the instanton number and the asymptotic state of

inverse transformed connection Ǎ.

4.1 Holomorphic description

Motivated by section 2.1, one can expect to find a holomorphic vector bundle

Ě → T×P1 which extends (Ě, ∂Ǎ). The idea is to find a suitable perturbation

of the Higgs field Φ for which w =∞ makes sense.
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As above, the torus parameter z ∈ T simply twists the holomorphic

bundle V → T̂ . We denote:

V(z) = V ⊗ Lz P(z) = P ⊗ Lz (4.14)

Since Φ ∈ H0(T̂ ,Hom(V,P)⊗KT̂ ), tensoring both sides of (4.5) by the line

bundle Lz does not alter the sheaf homomorphism Φ, so we have the family

of maps:

Φ : V(z)→ P(z)⊗KT̂

parametrised by z ∈ T .

To define the perturbation Φw, recall that, regarding P1 = C ∪ {∞},
we can fix two holomorphic sections s0, s∞ ∈ H0(P1,OP1(1)) such that s0

vanishes at 0 ∈ C and s∞ vanishes at the point added at infinity. In homo-

geneous coordinates {(w1, w2) ∈ C2|w2 6= 0} and {(w1, w2) ∈ C2|w1 6= 0}, we

have that, respectively (w = w1/w2):

s0(w) = w s0(w) = 1

s∞(w) = 1 s∞(w) =
1

w

Consider now the map of sheaves parametrised by pairs (z, w) ∈ T × P1:

Φw : V(z)→ P(z)⊗KT̂

Φw = s∞(w) · Φ− s0(w) · ι · dξ (4.15)

Clearly, on P1 \ {∞} = C this is just Φw = Φ− w · ι, the same perturbation

we defined before. On the other hand, if w =∞, then Φ∞ = −ι · dξ
The hypercohomology vector spaces H0(T̂ ,Φw) and H2(T̂ ,Φw) of the two-

term complex (4.15) must vanish by admissibility. On the other hand,

H1(T̂ ,Φw) also makes sense for ∞ ∈ P1, the inverse transformed bundle

with connection (Ě, Ǎ) admits a compatible holomorphic extension to a

bundle Ě → T × P1 (in the sense of section 2.1.2), with fibres given by

Ě(z,w) = H1(T̂ ,Φw), as desired.

55



Equivalently, Ě can be seen as the hermitian holomorphic vector bundle

induced by the monad

0→ Λ0V Φ+∂→ Λ1,0P ⊕ Λ0,1V ∂+Φ→ Λ1,0P → 0 (4.16)

Consider the metric H ′ induced from the monad (4.16) above, while H

is induced from the monad (4.13). Now, H is bounded above by H ′ because

the hermitian metric h on the bundle V in (4.13) is bounded above by the

metric h′ on the bundle V in (4.16).

Let us now compute the Chern character of Ě .

Lemma 4.5 Using the notation of section 2.2, ch(Ě) = 2− k · t ∧ p.

Proof: The exact sequence:

0 → H0(T̂ ,V(z))
Φw→ H0(T̂ ,P(z)⊗KT̂ )→ H1(T̂ , (z, w))→

→ H1(T̂ ,V(z))
Φw→ H1(T̂ ,P(z)⊗KT̂ )→ 0 (4.17)

induces a sequence of coherent sheaves over T × C, with stalks over (z, w)

given by the above cohomology groups:

0 → H0(T̂ ,V(z))
Φw→ H0(T̂ ,P(z)⊗KT̂ )→ Ě →

→ H1(T̂ ,V(z))
Φw→ H1(T̂ ,P(z)⊗KT̂ )→ 0

(4.18)

In this way, the Chern character of Ě will then be given by the alternating

sum of the Chern characters of these sheaves, which can be computed via

the usual Grothendieck-Riemann-Roch for families.

Consider the bundle G1 → T×P1×T̂ given by G1 = p∗3V⊗p∗13P. Clearly,

G1|(z,w)×T̂ = V(z), so that:

ch(H0(T̂ ,V(z)))− ch(H1(T̂ ,V(z))) = ch(G1)td(T̂ )/[T̂ ]
(4.19)

where t is the generator of H2(T ), as in section 2.2.
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Now consider the sheaf G2 = p∗3P ⊗ p∗13P ⊗ p∗2OP1(1). The twisting by

OP1(1) accounts for the multiplication by the section s0 ∈ H0(P1,OP1(1))

contained in Φw. As above, G1|(z,w)×T̂ = P(z), and we have:

ch(H0(T̂ ,P(z)⊗KT̂ ))− ch(H1(T̂ ,P(z)⊗KT̂ )) = ch(G2)td(T̂ )/[T̂ ]
(4.20)

where p is the generator of H2(P1), as in section 2.2.

Therefore:

ch(Ě) = (4.20)− (4.19) =

=

(
c1(P)− c1(V) + c1(P) ∧ p− k

2
c1(P)2 ∧ p

)
/[T̂ ] =

= χ(P)− degV + χ(P) · p− k · t ∧ p = 2− k · t ∧ p

as desired. �

The next lemma determines the asymptotic state of the inverse trans-

formed connection.

Lemma 4.6 Ě |T∞
≡ Lξ0 ⊕ L−ξ0

Proof: Substituting w = ∞ ∈ P1, we get from (4.15) that Φ∞ = ι · dξ.
Therefore, the induced hypercohomology sequence (4.17) coincides with the

long exact sequence of cohomology induced by the sheaf sequence (4.7), which

is given by:

0 → H0(T̂ ,V(z))
Φ∞→ H0(T̂ ,P(z)⊗KT̂ )→ H0(T̂ ,R±ξ0(z))→

→ H1(T̂ ,V(z))
Φ∞→ H1(T̂ ,P(z)⊗KT̂ )→ 0 (4.21)

Hence, H1(T̂ , (z,∞)) = H0(T̂ ,R±ξ0(z)). The right hand side is canonically

identified with (Lz)ξ0⊕(Lz)−ξ0 , where by (Lz)ξ0 we mean the fibre of Lz → T̂

over the point ξ0 ∈ T̂ .

On the other hand, (Lz)ξ0 = P(z,ξ0) = (Lξ0)z, where P → T × T̂ is

the Poincaré line bundle. Thus, the bundle over T∞ with fibres given by
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H0(T̂ ,R±ξ0(z)) is isomorphic to Lξ0 ⊕ L−ξ0 , as we wished to prove. �

Finally, we argue that the determinant bundle of Ě is trivial, so that Ǎ is

indeed an SU(2) instanton. Note that detĚ is a line bundle with vanishing

first Chern class, so it must be the pull back of a flat line bundle Lξ → T .

But detĚ |T∞
= C, hence detĚ must be holomorphically trivial, as desired.

Thus, we conclude that Ǎ ∈ A(k,ξ0).

Final remark. Summing up the work done in this section, we established

a map from the set of equivalence classes of Higgs pairs (B,Φ) on a vector

bundle V → T̂ \ {±ξ0} of rank k, such that Φ has simple poles at ±ξ0 with

a residue of rank 1 or 2 (depending on the order of ξ0), to the set of gauge

equivalence classes of unitary instanton connections Ǎ ∈ A(k,ξ0) on a rank 2

bundle Ě → T × C.

Note however that this procedure depends on the connection B only

through the holomorphic structure it induces in V . Of course, this piece of

information is fully contained in the extended holomorphic bundle V → T̂ .

Finally, the abelian group T ×C×S1 acts on the set of Higgs bundles as

follows:

(x, y, γ) · (V,Φ) 7→ (V ⊗ Lx, e
iγ · Φ + y · I) (4.22)

and this clearly corresponds to the action of T×C×S1 on the set of extensible

instanton connections via pullback, see section 3.3.

Note also that T̂ does not act on the moduli of Higgs bundles via pull-

back: since the singularities are fixed at ±ξ0, we are not allowed to make

translations on T̂ .
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Chapter 5

Completing the proof of

theorem 1

We finally arrived to the final stage of the proof of the Nahm transform

theorem. More precisely, there are still two issues to be addressed: first,

we must show that the Higgs pairs initially constructed from an instanton

connection are indeed admissible; second, we need to verify that (Ě, Ǎ) is

equivalent to the original data (E,A).

First, consider the six-dimensional manifold T × C × (T̂ \ {±ξ0}). To

shorten notation, we denote Mξ = T × C × {ξ} and T̂(z,w) = {z} × {w} ×
(T̂ \ {±ξ0}).

Now take the bundle G = p∗12E ⊗ p∗13P over T × C × (T̂ \ {±ξ0}); note

that G|Mξ
≡ E(ξ) and G|T̂(z,w)

≡ E(z,w) ⊗ Lz, where E(z,w) denotes a trivial

rank 2 bundle over T̂ \ {±ξ0} with the fibres canonically identified with the

vector space E(z,w).

G is clearly holomorphic; we denote by ∂M the action of the associated

Dolbeault operator along the T × P1 direction, and by ∂ T̂ its action along

the T̂ direction. In particular, ∂M |Mξ
≡ ∂Aξ

.

Let Cp,q = Λ0,p
T×C

(G)⊗Λq

T̂
(G); in other words, Cp,q consists of the (p+ q)-

forms over T × C × (T̂ \ {±ξ0}) with values in G spanned by forms of the
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shape:

s(z, w, ξ)dzi1dwi2dξj1dξj2,
i1, i2, j1, j2 ∈ {0, 1} and i1 + i2 = p, j1 + j2 = q

(5.1)

Analytically, we want to regard Cp,q as the completion of the set of smooth

forms of the shape above with respect to a Sobolev norm described as follows:
∣∣∣s|T×C×{ξ}

∣∣∣ ∈ L2
q(Λ

2−qE(ξ)) for each ξ ∈ T̂ \ {±ξ0}∣∣∣s|{(z,w)}×T̂\{±ξ0}

∣∣∣ ∈ L2
q(Λ

2−qLz) for each (z, w) ∈ T × C

Now, define the maps:

Cp,0 δ1→ Cp,1 δ2→ Cp,2

δ1(s) = (∂ T̂ s,−w · s ∧ dξ) δ2(s1, s2) = (∂T̂ s2 + w · s1 ∧ dξ) (5.2)

for (s1, s2) ∈ Λ0,p
T×P1(G)⊗

(
Λ0,1

T̂
(G)⊕ Λ1,0

T̂
(G)

)
≡ C(p, 1). Note that (5.2) does

define a complex.

The inversion result will follow from the analysis of the spectral sequences

associated to the following double complex (for the general theory of spectral

sequences and double complexes, we refer to [10]):

C0,2 ∂M→ C1,2 −∂M→ C2,2

↑ δ2 ↑ −δ2 ↑ δ2
C0,1 ∂M→ C1,1 −∂M→ C2,0

↑ δ1 ↑ −δ1 ↑ δ1
C0,0 ∂M→ C1,0 −∂M→ C2,0

(5.3)

The idea is to compute the total cohomology of the spectral sequence in the

two possible different ways and compare the filtrations of the total cohomol-

ogy.

Lemma 5.1 By first taking the cohomology of the rows, we obtain

0 H2(C(e, 0)) 0
Ep,q

2 0 H1(C(e, 0)) 0
q ↑ 0 H0(C(e, 0)) 0

→
p

(5.4)

where H i(C(e, 0)) are the cohomology groups of the complex (4.4).
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Proof: First, note that the rows coincide with the complex (3.2) of section

3.1.

Moreover, we can regard elements in Cp,q as q-forms over T̂ with values in

L2
2−p(Λ

0,p
T×C
G). To see this, fix some ξ ′ ∈ T̂ ; by (5.1), s(z, w, ξ′) ∈ Λ0,pG|Mξ′

.

So, by varying ξ′ we get the interpretation above.

This said, it is clear that the first and second columns of Ep,q
1 must vanish,

since A is irreducible. In the middle column, we get q-forms over T̂ with

values in ker(∂
∗
M − ∂M), which for a fixed ξ′ restricts to ker(D∗

Aξ′
).

Therefore, after taking the cohomologies of the rows, we are left with:

0 L2(Λ1,1V ) 0
↑ (∂B + Φ)

C
p,q
1 0 L2

1(Λ
1,0V ⊕ Λ0,1V ) 0
↑ (Φ + ∂B)

q ↑ 0 L2
2(Λ

0V ) 0
→
p

(5.5)

But this is just the complex (4.4). The lemma follows after taking the coho-

mology of the remaining column. �

Total cohomology and admissibility. Note that, as we pointed out in

the beginning of this section, we still do not know if the Higgs pair (B,Φ)

arising from the instanton (E,A) is admissible or not, so that H0 and H2

might be nontrivial. The next lemma deals with this problem.

Lemma 5.2 The only nontrivial cohomology of the total complex is

H2(C(p, q)), which is naturally isomorphic to the fibre E(e,0).

In particular, this shows that the Higgs pairs (B,Φ) obtained via Nahm

transform on instanton connection A ∈ A(k,ξ0) are indeed admissible, by

proposition 4.1.

Proof: First note that we can regard an element in Cp,q as a (0, p)-form

over T × C with values in Λq1,q2

T̂
(G). Since G|T̂(z,w)

≡ E(z,w) ⊗ Lz, ker∂M and
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ker∂
∗
M are nontrivial only if z = e, the identity element in the group law of

T . Hence, it is enough to work on a tubular neighbourhood of {e} × P1 ×
(T̂ \ {±ξ0}).

More precisely, we define another double complex (germ C)p,q, consisting

of forms defined on arbitrary neighbourhoods of {e} × P1(T̂ \ {±ξ0}). Then

we have a restriction map Cp,q → (germ C)p,q commuting with ∂M , δ1 and

δ2. Such map also induces an isomorphism between the total cohomologies of

Cp,q and (germ C)p,q. So we can work with (germ C)p,q to prove the lemma.

Let Ve be some neighbourhood of e ∈ T . By the Poincaré lemma applied

to ∂T , we get:

Λ2
Ve

(G) 0 0
↑

(germ C)p,q
1 Λ1

Ve
(G) 0 0
↑

q ↑ Λ0
Ve

(G) 0 0
→
p

(5.6)

where Ve denotes a tubular neighbourhood of Ne = {e} × P1 × (T̂ \ {±ξ0})
As in [15] (see pages 91-92), the complex in the first row is, after restric-

tion, mapped into a Koszul complex over Ne:

ONe
(G) (w ξ)−→ ONe

(G)⊕ONe
(G) (−ξ,z)→ ONe

(G)

so that:

E(e,0) 0 0
(germ C)p,q

2 0 0 0
q ↑ 0 0 0

→
p

(5.7)

�

It then follows from lemmas 5.1 and 5.2 that there is a natural isomor-

phism of vector spaces II : H1(C(e, 0)) ≡ Ě(e,0) → E(e,0), which in principle

may depend on the choice of complex structure I on T × C.
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Matching (Ě, Ǎ) with the original data. Since the choice of identity

element in T and of origin in C is arbitrary, we can extend II to a bundle

isomorphism E → Ě. More precisely, let t(u,v) : T × C → T × C be the

translation map (z, w) → (z + u, w + v). Clearly, the connection t∗(u,v)A

on the pullback bundle t∗(u,v)E is also irreducible and t∗(u,v)E(e,0) ≡ E(u,v).

Computing the total cohomology of the double complex (5.3) associated to

the bundle t∗(u,v)G (where t∗(u,v) acts trivially on T̂ coordinate), lemmas 5.1 and

5.2 lead to an isomorphism of vector spaces H1(C(u, v)) ≡ Ě(u,v) → E(u,v).

It is clear from the naturality of the constructions that these fibre isomor-

phisms fit together to define a holomorphic bundle isomorphism

II : E → Ě. In particular, II takes the Dolbeault operator ∂A of the

holomorphic bundle E → T × C to the Dolbeault operator ∂Ǎ of the holo-

morphic bundle Ě → T × C. It also follows from this observation that the

holomorphic extensions E and Ě must be isomorphic as holomorphic vector

bundles.

However, such fact still does not guarantee that the connections A and Ǎ

are gauge-equivalent. This is accomplished if we can show that II is actually

independent of the choice of complex structure in T×C. Therefore, the proof

of the main theorem 1 is completed by the following proposition:

Proposition 5.3 The bundle map II : Ě → E is independent of the choice

of complex structure on T × C.

Proof: Again, it is sufficient to consider only the fibre over (e, 0). As in [15]

(p. 94-95), the idea is to present an explicit description of II : Ě(e,0) → E(e,0),

and then show that it is Euclidean invariant.

Let α ∈ H1(C(e, 0)) ⊂ C1,1. To find II([α]) we have to find β ∈ C0,2

such that ∂Mβ = δ2α. A solution to this equation is provided by the Hodge

theory for the ∂M operator:

β = GM(∂
∗
Mδ2α)
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where GM denotes the Green’s operator for ∂
∗
M∂M , which can be regarded

fibrewise as the family of Green’s operators GAξ
= GM |Mξ

parametrised by

ξ ∈ (T̂ \ {±ξ0}).
In principle, β depends on the complex structure I via the operators ∂M

and GM . However, by the Weitzenböck formula applied to the bundle G, we

have:

∂
∗
M∂M = ∇∗

M∇M

Here, ∇M is the covariant derivative in the T ×C direction on G. With this

interpretation, GM = (∇∗
M∇M)−1 is seen to be independent of the complex

structure I; in fact, it is Euclidean invariant.

Now β as an element of C1,1 has the form β(z, w; ξ)dξdξ, so that the

restriction r(e,0)(β) = β|T̂(e,0)
is a (1, 1)-form over T̂ \ {±ξ0} with values in

E(e,0). Take its cohomology class in H2(T̂ \ {±ξ0},C⊗ E(e,0)), so that:

II([α]) =
∫

T̂(e,0)

r(e,0)(β)

which is the desired explicit description. �

This finally completes the proof of the main theorem 1.
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Chapter 6

Further Remarks

We now want to look more closely at a few consequences of the Nahm trans-

form theorem.

Our first remark concerns the non-emptiness of the moduli space of doubly-

periodic instantons. As we mentioned in the introduction, singular solutions

of Hitchin’s equations are quite well studied, being closely related to the so-

called parabolic Higgs bundles. In particular, existence of Higgs pairs of the

type we want is determined by some holomorphic data. Model solutions in

a neighbourhood of the singularities were described by Biquard [6]:

B = b
dξ

ξ
+ b∗

dξ

ξ

Φ = φ0
dξ

ξ

Every meromorphic Higgs pair with a simple pole approaches this model

solution close enough to the singularities. These observations together with

our main theorem 1 guarantees the existence of doubly-periodic instantons

of any given charge and asymptotic state.

Holomorphic version. Now take the bundle G = p∗12E ⊗ p∗13P over

T × P1× T̂ and consider the appropriate double complex analogous to (5.3).

It is then easy to establish results identical to lemmas 5.1 and 5.2. This
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in turn leads to a holomorphic bundle isomorphism between E and Ě , as

above. Hence, as a by-product of the Nahm transform theorem, we obtain

the following result, which can be seen as the holomorphic version of theorem

1:

Theorem 6.1 There is a bijective correspondence between the following ob-

jects:

• holomorphic vector bundles E → T × P1 with detE = C, c2(E) = k > 0

and such that E|T∞
= Lξ0 ⊕ L−ξ0 ;

• Higgs bundles (V,Φ) consisting of a rank k holomorphic vector bundle

V → T̂ of degree −2 and a Higgs field Φ, which is a meromorphic

section of EndV having simple poles at ±ξ0 with semi-simple residues

of rank ≤ 2, if ξ0 has order 2, and rank ≤ 1 otherwise.

Generalisation to higher rank. The attentive reader might have noticed

that there is nothing really special about rank two bundles, and that the

whole proof could easily be generalised to higher rank. Indeed, the only

point in choosing the rank two case is to reduce the number of possible

vector bundles over an elliptic curve, and avoid a tedious case-by-case study

throughout the various stages of the proof.

Before we can state the generalisation of the main theorem 1, we must

review our definitions of asymptotic state and irreducibility.

The restriction of the holomorphic extension E → T × P1 to the added

divisor T∞ is a flat SU(n) bundle, i.e.

E|T∞
= Lξ1 ⊕ · · · ⊕ Lξk

such that
k⊗

l=1

Lξl
= OT

In other words, E|T∞
is determined by a set of points (ξ1, . . . , ξj) ∈ J (T )

with multiplicities (m1, . . . , mj), and such that
∑j

l=1mlξl = 0. We call such

data the generalised asymptotic state.
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Moreover, we will say that (E,A) is 1-irreducible if there is no flat line

bundle E → T ×C such that E admits a splitting E ′⊕L which is compatible

with the connection A.

Theorem 6.2 There is a bijective correspondence between the following ob-

jects:

• gauge equivalence classes of 1-irreducible, extensible SU(n) instantons

over T × C with fixed instanton number k > 0 and generalised asymp-

totic state (ξ1, . . . , ξj) with multiplicities (m1, . . . , mj) and

• admissible U(k) solutions of the Hitchin’s equations over the dual torus

T̂ , such that the Higgs field has at most simple poles at {ξ1, . . . , ξj};
moreover, its residue at ξj is semi-simple and has rank ≤ mj.

Of course, the holomorphic version 6.1 can be similarly generalised. Also,

the same remark about the possibility of removing the technical hypothesis

on the non-triviality of the asymptotic states holds.

Extra parameters for Higgs bundles. On the Hitchin’s equations side

of our picture, there are two types of parameters one generally fixes, namely

the eigenvalues of the residues of the Higgs field Φ and the limiting holonomy

of the connection B around the singularities (or equivalently, the parabolic

structure; see also [28] [36]). In the terminology of Kovalev, such parame-

ters are called commuting triples, for they are equivalent to specifying three

mutually commuting matrices in u(k).

In our situation however, only the rank of the residue of the Higgs field

is fixed, while its non-zero eigenvalues are free to vary. However, Tr(Φ) is

a meromorphic 1-form on T̂ with poles at ±ξ0, and the sum of the residues

must vanish. If ξ0 is not of order 2, this implies that the unique non-zero

eigenvalue of the residue of Φ at ξ0 is minus the unique non-zero eigenvalue

of the residue of Φ at −ξ0. If ξ0 has order 2, then the sum of the two non-zero
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eigenvalues of the residue of Φ at ξ0 must vanish. Therefore, the eigenvalues

of the residues of Φ account for only one complex degree of freedom, which

we denote by ε.

The parabolic structure consists of a filtration of V±ξ0 , the fibre of V
over the singularities ±ξ0, plus a choice of weights 0 ≤ αi(±ξ0) < 1. From

proposition 3.5, a natural choice of filtration would be, generically:

V±ξ0 = F1V±ξ0 ⊃ F2V±ξ0︸ ︷︷ ︸ ⊃ F3V±ξ0 = {0}
dim = 1

order(ξ0) 6= 2

V±ξ0 = F1V±ξ0 ⊃ F2V±ξ0︸ ︷︷ ︸
⊃ F3V±ξ0 = {0}

dim = 2
order(ξ0) = 2

More precisely, from (3.12) we have that in either case:

F2V±ξ0 = H0(T∞, Ẽ(±ξ0)|T∞
) ↪→ H1(T × P1, E(±ξ0)) = F1V±ξ0

To complete the parabolic structure, we would have to choose four weights

(two for each parabolic point) in the first case and two weights in the second

case:

0 ≤ α1(±ξ0) < α2(±ξ0) < 1

From the point of view of the Higgs pair (B,Φ), these parameters can also

be interpreted as the rate of growth of local holomorphic sections of V →
T̂ \ {±ξ0} near the singular points with respect to the hermitian metric

induced from the Hilbert bundle Ĥ.

If (V,Φ) is α-stable in the sense of parabolic Higgs bundles, then the

existence of a meromorphic Higgs pair as above is guaranteed [36].

These are natural parameters in the theory of Higgs bundles, and one

would like to interpret them on the instanton side of the correspondence.

However, it is reassuring to know that if two sets of parameters (α, ε) and

(α′, ε′) are chosen in generic position, then α-stability and α′-stability are in

fact equivalent conditions [33].
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Limiting holonomy. On the instanton side of the picture there is one fur-

ther real parameter that we have not discussed so far: the limiting holonomy

of the instanton connection A around the added divisor T∞.

More precisely, write the connection in radial gauge so that

A = axdx+ aydy + aθdθ

and look at the following initial value problem for a function f : S1 → SU(2):

dfr

dθ
+ aθfr = 0 fr(θ = 0) = I

where the other 3 variables are fixed. It admits an unique solution fr(θ),

which we can consider as parametrised by the r, the radial coordinate on

C. Set fr(2π) = Fr and note that the conjugacy class [Fr] ⊂ SU(2) is

gauge-invariant (see [35], lemma 3.2). We ask if the limit:

lim
r→∞

[Fr] = [F ] (6.1)

is well-defined as a conjugacy class in SU(2). Since conjugacy classes in

SU(2) are parametrised by the half-open interval [0, 1), the limiting holonomy

[F ] is just a real number 0 ≤ c < 1.

Under suitable conditions (see appendix B), it is reasonable to expect

that (6.1) will be indeed well-defined. One can then ask how it behaves under

Nahm transform, trying to see how it is translated into the transformed Higgs

pair.

The task of understanding how the limiting holonomy and the parabolic

weights behave under Nahm transform probably involves a more detailed

study of the asymptotic behaviour of the connections A on the bundle E

and B on the bundle V (or, equivalently, of the corresponding hermitian

metrics).
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Chapter 7

Spectral data

In this chapter we close our circle of ideas by showing a correspondence

between instantons and what we call spectral data, i.e. pairs consisting of

a complex curve S ↪→ T̂ × P1 and a line bundle over it L → S. In the

light of main theorem 1, the existence of such correspondence should not be

surprising, for a similar correspondence, between Higgs pairs and curves with

a line bundle over it, was shown by Hitchin in [20] in the smooth case and by

Bottacin [11] and Markman [30] in the meromorphic case. These ideas are

developed in the first two sections.

The main topic of this chapter is the proof of our third main result. It is

carried out in section 7.3.

7.1 The instanton spectral data

Our first step towards the main theorem 2 is to construct a complex curve

S ↪→ T̂×P1 associated to a holomorphic vector bundle E → T×P1 as defined

in the beginning of chapter 2. To do this, we follow Friedman, Morgan &

Witten [16].

Recall from section 2.2 that a semi-stable rank 2 holomorphic vector

bundle over an elliptic curve with trivial determinant either splits as a sum

of line bundles or is the unique non-trivial extension F2 of C by itself, tensored
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with a line bundle of order two. From section 2.3.1, we know that that E|Tw

splits as a sum of flat line bundles for all but finitely many points w ∈ P1.

We will assume that the restriction of E → T × P1 to the elliptic fibres is

semi-stable for all w ∈ P1. Moreover, E is defined to be good if there is no

w ∈ P1 such that E|Tw
= Lξ⊕Lξ, for some ξ of order two in T̂ . In particular,

we assume that the asymptotic state ξ0 is not of order 2. From now on we

restrict ourselves to such bundles, unless otherwise stated.

The motivation for this definition will be made clear later on: the spectral

curves associated to good bundles are smooth. Note also that good bundles

form an open dense subset of the moduli space of bundles E .
The instanton spectral curve S ↪→ T̂ × P1 is defined as follows:

S = {(ξ, w) ∈ T̂ × P1 | either E|Tw
= Lξ ⊕ L−ξ or E|Tw

= F2 ⊗ Lξ}
(7.1)

w
P 1

T̂w

ξ

−ξ
S

Clearly, the natural projection π2 : S → P1 is a branched double cover.

More precisely, for generic w ∈ P1, π−1(w) = {−ξ, ξ} ∈ T̂ × {w}. There are

then two types of branch points:

• those w ∈ P1 for which E|Tw
is indecomposable.

• those w ∈ P1 for which E|Tw
splits as a sum of line bundles of order

two (i.e. Lξ = L−ξ);

Of course, the spectral curve associated to good bundles E only have branch

points of the first type, since those of the second type were excluded by

definition.
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Since E is irreducible, there must be at least one branch point. Its clear

from the definition (7.1) that S is a compact, connected submanifold of

T̂ × P1 of complex dimension 1. It inherits a complex structure from the

chosen complex structure on the ambient surface T̂ × P1.

Lemma 7.1 The map π2 : S → P1 has 4k branch points, and the spectral

curve has genus g(S) = 2k − 1.

Proof: This is an application of the Riemann-Roch theorem for the family

of Dolbeault operators ∂w on E|Tw
, parametrised by P1. For generic w ∈ P1,

dim(ker∂w) = 0; this dimension jumps only when either E|Tw
= F2 or E|Tw

=

C⊕ C (again, this second case is excluded from good bundles). From index

theory, we know that the number of jumping points is computed by the first

Chern class of the index bundle:

c1(index(∂p)) =
∫

P1

{
ch(E)td(p∗1K−1

T )/[T ]
}

= −
∫

T×P1
c2(E) = −k

This means that π−1
1 (e) consists of k points. Furthermore, the points in

the pre-image of π1 of each element of order two of T̂ are also branch points

of π2. As there are four such points, we conclude that the covering map

S → P1 has 4k branch points.

The second statement follows from the Riemann-Hurwitz formula.

Note however that branch points of the second type would count as a dou-

ble point, since the kernel of the Dolbeault operator of C⊕C has dimension

2. For instance, if there is exactly one point p ∈ P1 such that E = C⊕C, then

π−1
1 (e) consists of k− 1 points and there are 4k− 4 branch points altogether.

While this decreases the real genus of S, its virtual genus is still 2k − 1. �

The curve S admits an involution τ : S → S defined as follows. Take

s ∈ S and let ws = π2(s) and ξs = π1(s) be its coordinates on T̂ × P1; thus:

τ : S → S
(ξs, ws) 7→ (−ξs, ws)

(7.2)
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It is easy to see that the fixed points of τ are exactly the branch points of

the map π2 : S → P1. Hence, S/τ is a rational curve.

Once the topological type of E is fixed, we show that, as we vary the

holomorphic structure on E , the respective spectral curves lie within the

same homology class in:

H2(T̂ × P1,Z) = H2(T̂ ,Z)⊕H2(P
1,Z) (7.3)

In fact, let [p] be the generator of H2(P
1,Z) and [t̂] be the generator of

H2(T̂ ,Z). Regarding T̂ ×P1 π1→ T̂ as a ruled surface, these can be interpreted

in H2(T̂ × P1,Z) as representing, respectively, a fibre of π1 and a constant

section of π1. They form a basis for H2(T̂ × P1,Z), in which the intersection

form looks like: (
0 1
1 0

)

Furthermore, the canonical divisor of T̂ × P1 is given by K = −2[t̂].

Lemma 7.2 As a homology class, [S] = (k, 2) in the (7.3) decomposition,

and the map π1 : S → T̂ is a k-fold branched covering map.

Proof: S is a double cover of each fibre of the ruled surface, and we can

write the homology class of S as [S] = 2[p] + x[t̂], for some integer x. By the

adjunction formula, we have:

g(S) = 1 +
1

2
(K · S + S2)

2k − 1 = 1 +
1

2
(−4 + 4x)

so x = k, as desired.

The second statement is now obvious. Note that the lemma could also

be proved by applying the proof of lemma 7.1 to the bundle E(ξ) for each

ξ ∈ T̂ . �
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In other words, the topology of the bundle E fixes the topology of its

spectral curve S. The holomorphic information is contained on the choice of

an embedding S ↪→ T̂ × P1 and on a line bundle over S that we now define.

Defining the line bundle over the spectral curve. The second part of

our spectral data consists of a line bundle over the spectral curve. Let S be

the spectral curve associated with the holomorphic bundle E → T × P1, and

consider the maps:

T × T̂ τ1←− T × S σ−→ S

τ2 ↓ (7.4)

T × P1

where τ1 and τ2 are given by product of the identity on the first factor and

π1 and π2, respectively, on the second factor. Clearly, τ2 is a double cover

branched at 4k elliptic curves Tw ↪→ T × P1, where w ∈ P1 are the branch

points of π2. Furthermore, τ1 is also a k-fold covering map.

We define a holomorphic line bundle L → S as follows:

L = σ∗(τ
∗
2 E ⊗ τ ∗1 P) (7.5)

where the subscript “*” denotes the direct image operation on sheaves.

To identify the fibres of L, denote ξs = π1(s) and ws = π2(s), for s ∈ S.

Relative Serre duality tells us that:

σ∗(τ
∗
2 E ⊗ τ ∗1 P)∗ = R1σ∗(τ

∗
2 E ⊗ τ ∗1 P∗)

and this means that L∗ = H1(Tws
, E ⊗ P∗|Tws

). Thus, the fibre of L → S

over s ∈ S is given by:

Ls = H0(Tws
, E(ξs)|Tws

) (7.6)

If E is good, it is easy to check that Ls is a 1-dimensional complex vector

space for all s ∈ S, so that L is actually a line bundle. Otherwise, L is only

a coherent sheaf, since the dimension of (7.6) jumps at a finite number of

points; we will return to this point below.
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Lemma 7.3 The line bundle L has zero degree.

Proof: Look at the family of ∂-operators on T parametrised by s ∈ S:

∂s : Λ0E(ξs)|Tws
→ Λ0,1E(ξs)|Tws

and let I ∈ K(S) denote the corresponding index bundle. Now, det I is a

genuine line bundle over S, with fibre over s ∈ S given by:

(det I)s = Λmax(ker∂s)⊗ (Λmax(coker∂s))
∗ =

= H0(Tws
, E(ξs)|Tws

)⊗H1(Tws
, E(ξs)|Tws

)∗ =

= H0(Tws
, E(ξs)|Tws

)⊗H0(Tws
, E(−ξs)|Tws

)

by Serre duality on E(ξs)|Tws
. Thus det I = L⊗ (τ ∗L), and deg I = 2deg L.

Now, the degree of I can be computed via Riemann-Roch for families, as

follows:

deg I = ch (τ ∗2 E ⊗ τ ∗1P) td(TFS)/[T × S] =

= (2− k · t ∧ (2s)) ·
(
1 + τ ∗1 c1(P) +

1

2
(2t) ∧ (ks)

)
/[T × S] =

= 0

as desired. �

Reconstructing the original bundle. We now want show how to recon-

struct E → T ×P1 from its spectral pair (S,L) obtained as above, consisting

of a curve S ↪→ T̂ × P1 plus a line bundle L → S of degree 0. We define:

Ě = τ2∗(τ
∗
1 P⊗ σ∗L∗) (7.7)

Clearly, Ě is a locally free sheaf of rank 2.

Proposition 7.4 Ě is holomorphically equivalent to E .

75



Proof: It is easy to see that Ě and E are topologically equivalent, just by

examining the effect of τ2∗, τ
∗
1 and σ∗ on the Chern character of P and L.

We want to show that there is a holomorphic bundle map E ϕ→ Ě whose

determinant is nowhere vanishing. In other words, ϕ can be regarded as

a section in H0(T × P1, E ⊗ Ě), and detϕ ∈ H0(T × P1, (Λ2E) ⊗ (Λ2Ě)).
However, Λ2E = Λ2Ě = C, so detϕ either vanishes identically or it is

nowhere vanishing. Thus, it is enough to verify that there is a section

ϕ ∈ H0(T × P1, E ⊗ Ě) which is an isomorphism at a single point

(z, w) ∈ T × P1.

The definition of L in (7.5) gives us a canonical identification:

L → σ∗(τ
∗
2 E ⊗ τ ∗1 P) (7.8)

which can be interpreted as a canonical choice of section in

H0(S,L∗ ⊗ σ∗(τ
∗
2 E ⊗ τ ∗1 P)). On the other hand, we have canonical iden-

tifications:

H0(S,L∗ ⊗ σ∗(τ ∗2 E ⊗ τ ∗1 P)) = H0(T × S, σ∗L∗ ⊗ τ ∗2E ⊗ τ ∗1 P) =

= H0(T × P1, τ2∗(σ
∗L∗ ⊗ τ ∗1P)⊗ E)

Thus, the identification (7.8) gives us a canonical choice of a section

ϕ ∈ H0(T × P1, Ě ⊗ E) and according to the observations made above is

enough to check that this is an isomorphism at one point.

Take w ∈ P1 not a branch point of the spectral curve. Indeed, it is then

not difficult to see that ϕ(z, w) is actually the identity map on

(Lξw
)z ⊕ (L−ξw

)z. �

Example: the Weierstrass ℘-function. The graph of the Weierstrass

℘-function:

℘ : T̂ → P1

Γ℘ = {(ξ, w) | w = ℘(ξ)}
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is a curve of genus 1 inside T̂ ×P1. Clearly, projecting onto each factor, Γ℘ is

a 1-fold cover of T̂ and a double cover of P1, branched at 4 points. Together

with any line bundle of degree zero, Γ℘ can be used to construct a good rank

2 holomorphic bundle E → T × P1, giving a simple example of a charge 1

doubly-periodic instanton; the asymptotic state can be chosen by changing

the base point of ℘.

Relation with Fourier-Mukai transform. The spectral line bundle L
can also be seen as a coherent sheaf over T̂ × P1 supported exactly over the

spectral curve S ↪→ T̂ × P1. Adopting this point of view, the appropriate

definition of L → T̂ × P1 is given by:

L∗ = R1p23∗(p
∗
12E ⊗ p∗13P∗) (7.9)

where pij are the obvious projections of T × P1 × T̂ onto its factors.

The sheaf (7.9) coincides with the so-called Fourier-Mukai transform of

the holomorphic vector bundle E → T × P1 (see for instance [37] and the

references there). Proposition 7.4 is then equivalent to the fact that (7.7)

is inverse in a certain sense to (7.9), where these operations are regarded as

functors acting between certain derived categories over T × P1 and T̂ × P1.

The geometry of the branch points. Let us now allow S to have branch

points of the second type. As one approaches the branch points of π2 : S →
P1, the behaviour of the spectral curve is roughly given by the pictures below:

w
P

1

T̂w

ξ

S

w
P

1

T̂w

ξ
S

Branch points of the spectral curve corresponding to
E|Tw = F2 ⊗ Lξ and E|Tw = Lξ ⊕ Lξ, respectively.
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In other words, S acquires a double-point over the points w ∈ P1 for which

E|Tw
is a trivial extension of a line bundle of order 2 by itself. Moreover, L

fails to be a genuine line bundle over S, since the stalk over the double-point

becomes 2-dimensional. Instead, L is a coherent sheaf of degree 0 over the

singular spectral curve.

Clearly, the presence of such points alters the genus of S, but not the

homology class within which S lies. Furthermore, the bundle equivalence

established in proposition 7.4 is still valid for bundles E which are not good.

We will show in the two following sections that the spectral curve associ-

ated with a generic point in the moduli space of doubly-periodic instantons

must be smooth, i.e. there are no branch points of the second type.

7.2 Hitchin’s spectral data

We now look at the other side of the picture and study the spectral curves

coming from Higgs pairs. This time, our construction is based on Hitchin’s

approach to non-singular Higgs pairs [22].

Recall that V → T̂ is a holomorphic bundle of rank k, and keeping in

mind the holomorphic description of the Higgs field discussed in section 3.2,

Φ is an endomorphism valued (1, 0)-form with simple poles at ±ξ0. Recall

also that the eigenvalues of the residues of Φ are non-vanishing. So, for any

fixed ξ ∈ T̂ \ {±ξ0}, Φ(ξ) is a k × k matrix and one can compute its k-

eigenvalues. As we vary ξ, we get a k-fold covering, possibly branched, of

T̂ \ {±ξ0} inside T̂ ×C. This curve of eigenvalues is what we want to define

as our spectral curve.

More precisely, we define the Higgs spectral curve to be the set:

C =
{
(ξ, w) ∈ T̂ × P1 | det(Φ[ξ]− w · Ik) = 0

}
(7.10)

where P1 = C ∪ {∞}. In other words, C is the set of points (ξ, w) ∈ T̂ × P1

such that w is an eigenvalue of the endomorphism Φ(ξ) : Vξ → Vξ. Note in
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particular that the points (±ξ0,∞) belong to C (with multiplicity one if ξ0

is not of order 2).

Proposition 7.5 The spectral curve associated to a generic Higgs bundle

(V,Φ) is smooth.

Proof: Let Q
p→ T̂ be the line bundle with a section σ vanishing up to

order 1 at ±ξ0. Thus, Ψ = Φ⊗σ is a holomorphic section of EndV⊗Q⊗KT̂ .

Clearly, the value of Ψ at ±ξ0 is a matrix of rank 1.

Usual Higgs bundle theory [22] yields a spectral curve C ′ lying in the total

space of the line bundle Q, which we will denote by X. In other words, C ′ is

the zero locus of a section of (π∗Q)⊗k given by the characteristic polynomial

of Ψ:

ϕ = det(Ψ− λ) = λk + a1 · λk−1 + · · ·+ ak−1 · λ+ ak

where λ is a tautological section of the pull back of the line bundle Q → T̂

to its total space, i.e. p∗Q → X. Since Ψ(±ξ0) is a matrix of rank 1, the

coefficients a2, . . . , ak all have simple zeros at ±ξ0. The coefficient a1(±ξ0) is

equal to the trace of Ψ at these points, which is simply given by its unique

nonzero eigenvalue, i.e. a1(±ξ0) = ±ε.
On the other hand, as the coefficients a1, . . . , ak vary, the corresponding

zero locus {ϕ = 0} form a linear system of divisors on X, and hence on its

compactification X = P(Q ⊕ C). Since λk belongs to the system, any base

point must lie in the 0-section of X. So the base points of |{ϕ = 0}| are

±ξ0 in the 0-section of X, since these are the only points where ak vanishes.

Indeed, it is easy to see that ak vanishes with order k − 1 at ±ξ0.
Bertini’s theorem guarantees that a generic element of the linear system

is smooth away from its base points, and it is singular there. In other words,

the spectral curve C ′ associated to a generic Higgs field Ψ is smooth away

from ±ξ0 in the 0-section of X, which is a point of multiplicity k − 1.

We must now relate C ′ with our spectral curve C defined in (7.10). First

note T̂ × P1 can be obtained from X by performing elementary transforma-

tions based on (±ξ0, 0) (see, for instance, [29]). More precisely, we blow up
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(±ξ0, 0) ∈ X and then blow down the proper transforms of the fibres over

(±ξ0, 0). This gives a birational map X
β

99K T̂ × P1; we argue that C is the

closure of β(C ′), i.e. the proper transform of C ′ under β.

Indeed, β can also be represented as follows:

X → T̂ × P1

x → (p(x), (p∗σ)(x)) = (p(x), σ(p(x)))

Let T̂ × P1 π→ T̂ be the projection onto the first factor, and denote by

λ′ the tautological section of π∗KT̂ ; clearly, λ = λ′ ⊗ σ. If x ∈ C ′, then

[det(Ψ− p∗λ)] (x) = 0, so that:

0 = det(Ψ(p(x))− p∗λ(x)) =

= det (Φ(p(x)) · σ(p(x))− p∗λ′(x) · σ(p(x))) =

= det(Ψ(π(β(x)))− p∗λ′(x)) · σ(π(β(x)))k =

= [det(Φ− π∗λ′)] (β(x)) · σ(π(β(x)))k

⇒ [det(Φ − π∗λ′)] (β(x)) = 0

Therefore, β(x) ∈ C if p(x) 6= ±ξ0, since σ(π(β(x))) vanishes at these points.

The birational map β is ill-defined on the fibres over ±ξ0; the situation

there is better understood by looking more closely at the elementary trans-

formation. Recall that C ′ has multiplicity k − 1 at (±ξ0, 0). After blowing

up these points, C̃ ′ (the proper transform of C ′) intersects the exceptional

divisor at k− 1 generically distinct points. On the other hand, C̃ ′ intersects
˜p−1(±ξ0) (the proper transforms of the fibres over ±ξ0) at a single point.

Blowing down ˜p−1(±ξ0) maps the exceptional divisors to the fibres of T̂ ×P1

over ±ξ0, so that C = β(C ′) intersects π−1(±ξ0) at generically k distinct

points. This completes the proof, for C is smooth elsewhere for generic

Higgs field Φ. �

In particular, it follows from the proof that all possible Higgs spectral

curves lie within the same linear system.
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Defining the line bundle over the spectral curve. By definition, each

point c ∈ C corresponds to an eigenvalue of Φ[π1(c)]. We define a line

bundle N → C with fibre over c ∈ C given by the associated eigenspace.

More precisely, let ξc = π1(c) and wc = π2(c), and define:

Nc = ker {Φ[ξc]− wc · Ik}

Generically, one expects the eigenvalues to be distinct, so that N is actually

a line bundle.

Reconstructing the Higgs bundle. Conversely, the curve C and the line

bundle N determine V and Φ over T̂ . Indeed, Hitchin has shown that there

is a torsion sheaf B → T̂ supported over the branch points of the k-fold map

π1 : C → T̂ such that:

0→ OT̂ (V )∗ → OT̂ (π1∗N )∗ → B → 0

Furthermore, the Higgs field Φ can be obtained as follows. Pulling back

KT̂ to the spectral curve C via the natural k-fold covering map π1 one obtains

a tautological section λ in H0(C, π∗
1KT̂ ), the section of eigenvalues. The

operation of multiplication by λ yields a section of End(π1∗N )⊗ KT̂ which

takes V to V ⊗KT̂ and so defines the Φ ∈ EndV ⊗KT̂ .

See [22] for more details.

7.3 Matching the spectral data

So far we only know that our two spectral curves S and C lie inside

T̂ × P1 and that they have at least two points in common, namely (±ξ0,∞),

since Φ has semi-simple residues. We now show that if (V,B,Φ) is the Nahm

transform of (E,A), then the instanton spectral curve S associated to (E,A)

actually coincides with the Higgs spectral curve C associated to (V,B,Φ),

thus proving our third main result.
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Let us first consider an alternative definition of the transformed Higgs

field. Pick up the sections s0, s∞ ∈ H0(P1,OP1(1)), as defined in section 4.1.

For each ξ ∈ T̂ , we can define the map:

H1(T × P1, E(ξ))×H1(T × P1, E(ξ)) Ψξ−→ H1(T × P1, Ẽ(ξ))
(α, β) 7→ α⊗ s0 − β ⊗ s∞ (7.11)

If (α, β) ∈ kerΨξ, we define the Higgs field Φ at the point ξ ∈ T̂ as follows:

Φ[ξ](α) = β (7.12)

It is easy to see that this is equivalent to our previous definition, presented

on section 3.2.

Now suppose that α is an eigenvector of Φ[ξ] with eigenvalue ε. In par-

ticular, the point (ξ, ε) ∈ T̂ × P1 belongs to the Higgs spectral curve C. By

definition, we have:

Φ[ξ](α) = ε · α ⇒ α⊗ (s0 − ε · s∞) = 0

Clearly, sε = s0 − ε · s∞ is a holomorphic section in H0(P1,OP1(1)) van-

ishing at ε ∈ P1. So, it induces the following sheaf sequence:

0→ E(ξ)→ Ẽ(ξ)→ Ẽ(ξ)|Tε
→ 0

which in turn induces the cohomology sequence:

0 → H0(Tε, Ẽ(ξ)|Tε
) →

→ H1(T × P1, E(ξ)) ⊗sε→ H1(T × P1, Ẽ(ξ)) r→
r→ H1(Tε, Ẽ(ξ)|Tε

) → 0 (7.13)

Thus α ∈ ker(⊗sε) = H0(Tε, Ẽ(ξ)|Tε
) = H0(Tε, E(ξ)|Tε

).

In particular, H0(Tε, E(ξ)|Tε
) in non-empty, hence either E|Tε

= Lξ ⊕ L−ξ

or E|Tε
= F2⊗Lξ. So, the point (ξ, ε) ∈ T̂ ×P1 also belongs to the instanton

spectral curve S. Therefore, the two curves C and S must coincide.
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It also follows from the cohomology sequence (7.13) that the ε-eigenspace

of Φ[ξ] is exactly H0(Tε, Ẽ(ξ)|Tε
) = H0(Tε, E(ξ)|Tε

), i.e. N(ξ,ε) = L(ξ,ε), and

the spectral bundles (or sheaves) also coincide.

This proves our main theorem 2. Note that the argument also works if E
is not good.

In particular, we conclude that the instanton spectral curves lie within

the same linear system inside T̂ × P1, and are smooth for a generic point in

the moduli space M∗
(k,ξ0)

.

7.4 The moduli space of spectral data

Let S(k,ξ0) denote the configuration space for the spectral data (S,L). Let

also Σ(k,ξ0) be the space spectral curves, i.e. space of complex curves lying

within the homology class (2, k) ∈ H2(T̂ × P1,Z) and containing the points

(±ξ0,∞) ∈ T̂ × P1. From section 7.1, it is easy to see that S(k,ξ0) is the total

space of a fibration over Σ(k,ξ0) whose fibres are given by J (S), the Jacobian

of the curve S ∈ Σ(k,ξ0):

J → S(k,ξ0) → Σ(k,ξ0) (7.14)

Let us compute the dimension of the space of spectral curves Σ (k,ξ0).

From Kodaira [26], we know that deformations of a complex submanifold

S ↪→ T̂ × P1 are given by holomorphic sections of the normal line bundle

NS. On the other hand, we want to keep the points (±ξ0,∞) ∈ T̂ × P1

fixed. Thus, we are actually interested only on those elements of H0(S,NS)

vanishing at these points. Hence:

dim Σ(k,ξ0) = dim H0(S,NS)− 1 (7.15)

In order to compute the right hand side, we look at the following exact

sequence:

0→ OT̂×P1 → OT̂×P1(LS)→ OS(NS)→ 0
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where by LS → T̂ × P1 we denoted the line bundle associated to the divisor

S ↪→ T̂ × P1. It induces the cohomology sequence (M = T̂ × P1):

0 → H0(M,OM ) → H0(M,LS) → H0(S,NS) → H1(M,OM ) →
→ H1(M,LS) → H1(S,NS) → H2(M,OM ) → H2(M,LS) → 0

(7.16)

By regarding M = T̂ × P1 as a ruled surface over an elliptic curve, we

know that H2(M,OM ) = {0} (see [4], chapter 3). Thus H2(M,LS) must

also vanish, and h0(LS)−h1(LS) = 2k+2 by Riemann-Roch for line bundles

over surfaces.

On the other hand, we argue that h0(LS) = 2k + 2. Indeed, note that

c1(LS) = 2 · t̂ + k · p, so LS = p∗1Q⊗ p∗2OP1(k), where Q → T̂ is line bundle

of degree 2. Now, it follows from the Leray spectral sequence that (see [4],

chapter 3):

H0(T̂ × P1, LS) = H0(T̂ , Q)︸ ︷︷ ︸ ⊗ H0(P1,OP1(k))︸ ︷︷ ︸
dim = 2 dim = k + 1

and the claim is now obvious.

Thus h1(LS) = 0 and it follows from (7.16) that also H1(S,NS) = {0}.
In particular, one concludes that the deformation of spectral curves is unob-

structed [26]. We are then left with:

0→ H0(M,OM )︸ ︷︷ ︸ → H0(M,LS)→ H0(S,NS)→ H1(M,OM)︸ ︷︷ ︸ → 0

dim = 1 dim = 1 (7.17)

so that h0(M,LS) = h0(S,NS) = 2k + 2. It follows from (7.15) that

dim Σ(k,ξ0) = 2k + 1. Thus,

dim S(k,ξ0) = dim Σ(k,ξ0) + dim J (S) = 4k

Furthermore, Σ(k,ξ0) is a smooth projective manifold, since the deformation is

unobstructed and all curves lie within the same linear system. This implies

that the whole moduli space of spectral data S(k,ξ0) is itself smooth and

projective.
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Therefore, we conclude that the M∗
(k,ξ0)

, the moduli space of extensible

instanton connections with fixed instanton number k and asymptotic state

±ξ0, is a complex manifold of dimension 4k, containing S(k,ξ0) as an open

dense subset.

Finally, one would like to understand the action of T ×C×S1 onM∗
(k,ξ0)

introduced in section 3.3 in terms of the fibration (7.14). We expect the torus

translations t∗x to leave Σ(k,ξ0) invariant, acting only on the jacobian fibres

(by tensoring line bundles over S with π∗
1Lz). On the other hand, C× S1 is

expected to preserve the fibres, acting only on the base space.

Conclusion. Summing up the work done so far, we note that the moduli

spaces of doubly-periodic instantons and the moduli space of singular Higgs

pairs are seen to be naturally identified via the construction of the respective

spectral data. The two moduli spaces are, in particular, diffeomorphic. Since

we know that the moduli of Higgs bundles is a hyperkähler manifold (once the

parabolic structure and the residue are fixed), one concludes that the moduli

of instantons (with the appropriate parameters fixed) is also hyperkähler.

7.5 Instantons and rational maps

Donaldson has shown in [14] that monopoles are equivalent to rational maps

P1 → P1. This was done via the equivalence of monopoles and solutions of

Nahm’s equations obtained by Nahm transform. It is reasonable to expect

that a similar result should hold for doubly-periodic instantons as well. As a

by-product of the spectral curve construction done above, we show that the

space of spectral curves Σ(k,ξ0) admits a parametrisation in terms of rational

maps.

First, recall that T̂ admits a Z2 action σ (its group involution), and that

the quotient T̂ /σ is a rational curve, which we denote by P̂1. Points in P̂1

can be regarded as a pair of points {±ξ} ∈ T̂ . Moreover, it is easy to see
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that the diagram:

τ : S → S

π1 ↓ ↓ π1

σ : T̂ → T̂

commutes, where τ is the involution of the spectral curve defined in (7.2).

So, let E → T ×P1 be a good rank 2 holomorphic vector bundle as above.

We define a map R : P1 → P̂1 as follows. Restricting E to each elliptic fibre

as in the construction of the spectral curve, we get either E|Tw
= Lξ ⊕ L−ξ

or E|Tw
= F2 ⊗ Lξ We then define:

R(w) = [±ξw] (7.18)

Lemma 7.2 implies that R has degree k. Fixing the asymptotic state means

fixing the image of ∞ under the map R.

The involution σ : T̂ → T̂ can be seen as acting on the product T̂ × P1,

with quotient P̂1 × P1. Under this quotient, the spectral curve is mapped to

S/τ ↪→ P̂1 × P1. It is then easy to see that ΓR ↪→ P1 × P̂1, the graph of R,

coincides with S/τ . In particular, this implies that R is a rational map.

Recovering the spectral curve from the rational map R is not hard. Let

pσ : T̂ × P1 → P̂1 × P1 be the projection map naturally associated with the

quotient (T̂ /σ)×P1. It is easy to see that p−1
σ (ΓR) ↪→ P̂1×P1 coincides with

the spectral curve S associated with E .
In other words, we have shown that:

Theorem 7.6 There is a bijective correspondence between Σ(k,ξ0), the space

of instanton spectral curves, and rational maps R : P1 → P̂1 of degree k and

such that R(∞) = [±ξ0].

It is easy to see that the set of rational maps as above is indeed parametrised

by 2k + 1 complex numbers. The map R : P1 → P̂1 has the form:

akw
k + ak−1w

k−1 + · · ·+ a0

bkwk + bk−1wk−1 + · · ·+ b0
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which gives 2k + 2 parameters. Now fixing R(∞) = [±ξ0] means fixing the

ratio a0/b0, killing the extra degree of freedom.
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Appendix A

Relative Index Theorem

Let X be a connected, complete riemannian manifold, possibly non-compact.

Let K ⊂ X be a compact subset and denote Ω = X \K.

Consider complex vector bundles E0 → X and E1 → X and pick up

two first-order, elliptic differential operators D0 : L2
1(E0) → L2(E0) and

D1 : L2(E1) → L2(E1). Suppose that there is a bundle isomorphism

F : E0|Ω → E1|Ω.

We define the relative topological index of D0 and D1, which we de-

note by indt(D1, D0). First, if X is a compact manifolds, then we define

indt(D1, D0) = index(D1) − index(D0). If not, we proceed as follows. Cut

the set Ω out of X along the hypersurface M = ∂Ω and compactify X by

sewing on another compact manifold Ω̃ with boundary M ; in particular,

we can take Ω̃ to be the closure of X \ K. Extend D0 and D1 to elliptic

pseudo-differential operators D̃0 and D̃1 over X̃. Then, we define:

indt(D1, D0) = index(D̃1)− index(D̃0) (A.1)

a quantity that can be computed using the Atiyah-Singer index theorem.

It can be shown that the above expression is independent of the choice of

Ω̃ and of how the operators D0 and D1 are extended to D̃0 and D̃1 (see lemma

A.2 below). Note also that if X is odd dimensional, then indt(D1, D0) = 0.

Moreover, it is clear that perturbations of D0 and D1 supported at Ω leave
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index(D̃1) and index(D̃0) unchanged.

Now suppose that D0 and D1 are Fredholm operators when acting be-

tween the spaces considered above. We define the relative analytical index as

follows:

inda(D1, D0) = index(D1)− index(D0)

We want to show that, under certain conditions, these relative indices

coincide. Let us start by reviewing some standard facts. Recall that if D is a

Fredholm operator, there is a bounded, elliptic pseudo-differential operator

Q, called the parametrix of D, such that DQ = I−S and QD = I−S ′, where

S and S ′ are compact smoothing operators, and I is the identity operator.

Note that neither Q nor S and S ′ are unique.

In particular, there is a bounded operator G, called the Green’s operator

for D, satisfying DG = I −H and GD = I −H ′, where H and H ′ are finite

rank projection operators H : L2
p(E)→ ker(D) and H ′ : L2(E)→ coker(D).

Let KH(x, y) be the Schwartzian kernel of the operator H. Its trace

function is defined by tr[H](x) = KH(x, x); moreover, these are C∞ functions

[1]. If D is Fredholm, its index is given by:

index(D) =
∫

X
(tr[H]− tr[H ′]) (A.2)

as it is well-known; recall that compact operators have smooth, square inte-

grable kernels. Furthermore, if X is a closed manifold, we have [1]:

index(D) =
∫

X
(tr[S]− tr[S ′]) (A.3)

Let us now return to the situation set up above. Consider the paramet-

rices and Green’s operators (j = 0, 1):
{
DjQj = I − Sj

QjDj = I − S ′
j

{
DjGj = I −Hj

GjDj = I −H ′
j

(A.4)

The two operators D0 and D1 are said to coincide at Ω if

D0|Ω = F ◦ (D1|Ω) ◦ F−1. We are finally in position to state our relative

index theorem:
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Theorem A.1 Let D0 andD1 be first-order, elliptic pseudo-differential Fred-

holm operators over a complete riemannian manifoldX as above and suppose

that they coincide at Ω. Then inda(D1, D0) = indt(D1, D0).

The first step is to express the indices involved in terms of integral for-

mulas. As in (A.2), we have for the analytical index that:

indexa(D1, D0) =
∫

X
(tr[H1]− tr[H ′

1])−
∫

X
(tr[H0]− tr[H ′

0])
(A.5)

For the relative topological index, we have the following lemma:

Lemma A.2 Under the hypothesis of the theorem, we have that:

indt(D1, D0) =
∫

X
(tr[S1]− tr[S ′

1])−
∫

X
(tr[S0]− tr[S ′

0])
(A.6)

Proof: Compactify X as explained above; one obtains the compact man-

ifold X̃. Extend D0 and D1 to operators D̃0 and D̃1, both defined over the

whole X̃. Let Q̃, Q̃′ denote the extension of each Qj, Q
′
j from Ω to Ω̃, which

are, by hypothesis, equal. Choose cut-off functions β1, β2 : X̃ → R such that:

(β1)
2 + (β2)

2 = 1 suppβj
1 = K and suppβ1 = Ω̃ (A.7)

Suppose also that the differentials dβ1, dβ2 are supported in a small neigh-

bourhood of M . One can glue each Qj with Q̃ using the cut-off functions to

obtain parametrix Q̃j for D̃j over the whole X̃. More precisely, let s ∈ Γ(Ẽ):

Q̃j(s) = β1Qj(β1s) + β2Q(β2s) (A.8)

It is straightforward to verify that these are truly parametrix for D̃j and

that:
{
S̃j = β1Sj(β1s) + β2S(β2s) + dβ1.Qj(β1s) + dβ2.Q(β2s)

S̃ ′
j(s) = β1S

′
j(β1s) + β2S

′(β2s) (A.9)
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hence S̃0, S̃1 and S̃ ′
0, S̃

′
1 coincide at Ω̃ = X̃ \K. Thus

tr[S1]− tr[S ′
1]− tr[S0] + tr[S ′

0] = 0 (A.10)

at Ω̃. From (A.3):

index(D̃j) =
∫

X̃

(
tr[S̃j]− tr[S̃ ′

j]
)

(A.11)

and (A.6) follows immediately from the definition (A.1), (A.10) and (A.11).

�

As we noted before, this lemma shows also that the definition of relative

topological index is independent of the choice of extensions D̃0 and D̃1; this

is quite clear from (A.6).

Before we step into the proof of theorem A.1 itself, we must introduce

some notation. Let f : [0, 1] → [0, 1] be a smooth function such that f = 1

on [0, 1
3
], f = 0 on [2

3
, 1] and f ′ ≈ −1 on [1

3
, 2

3
]. Pick up a point x0 ∈ X and

let d(x) = dist(x, x0). For each m ∈ Z∗, consider the functions:

fm(x) = f
(

1

m
e−d(x)

)
(A.12)

Note that suppd(fm)
1
2 ⊂ Blog 3

4m
−Blog 3

2m
and

||∇fm||L2 ≤ C

m
(A.13)

where C =
(∫

X e
−d(x)

) 1
2 . Here, Br = {x ∈ X | d(x) ≤ r}, which is compact

by the completeness of X.

Proof of theorem A.1: All we have to do is to show that the right hand

sides of (A.5) and (A.6) are equal. In fact, let V ∗ ⊂ V be small neighbour-

hoods of the diagonal of (X ×X) and choose ψ ∈ C∞(X ×X) supported on

V and such that ψ = 1 on V ∗. Let Qj be the operator whose Schwartzian

kernel is KQj(x, y) = ψ(x, y)KGj(x, y), where Gj is the Green’s operator for

Dj. Then Qj is a parametrix for Dj with:

DjQj = I − Sj and QjDj = I − S ′
j
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and clearly:

tr[Sj] = tr[Hj] and tr[S ′
j] = tr[H ′

j] (A.14)

But is not necessarily the case that the two parametrix Q0 and Q1 so

obtained coincide at Ω. We will glue them with Q, the common parametrix

of D0|Ω and D1|Ω using the cut-off functions fm defined above (assume that

the base points are contained in the compact set K). More precisely:

Q
(m)
j (s) = (fm)

1
2Qj((fm)

1
2 s) + (1− fm)

1
2Q((1− fm)

1
2 s)

(A.15)

which now coincide at Ω. For the respective compact operators, we get:





S
(m)
j (s) = (fm)

1
2Sj((fm)

1
2 s) + (1− fm)

1
2S((1− fm)

1
2 s)+

+d(fm)
1
2 .(Qj((fm)

1
2 s)−Q((1− fm)

1
2 s)

S
(m)′
j (s) = (fm)

1
2S ′

j((fm)
1
2 s) + (1− fm)

1
2S ′((1− fm)

1
2 s)

therefore:

tr[S
(m)′
j ]− tr[S

(m)
j ] =

(fm)
1
2 (tr[S ′

j]− tr[Sj]) + (1− fm)
1
2 (tr[S ′]− tr[S]) + tr[d(fm)

1
2 .(Qj −Q)]

and
tr[S

(m)′
1 ]− tr[S

(m)
1 ]− tr[S

(m)′
0 ] + tr[S

(m)
0 ] =

= (fm)
1
2 (tr[S ′

1]− tr[S1]− tr[S ′
0] + tr[S0])+

+ tr[d(fm)
1
2 (Q1 −Q)]− tr[d(fm)

1
2 (Q0 −Q)]︸ ︷︷ ︸

= tr[d(fm)
1
2 (Q1 −Q0)]

We must now integrate both sides of the expression above and take lim-

its as m → ∞. For m sufficiently large, supp(1 − fm) ⊂ Ω the LHS equals

indt(D1, D0) by lemma A.2; on the other hand, the term inside the parenthe-

sis on the RHS equals inda(D1, D0) by (A.14) and (A.5). Thus, it is enough

to show that the last two terms on the RHS vanishes as m → ∞. Indeed,

note that:

tr[d(fm)
1
2 (Q1 −Q0)] = d(fm)

1
2 tr[(Q1 −Q0)]
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hence, since supp(dfm) ⊂ Ω for sufficiently large m and using also (A.13), it

follows that:
∫

Ω
tr[d(fm)

1
2 (Q1 −Q0)] ≤

C

m

∫

Ω
tr[(G1 −G0)]→ 0 as m→∞

if the integral on the RHS is finite.

Indeed, let D = Di|Ω; from the parametrix equation, we have:

D(G1|Ω −G0|Ω) = H1|Ω −H0|Ω

Observe that W = ker(H1|Ω−H0|Ω) is a closed subspace of finite codimension

in L2(Ω). Moreover W ⊆ ker(D); thus, (G1|Ω−G0|Ω) has finite dimensional

range and hence it is of trace class.

This concludes the proof. �

Applications. In our applications, we have a Fredholm operator D1 and

an invertible operator D0. However, they do not exactly coincide away from

a compact set; instead, they are asymptotically equal, i.e. given ε > 0, there

is a compact set K ⊂ X such that:

||D1 −D0||2L2(X\K) < ε

In order to apply theorem A.1, we construct a new Fredholm operator D′
1 as

follows. Let β1 and β2 be cut-off functions, respectively supported over K

and X \K as before, and define:

D′
1 = β1D1β1 + β0D0β0

Now, it is clear that D′
1|X\K coincides with D0|X\K . Furthermore, since

||D′
1 − D1||L2(X) < ε with ε arbitrarily small, we know that index(D′

1) =

index(D1).

So, theorem A.1 applies for the pair of operators D′
1 and D0. Since

index(D0) = 0, one concludes index(D1) = index(D′
1) = indt(D

′
1, D0). In

this situation, D0 is often referred to as the background operator.
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Final example. We conclude by treating one example particularly relevant

to the index problems we deal with in the bulk of the present work; see also

[19]. Suppose X is a spin manifold and let D be its canonical Dirac operator

acting on positive spinors over X. Suppose that E → X is a complex vector

bundle of rank n which is trivialised outside a compact subset of X. Let Cn

denote the trivial complex bundle of rank n, and consider the operators:

{
D0 : Γ(Cn ⊗ S+)→ Γ(Cn ⊗ S−)
D1 : Γ(E ⊗ S+)→ Γ(E ⊗ S−)

Clearly, these operators coincide outside the support of E; thus:

indt(D1, D0) = indt(D1, D0) = index(D̃1)− index(D̃0) =

=
{
ch(E) · Â(X̃)

}
[X̃]−

{
ch(Cn) · Â(X̃)

}
[X̃] =

=
{
(ch(E)− n) · Â(X̃)

}
[X̃]
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Appendix B

On the asymptotic behaviour of

extensible connections

Motivated by the properties of the inverse transformed bundle and instanton

connection, it seems fair to make the following conjecture:

Conjecture B.1 If |FA| ∼ O(|w|−2) then there is a holomorphic vector bun-

dle E → T × P1 such that

E|T×(P1\{∞}) ' (E, ∂A)

In other words, A is extensible.

Such conjecture motivates other questions, which we will not attempt to

address here:

• Do all anti-self-dual connections on E → T ×C with finite energy with

respect to the Euclidean metric satisfy |FA| ∼ O(|w|−2)?

• Does the converse holds, i.e. if A is extensible then |FA| ∼ O(|w|−2)?

If not, what are the necessary and sufficient analytical conditions for

extensibility (in terms of the Euclidean metric)?

• Given a holomorphic bundle E → T × P1, is there a connection A on

E|T×(P1\{∞}) such that A is anti-self-dual and |FA| ∼ O(|w|−2) with

respect to the Euclidean metric?
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Note however that if the conjecture does hold, the Nahm transform con-

structed in the bulk of the thesis would give a positive answer, though a

rather indirect one, to the last question. However, it would be rather inter-

esting to obtain a direct proof.

We would like to point out that the techniques applied to the solution of

this problem would probably extend to instanton connection on bundles over

surfaces of the form Σ × C, where Σ is any compact complex curve.

Ingredients for a proof. The key ingredient for a possible proof B.1 is

the following Lp integrability result due to Buchdahl [13]:

Lemma B.2 Let ∆ be a unit polydisc in C2. Let A be a matrix valued

(0, 1)-form on ∆ with coefficients in Lp
j(∆), where p > 2 and j ≥ 1, such

that ∂A + A ∧ A = 0. Then there is a matrix-valued function h ∈ Lp
j+1(∆),

possibly defined on a smaller polydisc, such that ∂h = −Ah.

The strategy is to use lemma B.2 to construct local holomorphic ex-

tensions of E, and then patch them together to give a global holomorphic

extension E .
More precisely, let U ⊂ T be a small open set, with complex coordinate

z; and let DR ⊂ C be the complement of a disc of large radius R � 0, with

complex coordinate w. Define:

∆0 = U × (B1(0) \ {0}) and ∆ = U ×B1(0)

and consider the inversion map:

ι : ∆0 → U ×DR

(z′, w′) →
(
z = z′, w = R

w′

) (B.1)

It is also convenient to introduce polar coordinates for the above complex

coordinates:

w′ = (ρ, θ)
ι7→ w =

(
r =

R

ρ
, θ

)
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and this implies that:

dr = −dρ
ρ2

and dρ = −dr
r2

In order to use Buchdahl’s lemma (or some of its versions), one would

have to establish following gauge fixing lemma:

Conjecture B.3 If |FǍ| ∼ O(|w|−2) then, for R � 0, there is a gauge

g : U ×DR → SU(2) such that ι∗g(A) ∈ Lp
1(∆0), p > 2.

This is a familiar problem in gauge theory, and there are various results

along these lines, see for instance [15], [38], [34]. The fact that we have a

pointwise estimate on the curvature, instead of some global Lp
k bound, makes

the conjecture possibly easier to prove than the hard results mentioned above.

Now consider the local trivialisation of E|U×DR
corresponding to the

gauge obtained in the above conjecture. Define F = ι∗E|U×DR
→ ∆0 and

A′ = ι∗g(A). Thus, by B.2 and B.3, we can find a gauge h ∈ Lp
2(∆0) (p > 2),

possibly after shrinking ∆
(n)
0 if necessary, such that:

h(A′) = h−1(A′)h+ h−1∂h

is a (1,0)-form. Note that there are many functions satisfying the above

equation, for if h is one, so is hf for any holomorphic matrix-valued function

f on ∆0. Since ι∗A vanishes at {w′ = 0}, we see that h(z′, 0) is holomorphic

in z′ = z. Thus, we suppose without loss of generality that h is the identity

over {w′ = 0}, for we can always take h(z, w′) ·h−1(z, 0) instead, if necessary.

Now let g2 = (ι∗g)h. In this new gauge, the connection ι∗A is represented

by a (1, 0)-form. Thus, g2 is a holomorphic basis for F . We extend F

holomorphically over {w′ = 0} by defining g2 as a holomorphic basis on

F → ∆.

We must now show how to patch these local extensions together and

produce a global holomorphic extension of E over T∞.
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Let U and W be any two intersecting neighbourhoods in T . It suffices

to show that the transition function Ψ for the gauges g2(U) and g2(W )

on FU → U × B1(0) and FW → W × B1(0), respectively, constructed as

above does extend to a holomorphic function on (U ∩ W ) × B1(0). Let

g2(U) = g2(W )ΨUW be such a transition function; ΨUW is defined and holo-

morphic on (U∩W )×(B1(0)\{0}). If it can be extended holomorphically over

{w′ = 0}, the cocycle condition will follow from continuity of the transition

functions and the cocycle condition for E.

Let ι∗g(U) = ι∗g(W )ΥUW , where ΥUW is a transition function for the

original gauges. The gauges ι∗g(U) and ι∗g(W ) are continuous, hence so is

ΥUW .

On the other hand, we have:

g2(U) = ι∗g(U)ΨU = ι∗g(W )ΥUWΨU = ι∗g(W )Ψ−1
W ΥΨU

(B.2)

Since ΨW and ΨU are bounded and continuous, so is the matrix function

ΨUW = Ψ−1
W ΥUWΨU . But ΨUW is holomorphic on (U ∩W )× (B1(0) \ {0}),

so it extends holomorphically over (U ∩W )× B1(0), as desired.

In other words, quadratic curvature decay implies extensibility up to the

gauge fixing lemma B.3.

B.1 Proof of the proposition 2.1

Recall that we need to establish the following result 1:

Proposition B.4 If |FA| ∼ O(r−2), then, for R sufficiently large, there is a

gauge over T × VR and a constant flat connection Γ on a topologically trivial

rank two bundle over the elliptic curve such that:

|A− p∗Γ| = |α| ∼ O(r−1 · log r)

1I thank Olivier Biquard for showing me the arguments in this section
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First, we need the following lemma that we shall assume without proof:

Lemma B.5 Let B be a connection on a rank two bundle over T 3 = S1 ×
S1 × S1 satisfying |FB| ≤ ε for ε sufficiently small. Choose L1, L2, L3 such

that exp(−2πLk) is the monodromy of B at the point (0, 0, 0) around the

kth-circle. Then there exists an unique gauge g on S1 × S1 × S1, such that:

1. g(0, 0, 0) = I;

2. g(A) = M1dθ1 +M2dθ2 +M3dθ3, where:

• M1(θ1, 0, 0) = L1, M2(0, θ2, 0) = L2, M3(0, 0, θ3) = L3;

• M2(θ1, θ2, 0) does not depend on θ2;

• M3(θ1, θ2, θ3) does not depend on θ3;

3. in this gauge, one has the control:

sup {|Mi − Li|, |[Mi,Mj]|} ≤ c · ε

Now, fix a ray {x0} × {y0} × [R,∞) × {θ0} and trivialise the bundle

E → T × C on this ray by parallel transport. Therefore we have fixed a

gauge on this ray.

Using lemma B.5 on each 3-dimensional tori T × {r} × S1, where r > R,

we extend the above gauge to a global gauge on T × VR. This is the gauge

we are looking for.

Indeed, let Br = A|T×S1
r
, then |FBr

| < C · r−1 (we have to account for the

fact that one circle is getting larger). for some constant C. By lemma B.5,

for each r, we can find a gauge on T × S1
r and a constant connection 2:

Γr = a(r)dx+ b(r)dy + h(r)dθ

such that |Br − Γr| < C/r.

2Note that a, b and h are respectively L1, L2 and L3 in the statement of lemma B.5.
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Now it follows from the curvature bound that:

a ∼ O(r−1) + a∞ b ∼ O(r−1) + b∞ h ∼ O(log r) + c (B.3)

Therefore, the torus components are well-defined limits as r →∞, which we

denoted by a∞ and b∞, respectively. Defining Γ = a∞dx+ b∞dy, we have:

Γr = a∞dx+ b∞dy + γ(r), where γ(r) ∼ O(r−1 · log r)

Thus:

|Br − Γ| < C · log r

r
(B.4)

and note that Γ is flat by the estimate in (3) of lemma B.5.

On the other hand, the connection A can now be written in the global

gauge as follows:

A = a(x, y, r, θ)dx+ b(x, y, r, θ)dy + f(x, y, r, θ)dr+ h(x, y, r)dθ

such that f(0, 0, r, 0) = 0

A lemma due Biquard (lemma 1 in [5]) implies that ∂h/∂r and:

∂a

∂r
(x, 0, r, 0)

∂b

∂r
(x, y, r, 0)

are controled by the curvature bound. From this control and from the curva-

ture bound, one can deduce a control on the following terms (which can be

regarded as the curvature of the connection A restricted to each of the three

circles plus the radial derivatives):

∂f

∂x
+ [a, f ]

∂f

∂y
+ [b, f ]

∂f

∂θ
+ [f, h]

Now diagonalising a, b and h one at a time allows us to control each summand

of the three terms above separately, thus controlling f : the third term gives

an estimate to ∂f
∂θ

, so it is enough to control f(x, y, r, 0); now the second
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term gives an estimate to ∂f
∂y

, so it is enough to control f(x, 0, r, 0) and this

is finally done using the first term. In fact, f ∼ O(r−1).

Together with (B.4), this concludes the proof. �

Note that the gauge fixing result needed to prove extensibility from the

curvature bound would require much more delicate arguments in order to

give estimates on the derivatives of the connection components.
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